WO2017113652A1 - 一种智能终端的触觉振动控制系统和方法 - Google Patents

一种智能终端的触觉振动控制系统和方法 Download PDF

Info

Publication number
WO2017113652A1
WO2017113652A1 PCT/CN2016/086932 CN2016086932W WO2017113652A1 WO 2017113652 A1 WO2017113652 A1 WO 2017113652A1 CN 2016086932 W CN2016086932 W CN 2016086932W WO 2017113652 A1 WO2017113652 A1 WO 2017113652A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
linear resonant
resonant actuator
vibration
sensing
Prior art date
Application number
PCT/CN2016/086932
Other languages
English (en)
French (fr)
Inventor
李波
冯勇强
楼厦厦
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Priority to US15/324,151 priority Critical patent/US10109163B2/en
Priority to EP16820141.6A priority patent/EP3211504B1/en
Priority to DK16820141.6T priority patent/DK3211504T3/da
Publication of WO2017113652A1 publication Critical patent/WO2017113652A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B6/00Tactile signalling systems, e.g. personal calling systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D19/00Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase
    • G05D19/02Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase characterised by the use of electric means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user

Definitions

  • the present invention relates to the field of haptic feedback technologies, and in particular, to a haptic vibration control system and method for an intelligent terminal.
  • a linear resonant actuator is an electromagnetic system in which a mass is loaded on a spring. It has a natural resonant frequency or a natural resonant frequency, and is usually a high quality factor system. Therefore, when the input driving electrical signal is stopped, the oscillation response of the system is not It will disappear immediately and gradually weaken. This residual vibration will last for a while, and even affect the next vibration, and the desired vibration effect will not be achieved.
  • embodiments of the present invention provide a tactile vibration control system and method for an intelligent terminal to effectively suppress or eliminate residual vibration of a linear resonant actuator.
  • an embodiment of the present invention provides a haptic vibration control system of a smart terminal, the haptic vibration control system including: a command generator, a filter, a haptic driver, and a linear resonant actuator;
  • the command generator generates an original command signal according to the input signal, and sends the original command signal to the filter;
  • the filter filters the received original command signal and sends the filtered command signal to the haptic driver; the amplitude of the initial predetermined number of pulses of the filtered command signal is greater than a set threshold, and the phase of the predetermined number of pulses at the end Reverse
  • the haptic driver generates a driving signal according to the received filtered command signal, and transmits the generated driving signal to the linear resonant actuator;
  • the linear resonant actuator receives the drive signal and vibrates under the drive of the drive signal.
  • an embodiment of the present invention provides a tactile vibration control method for an intelligent terminal, where the method includes:
  • a drive signal is generated based on the filtered command signal to cause the linear resonant actuator to vibrate under the drive of the drive signal.
  • the beneficial effects of the embodiments of the present invention are: for the linear resonant actuator, the residual phenomenon of tailing may also occur when the driving signal stops driving, and the present invention adopts an open loop control mode to control the linear resonant actuator through the open loop control.
  • a filter is added to filter the original command signal generated by the command generator by using a filter, so that when the linear resonant actuator vibration is driven by the subsequently generated driving signal, the quick start response and the braking response are weakened, and the time dimension is weakened.
  • the degree of overlap of the front and rear vibration events with short intervals increases the degree of discrimination in the time dimension of the front and rear vibration events, achieving fast start and fast braking, thereby ensuring the desired vibration effect.
  • the present invention also fuses the sensing signals of the plurality of sensor outputs representing the vibration mode-related physical quantities into feedback signals by providing a plurality of sensors capable of monitoring or sensing the vibration state of the linear resonant actuator. a unit, and a comparator capable of generating an error signal based on the feedback signal and the desired signal in the input signal to control the physical quantity of the vibration of the linear resonant actuator in real time, and more robustly estimating the state of the linear resonant actuator by means of effective integration And control is applied to further solve the residual phenomenon of tailing when the linear resonant actuator vibrates. Moreover, the present scheme can achieve the technical effect of real-time adjustment of the vibration state of the actuator through real-time feedback and adjustment.
  • FIG. 1 is a block diagram of a tactile vibration control system of a smart terminal according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic view showing the working process of the open-loop tactile vibration control system of FIG. 1;
  • FIG. 3a is a schematic diagram of a command signal of an unfiltered process according to Embodiment 1 of the present invention.
  • 3b is a displacement diagram of a vibrator of a linear resonant actuator without filtering treatment according to Embodiment 1 of the present invention
  • FIG. 4a is a schematic diagram of a command signal after filtering processing according to Embodiment 1 of the present invention.
  • FIG. 4b is a displacement diagram of a vibrator of a linear resonant actuator after filtering processing according to Embodiment 1 of the present invention
  • FIG. 5 is a block diagram of a tactile vibration control system of a smart terminal according to Embodiment 2 of the present invention.
  • Figure 6 shows a schematic diagram of the working process of a closed-loop haptic vibration control system
  • Figure 7 is a schematic diagram showing the operation of another closed-loop haptic vibration control system
  • FIG. 8 is a flowchart of a tactile vibration control method of a smart terminal according to Embodiment 3 of the present invention.
  • FIG. 9 is a flowchart of a method for controlling a closed-loop haptic vibration of a smart terminal according to Embodiment 3 of the present invention.
  • Tactileity is an important sensory modality of the human body, which has the irreplaceable advantages of sight and hearing:
  • the surface area of the human skin is large, and there are many optional parts that can be used as information receiving points, such as fingertips, palms and arms;
  • the skin may be stressed or shaken to receive information
  • the information exchange of the tactile channel is relatively concealed and has high security.
  • Eccentric Rotating Mass Motor ECM
  • LRA Linear Resonant Actuator
  • the vibration frequency and vibration amplitude of the eccentric rotating mass actuator cannot be independent. Control and noise accompanying; linear resonant actuators do not have these problems, and start and brake times are shorter than eccentric rotating mass actuators, so they are more widely used.
  • a linear resonant actuator is an electromagnetic system in which a mass is loaded on a spring, having a natural resonant frequency or a natural resonant frequency, and is typically a high quality factor system. Therefore, the linear resonant actuator may also have a stray residual phenomenon when the drive signal stops driving.
  • the invention analyzes the residual phenomenon that the linear resonant actuator has a tailing when the driving signal stops driving: the residual phenomenon of the trailing is completely determined by the convolution of the driving signal and the impulse response of the linear resonant actuator, thus Embodiments process the drive signal to achieve an output that is convolved with the impulse response of the linear resonant actuator.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 1 is a block diagram of a tactile vibration control system of a smart terminal according to an embodiment of the present invention.
  • the smart terminal of the present invention may be a handheld device, a wearable device (such as a smart watch, a smart wristband), and an industrial control device.
  • the haptic vibration control system of FIG. 1 is an open loop control system including a command generator 11, a filter 12, a haptic driver 13, and a linear resonant actuator 14.
  • the output of the command generator 11 is connected to the input of the filter 12, the filter The output of 12 is coupled to the input of haptic driver 13, and the output of haptic driver 13 is coupled to the input of linear resonant actuator 14.
  • the command generator 11 generates an original command signal based on the input signal and transmits the original command signal to the filter 12.
  • the input signal in this embodiment may be a desired signal and a selection instruction that characterize the vibration mode of the linear resonant actuator, or may be media stream data, and the media stream data may be media stream data such as audio stream data, video stream data, and the like.
  • the command generator 11 in this embodiment is also connected to the vibration effect library 15, and the vibration mode list in the vibration effect library 15 records the physical quantity representing the vibration effect corresponding to each vibration mode of the linear resonance actuator. sequence.
  • the command generator 11 When the input signal is a desired signal and a selection instruction including a vibration mode representing the linear resonance actuator, the command generator 11 reads the vibration mode list of the vibration effect library 15 and from the vibration mode list according to the selection instruction in the input signal. The corresponding physical quantity sequence is selected, and the physical quantity sequence is used as the original command signal.
  • the command generator 11 acquires, from the media stream data, a physical signal derived from the media stream data that characterizes the vibration effect, and uses the physical signal as the original command signal.
  • the filter 12 filters the received original command signal and sends the filtered command signal to the haptic driver 13; the amplitude of the initial predetermined number of pulses of the filtered command signal is greater than a set threshold, and a predetermined number at the end The phase of the pulse is reversed.
  • the open loop control scheme provided in this embodiment requires that the drive signal generated by the filter-processed command signal has an overdrive characteristic in an initial period and has an active braking characteristic in an end period.
  • the filter 12 in FIG. 1 is preferably disposed as a post module of the command generator 11 between the command generator 11 and the haptic driver 13 to better perform the original command generated by the command generator 11.
  • Filtering ; of course, in practical applications, the filter 12 of the present embodiment can also serve as a pre-module of the command generator 11, that is, the output of the filter 12 is connected to the input of the command generator 11, and the input of the filter 12 is The signal is filtered such that the drive signal generated by the haptic driver 13 has an overdrive characteristic during the initial period and has an active braking characteristic at the end of the period.
  • the parameters of the filter in this embodiment are determined by the impulse response of the linear resonant actuator, preferably the time domain signal of the filter is an impulse signal.
  • the haptic vibration control system in this embodiment is further provided with a parameter memory 16 connected to the filter 12, and the parameter memory 16 stores at least a damped resonance period and a damping ratio for calculating a linear resonant actuator. Inherent parameters, so that the calculated damping resonance period and damping ratio can be used to calculate the impulse moment and impulse amplitude of each impulse of the impulse signal.
  • the damped resonance period of the linear resonant actuator 14 can be calculated from the resonant frequency and the damping ratio of the linear resonant actuator 14, as per the formula Calculating a damping resonance period T d of the linear resonant actuator, and determining an impulse timing of each impulse of the impulse signal according to the damping resonance period T d ; and calculating each impulse according to a damping ratio of the linear resonant actuator 14 Agitated amplitude, as per the formula The impulse amplitude of the impulse is calculated; where f n is the resonant frequency of the linear resonant actuator and ⁇ is the damping ratio of the linear resonant actuator.
  • the damping resonance period T d 5.8 ms can be calculated according to the damping resonance period calculation formula of the linear resonant actuator described above.
  • the first impulse impulse moment t 1 0, the impulse amplitude
  • the haptic driver 13 generates a drive signal based on the received filtered command signal, and transmits the generated drive signal to the linear resonant actuator 14.
  • the linear resonant actuator 14 receives the drive signal and vibrates under the drive of the drive signal.
  • the haptic vibration control system in this embodiment further includes a micro control unit for controlling signal transmission between the control command generator 11, the filter 12, the haptic controller 13, the linear resonance actuator 14, the vibration effect library 15, and the parameter memory 16.
  • the micro control unit is used as a central controller of the tactile vibration control system.
  • the working process of the tactile vibration control system of this embodiment is as shown in FIG. 2:
  • the micro control unit in the smart terminal generates an input signal according to some trigger events (such as the user pressing the touch screen), so that the command generator 11 selects the digitized corresponding to the desired vibration mode from the vibration effect library 15 according to the selection instruction in the input signal.
  • the physical quantity sequence is used as the original command signal, or the simulated physical signal derived from the media stream data in the input signal is used as the original command signal, and the command generator 11 transmits the generated digital or analog original command signal to the filter 12.
  • the filter 12 sends the filtered command signal to the haptic driver 13, and the haptic driver 13 generates a corresponding driving signal according to the filtered command signal, and the driving signal may be a driving current or a driving voltage;
  • the actuator 14 vibrates under the drive current or drive voltage, so that The smart terminal is forced to vibrate, and the part where the user contacts the smart terminal may generate a vibrating touch.
  • FIGS. 4a and 4b are respectively a schematic diagram of a command signal for filtering processing and a displacement diagram of a vibrator of a linear resonant actuator
  • Figure 3a exemplarily shows a rectangular wave command signal having three cycles, at the beginning of the fourth cycle, stopping the output of the command signal; using the filter of the present invention for the command of Figure 3a After the information is filtered, the command signal shown in Fig. 4a is obtained. It can be seen from FIG.
  • the command signal corresponding to the first half of the first period is represented as a pulse signal, that is, the amplitude of the command signal corresponding to the first half of the first period is much larger than the corresponding command of the second half of the period.
  • the amplitude of the signal (it can be seen from Fig. 4a that the amplitude of the command signal corresponds to 0 in the second half of the cycle); the command signal corresponding to the first half of the fourth cycle appears as a pulse signal, that is, the first half of the fourth cycle.
  • the amplitude of the corresponding command signal is much larger than the amplitude of the corresponding command signal in the second half of the cycle (as can be seen from FIG.
  • the amplitude of the corresponding command signal is zero in the second half of the cycle), and the phase of the pulse signal is inverted by 180°;
  • the corresponding command signal in the period of the period and the third period appears as a rectangular wave signal whose peak value is close to zero.
  • the filtered command signal appears as a pulse signal in both its initial stage and the end stage
  • Fig. 4a exemplarily shows that there is one pulse in both the initial stage and the end stage, and the end
  • the phase of the phase pulse is flipped by 180°, and the intermediate phase appears as a periodic signal with a peak close to zero. Therefore, when the driving signal is generated by using the command signal in FIG. 4a to drive the vibration of the linear resonant actuator, the linear resonant actuator can be driven to quickly enter the stable vibration state, the vibration is quickly stopped, and the residual of the trailing can be effectively suppressed.
  • FIG. 4a only exemplarily shows a case where there is one pulse in both the initial stage and the end stage. In practical applications, a corresponding number of pulses can be designed as needed, and the present invention does not limit the number of pulses.
  • the linear resonant actuator of Fig. 4b has a vibration effect of quick start and fast braking, and can well suppress the residual of the trailing. That is, the linear resonant actuator in Fig. 3b enters a stable vibration state at a relatively slow speed, and produces a long tail at the end of the vibration; and the linear resonant actuator in Fig. 4b can quickly enter a stable vibration state, which is fast.
  • the driving signal generated by the filtered command signal has the characteristics of over-driving and active suppression, that is, capable of driving the linear resonant actuator to quickly enter a stable vibration state, and effectively suppressing the residual of the trailing end when the vibration is finished.
  • the tactile vibration control system of the present embodiment adopts an open loop control mode to control the linear resonant actuator, and by adding a filter in the open loop control, the original command signal generated by the filter to the command generator is utilized.
  • the filtering process is performed such that when the linear resonant actuator vibration is driven by the subsequently generated driving signal, the driving response and the braking response are fast, the degree of overlap of the short-term front and rear vibration events in the time dimension is weakened, and the front and rear vibration events are improved.
  • the degree of discrimination in the time dimension enables fast start and fast braking to achieve the desired vibration effect.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the present embodiment characterization of the sensor output by providing a plurality of sensors capable of monitoring or sensing the vibration state of the linear resonant actuator.
  • the sensing signal of the vibration mode-related physical quantity is used as a feedback signal to control the physical quantity of the vibration of the linear resonant actuator in real time, and the state of the actuator is more robustly estimated and the control is applied by means of effective integration, thereby further solving the linear resonance actuation.
  • a residual phenomenon of tailing occurs when the device vibrates.
  • FIG. 5 is a block diagram of a tactile vibration control system of the smart terminal according to the embodiment. As shown in FIG. 5, by setting the sensing module 55, the feedback unit 56, and the comparator 57 in the tactile vibration control system, the command generation in FIG. 5 is performed.
  • the device 51, the filter 52, the haptic driver 53, the linear resonant actuator 54, the sensing module 55, the feedback unit 56 and the comparator 57 constitute a closed-loop controlled haptic vibration control system.
  • the output of the command generator 51 is connected to the input of the filter 52, the output of the filter 52 is connected to the input of the haptic driver 53, and the output of the haptic driver 53 is connected to the linear resonant actuator.
  • the output of the linear resonant actuator 54 is coupled to the input of the sensing module 55, the output of the sensing module 55 is coupled to the input of the feedback unit 56, and the output of the feedback unit 56 is coupled to The first input of the comparator 57, the second input of the comparator 57 is connected to an access desired signal (not shown), and the output of the comparator 57 is connected to the input of the command generator 51.
  • the command generator 51 generates an original command signal based on the input signal, and adjusts the original command signal generated based on the error signal generated by the comparator 57 to transmit the original command signal to the filter 52.
  • the filter 52 the haptic driver 53, and the linear resonant actuator 54 in this embodiment, refer to the description of the filter 12, the haptic driver 13, and the linear resonant actuator 14 in the first embodiment. No longer.
  • the sensing module 55 includes a plurality of sensors, each of which senses the state of the linear resonant actuator 54 in real time, and generates a corresponding sensing signal upon sensing the vibration of the linear resonant actuator 54.
  • the sensing module 55 includes a counter electromotive force sensing circuit, and the counter electromotive force sensing circuit is disposed on the linear resonant actuator 54 to generate a counter electromotive force signal when the linear resonant actuator vibrates;
  • the sensing module 55 includes a position separated from the linear resonant actuator 54 in the smart terminal. a motion sensor that is configured to generate a corresponding motion sensing signal when the linear resonant actuator vibrates;
  • the sensing module 55 includes a motion sensor disposed on the linear resonant actuator 54 to generate a corresponding motion sensing signal when the linear resonant actuator vibrates;
  • the motion sensor refers to an important physical quantity capable of sensing a linear resonant actuator in real time
  • the motion sensor may be a sensor based on piezoelectric, ultrasonic, infrared, capacitance, etc., such as vibration acceleration, vibration speed, vibration displacement or vibration frequency.
  • the motion sensor comprises one or more of an acceleration sensor, a laser Doppler vibration tester, a microphone, and a gyroscope.
  • the feedback unit 56 fuses the multi-path sensing signals generated by the sensing module 55 to obtain a feedback signal for estimating the vibration mode of the linear resonant actuator, and transmits the feedback signal to the comparator 57.
  • the comparator 57 compares the feedback signal with a desired signal representing the vibration mode of the linear resonance actuator in the input signal, generates an error signal based on the comparison result, and transmits the error signal to the command generator 51.
  • the command generator in this embodiment may set a PID (proportional integral derivative) control unit to adjust the generated original command signal.
  • the original command signal is adjusted according to the error signal during the vibration period of each half of the linear resonant actuator, such as adjusting the waveform parameters such as the amplitude, duration or period of the waveform corresponding to the original command signal.
  • the tactile vibration control system of the present embodiment adopts a closed-loop control mode to control the linear resonant actuator, and by providing a plurality of sensors capable of inducing the vibration state of the linear resonant actuator in the closed-loop control, when the linear resonant actuator vibrates, Providing a plurality of sensors capable of monitoring or inducing a vibration state of the linear resonant actuator, and sensing, by the plurality of sensors, a sensing signal representing a vibration mode-related physical quantity as a feedback signal to control a physical quantity of the vibration of the linear resonant actuator in real time, By effectively integrating the state of the actuator more robustly and applying control, the residual phenomenon of tailing occurs when the vibration of the linear resonant actuator is further solved. Moreover, the present embodiment can achieve the technical effect of real-time adjustment of the vibration state of the linear resonant actuator by real-time feedback and adjustment.
  • the above technical solution for setting various sensors in the embodiment can solve the problem that the predicted vibration-related physical variable is unreliable when the signal-to-noise ratio of the back electromotive force signal is low.
  • the problem of poor feedback adjustment accuracy occurs.
  • the feedback unit 56 includes: an obtaining module and a weighting module; wherein
  • the acquiring module receives the multi-channel sensing signals sent by the sensing module 55, respectively acquires the physical quantity observation values of each sensing signal, and converts different types of physical quantity observation values into the same type of objects under the same reference frame. Measured observations;
  • the weighting module calculates a weighting coefficient of the physical quantity observation value of each sensing signal, and sums the physical quantity observation values of the respective sensing signals according to respective weighting coefficients, and obtains a physical quantity estimation value for estimating the vibration mode of the linear resonant actuator. Generating a feedback signal based on the physical quantity estimate to the comparator 57;
  • the comparator 57 compares the physical quantity estimation value of the feedback signal with the expected value of the physical quantity in the desired signal, and generates an error signal based on the comparison result.
  • the haptic vibration control system further includes a parameter memory 58 coupled to the feedback unit 56 for storing an intrinsic parameter of the linear resonant actuator derived from the physical quantity estimation value, the inherent parameter including linear resonance actuation
  • a parameter memory 58 coupled to the feedback unit 56 for storing an intrinsic parameter of the linear resonant actuator derived from the physical quantity estimation value, the inherent parameter including linear resonance actuation
  • Some long-term gradual performance parameters such as the internal friction of the linear resonant actuator, the resonant frequency related to the spring strength, and the magnetic flux density, can be updated by setting the corresponding change threshold. For example, when the internal frictional force of the linear resonant actuator derived from the physical quantity estimation value of the feedback signal satisfies the change threshold value compared to the current value of the parameter in the parameter memory, the calculated internal friction force of the linear resonant actuator is used to update the parameter.
  • This parameter in the memory makes it easy to understand and master the performance of linear resonant actuators.
  • a BEMF sensing circuit capable of outputting a BEMF signal (Back Electro-Motive Force) and an acceleration sensor capable of outputting an acceleration signal are taken as an example to describe the feedback signal in detail. And the generation of error signals.
  • BEMF signal Back Electro-Motive Force
  • acceleration sensor capable of outputting an acceleration signal
  • the linear resonant actuator Since the linear resonant actuator generates a BEMF signal when vibrating, a voltage signal across the two stages of the linear resonant actuator or a current signal flowing through the linear resonant actuator can be obtained by setting a corresponding sensing circuit, and the current signal is removed.
  • the DC component caused by the linear resonant actuator impedance in the voltage or current signal can be used to obtain the desired BEMF signal.
  • the BEMF signal contains both vibration state information of the linear resonant actuator, such as speed, acceleration, and the like, as well as some physical parameter information of the linear resonant actuator itself, such as a motor factor.
  • the acceleration physical quantity is taken as an example.
  • the acceleration observation value S1 is extracted from the BEMF signal, which is the acceleration of the self-vibrator of the linear resonant actuator 54.
  • the acceleration sensor is disposed on the linear resonant actuator 54, and the acceleration signal output by the acceleration sensor is also the acceleration of the oscillator of the linear resonant actuator 54, and the corresponding acceleration observation value S2 is directly obtained from the acceleration signal.
  • the weighting coefficient of the two acceleration observation values is calculated, and the weighting coefficient can be calculated by using the signal-to-noise ratio or the variance of the acceleration observation value; when the weighting coefficient is calculated by the variance, each acceleration observation value is statistically processed to obtain each acceleration observation.
  • the variance of the value calculate the variance of the two-way acceleration observation
  • the sum of the number and the reciprocal of the variance of each acceleration observation value and the reciprocal sum of the variance is its weighting coefficient; when calculating the weighting coefficient by the signal-to-noise ratio, the signal-to-noise ratio of each acceleration observation value is calculated, and the two paths are calculated.
  • the signal-to-noise ratio of the acceleration observation is normalized to obtain the respective weighting coefficients.
  • the difference between the acceleration estimated value EV and the acceleration expectation value DV (Desired Value, DV) in the input signal is compared, for example, by the acceleration estimation value EV(t) at time t and the acceleration expectation value DV(t) at time t.
  • the acceleration signal output by the accelerator sensor is the acceleration of the smart terminal, and the accelerator sensor needs to be output.
  • the acceleration signal is converted into the oscillator acceleration of the linear resonant actuator 54, and the acceleration can be converted by the mass ratio of the smart terminal to the vibrator.
  • the observed value of the physical quantity extracted from the BEMF signal is the speed observation value, it is necessary to convert two different types of physical quantity observation values into the same type of physical quantity observation value, such as in the BEMF signal.
  • the extracted velocity observation value is converted into an acceleration observation value, or the acceleration observation value output from the acceleration sensor is converted into a velocity observation value.
  • a filter is further disposed in the haptic vibration control system.
  • the parameter design manner of the filter refer to the related description in the first embodiment.
  • FIG. 6 shows a schematic diagram of the operation of a closed-loop haptic vibration control system.
  • the filter 62 of FIG. 6 forms part of a closed-loop haptic vibration control system that is coupled to the command generator 61 and the haptic controller. Between 63, it is used to filter the original command signal, so that the filter processed command signal has an overdrive characteristic in the initial period and has an active braking characteristic in the end period.
  • FIG. 7 shows a schematic diagram of the operation of another closed-loop haptic vibration control system.
  • the output of the filter 72 in FIG. 7 is connected to the input of the command generator 71 for filtering the input signal.
  • the filtered input signal is sent to the command generator 71, so that the command signal generated by the command generator 71 has an overdrive characteristic in the initial period and has an active braking characteristic in the end period.
  • a sensing module including a plurality of sensors in the smart terminal (exemplarily shown in FIGS. 6 and 7 with a BEMF sensing circuit and an acceleration sensor)
  • the sensing module senses the state of the linear resonant actuator in real time.
  • the sensing module sends the sensing signal sensed by each sensor to the feedback unit for fusion processing of the sensing signal.
  • a feedback signal is obtained for estimating the vibration mode of the linear resonant actuator, and the comparator generates a corresponding error signal by comparing the feedback signal with the desired signal, so that the command controller adjusts the original command signal generated by the command signal according to the error signal.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the present embodiment provides a tactile vibration control method for the smart terminal.
  • FIG. 8 is a method for controlling a tactile vibration of a smart terminal according to an embodiment of the present invention, where the control method includes:
  • the original command signal generated according to the input signal in this step is specifically:
  • a physical signal deriving the vibration effect derived from the media stream data is obtained from the media stream data in the input signal, and the physical signal is used as an original command signal.
  • the original command signal filtering is specifically:
  • the preferred embodiment of the present embodiment monitors the vibration state of the linear resonant actuator.
  • the obtained sensing signal representing the physical quantity related to the vibration mode is used as a feedback signal to control the physical quantity of the vibration of the linear resonant actuator in real time, and the state of the actuator is more robustly estimated and the control is applied by means of effective integration.
  • a residual phenomenon of tailing occurs when the vibration of the linear resonant actuator is further solved.
  • the method further includes:
  • the S910 senses the state of the linear resonant actuator in real time through various sensors, and generates a corresponding multi-channel sensing signal when the linear resonant actuator is induced to vibrate.
  • sensors such as back EMF sensing circuits and motion sensors can be used to sense the vibration state of the linear resonant actuator.
  • a back electromotive force sensing circuit can be provided on the linear resonant actuator, the back electromotive force sensing circuit generates a back electromotive force signal when the linear resonant actuator vibrates; and can also be disposed at a position separated from the linear resonant actuator in the smart terminal.
  • a motion sensor that generates a corresponding motion sensing signal when the linear resonant actuator vibrates; of course, a motion sensor can also be disposed on the linear resonant actuator, the motion sensor is when the linear resonant actuator vibrates Generating a corresponding motion sensing signal; wherein the motion sensor comprises at least one or more of an acceleration sensor, a laser Doppler vibration tester, a microphone, and a gyroscope.
  • S930 Compare the feedback signal with a desired signal in the input signal that characterizes the vibration mode of the linear resonant actuator, generate an error signal according to the comparison result, and adjust the generated original command signal according to the error signal.
  • the multi-path sensing signal is fused in step S920 to obtain a feedback signal for estimating the vibration mode of the linear resonant actuator.
  • step S930 comparing the feedback signal with the desired signal representing the vibration mode of the linear resonant actuator in the input signal is specifically: estimating the physical quantity of the feedback signal and the expected value of the physical quantity in the desired signal. For comparison, an error signal is generated based on the comparison result.
  • the method in FIG. 9 may further include:
  • a parameter memory is stored which stores an intrinsic parameter of the linear resonant actuator derived from the estimated value of the physical variable of the feedback signal in step S920.
  • the present invention adopts an open loop control method to control the linear resonant actuator by adding a filter in the open loop control. Filtering the original command signal generated by the command generator with a filter, so that when the linear resonant actuator vibration is driven by the subsequently generated driving signal, the quick start response and the braking response are weak, and the interval between the weakening time is short.
  • the degree of overlap of the front and rear vibration events increases the degree of discrimination in the time dimension of the front and rear vibration events, achieving fast start and fast braking, thereby ensuring the desired vibration effect.
  • the present invention also fuses the sensing signals of the plurality of sensor outputs representing the vibration mode-related physical quantities into feedback signals by providing a plurality of sensors capable of monitoring or sensing the vibration state of the linear resonant actuator. a unit, and a comparator capable of generating an error signal based on the feedback signal and the desired signal in the input signal to control the physical quantity of the vibration of the linear resonant actuator in real time, and more robustly estimating the state of the linear resonant actuator by means of effective integration And control is applied to further solve the residual phenomenon of tailing when the linear resonant actuator vibrates. Moreover, the present scheme can achieve the technical effect of real-time adjustment of the vibration state of the actuator through real-time feedback and adjustment.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Automation & Control Theory (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

一种智能终端的触觉振动控制系统和方法,该系统包括命令生成器(11)、滤波器(12)、触觉驱动器(13)和线性谐振致动器(14),命令生成器(11)根据输入信号生成原始命令信号;滤波器(12)对该原始命令信号滤波,使滤波后的命令信号的起始预定数目脉冲的幅值大于设定阈值,且末尾预定个数脉冲的相位反转;触觉驱动器(13)根据所述滤波后的命令信号生成驱动线性谐振致动器(14)振动的驱动信号。该系统通过滤波器(12)对命令生成器(11)生成的原始命令信号进行滤波处理,使得在利用后续生成驱动信号驱动线性谐振致动器(14)振动时,线性谐振致动器(14)能够快速的动响应和制动响应,弱化时间维度上间隔较短的前后振动事件的重叠程度,提高前后振动事件时间维度上的区分度,保证得到期望的振动效果。

Description

一种智能终端的触觉振动控制系统和方法 技术领域
本发明涉及触觉反馈技术领域,特别涉及一种智能终端的触觉振动控制系统和方法。
发明背景
多年以来,通信和媒体技术领域对视觉和听觉两种信息的接收通道进行了充分的探索和利用。虽然触觉在虚拟现实和游戏特效等领域有应用,如应用在远程或间接操控、利用游戏手柄的振动模拟射击、爆炸等场景,但直到近几年,才开始进一步挖掘触觉的信息通道。
线性谐振致动器是一种质量块加载在弹簧上的电磁系统,存在固有谐振频率或自然谐振频率,而且通常是高品质因子系统,因此当输入的驱动电信号停止后,系统的震荡响应不会立刻消失而是逐渐减弱,这种残余振动会持续一段时间,甚至会对下一次的振动造成影响,无法实现期望的振动效果。
发明内容
鉴于上述描述,本发明实施例提供了一种智能终端的触觉振动控制系统和方法,以有效地抑制或消除线性谐振致动器的残余振动。
为了达到上述目的,本发明实施例采用的技术方案如下:
一方面,本发明实施例提供了一种智能终端的触觉振动控制系统,该触觉振动控制系统包括:命令生成器、滤波器、触觉驱动器和线性谐振致动器;
命令生成器根据输入信号生成原始命令信号,并将原始命令信号发送给滤波器;
滤波器对接收到的原始命令信号滤波,并将滤波后的命令信号发送给触觉驱动器;滤波后的命令信号的起始预定数目脉冲的幅值大于设定阈值,且末尾预定个数脉冲的相位反转;
触觉驱动器根据接收到的滤波后的命令信号生成驱动信号,并将生成的驱动信号发送给线性谐振致动器;
线性谐振致动器接收所述驱动信号,并在驱动信号的驱动下振动。
另一方面,本发明实施例提供了一种智能终端的触觉振动控制方法,该方法包括:
根据输入信号生成原始命令信号;
对原始命令信号滤波,使滤波后的命令信号的起始预定数目脉冲的幅值大于设定阈值,且末尾预定个数脉冲的相位反转;
根据滤波后的命令信号生成驱动信号,使线性谐振致动器在驱动信号的驱动下振动。
本发明实施例的有益效果是:针对线性谐振致动器在驱动信号停止驱动时还会出现拖尾的残余现象,本发明采用开环控制方式来控制线性谐振致动器,通过在开环控制中增设滤波器,利用滤波器对命令生成器生成的原始命令信号进行滤波处理,使得在通过后续生成的驱动信号驱动线性谐振致动器振动时,快速的启动响应和制动响应,弱化时间维度上间隔较短的前后振动事件的重叠程度,提高前后振动事件时间维度上的区分度,实现快速启动和快速制动,从而保证得到期望的振动效果。
在优选方案中,本发明还通过设置多个能够对线性谐振致动器的振动状态进行监测或感应的传感器,将多个传感器输出的表征振动模式相关物理量的传感信号融合为反馈信号的反馈单元,和能够根据反馈信号和输入信号中的期望信号生成误差信号的比较器来实时控制线性谐振致动器振动的物理量,通过有效整合的方式来更加鲁棒地估计线性谐振致动器的状态并施加控制,进一步解决线性谐振致动器振动时出现拖尾的残余现象。并且,本方案能够通过实时的反馈和调整,达到对致动器的振动状态进行实时调整的技术效果。
附图简要说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1为本发明实施例一提供的智能终端的触觉振动控制系统框图;
图2示出了图1中开环触觉振动控制系统的工作过程示意图;
图3a为本发明实施例一提供的未经滤波处理的命令信号示意图;
图3b为本发明实施例一提供的未经滤波处理的线性谐振致动器振子位移图;
图4a为本发明实施例一提供的滤波处理后的命令信号示意图;
图4b为本发明实施例一提供的滤波处理后的线性谐振致动器振子位移图;
图5为本发明实施例二提供的智能终端的触觉振动控制系统框图;
图6示出了一种闭环触觉振动控制系统的工作过程示意图
图7示出了另一种闭环触觉振动控制系统的工作过程示意图;
图8为本发明实施例三提供的智能终端的触觉振动控制方法流程图;
图9为本发明实施例三提供的智能终端的闭环触觉振动控制方法流程图。
实施本发明的方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
触觉作为人体的重要感觉模态,其具有视觉和听觉无可替代的优势:
1、相比于视听器官,人体皮肤表面积较大,可以作为信息接收点的可选部位很多,如指尖、手掌和手臂等部位;
2、当人体视听器官不便于使用时,如视听器官被占用时,可以利用皮肤受力或震动来接收信息;
3、触觉通道的信息交流较为隐蔽,具有较高的安全性。
针对触觉的上述优势,基于触觉的力反馈、振动反馈的技术逐渐应用到消费电子和工业控制领域,成为人机交互界面的重要组成部分,广泛见于手持设备、穿戴设备、家用电器和工控设备中。
触觉振动系统的重要功能是传递信息,不同振动模式表示不同信息,因而要求能够对致动器(actuator)的振动频率和振动幅度进行精准控制。偏心旋转质量致动器(Eccentric Rotating Mass motor,ERM)和线性谐振致动器(Linear Resonant Actuator,LRA)是两种常见的致动器,偏心旋转质量致动器的振动频率和振动幅度不能独立控制而且会有噪声伴随产生;而线性谐振致动器不存在这些问题,而且启动和制动时间比偏心旋转质量致动器短,因此应用更加广泛。
线性谐振致动器是一种质量块加载在弹簧上的电磁系统,存在固有谐振频率或自然谐振频率,而且通常是高品质因子系统。因而线性谐振致动器在驱动信号停止驱动时还会出现拖尾的残余现象。
本发明针对线性谐振致动器在驱动信号停止驱动时出现拖尾的残余现象进行分析得到:该拖尾的残余现象完全由驱动信号与线性谐振致动器冲激响应的卷积决定,因而本实施例通过对驱动信号进行处理,以达到改变其与线性谐振致动器冲激响应卷积后的输出。
实施例一:
图1为本实施例提供的智能终端的触觉振动控制系统框图,本发明智能终端可以为手持设备、可穿戴设备(如智能手表、智能手环)、工控设备。
如图1所示,图1中的触觉振动控制系统为开环控制系统,包括:命令生成器11、滤波器12、触觉驱动器13和线性谐振致动器14。
如图1所示,命令生成器11的输出端连接至滤波器12的输入端,滤波器 12的输出端连接至触觉驱动器13的输入端,触觉驱动器13的输出端连接至线性谐振致动器14的输入端。
命令生成器11根据输入信号生成原始命令信号,并将原始命令信号发送给滤波器12。本实施例中的输入信号可以为包括表征线性谐振致动器振动模式的期望信号和选择指令,也可以为媒体流数据,媒体流数据可以为音频流数据、视频流数据等媒体流数据。
如图1所示,本实施例中的命令生成器11还与振动效果库15连接,振动效果库15中的振动模式列表记录有线性谐振致动器每种振动模式对应的表征振动效果的物理量序列。
当输入信号为包括表征线性谐振致动器振动模式的期望信号和选择指令时,命令生成器11读取振动效果库15的振动模式列表,并根据输入信号中的选择指令从该振动模式列表中选择相应的物理量序列,将该物理量序列作为原始命令信号。
当输入信号为媒体流数据时,命令生成器11从该媒体流数据中获取媒体流数据衍生出的表征振动效果的物理信号,将该物理信号作为原始命令信号。
滤波器12,对接收到的原始命令信号滤波,并将滤波后的命令信号发送给触觉驱动器13;滤波后的命令信号的起始预定数目脉冲的幅值大于设定阈值,且末尾预定个数脉冲的相位反转。本实施例提供的开环控制方案中要求由经滤波器处理后的命令信号生成的驱动信号在初始时段具有过驱动特点并且在末尾时段具有主动制动特点。
需要说明的是,图1中滤波器12优选地作为命令生成器11的后置模块,设置在命令生成器11和触觉驱动器13之间,以更好地对命令生成器11生成的原始命令进行滤波;当然,在实际应用中,本实施例的滤波器12还可以作为命令生成器11的前置模块,即滤波器12的输出端连接至命令生成器11的输入端,滤波器12对输入信号进行滤波,使触觉驱动器13生成的驱动信号在初始时段具有过驱动特点并且在末尾时段具有主动制动特点。
本实施例中滤波器的参数由线性谐振致动器的冲激响应决定,优选地滤波器的时域信号为冲激信号。如图1所示,本实施例中的触觉振动控制系统还设置有与滤波器12连接的参数存储器16,该参数存储器16中至少存储有计算线性谐振致动器的阻尼谐振周期和阻尼比的固有参数,从而可以利用计算得到的阻尼谐振周期和阻尼比来计算冲激信号每个冲激的冲激时刻和冲激幅度。
在设计滤波器12时,可以根据线性谐振致动器14的谐振频率和阻尼比计算得到线性谐振致动器14的阻尼谐振周期,如根据公式
Figure PCTCN2016086932-appb-000001
计算该线性谐振致动器的阻尼谐振周期Td,再根据阻尼谐振周期Td确定冲激信号每个冲激的冲激时刻;以及根据线性谐振致动器14的阻尼比计算得到每个冲激的冲激幅度,如根据公式
Figure PCTCN2016086932-appb-000002
计算冲激的冲激幅度;其中,fn为线性谐振致动器的谐振频率,ζ为线性谐振致动器的阻尼比。
假设本实施例中的冲激信号包括两个冲激,则该冲激信号的冲激时刻和冲激幅度满足的约束条件为:t1=0,A1+A2=1,t1和t2分别为第一个冲激和第二个冲激的冲激时刻,A1和A2分别为第一个冲激和第二个冲激的冲激幅值。
若线性谐振致动器的谐振频率为fn=175Hz,阻尼比为ζ=0.028,则根据上述线性谐振致动器的阻尼谐振周期计算公式可以计算出其阻尼谐振周期Td=5.8ms,则第一个冲激的冲激时刻t1=0,冲激幅值
Figure PCTCN2016086932-appb-000003
第二个冲激的冲激时刻
Figure PCTCN2016086932-appb-000004
冲激幅值A2=1-A1=0.478。
触觉驱动器13根据接收到的滤波后的命令信号生成驱动信号,并将生成的驱动信号发送给线性谐振致动器14。
线性谐振致动器14接收驱动信号,并在驱动信号的驱动下振动。
当然,本实施例中的触觉振动控制系统还包括控制命令生成器11、滤波器12、触觉控制器13、线性谐振致动器14、振动效果库15和参数存储器16间信号传递的微控制单元,将该微控制单元作为触觉振动控制系统的中央控制器。
本实施例触觉振动控制系统的工作过程如图2所示:
智能终端中的微控制单元根据某些触发事件(如用户按压触摸屏)生成输入信号,使命令生成器11依据该输入信号中的选择指令从振动效果库15中选择期望的振动模式对应的数字化的物理量序列作为原始命令信号,或者依据该输入信号中的媒体流数据衍生出的模拟化的物理信号作为原始命令信号,命令生成器11将其生成的数字或模拟的原始命令信号发送给滤波器12进行滤波处理;滤波器12将滤波处理后的命令信号发送给触觉驱动器13,由触觉驱动器13根据该滤波后的命令信号生成相应的驱动信号,该驱动信号可以为驱动电流或驱动电压;线性谐振致动器14在驱动电流或驱动电压的驱动下发生振动,使 得该智能终端受迫振动,既而用户与该智能终端接触的部位会产生振动触感。
其中,图3a和图3b分别为未经滤波处理的命令信号示意图和线性谐振致动器振子位移图,图4a和图4b分别为滤波处理的命令信号示意图和线性谐振致动器振子位移图;从图3a中可以看出,图3a示例性示出了具有三个周期的矩形波命令信号,在第四个周期开始时刻,停止输出命令信号;利用本发明的滤波器对图3a中的命令信息进行滤波处理后,得到图4a所示的命令信号。从图4a中可以看出,第一个周期的前半段周期对应的命令信号表现为脉冲信号,即第一个周期的前半个周期对应命令信号的幅度远大于该周期的后半个周期对应命令信号的幅度(从图4a中可以看出后半个周期对应命令信号的幅度接近0);第四个周期的前半段周期对应的命令信号表现为脉冲信号,即第四个周期的前半个周期对应命令信号的幅度远大于后半个周期对应命令信号的幅度(从图4a中可以看出后半个周期对应命令信号的幅度为零),且该脉冲信号的相位翻转了180°;第二个周期和第三个周期内对应命令信号表现为峰值接近于零值的矩形波信号。
对比图3a和图4a,可以看出滤波处理后的命令信号在其初始阶段和末尾阶段都表现为脉冲信号,图4a中示例性示出了在初始阶段和末尾阶段均具有一个脉冲,且末尾阶段的脉冲的相位翻转了180°,中间阶段表现为峰值接近于零的周期信号。从而利用图4a中的命令信号生成驱动信号,来驱动线性谐振致动器振动时,能够驱动线性谐振致动器快速进入稳定振动状态,快速停止振动,并能够有效抑制拖尾的残余。需要说明的是,图4a仅示例性示出了在初始阶段和末尾阶段均具有一个脉冲的情况,在实际应用中,可以根据需要设计相应数量的脉冲,本发明并不局限脉冲的个数。
对比图3b和图4b,可以看出图4b中的线性谐振致动器具有启动快、制动快的振动效果,且能够很好地抑制拖尾的残余。即图3b中的线性谐振致动器进入稳定振动状态的速度比较慢,且在结束振动时产生较长的拖尾;而图4b中的线性谐振致动器能够快速地进入稳定振动状态,快速地停止振动,且在停止振动时基本没有拖尾残余产生。可见,滤波后的命令信号生成的驱动信号具有过驱动和主动抑制的特点,即能够驱动线性谐振致动器快速地进入稳定振动状态,在结束振动时,有效抑制拖尾的残余。
本实施例的触觉振动控制系统采用开环控制方式来控制线性谐振致动器,通过在开环控制中增设滤波器,利用滤波器对命令生成器生成的原始命令信号 进行滤波处理,使得在通过后续生成的驱动信号驱动线性谐振致动器振动时,具有快速的启动响应和制动响应,弱化时间维度上间隔较短的前后振动事件的重叠程度,提高前后振动事件时间维度上的区分度,实现快速启动和快速制动,从而得到期望的振动效果。
实施例二:
为了进一步解决线性谐振致动器在驱动信号停止驱动时出现拖尾的残余现象,本实施例通过设置多个能够对线性谐振致动器的振动状态进行监测或感应的传感器,将传感器输出的表征振动模式相关物理量的传感信号作为反馈信号来实时控制线性谐振致动器振动的物理量,通过有效整合的方式来更加鲁棒地估计致动器的状态并施加控制,达到进一步解决线性谐振致动器振动时出现拖尾的残余现象。
图5为本实施例提供的智能终端的触觉振动控制系统框图,如图5所示,通过在触觉振动控制系统设置传感模组55、反馈单元56和比较器57,使图5中命令生成器51、滤波器52、触觉驱动器53、线性谐振致动器54,传感模组55、反馈单元56和比较器57构成了闭环控制的触觉振动控制系统。
如图5所示,命令生成器51的输出端连接至滤波器52的输入端,滤波器52的输出端连接至触觉驱动器53的输入端,触觉驱动器53的输出端连接至线性谐振致动器54的输入端,线性谐振致动器54的输出端连接至传感模组55的输入端,传感模组55的输出端连接至反馈单元56的输入端,反馈单元56的输出端连接至比较器57的第一输入端,比较器57的第二输入端连接接入期望信号(图中未标示),比较器57的输出端连接至命令生成器51的输入端。
命令生成器51,根据输入信号生成原始命令信号,并根据比较器57发生的误差信号调整其生成的原始命令信号,将原始命令信号发送给滤波器52。其中,本实施例中的滤波器52、触觉驱动器53、线性谐振致动器54的具体工作方式参见实施例一中的滤波器12、触觉驱动器13、线性谐振致动器14相关描述,在此不再赘述。
传感模组55包括多种传感器,每种传感器实时感应线性谐振致动器54的状态,在感应到线性谐振致动器54振动时,生成相应的传感信号。
传感模组55包括反电动势感应电路,反电动势感应电路设置在线性谐振致动器54上,在线性谐振致动器振动时,该反电动势感应电路生成反电动势信号;
和/或,传感模组55包括在智能终端中与线性谐振致动器54相分离的位置 设置的运动传感器,在线性谐振致动器振动时,该运动传感器生成相应的运动传感信号;
和/或,传感模组55包括设置在线性谐振致动器54上的运动传感器,在线性谐振致动器振动时,该运动传感器生成相应的运动传感信号;
其中,运动传感器指能够实时感应线性谐振致动器的重要物理量,运动传感器可以是基于压电、超声、红外、电容等器件的传感器,如可以感应振动加速度、振动速度、振动位移或振动频率的相关传感器。优选地,运动传感器包括加速度传感器、激光多普勒振动测试仪、麦克风和陀螺仪的一种或多种。
反馈单元56将传感模组55生成的多路传感信号融合,得到用于估计线性谐振致动器振动模式的反馈信号,并将反馈信号发送给比较器57。
比较器57比较反馈信号与输入信号中表征线性谐振致动器振动模式的期望信号,根据比较结果生成误差信号,并将误差信号发送给命令生成器51。
本实施例中的命令生成器可以设置PID(proportional integral derivative,比例积分微分)控制单元来调整生成的原始命令信号。优选地每半个线性谐振致动器振动周期内根据误差信号调整原始命令信号,如调整原始命令信号对应波形的幅度、时长或周期等波形参数。
本实施例的触觉振动控制系统采用闭环控制方式来控制线性谐振致动器,通过在闭环控制中设置多种能够感应线性谐振致动器振动状态的传感器,在线性谐振致动器振动时,通过设置多个能够对线性谐振致动器的振动状态进行监测或感应的传感器,将多个传感器输出的表征振动模式相关物理量的传感信号作为反馈信号来实时控制线性谐振致动器振动的物理量,通过有效整合的方式来更加鲁棒地估计致动器的状态并施加控制,达到进一步解决线性谐振致动器振动时出现拖尾的残余现象。并且,本实施例能够通过实时的反馈和调整,达到对线性谐振致动器的振动状态进行实时调整的技术效果。
此外,相比于单一使用反电动势信号的处理方式,本实施例上述设置多种传感器的技术方案能够解决在该反电动势信号的信噪比较低时,预测出的振动相关物理变量不可靠,出现的反馈调节精度差的问题。
在本实施例的一个实现方案中,反馈单元56包括:获取模块和加权模块;其中,
获取模块接收传感模组55发送的多路传感信号,分别获取每路传感信号的物理量观察值,并将不同类型的物理量观察值转换为同一参考系下同类型的物 理量观察值;
加权模块计算每路传感信号的物理量观察值的加权系数,并将各路传感信号的物理量观察值按照各自加权系数求和,得到用于估计线性谐振致动器振动模式的物理量估计值,根据物理量估计值生成反馈信号发送给比较器57;
则比较器57将所述反馈信号的物理量估计值和所述期望信号中该物理量的期望值进行比较,根据比较结果生成误差信号。
如图5所示,该触觉振动控制系统还包括与反馈单元56连接的参数存储器58,用于存储根据物理量估计值推算出的线性谐振致动器的固有参数,该固有参数包括线性谐振致动器的一些长期缓变的性能参数,如线性谐振致动器内部摩擦力、与弹簧强度相关的谐振频率、磁流密度等参数,可以通过设置相应的变化阈值,来适时的更新该性能参数。如当根据反馈信号的物理量估计值推算出的线性谐振致动器内部摩擦力相比于参数存储器中该参数的当前值满足变化阈值,则用推算出的线性谐振致动器内部摩擦力更新参数存储器中该参数,便于了解和掌握线性谐振致动器的性能。
为了便于说明本实施例获取模块和加权模块的具体工作方式,以能够输出BEMF信号(Back Electro-Motive Force,反电动势)的BEMF感应电路和能够输出加速度信号的加速度传感器为例,详细说明反馈信号和误差信号的生成。
由于线性谐振致动器在振动的时候会产生BEMF信号,通过设置相应的传感电路即可获得跨线性谐振致动器两级的电压信号或流过线性谐振致动器的电流信号,去除该电压信号或电流信号中线性谐振致动器阻抗导致的直流分量就可以得到所需的BEMF信号。BEMF信号既包含线性谐振致动器的振动状态信息,如速度、加速度等信息,也包含线性谐振致动器本身的一些物理参数信息,如马达因子。
本实施例以加速度物理量为例,首先,由于反电动势感应电路设置在线性谐振致动器54上,因而从BEMF信号中提取出加速度观察值S1是线性谐振致动器54自身振子的加速度,若加速度传感器设置在线性谐振致动器54上,则加速度传感器输出的加速度信号也是该线性谐振致动器54自身振子的加速度,则直接从该加速度信号中获取相应的加速度观察值S2。
然后,计算这两路加速度观察值的加权系数,可以采用加速度观察值的信噪比或方差来计算加权系数;通过方差计算加权系数时,对每路加速度观察值进行统计处理得到每路加速度观察值的方差,计算两路加速度观察值的方差倒 数和,每路加速度观察值方差的倒数与所述方差倒数和的比值即为其加权系数;在通过信噪比计算加权系数时,计算每路加速度观察值的信噪比,并对两路加速度观察值的信噪比进行归一化处理即可得到各自的加权系数。
接着,根据加权求和的方式计算用于估计线性谐振致动器各个时刻振动模式的加速度估计值EV(Estimate Value,EV),EV(t)=αS1(t)+βS2(t);其中,α+β=1,S1(t)为t时刻从BEMF信号中提取出的加速度观察值,α为S1(t)的加权系数,S2(t)为t时刻加速器传感器采集到的加速度观察值,β为S2(t)的加权系数。
最后,比较加速度估计值EV和输入信号中的加速度期望值DV(Desired Value,DV)各个时刻的差异,如通过对t时刻的加速度估计值EV(t)和t时刻的加速度期望值DV(t)做差生成误差信号Err(t),即Err(t)=EV(t)-DV(t)。
需要说明的是,若本实施例中的加速度传感器设置在智能终端中与线性谐振致动器54相分离的位置,则该加速器传感器输出的加速度信号是智能终端的加速度,需要将加速器传感器输出的加速度信号转换为线性谐振致动器54的振子加速度,可以通过智能终端与振子的质量比进行加速度的转换。
进一步需要说明的是,若本实施例从BEMF信号中提取出的物理量观察值为速度观察值,还需要将两个不同类型的物理量观察值转换为相同类型的物理量观察值,如将BEMF信号中提取的速度观察值转换为加速度观察值,或者将加速度传感器输出的加速度观察值转换为速度观察值。
在本实施例的另一实现方案中,上述触觉振动控制系统中还设置了滤波器,该滤波器的参数设计方式参见实施例一中的相关描述。
如图6所示,图6示出了一种闭环触觉振动控制系统的工作过程示意图,图6中的滤波器62构成闭环触觉振动控制系统的一部分,其连接在命令生成器61和触觉控制器63之间,用于对原始命令信号滤波,使滤波器处理后的命令信号在初始时段具有过驱动特点并且在末尾时段具有主动制动特点。
如图7所示,图7示出了另一闭环触觉振动控制系统的工作过程示意图,图7中的滤波器72的输出端连接在命令生成器71的输入端,用于对输入信号滤波,并将滤波后的输入信号发送给命令生成器71,使命令生成器71生成的命令信号在初始时段具有过驱动特点并且在末尾时段具有主动制动特点。
需要说明的是,图6和图7中的触觉控制器63、73,线性谐振致动器64、74,传感器模组65、75,反馈单元66、76,比较器67、77的具体工作方式参 见本实施例中的相关描述,在此不再赘述。
参照图6和图7所示,该触觉振动控制系统的工作过程如下:智能终端中包括多种传感器的传感模组(图6和图7中示例性示出具有BEMF感应电路和加速度传感器的传感模组)实时感应线性谐振致动器的状态,在线性谐振致动器振动器时,传感模组将每种传感器感应的传感信号发送给反馈单元进行传感信号的融合处理,得到用于估计线性谐振致动器振动模式的反馈信号,比较器通过比较反馈信号和期望信号生成相应的误差信号,使得命令控制器根据该误差信号调整其生成的原始命令信号。
实施例三:
基于与实施例一和实施例二相同的技术构思,本实施例提供了一种智能终端的触觉振动控制方法。
如图8所示,图8为本实施例提供的智能终端的触觉振动控制方法,该控制方法包括:
S810,根据输入信号生成原始命令信号。
本步骤中根据输入信号生成原始命令信号具体为:
读取振动效果库的振动模式列表,并根据输入信号中的选择指令从振动模式列表中选择期望振动模式对应的表征振动效果的物理量序列,将该物理量序列作为原始命令信号;
或者,从输入信号中的媒体流数据中获取该媒体流数据衍生出的表征振动效果的物理信号,将该物理信号作为原始命令信号。
S820,对原始命令信号滤波,使滤波后的命令信号的起始预定数目脉冲的幅值大于设定阈值,且末尾预定个数脉冲的相位反转。
本步骤中,对原始命令信号滤波具体为:
设置滤波器的时域信号为冲激信号;
根据线性谐振致动器的谐振频率和阻尼比计算得到线性谐振致动器的阻尼谐振周期,并由该阻尼谐振周期确定滤波器每个冲激的冲激时刻;以及,根据线性谐振致动器的阻尼比计算得到每个冲激的冲激幅度。
S830,根据滤波后的命令信号生成驱动信号,使线性谐振致动器在驱动信号的驱动下振动。
本发明方法实施例中各步骤的具体执行方式,可以参见本发明实施例一中触觉振动控制系统的具体内容,在此不再赘述。
在本实施例的一个有选方案中,为了进一步解决线性谐振致动器在驱动信号停止驱动时出现拖尾的残余现象,本实施例的优选方案通过对线性谐振致动器的振动状态进行监测或感应,将获得的表征振动模式相关物理量的传感信号作为反馈信号来实时控制线性谐振致动器振动的物理量,通过有效整合的方式来更加鲁棒地估计致动器的状态并施加控制,达到进一步解决线性谐振致动器振动时出现拖尾的残余现象。
具体的,如图9所示,该方法还包括:
S910,通过多种传感器实时感应线性谐振致动器的状态,在感应到线性谐振致动器振动时,生成相应的多路传感信号。
在实际应用中可以利用反电动势感应电路和运动传感器等传感器感应线性谐振致动器的振动状态。
如可以在线性谐振致动器上设置反电动势感应电路,反电动势感应电路在线性谐振致动器振动时,生成反电动势信号;也可以在智能终端中与线性谐振致动器相分离的位置设置运动传感器,该运动传感器在线性谐振致动器振动时,生成相应的运动传感信号;当然,还可以在线性谐振致动器上设置运动传感器,该运动传感器在线性谐振致动器振动时,生成相应的运动传感信号;其中,所述运动传感器至少包括加速度传感器、激光多普勒振动测试仪、麦克风和陀螺仪一种或多种。
S920,将多路传感信号融合得到用于估计线性谐振致动器振动模式的反馈信号。
S930,比较反馈信号与输入信号中表征线性谐振致动器振动模式的期望信号,根据比较结果生成误差信号,并根据误差信号调整生成的原始命令信号。
在本优选方案中,步骤S920中将多路传感信号融合得到用于估计线性谐振致动器振动模式的反馈信号具体为:
分别获取每路传感信号的物理量观察值,并将不同类型的物理量观察值转换为同一参考系下同类型的物理量观察值;
计算每路传感信号的物理量观察值的加权系数,并将各路传感信号的物理量观察值按照各自加权系数求和,得到用于估计线性谐振致动器振动模式的物理量估计值,根据该物理量估计值生成反馈信号发送给所述比较器。
则步骤S930中比较反馈信号与输入信号中表征线性谐振致动器振动模式的期望信号具体为:将反馈信号的物理量估计值和期望信号中该物理量的期望值 进行比较,根据比较结果生成误差信号。
需要说明的是,在实际应用时,图9中的方法还可以包括:
设置参数存储器,该参数存储器存储有根据步骤S920中的反馈信号的物理变量估计值推算出的线性谐振致动器的固有参数。
本发明方法实施例中各步骤的具体执行方式,可以参见本发明实施例二中触觉振动控制系统的具体内容,在此不再赘述。
综上所述,针对线性谐振致动器在驱动信号停止驱动时还会出现拖尾的残余现象,本发明采用开环控制方式来控制线性谐振致动器,通过在开环控制中增设滤波器,利用滤波器对命令生成器生成的原始命令信号进行滤波处理,使得在通过后续生成的驱动信号驱动线性谐振致动器振动时,快速的启动响应和制动响应,弱化时间维度上间隔较短的前后振动事件的重叠程度,提高前后振动事件时间维度上的区分度,实现快速启动和快速制动,从而保证得到期望的振动效果。在优选方案中,本发明还通过设置多个能够对线性谐振致动器的振动状态进行监测或感应的传感器,将多个传感器输出的表征振动模式相关物理量的传感信号融合为反馈信号的反馈单元,和能够根据反馈信号和输入信号中的期望信号生成误差信号的比较器来实时控制线性谐振致动器振动的物理量,通过有效整合的方式来更加鲁棒地估计线性谐振致动器的状态并施加控制,进一步解决线性谐振致动器振动时出现拖尾的残余现象。并且,本方案能够通过实时的反馈和调整,达到对致动器的振动状态进行实时调整的技术效果。
以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。

Claims (15)

  1. 一种智能终端的触觉振动控制系统,其特征在于,所述触觉振动控制系统包括:命令生成器、滤波器、触觉驱动器和线性谐振致动器;
    所述命令生成器根据输入信号生成原始命令信号,并将所述原始命令信号发送给所述滤波器;
    所述滤波器对接收到的所述原始命令信号滤波,并将滤波后的命令信号发送给所述触觉驱动器;滤波后的命令信号的起始预定数目脉冲的幅值大于设定阈值,且末尾预定个数脉冲的相位反转;
    所述触觉驱动器根据接收到的滤波后的命令信号生成驱动信号,并将生成的驱动信号发送给所述线性谐振致动器;
    所述线性谐振致动器接收所述驱动信号,并在所述驱动信号的驱动下振动。
  2. 如权利要求1所述的触觉振动控制系统,其特征在于,
    所述命令生成器读取振动效果库的振动模式列表,并根据输入信号中的选择指令从所述振动模式列表中选择期望振动模式对应的表征振动效果的物理量序列,将该物理量序列作为所述原始命令信号;
    或者,所述命令生成器从输入信号中的媒体流数据中获取该媒体流数据衍生出的表征振动效果的物理信号,将该物理信号作为原始命令信号。
  3. 如权利要求1所述的触觉振动控制系统,其特征在于,所述滤波器的时域信号为冲激信号,通过下述方法设置所述滤波器:
    根据所述线性谐振致动器的谐振频率和阻尼比计算得到线性谐振致动器的阻尼谐振周期,并由该阻尼谐振周期确定滤波器每个冲激的冲激时刻;
    根据所述线性谐振致动器的阻尼比计算得到每个冲激的冲激幅度。
  4. 如权利要求3所述的触觉振动控制系统,其特征在于,所述冲激信号包括两个冲激,根据下述公式计算每个冲激的冲激时刻和冲激幅度;
    Figure PCTCN2016086932-appb-100001
    其中,t1和t2分别为第一个冲激和第二个冲激的冲激时刻,A1和A2分别为第一个冲激和第二个冲激的冲激幅值,fn为线性谐振致动器的谐振频率,ζ为线性 谐振致动器的阻尼比,σ为大于0小于1的常数。
  5. 如权利要求1所述的触觉振动控制系统,其特征在于,所述触觉振动控制系统还包括:传感模组、反馈单元和比较器;
    所述传感模组包括多种传感器,每种传感器实时感应所述线性谐振致动器的状态,在感应到所述线性谐振致动器振动时,生成相应的传感信号;
    所述反馈单元将所述传感模组生成的多路传感信号融合,得到用于估计所述线性谐振致动器振动模式的反馈信号,并将所述反馈信号发送给所述比较器;
    所述比较器比较所述反馈信号与所述输入信号中表征所述线性谐振致动器振动模式的期望信号,根据比较结果生成误差信号,并将所述误差信号发送给所述命令生成器;
    所述命令生成器接收所述误差信号,并根据所述误差信号调整其生成的原始命令信号。
  6. 如权利要求5所述的触觉振动控制系统,其特征在于,所述反馈单元包括:获取模块和加权模块;
    所述获取模块接收所述传感模组发送的多路传感信号,分别获取每路传感信号的物理量观察值,并将不同类型的物理量观察值转换为同一参考系下同类型的物理量观察值;
    所述加权模块计算每路传感信号的物理量观察值的加权系数,并将各路传感信号的物理量观察值按照各自加权系数求和,得到用于估计所述线性谐振致动器振动模式的物理量估计值,根据所述物理量估计值生成反馈信号发送给所述比较器;
    所述比较器将所述反馈信号的物理量估计值和所述期望信号中该物理量的期望值进行比较,根据比较结果生成误差信号。
  7. 如权利要求5所述的触觉振动控制系统,其特征在于,所述传感模组包括反电动势感应电路,所述反电动势感应电路设置在所述线性谐振致动器上,在所述线性谐振致动器振动时,该反电动势感应电路生成反电动势信号;
    和/或,所述传感模组包括所述在智能终端中与所述线性谐振致动器相分离的位置设置的运动传感器,在所述线性谐振致动器振动时,该运动传感器生成相应的运动传感信号;
    和/或,所述传感模组包括设置在所述线性谐振致动器上的运动传感器,在所述线性谐振致动器振动时,该运动传感器生成相应的运动传感信号;
    其中,所述运动传感器至少包括加速度传感器、激光多普勒振动测试仪、麦克风和陀螺仪一种或多种。
  8. 如权利要求5-7任一项所述的触觉振动控制系统,其特征在于,所述触觉振动控制系统还包括参数存储器;
    所述参数存储器存储根据所述反馈信号的物理变量估计值推算出的所述线性谐振致动器的固有参数。
  9. 一种智能终端的触觉振动控制方法,其特征在于,所述方法包括:
    根据输入信号生成原始命令信号;
    对所述原始命令信号滤波,使滤波后的命令信号的起始预定数目脉冲的幅值大于设定阈值,且末尾预定个数脉冲的相位反转;
    根据滤波后的命令信号生成驱动信号,使线性谐振致动器在所述驱动信号的驱动下振动。
  10. 如权利要求9所述的触觉振动控制方法,其特征在于,所述根据输入信号生成原始命令信号具体为:
    读取振动效果库的振动模式列表,并根据输入信号中的选择指令从振动模式列表中选择期望振动模式对应的表征振动效果的物理量序列,将该物理量序列作为原始命令信号;
    或者,从输入信号中的媒体流数据中获取该媒体流数据衍生出的表征振动效果的物理信号,将该物理信号作为原始命令信号。
  11. 如权利要求9所述的触觉振动控制方法,其特征在于,所述对所述原始命令信号滤波,使滤波后的命令信号的起始预定数目脉冲的幅值大于设定阈值,且末尾预定个数脉冲的相位反转包括:
    设置滤波器的时域信号为冲激信号;
    根据线性谐振致动器的谐振频率和阻尼比计算得到线性谐振致动器的阻尼谐振周期,并由该阻尼谐振周期确定滤波器每个冲激的冲激时刻;以及,根据线性谐振致动器的阻尼比计算得到每个冲激的冲激幅度。
  12. 如权利要求9所述的触觉振动控制方法,其特征在于,所述方法还包括:
    通过多种传感器实时感应线性谐振致动器的状态,在感应到所述线性谐振致动器振动时,生成相应的多路传感信号;
    将多路传感信号融合得到用于估计线性谐振致动器振动模式的反馈信号;
    比较所述反馈信号与所述输入信号中表征所述线性谐振致动器振动模式的期望信号,根据比较结果生成误差信号;
    根据所述误差信号调整生成的所述原始命令信号。
  13. 如权利要求12所述的触觉振动控制方法,其特征在于,所述将多路传感信号融合得到用于估计线性谐振致动器振动模式的反馈信号包括:分别获取每路传感信号的物理量观察值,并将不同类型的物理量观察值转换为同一参考系下同类型的物理量观察值;
    计算每路传感信号的物理量观察值的加权系数,将各路传感信号的物理量观察值按照各自加权系数求和,得到用于估计所述线性谐振致动器振动模式的物理量估计值,根据所述物理量估计值生成反馈信号;
    所述比较所述反馈信号与所述输入信号中表征所述线性谐振致动器振动模式的期望信号,根据比较结果生成误差信号具体为:
    将所述反馈信号的物理量估计值和所述期望信号中该物理量的期望值进行比较,根据比较结果生成误差信号。
  14. 如权利要求12所述的触觉振动控制方法,其特征在于,所述通过多种传感器实时感应线性谐振致动器的状态,在感应到所述线性谐振致动器振动时,生成相应的多路传感信号包括:
    在线性谐振致动器上设置反电动势感应电路,该反电动势感应电路在线性谐振致动器振动时,生成反电动势信号;
    和/或,在智能终端中与线性谐振致动器相分离的位置设置运动传感器,该运动传感器在线性谐振致动器振动时,生成相应的运动传感信号;
    和/或,在线性谐振致动器上设置运动传感器,该运动传感器在线性谐振致动器振动时,生成相应的运动传感信号;其中,所述运动传感器至少包括加速度传感器、激光多普勒振动测试仪、麦克风和陀螺仪一种或多种。
  15. 如权利要求12至14任一项所述的触觉振动控制方法,其特征在于,所述方法还包括:
    设置参数存储器,所述参数存储器存储有根据所述反馈信号的物理变量估计值推算出的线性谐振致动器的固有参数。
PCT/CN2016/086932 2015-12-31 2016-06-23 一种智能终端的触觉振动控制系统和方法 WO2017113652A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/324,151 US10109163B2 (en) 2015-12-31 2016-06-23 Tactile vibration control system and method for smart terminal
EP16820141.6A EP3211504B1 (en) 2015-12-31 2016-06-23 Tactile vibration control system and method for smart terminal
DK16820141.6T DK3211504T3 (da) 2015-12-31 2016-06-23 System og fremgangsmåde til styring af taktile vibrationer til smartterminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511031603.9 2015-12-13
CN201511031603.9A CN105630021B (zh) 2015-12-31 2015-12-31 一种智能终端的触觉振动控制系统和方法

Publications (1)

Publication Number Publication Date
WO2017113652A1 true WO2017113652A1 (zh) 2017-07-06

Family

ID=56045073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086932 WO2017113652A1 (zh) 2015-12-31 2016-06-23 一种智能终端的触觉振动控制系统和方法

Country Status (5)

Country Link
US (1) US10109163B2 (zh)
EP (1) EP3211504B1 (zh)
CN (1) CN105630021B (zh)
DK (1) DK3211504T3 (zh)
WO (1) WO2017113652A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220408181A1 (en) * 2021-06-22 2022-12-22 Cirrus Logic International Semiconductor Ltd. Methods and systems for managing mixed mode electromechanical actuator drive
US11736093B2 (en) 2019-03-29 2023-08-22 Cirrus Logic Inc. Identifying mechanical impedance of an electromagnetic load using least-mean-squares filter
US11779956B2 (en) 2019-03-29 2023-10-10 Cirrus Logic Inc. Driver circuitry
US11847906B2 (en) 2019-10-24 2023-12-19 Cirrus Logic Inc. Reproducibility of haptic waveform
US11908310B2 (en) 2021-06-22 2024-02-20 Cirrus Logic Inc. Methods and systems for detecting and managing unexpected spectral content in an amplifier system
US11933822B2 (en) 2021-06-16 2024-03-19 Cirrus Logic Inc. Methods and systems for in-system estimation of actuator parameters
US11966513B2 (en) 2018-08-14 2024-04-23 Cirrus Logic Inc. Haptic output systems
US11972057B2 (en) 2019-06-07 2024-04-30 Cirrus Logic Inc. Methods and apparatuses for controlling operation of a vibrational output system and/or operation of an input sensor system
US11972105B2 (en) 2018-10-26 2024-04-30 Cirrus Logic Inc. Force sensing system and method

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105630021B (zh) * 2015-12-31 2018-07-31 歌尔股份有限公司 一种智能终端的触觉振动控制系统和方法
CN105511514B (zh) * 2015-12-31 2019-03-15 歌尔股份有限公司 一种智能终端的触觉振动控制系统和方法
US10304298B2 (en) * 2016-07-27 2019-05-28 Immersion Corporation Braking characteristic detection system for haptic actuator
US10049538B2 (en) * 2016-08-31 2018-08-14 Apple Inc. Electronic device including haptic actuator driven based upon audio noise and motion and related methods
KR102576135B1 (ko) 2016-09-13 2023-09-06 매직 립, 인코포레이티드 감각 안경류
CN107024985B (zh) * 2017-01-24 2020-05-15 瑞声科技(新加坡)有限公司 线性马达刹车方法和装置,及触觉反馈系统
DE102017103670A1 (de) * 2017-02-22 2018-08-23 Preh Gmbh Eingabevorrichtung mit aktorisch bewegtem Eingabeteil mit Abstimmung der mechanischen Eigenfrequenzen zur Erzeugung einer verbesserten haptischen Rückmeldung
US10732714B2 (en) 2017-05-08 2020-08-04 Cirrus Logic, Inc. Integrated haptic system
US11259121B2 (en) 2017-07-21 2022-02-22 Cirrus Logic, Inc. Surface speaker
WO2019089001A1 (en) * 2017-10-31 2019-05-09 Hewlett-Packard Development Company, L.P. Actuation module to control when a sensing module is responsive to events
JP2019091198A (ja) * 2017-11-14 2019-06-13 シャープ株式会社 入力装置
JP2019101524A (ja) * 2017-11-29 2019-06-24 日本電産株式会社 触覚出力装置
CN108325806B (zh) * 2017-12-29 2020-08-21 瑞声科技(新加坡)有限公司 振动信号的生成方法及装置
CN108429507B (zh) * 2018-01-15 2020-06-02 上海艾为电子技术股份有限公司 确定线性振动装置谐振频率的方法和装置
US10455339B2 (en) 2018-01-19 2019-10-22 Cirrus Logic, Inc. Always-on detection systems
US10620704B2 (en) 2018-01-19 2020-04-14 Cirrus Logic, Inc. Haptic output systems
US11175739B2 (en) * 2018-01-26 2021-11-16 Immersion Corporation Method and device for performing actuator control based on an actuator model
CN108415556B (zh) * 2018-01-29 2021-04-20 瑞声科技(新加坡)有限公司 马达振动控制方法及装置
US11139767B2 (en) 2018-03-22 2021-10-05 Cirrus Logic, Inc. Methods and apparatus for driving a transducer
US10795443B2 (en) 2018-03-23 2020-10-06 Cirrus Logic, Inc. Methods and apparatus for driving a transducer
US10820100B2 (en) 2018-03-26 2020-10-27 Cirrus Logic, Inc. Methods and apparatus for limiting the excursion of a transducer
US10921159B1 (en) 2018-03-29 2021-02-16 Cirrus Logic, Inc. Use of reference sensor in resonant phase sensing system
US10642435B2 (en) 2018-03-29 2020-05-05 Cirrus Logic, Inc. False triggering prevention in a resonant phase sensing system
US11537242B2 (en) 2018-03-29 2022-12-27 Cirrus Logic, Inc. Q-factor enhancement in resonant phase sensing of resistive-inductive-capacitive sensors
US11092657B2 (en) 2018-03-29 2021-08-17 Cirrus Logic, Inc. Compensation of changes in a resonant phase sensing system including a resistive-inductive-capacitive sensor
US10725549B2 (en) * 2018-03-29 2020-07-28 Cirrus Logic, Inc. Efficient detection of human machine interface interaction using a resonant phase sensing system
US10908200B2 (en) 2018-03-29 2021-02-02 Cirrus Logic, Inc. Resonant phase sensing of resistive-inductive-capacitive sensors
US10832537B2 (en) 2018-04-04 2020-11-10 Cirrus Logic, Inc. Methods and apparatus for outputting a haptic signal to a haptic transducer
US11069206B2 (en) 2018-05-04 2021-07-20 Cirrus Logic, Inc. Methods and apparatus for outputting a haptic signal to a haptic transducer
US10599221B2 (en) * 2018-06-15 2020-03-24 Immersion Corporation Systems, devices, and methods for providing limited duration haptic effects
US10936068B2 (en) * 2018-06-15 2021-03-02 Immersion Corporation Reference signal variation for generating crisp haptic effects
CN113015950A (zh) * 2018-12-12 2021-06-22 阿尔卑斯阿尔派株式会社 触觉呈现装置、触觉呈现系统、控制方法以及程序
CN109710067A (zh) * 2018-12-20 2019-05-03 上海艾为电子技术股份有限公司 一种线性谐振装置及其刹车方法
CN109713944B (zh) * 2019-01-17 2020-08-25 上海艾为电子技术股份有限公司 一种线性马达驱动芯片刹车方法和装置
US11402946B2 (en) 2019-02-26 2022-08-02 Cirrus Logic, Inc. Multi-chip synchronization in sensor applications
US10935620B2 (en) 2019-02-26 2021-03-02 Cirrus Logic, Inc. On-chip resonance detection and transfer function mapping of resistive-inductive-capacitive sensors
US11536758B2 (en) 2019-02-26 2022-12-27 Cirrus Logic, Inc. Single-capacitor inductive sense systems
US10948313B2 (en) 2019-02-26 2021-03-16 Cirrus Logic, Inc. Spread spectrum sensor scanning using resistive-inductive-capacitive sensors
US11283337B2 (en) 2019-03-29 2022-03-22 Cirrus Logic, Inc. Methods and systems for improving transducer dynamics
US10726683B1 (en) 2019-03-29 2020-07-28 Cirrus Logic, Inc. Identifying mechanical impedance of an electromagnetic load using a two-tone stimulus
US10992297B2 (en) 2019-03-29 2021-04-27 Cirrus Logic, Inc. Device comprising force sensors
US10955955B2 (en) 2019-03-29 2021-03-23 Cirrus Logic, Inc. Controller for use in a device comprising force sensors
US11644370B2 (en) 2019-03-29 2023-05-09 Cirrus Logic, Inc. Force sensing with an electromagnetic load
US11474135B2 (en) * 2019-04-03 2022-10-18 Cirrus Logic, Inc. Auto-centering of sensor frequency of a resonant sensor
US11238709B2 (en) * 2019-04-26 2022-02-01 Cirrus Logic, Inc. Non linear predictive model for haptic waveform generation
CN110112984B (zh) * 2019-05-29 2021-01-08 维沃移动通信有限公司 一种线性马达的振动控制方法和移动终端
US11150733B2 (en) 2019-06-07 2021-10-19 Cirrus Logic, Inc. Methods and apparatuses for providing a haptic output signal to a haptic actuator
KR20220024091A (ko) 2019-06-21 2022-03-03 시러스 로직 인터내셔널 세미컨덕터 리미티드 디바이스 상에 복수의 가상 버튼을 구성하기 위한 방법 및 장치
CN110380664A (zh) * 2019-06-24 2019-10-25 瑞声科技(新加坡)有限公司 一种马达振动控制方法、装置及计算机可读存储介质
US11408787B2 (en) 2019-10-15 2022-08-09 Cirrus Logic, Inc. Control methods for a force sensor system
US11079874B2 (en) 2019-11-19 2021-08-03 Cirrus Logic, Inc. Virtual button characterization engine
US11545951B2 (en) 2019-12-06 2023-01-03 Cirrus Logic, Inc. Methods and systems for detecting and managing amplifier instability
JP7373445B2 (ja) * 2020-03-27 2023-11-02 ニデックプレシジョン株式会社 振動アクチュエータおよびその駆動方法
CN111580644B (zh) * 2020-04-14 2023-04-28 瑞声科技(新加坡)有限公司 信号处理方法、装置和电子设备
US11662821B2 (en) 2020-04-16 2023-05-30 Cirrus Logic, Inc. In-situ monitoring, calibration, and testing of a haptic actuator
US11579030B2 (en) 2020-06-18 2023-02-14 Cirrus Logic, Inc. Baseline estimation for sensor system
CN111722721B (zh) * 2020-06-24 2023-03-28 瑞声科技(新加坡)有限公司 一种电压驱动信号的生成方法及设备、存储介质
US11835410B2 (en) 2020-06-25 2023-12-05 Cirrus Logic Inc. Determination of resonant frequency and quality factor for a sensor system
US11868540B2 (en) 2020-06-25 2024-01-09 Cirrus Logic Inc. Determination of resonant frequency and quality factor for a sensor system
WO2022047438A1 (en) * 2020-08-27 2022-03-03 Qualcomm Incorporated Braking control of haptic feedback device
US11619519B2 (en) 2021-02-08 2023-04-04 Cirrus Logic, Inc. Predictive sensor tracking optimization in multi-sensor sensing applications
CN113031771B (zh) * 2021-03-23 2023-01-31 山东大学 一种穿戴式振动触觉体感装置及控制方法
US11821761B2 (en) 2021-03-29 2023-11-21 Cirrus Logic Inc. Maximizing dynamic range in resonant sensing
US11808669B2 (en) 2021-03-29 2023-11-07 Cirrus Logic Inc. Gain and mismatch calibration for a phase detector used in an inductive sensor
US11507199B2 (en) 2021-03-30 2022-11-22 Cirrus Logic, Inc. Pseudo-differential phase measurement and quality factor compensation
US11606636B2 (en) * 2021-06-03 2023-03-14 Feng-Chou Lin Somatosensory vibration generating device and method for forming somatosensory vibration
US11979115B2 (en) 2021-11-30 2024-05-07 Cirrus Logic Inc. Modulator feedforward compensation
US11854738B2 (en) 2021-12-02 2023-12-26 Cirrus Logic Inc. Slew control for variable load pulse-width modulation driver and load sensing
US11552649B1 (en) 2021-12-03 2023-01-10 Cirrus Logic, Inc. Analog-to-digital converter-embedded fixed-phase variable gain amplifier stages for dual monitoring paths

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05265508A (ja) * 1992-03-19 1993-10-15 Fujitsu Ltd ディジタル波形整形フィルタ
US20050134562A1 (en) * 2003-12-22 2005-06-23 Grant Danny A. System and method for controlling haptic devices having multiple operational modes
US20060119573A1 (en) * 2004-11-30 2006-06-08 Grant Danny A Systems and methods for controlling a resonant device for generating vibrotactile haptic effects
CN101184289A (zh) * 2006-11-16 2008-05-21 诺基亚公司 提供振动控制接口的方法、装置和计算机程序产品
US20080157882A1 (en) * 2007-01-03 2008-07-03 Apple Inc. Automatic frequency calibration
CN102117149A (zh) * 2010-01-05 2011-07-06 三星电子株式会社 用于具有触摸屏的无线终端的触觉反馈控制方法和装置
US20130106589A1 (en) * 2011-11-01 2013-05-02 Texas Instruments Incorporated Closed-loop haptic or other tactile feedback system for mobile devices, touch screen devices, and other devices
CN103620525A (zh) * 2011-03-09 2014-03-05 美国亚德诺半导体公司 智能线性谐振执行器控制
WO2015136923A1 (ja) * 2014-03-12 2015-09-17 パナソニックIpマネジメント株式会社 電子機器
CN105511514A (zh) * 2015-12-31 2016-04-20 歌尔声学股份有限公司 一种智能终端的触觉振动控制系统和方法
CN105630021A (zh) * 2015-12-31 2016-06-01 歌尔声学股份有限公司 一种智能终端的触觉振动控制系统和方法
CN205485661U (zh) * 2015-12-31 2016-08-17 歌尔声学股份有限公司 一种智能终端的触觉振动控制系统

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5388992A (en) * 1991-06-19 1995-02-14 Audiological Engineering Corporation Method and apparatus for tactile transduction of acoustic signals from television receivers
US5610848A (en) * 1994-05-13 1997-03-11 Hughes Aircraft Company Robust resonance reduction using staggered posicast filters
US20030040361A1 (en) * 1994-09-21 2003-02-27 Craig Thorner Method and apparatus for generating tactile feedback via relatively low-burden and/or zero burden telemetry
JP3809880B2 (ja) * 1997-02-27 2006-08-16 株式会社ミツトヨ 振動制御系における伝達関数の短時間内取得方法および装置
JP4590081B2 (ja) * 2000-09-26 2010-12-01 オリンパス株式会社 アクチュエータ駆動装置
US7346172B1 (en) 2001-03-28 2008-03-18 The United States Of America As Represented By The United States National Aeronautics And Space Administration Auditory alert systems with enhanced detectability
JP2002292337A (ja) * 2001-03-30 2002-10-08 Ykk Corp パーツフィーダの制御方法と装置
US6850151B1 (en) 2003-02-26 2005-02-01 Ricky R. Calhoun Devices for locating/keeping track of objects, animals or persons
JP4832808B2 (ja) * 2004-12-28 2011-12-07 東海ゴム工業株式会社 能動型防振装置
US9764357B2 (en) * 2005-06-27 2017-09-19 General Vibration Corporation Synchronized array of vibration actuators in an integrated module
US8270629B2 (en) 2005-10-24 2012-09-18 Broadcom Corporation System and method allowing for safe use of a headset
US7973730B2 (en) 2006-12-29 2011-07-05 Broadcom Corporation Adjustable integrated circuit antenna structure
US7843277B2 (en) * 2008-12-16 2010-11-30 Immersion Corporation Haptic feedback generation based on resonant frequency
JP5889519B2 (ja) * 2010-06-30 2016-03-22 京セラ株式会社 触感呈示装置および触感呈示装置の制御方法
WO2012125924A2 (en) * 2011-03-17 2012-09-20 Coactive Drive Corporation Asymmetric and general vibration waveforms from multiple synchronized vibration actuators
US20140028547A1 (en) 2012-07-26 2014-01-30 Stmicroelectronics, Inc. Simple user interface device and chipset implementation combination for consumer interaction with any screen based interface
US9274602B2 (en) 2012-10-30 2016-03-01 Texas Instruments Incorporated Haptic actuator controller
US20150332565A1 (en) * 2012-12-31 2015-11-19 Lg Electronics Inc. Device and method for generating vibrations
US9489047B2 (en) * 2013-03-01 2016-11-08 Immersion Corporation Haptic device with linear resonant actuator
JP6032364B2 (ja) * 2013-06-26 2016-11-24 富士通株式会社 駆動装置、電子機器及び駆動制御プログラム
JP6032362B2 (ja) * 2013-06-26 2016-11-24 富士通株式会社 駆動装置、電子機器及び駆動制御プログラム
US10390755B2 (en) * 2014-07-17 2019-08-27 Elwha Llc Monitoring body movement or condition according to motion regimen with conformal electronics
US9648412B2 (en) * 2015-02-06 2017-05-09 Skullcandy, Inc. Speakers and headphones related to vibrations in an audio system, and methods for operating same
US9779554B2 (en) * 2015-04-10 2017-10-03 Sony Interactive Entertainment Inc. Filtering and parental control methods for restricting visual activity on a head mounted display
CN104954566A (zh) 2015-06-12 2015-09-30 上海卓易科技股份有限公司 自动切换语音方法及系统
CN204760039U (zh) 2015-07-24 2015-11-11 广东科技学院 一种基于忆阻器的三维结构存储器
US9918154B2 (en) * 2015-07-30 2018-03-13 Skullcandy, Inc. Tactile vibration drivers for use in audio systems, and methods for operating same
US9769557B2 (en) 2015-12-24 2017-09-19 Intel Corporation Proximity sensing headphones
CN205581671U (zh) 2015-12-31 2016-09-14 歌尔股份有限公司 一种智能终端的触觉振动控制系统

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05265508A (ja) * 1992-03-19 1993-10-15 Fujitsu Ltd ディジタル波形整形フィルタ
US20050134562A1 (en) * 2003-12-22 2005-06-23 Grant Danny A. System and method for controlling haptic devices having multiple operational modes
US20060119573A1 (en) * 2004-11-30 2006-06-08 Grant Danny A Systems and methods for controlling a resonant device for generating vibrotactile haptic effects
CN101184289A (zh) * 2006-11-16 2008-05-21 诺基亚公司 提供振动控制接口的方法、装置和计算机程序产品
US20080157882A1 (en) * 2007-01-03 2008-07-03 Apple Inc. Automatic frequency calibration
CN102117149A (zh) * 2010-01-05 2011-07-06 三星电子株式会社 用于具有触摸屏的无线终端的触觉反馈控制方法和装置
CN103620525A (zh) * 2011-03-09 2014-03-05 美国亚德诺半导体公司 智能线性谐振执行器控制
US20130106589A1 (en) * 2011-11-01 2013-05-02 Texas Instruments Incorporated Closed-loop haptic or other tactile feedback system for mobile devices, touch screen devices, and other devices
WO2015136923A1 (ja) * 2014-03-12 2015-09-17 パナソニックIpマネジメント株式会社 電子機器
CN105511514A (zh) * 2015-12-31 2016-04-20 歌尔声学股份有限公司 一种智能终端的触觉振动控制系统和方法
CN105630021A (zh) * 2015-12-31 2016-06-01 歌尔声学股份有限公司 一种智能终端的触觉振动控制系统和方法
CN205485661U (zh) * 2015-12-31 2016-08-17 歌尔声学股份有限公司 一种智能终端的触觉振动控制系统

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11966513B2 (en) 2018-08-14 2024-04-23 Cirrus Logic Inc. Haptic output systems
US11972105B2 (en) 2018-10-26 2024-04-30 Cirrus Logic Inc. Force sensing system and method
US11736093B2 (en) 2019-03-29 2023-08-22 Cirrus Logic Inc. Identifying mechanical impedance of an electromagnetic load using least-mean-squares filter
US11779956B2 (en) 2019-03-29 2023-10-10 Cirrus Logic Inc. Driver circuitry
US11972057B2 (en) 2019-06-07 2024-04-30 Cirrus Logic Inc. Methods and apparatuses for controlling operation of a vibrational output system and/or operation of an input sensor system
US11847906B2 (en) 2019-10-24 2023-12-19 Cirrus Logic Inc. Reproducibility of haptic waveform
US11933822B2 (en) 2021-06-16 2024-03-19 Cirrus Logic Inc. Methods and systems for in-system estimation of actuator parameters
US20220408181A1 (en) * 2021-06-22 2022-12-22 Cirrus Logic International Semiconductor Ltd. Methods and systems for managing mixed mode electromechanical actuator drive
US11765499B2 (en) * 2021-06-22 2023-09-19 Cirrus Logic Inc. Methods and systems for managing mixed mode electromechanical actuator drive
US11908310B2 (en) 2021-06-22 2024-02-20 Cirrus Logic Inc. Methods and systems for detecting and managing unexpected spectral content in an amplifier system

Also Published As

Publication number Publication date
EP3211504B1 (en) 2021-04-07
EP3211504A1 (en) 2017-08-30
CN105630021A (zh) 2016-06-01
DK3211504T3 (da) 2021-07-05
EP3211504A4 (en) 2017-08-30
US20180182212A1 (en) 2018-06-28
CN105630021B (zh) 2018-07-31
US10109163B2 (en) 2018-10-23

Similar Documents

Publication Publication Date Title
WO2017113652A1 (zh) 一种智能终端的触觉振动控制系统和方法
WO2017113651A1 (zh) 一种智能终端的触觉振动控制系统和方法
CN205485661U (zh) 一种智能终端的触觉振动控制系统
US11736093B2 (en) Identifying mechanical impedance of an electromagnetic load using least-mean-squares filter
CN205581671U (zh) 一种智能终端的触觉振动控制系统
KR102605126B1 (ko) 변환기 안정화 시간 최소화
US20210328535A1 (en) Restricting undesired movement of a haptic actuator
KR20200054085A (ko) 햅틱 액추에이터를 제어하기 위한 디바이스들 및 방법들
KR20210070938A (ko) 전자기 트랜스듀서의 코일 임피던스를 추정하기 위한 방법들 및 시스템들
KR20190091218A (ko) 액추에이터 모델에 기반하여 액추에이터 제어를 수행하는 방법 및 디바이스
US11238709B2 (en) Non linear predictive model for haptic waveform generation
Tanner et al. Improving perception in time-delayed telerobotics
Tanner et al. High-frequency acceleration feedback in wave variable telerobotics
McMahan et al. Dynamic modeling and control of voice-coil actuators for high-fidelity display of haptic vibrations
Hinterseer et al. Perception-based compression of haptic data streams using kalman filters
JP6907219B2 (ja) 端末機器、サーバー、および情報処理システム
Aucouturier et al. Making a robot dance to music using chaotic itinerancy in a network of fitzhugh-nagumo neurons
CN106601036A (zh) 一种学习监控方法及装置
US11645896B2 (en) Systems, devices, and methods for providing actuator braking
US20230245537A1 (en) Determination and avoidance of over-excursion of internal mass of transducer
TW202407513A (zh) 音訊和觸覺訊號處理
CN117728733A (zh) 马达驱动设备和驱动方法
Skogstad Methods and Technologies for Using Body Motion for Real-Time Musical Interaction
ROMANI REAL-TIME CONTROL OF AN ELECTRODYNAMIC SHAKER
Niemeyer Neal A. Tanner

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15324151

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016820141

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2016820141

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE