WO2017113531A1 - 可降解的封堵器 - Google Patents

可降解的封堵器 Download PDF

Info

Publication number
WO2017113531A1
WO2017113531A1 PCT/CN2016/078756 CN2016078756W WO2017113531A1 WO 2017113531 A1 WO2017113531 A1 WO 2017113531A1 CN 2016078756 W CN2016078756 W CN 2016078756W WO 2017113531 A1 WO2017113531 A1 WO 2017113531A1
Authority
WO
WIPO (PCT)
Prior art keywords
mesh
disc
shaped
degradable
net
Prior art date
Application number
PCT/CN2016/078756
Other languages
English (en)
French (fr)
Inventor
张瑾
张健
马彩霞
Original Assignee
常州锦葵医疗器械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201521137627.8U external-priority patent/CN207785224U/zh
Priority claimed from CN201521138998.8U external-priority patent/CN206995284U/zh
Priority claimed from CN201521137730.2U external-priority patent/CN205322380U/zh
Priority claimed from CN201521137500.6U external-priority patent/CN207996221U/zh
Priority claimed from CN201521137713.9U external-priority patent/CN205322379U/zh
Application filed by 常州锦葵医疗器械有限公司 filed Critical 常州锦葵医疗器械有限公司
Priority to US16/066,399 priority Critical patent/US11337683B2/en
Priority to JP2018553276A priority patent/JP6752289B2/ja
Priority to SG11201805561SA priority patent/SG11201805561SA/en
Priority to EP16880339.3A priority patent/EP3398533A4/en
Publication of WO2017113531A1 publication Critical patent/WO2017113531A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12099Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
    • A61B17/12122Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder within the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/12168Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure
    • A61B17/12172Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure having a pre-set deployed three-dimensional shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00004(bio)absorbable, (bio)resorbable, resorptive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00477Coupling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00526Methods of manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
    • A61B2017/00592Elastic or resilient implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
    • A61B2017/00606Implements H-shaped in cross-section, i.e. with occluders on both sides of the opening
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0063Implantable repair or support meshes, e.g. hernia meshes

Definitions

  • the present invention relates to a degradable occluder for use in the interventional treatment of structural heart disease.
  • Atrial septal defect cardiac patent ductus arteriosus, cardiac ventricular septal defect, patent foramen ovale, and left atrial appendage are common structural heart diseases.
  • the traditional treatment is surgery. Surgical treatment, patients need to undergo surgery to open the chest, the biggest disadvantages are: (1) intraoperative circulation is required during surgery, surgery may cause complications leading to death; (2) surgical trauma, large postoperative Scars; (3) expensive surgery.
  • minimally invasive interventional techniques to treat structural heart disease.
  • the rapid development of minimally invasive interventional treatment of structural heart disease has become very mature.
  • minimally invasive interventional therapy is a modern high-tech minimally invasive treatment.
  • the guiding wire can be minimally invasive into the femoral vein or surgical small incision.
  • the delivery catheter is then placed in the defect or abnormal site, and finally the occluder is pushed into the delivery catheter to the defect or abnormal place to perform the occlusion treatment.
  • Such minimally invasive interventional treatment has the advantages of small trauma, no need for extracorporeal circulation, less complications, quick recovery, good effect, wide range of indications and relatively low surgical costs.
  • Nickel-titanium alloy wire because such metal materials can not be degraded, long-term implantation will cause inflammation, coagulation and other reactions with human tissues, and even a certain degree of damage, so there are certain defects, and there may still be the following use risks.
  • Nickel-titanium alloy is a non-degradable metal alloy material. Although its biocompatibility has been demonstrated, the long-term risk of long-term permanent implantation cannot be completely controlled.
  • Nitinol occluder Permanently implanted and non-degradable, permanently preserved in the heart, the safety of the human body, the fixed size of the occluder has no long-term follow-up data on the child's growing heart, which may affect the heart of undeveloped patients. Development and growth; (3) There are still no clear scientific arguments for complications such as nickel precipitation and nickel allergy. (4) hindering the patient's long-term acceptance of other cardiac interventions.
  • the ideal occluder should provide a temporary bridge for the heart's own repair. After completing the historical mission, the body will be degraded, so that the defect is completely repaired by its own tissue, thus avoiding the long-term complications and safety hazards caused by metal retention.
  • the support structure of the degradable occluder described in U.S. Patent No. 8,480,709 B2 is cut from a tube, and the connection points of the two disk faces of the occluder are similar to the double solder joints, so that the center of the two disk faces is convex, which increases the surface of the occluder.
  • the risk of local thrombosis is not conducive to the endothelialization process on the surface of the occluder.
  • the release length of the occluder is long, the heart tissue is easily damaged, and the seal is made by this method.
  • the occlusion device is less compliant and resilience and needs to be assisted by the locking device to return to its original shape.
  • the introduction of the locking device will greatly increase the difficulty of the operation of the doctor. If the occluder selected at the beginning is not suitable, it is more difficult to retract the delivery sheath from the occluder, which greatly increases the risk of surgery. Some of these designs cannot replace the delivery sheath for replacement once the locking device locks the occluder. If the occluder selected initially is not suitable, it can only be retrieved by surgery.
  • the occluder of the patent is not equipped with a structure in which the mesh surface of the connecting member is closed by the closing line, so that the outer mesh surface is flatter, the risk of local thrombus formation on the surface of the occluder can be reduced, and the surface of the occluder is accelerated.
  • the process of endothelialization causes the defect to be repaired earlier by its own tissue; at the same time, it reduces the hand
  • the release length of the occluder during the operation can greatly reduce the damage to the heart, making the operation more effective and safer; and the occluder made by this method has better compliance and recovery, without the need to pass the locking device
  • the occluder can return to the original shape by virtue of the characteristics of its own material and the structural design that is easy to recover, thereby firmly fixing it to the defect or abnormal part, which will greatly Reduce the difficulty of the operation of the doctor; the structural design of the patent occluder can be repeatedly retracted, which is more conducive to the operation and adjustment during the operation. If the occluder selected at the beginning is not suitable, the occluder can be easily recovered. Transfer the sheath to replace the appropriate type of occluder to continue the procedure, which greatly reduces the risk of surgery.
  • the technical problem to be solved by the present invention is to solve the problem of long-term risk of the existing clinically used occluder, and overcome the defects of the prior art that the degradable occluder has poor compliance and recovery, and provide a defect. Degradable occluder.
  • a degradable occluder characterized in that it comprises a first disc-shaped net, a tubular net and a second disc-shaped net connected in sequence, and two ends of the tubular net are respectively connected to the first a disk-shaped mesh and the second disk-shaped mesh, the first disk-shaped mesh, the tubular mesh and the second disk-shaped mesh are integrally formed; the second disk-shaped mesh is provided for closing a mesh surface
  • the connecting member is formed by hot melt forming the net body of the second disc-shaped net, and the materials of the first disc-shaped net, the tubular net, the second disc-shaped net and the connecting member are all degradable material.
  • the occluder of the present invention is mainly used for treating structural heart disease. Due to the size and position of the defect or abnormality in the heart, the size and shape of the occluder required are also different, and there are mainly five types, each of which The characteristics of the occluder are as follows.
  • the degradable occluder is a degradable cardiac atrial septal defect occluder
  • the first disc-shaped net and the second disc-shaped net are both double-layer nets, the tubular net
  • the two ends are respectively connected to the inner mesh surface of the first disk-shaped mesh and the outer mesh surface of the second disk-shaped mesh;
  • the connecting member is disposed at the center of the inner mesh surface of the second disk-shaped mesh.
  • the connecting member is located at the center of the inner mesh surface of the second disk mesh
  • the mesh body is formed by hot melt forming.
  • the degradable occluder is a degradable cardiac catheter ducture occluder
  • the first disc-shaped mesh is a double-layer mesh cover
  • the second disk-shaped mesh is a single-layer mesh cover.
  • the two ends of the tubular net are respectively connected to the inner mesh surface of the first disc-shaped net and the second disc-shaped net; the connecting member is disposed at the center of the second disc-shaped net,
  • the connector is formed by hot melt forming a mesh body at the center of the second disk-shaped mesh.
  • the degradable occluder is a degradable cardiac ventricular septal defect occluder
  • the first disc-shaped net and the second disc-shaped net are both double-layer nets
  • the tubular net The two ends are respectively connected to the inner mesh surface of the first disk-shaped mesh and the outer mesh surface of the second disk-shaped mesh; the connecting member is disposed at the center of the inner mesh surface of the second disk-shaped mesh.
  • the connector is formed by hot melt forming a mesh body at the center of the inner mesh surface of the second disk-shaped mesh, and the height of the tubular mesh is 3.5-9.5 mm.
  • the degradable occluder is a degradable cardiac foramen ovale occluder
  • the first disc mesh and the second disc mesh are both double-layer nets
  • Two ends of the tubular net are respectively connected to the inner mesh surface of the first disc-shaped net and the inner net surface of the second disc-shaped net; the connection is provided at the center of the outer mesh surface of the second disc-shaped net
  • the connecting member is formed by hot-melting the net body at the center of the outer mesh surface of the second disc-shaped net, and the outer net surface of the second disc-shaped net is convex toward the connecting member.
  • the degradable occluder is a degradable cardiac left atrial appendage occluder
  • the first disc-shaped mesh is a single-layer mesh cover
  • the second disk-shaped mesh is a double-layer mesh cover.
  • the two ends of the tubular net are respectively connected to the outer surface of the first disc-shaped net and the second disc-shaped net; the connecting piece is disposed at the center of the inner surface of the second disc-shaped net
  • the connecting member is formed by hot melt forming a mesh body at the center of the inner mesh surface of the second disk-shaped mesh.
  • the first disk-shaped mesh includes a closed end, the closed end is a plurality of annular network cables that are sequentially adjacent to each other, and the first disk-shaped mesh is further provided with a closing line, and the closing wire is disposed through All of the annular network wires form a continuous flat mesh surface of the outer surface of the first disk-shaped mesh after the mouth is closed.
  • the outer mesh surface is flatter, the support force and recovery of the occluder can be increased, the risk of local thrombosis on the surface of the occluder can be reduced, and the endothelialization of the occluder surface can be accelerated.
  • the procedure allows the repair site to be repaired earlier by its own tissue. At the same time, the release length of the occluder during the operation is reduced, the damage to the heart can be greatly reduced, and the operation is more effective and safer.
  • the connecting member is tubular, and the connecting member has a height of 1.5-2.0 mm. This allows sufficient strength at the end of the inner surface of the second disk mesh. If the height of the connector is too small, the number of thread turns inside the connector is too small, which may cause a weak connection with the delivery system and a risk of the occluder falling off. Conversely, if the height of the connector is too large, the risk of local thrombosis on the surface of the occluder will increase, which will cause the cells on the side of the occluder with the connector to climb slowly and prolong the endothelialization process on the surface of the occluder. . At the same time, during the implantation process, the release length of the occluder is long, and it is easy to damage the heart tissue.
  • the connecting member has an outer diameter of 2.5 to 3.2 mm. This allows sufficient strength at the end of the inner surface of the second disk mesh. Further, if the outer diameter of the connecting member is too small, it is liable to cause breakage of the deformed wire connected to the connecting member during the molding of the connecting member or a decrease in the joint strength. Conversely, if the outer diameter of the connector is too large, the size range of the delivery sheath to which the occluder is applied is reduced, and the occlusion device is pushed in the delivery sheath.
  • the material of the first disc-shaped net, the tubular net, the second disc-shaped net and the connecting member are all polymer degradable wires.
  • the biodegradable polymer material is one of polylactic acid, polyglycolic acid, polycaprolactone, polydioxanone, polyhydroxybutyrate, polyanhydride, polyphosphate, polyurethane, polycarbonate or At least two copolymers. These materials have good biocompatibility and can be completely absorbed in the human body, avoiding the long-term effects of implanting foreign bodies on the human body. This occluder is only a temporary bridge for heart repair. After the historical mission, it is degraded by the body, so that the defect is completely repaired by its own tissue, thus avoiding the long-term complications and safety hazards caused by metal retention.
  • the connecting member is tubular, and the connecting member is provided with an internal thread at an end opposite to the mating mesh surface.
  • the connection to the delivery system is stronger and the occluder can be conveniently transported through the delivery system to a heart defect or anomalies.
  • the inner mesh surface of the first disc-shaped mesh is recessed toward the tubular net, and the inner mesh surface of the second disc-shaped mesh is recessed toward the connecting member.
  • the concave mesh surface can stabilize the occluder when it is used. Firmly block the atrial septal defect.
  • the outer diameter of the first disc-shaped net is 4-6 mm larger than the outer diameter of the second disc-shaped net.
  • the first disc-shaped mesh is located in the left atrium of the heart, and the second disc-shaped mesh is located in the right atrium of the heart.
  • the pressure in the left atrium of the heart is greater than the pressure in the right atrium, so that the blood enters the right atrium from the left atrium through the atrial septal defect, so this structure makes the left
  • the first disc-shaped mesh of the atrium has a large supporting force, can resist the impact of blood flow, and is favorable for the occluder to be firmly clamped at the atrial septal defect to achieve effective sealing.
  • the outer diameter of the first disc-shaped net is 10-16 mm larger than the outer diameter of the tubular net.
  • the diameter of the tubular mesh generally corresponds to the diameter of the atrial septal defect, and the outer diameter of the first disc mesh needs to be larger than the outer diameter of the tubular mesh. This configuration provides greater support for the first disc-shaped mesh in the left atrium. The force can resist the impact of blood flow, which is beneficial to the occluder firmly clamped in the atrial septal defect and achieve effective sealing.
  • the tubular web has a length of from 3.5 to 5.5 mm. This length corresponds to the thickness of the atrial septal defect tissue so that the occluder is better secured to the defect without damaging the tissue and achieving effective closure.
  • the second disk-shaped mesh is recessed toward the connector.
  • the concave mesh surface can make the occluder have better elastic recovery after being released from the delivery sheath, thereby stably and firmly blocking the patent ductus arteriosus.
  • the outer diameter of the first disc-shaped net is 5.5-6.5 mm larger than the outer diameter of the second disc-shaped net.
  • the first disc-shaped mesh is located on the aorta side, and the second disc-shaped mesh is located on the side of the pulmonary artery.
  • blood usually flows from the aorta through the patent ductus arteriosus into the pulmonary artery, so this structure makes it
  • the first disc-shaped mesh on the aortic side has a large supporting force and is capable of resisting the impact of blood flow, so that the occluder is more firmly clamped at the patent ductus is closed, and effective sealing is achieved.
  • the tubular web has a length of 4.5 to 6.5 mm.
  • This length can be adapted to the length of the patent ductus arteriosus, so that the occluder can be firmly clamped in the patent ductus arteriosus, effectively blocking the patent ductus arteriosus, and does not affect the blood flow in the pulmonary artery.
  • the inner mesh surface of the second disk-shaped mesh is recessed toward the connecting member.
  • the concave mesh surface can be So that the occluder can be stably and securely blocked in the ventricular septal defect when it is used.
  • the outer diameter of the first disc-shaped net is larger or equal to the outer diameter of the second disc-shaped net.
  • the first disc-shaped mesh is located in the left ventricle and the second disc-shaped mesh is located in the right ventricle.
  • blood usually flows from the left ventricle through the ventricular septal defect into the right ventricle. This structure allows the left ventricle to be located.
  • the first disc-shaped mesh has a large supporting force, can resist the impact of blood flow, and is favorable for the occluder to be firmly clamped at the ventricular septal defect, so that the heart chamber septal defect can be effectively blocked. At the same time, it can avoid the drag on the surrounding tissue and reduce the damage to the surrounding tissue.
  • the tubular web has a length of from 3.5 to 5.5 mm. This length corresponds to the thickness of the ventricular septal defect tissue so that the occluder is better secured to the defect without damaging the tissue and achieving effective closure.
  • the tubular web has a length of from 6.0 to 9.5 mm. This length corresponds to the thickness of the ventricular septal defect tissue so that the occluder is better anchored at the defect without damaging the tissue and achieving effective closure.
  • the outer diameter of the second disk-shaped mesh is larger or equal to the outer diameter of the first disk-shaped mesh.
  • the first disc-shaped mesh is located in the left atrium, and the second disc-shaped mesh is located in the right atrium.
  • the weak left primary septum is pushed open.
  • the right-to-left shunt appears.
  • This structure allows the second disc-shaped mesh in the right atrium to have a large supporting force, which can resist the impact of blood flow, and is favorable for the occluder to be firmly clamped in the patent foramen ovale. This can effectively block the patent foramen ovale.
  • the inner mesh surface of the second disk-shaped mesh is recessed toward the connecting member.
  • the concave mesh surface allows the occluder to be stably and securely sealed at the entrance of the left atrial appendage of the heart.
  • the outer diameter of the second disk-shaped mesh is larger than the outer diameter of the first disk-shaped mesh.
  • the second disc-shaped mesh located in the left atrium has a large supporting force, can resist the impact of blood flow, and can effectively block the entrance of the left atrial appendage of the heart.
  • a mesh tube weaving method comprises inserting a pin into a pin hole of a mold bar, inserting the degradable wire into a needle hole of the suture needle, knotting and tightly connecting.
  • the starting point is tightly knotted with degradable silk, and the upper line is woven.
  • the intersection with the down line is aligned with the center mark to gauge the direction of the wire.
  • the braided mesh tube is heat set together with the mold bar. After setting, remove the pin and remove the network tube.
  • a method for manufacturing a connector comprising:
  • Step 1 Close the network management system
  • Step 2 placing the network tube into the mold
  • Step 3 trimming the net body
  • Step 4 heating the degradable silk
  • Step 5 forming the shape of the connector and the internal thread
  • Step 6 Remove the network body
  • step 1 the length of the closing end edge of the mesh tube is adjusted to align the edges, and the degradable silk is used to close the mouth.
  • step 2 the network tube that has been closed is passed through the casing in the mold.
  • step 3 a portion of the original assembly length is left for making the connector, and the excess length of the network tube is removed.
  • the temperature control device is turned on, the temperature is adjusted, and the degradable wire is continuously heated above the mold against the connecting member, wherein the temperature is adjusted to be 40 ° C - 100 ° C above the melting point of the polymer, and continues.
  • the heating time is 5-15 seconds.
  • excessive heating causes the other parts of the mesh body to be melted together, which causes the mesh structure to be destroyed, and the material molecular weight of the connecting part is greatly reduced, which may cause premature degradation of the material.
  • insufficient heating may result in the degradable filament at the connector not being fully heat-melted into one body, failing to form a complete internal thread structure of the connector, resulting in insufficient connection strength between the connector and the delivery system. Therefore, a suitable heating temperature and time is required to complete the hot melt.
  • step 5 after continuous heating, the degradable filaments of the connector portion are melted together, the temperature control device is removed, then the slider in the mold is closed, and the threaded head of the mold is inserted into the slot above the mold. Inside, keep it for a while.
  • step 6 after cooling, the threaded head of the mold is rotated out of the mold, and the slider is slowly removed to move the net body out of the mold.
  • the manufacturing method of the connecting member is easy to operate, the dimensionally stable connecting member can be obtained, and the kind of materials used on the occluder is reduced, so that the degradable wires constituting the disc-shaped net can be firmly connected together, and the connecting member is made The degradable filaments constituting the disk-shaped net can be firmly connected and are not easily peeled off.
  • the invention relates to a method for sizing a net body, which comprises loading a net body with a connecting piece into a net body shaping mold, fixing it with a clamp, and heat-setting the same together, and after the shaping is completed, the net body is taken out from the mold.
  • the degradable film is filled into the net body by a suture, and the mouth is closed at the closing end to be a flat disk surface.
  • the mesh body shaping method is easy to operate, and the manufactured occluder is dimensionally stable.
  • the occluder made by this method has greater support force and better shape recovery, satisfies the requirements of surgical operation, and makes the operation more effective. ,safer.
  • the occluder of the invention is formed by weaving of polymer degradable silk, and has a biodegradation period of 6 months to 2 years, and can be completely absorbed in the human body, thereby avoiding the long-term influence of implanting foreign bodies on the human body.
  • the polymer degradable silk used in the invention is a material which is degradable or absorbable by the human body, is non-toxic and harmless to the human body, and has good biocompatibility.
  • the obturator of the occluder is a biodegradable membrane with a biodegradation cycle of 6 months to 2 years. After completing its therapeutic mission in the human body, it degrades and disappears in the body without residual foreign matter.
  • the mesh body at the center of the second disk-shaped mesh is subjected to high-temperature hot-melt welding as a connecting member, specifically, by heat-melting the mesh body at the center of the second disk-shaped mesh at a high temperature, and heat-melting the portion by a mold
  • the net body is shaped into a connecting member, so that the degradable wires constituting the disc-shaped net are not easily spread and can be firmly connected together; at the same time, the connecting member and the degradable filament constituting the disc-shaped net can be firmly connected together, Not easy to fall off.
  • the mesh surface without the connector is closed by the closing line, which makes the outer mesh surface smoother, which can reduce the risk of local thrombosis on the surface of the occluder, and accelerate the endothelialization process on the surface of the occluder, making the defect more Early repair by its own tissue; at the same time, reduce the release length of the occluder during the operation, can greatly reduce the damage to the heart, make the operation more effective and safer;
  • the occluder made by this method has better compliance and recovery, and does not need to be assisted to return to the original shape by the locking device. After implanting the defect or abnormal part, the occluder can rely on the characteristics of its own material and is easy to recover.
  • the structural design returns to the original shape, so that it is firmly fixed in the defect or abnormal part, which greatly reduces the difficulty of the operation of the doctor; the structural design of the patent occluder can be repeatedly retracted, which is more conducive to the operation during operation. And adjustment, if the occluder selected at the beginning is not suitable, the occluder can be easily retracted to the delivery sheath for replacement of the appropriate type of occluder to continue the operation, which will greatly reduce the risk of surgery; in addition, this seal
  • the plug also has the advantage of relatively low manufacturing costs.
  • FIG. 1 is a schematic perspective view showing the occluder of Embodiment 1.
  • FIG. 2 is a schematic view of the occluder connector of Embodiment 1.
  • Figure 3 is a view taken along the line A in Figure 1.
  • FIG. 4 is a partially enlarged schematic view showing the closing end of the outer mesh surface of the first disk-shaped net of the first embodiment.
  • Fig. 5 is a schematic view showing the structure of a mold bar of the first embodiment.
  • Fig. 6 is a schematic view showing the knitting thread of the mesh tube of the first embodiment.
  • Fig. 7 is a schematic view showing the unfolding end of the network management tube of the first embodiment.
  • FIG. 8 is a schematic perspective view showing the occluder of Embodiment 2.
  • Figure 9 is a schematic view of the occluder connector of the second embodiment.
  • Figure 10 is a view taken along the line A in Figure 8.
  • Fig. 11 is a partially enlarged schematic view showing the closing end of the outer mesh surface of the first disk-shaped net of the second embodiment.
  • FIG. 12 is a schematic perspective view showing the occluder of Embodiment 3.
  • Figure 13 is a schematic view of the occluder connector of the third embodiment.
  • Figure 14 is a view taken along line A in Figure 12 .
  • Fig. 15 is a partially enlarged schematic view showing the closing end of the outer mesh surface of the first disk-shaped net of the third embodiment.
  • Figure 16 is a perspective view showing the structure of the occluder of the fourth embodiment.
  • Figure 17 is a schematic view showing the structure of the side portion of the occluder of the fourth embodiment.
  • Figure 18 is a schematic view of the occluder connector of the fourth embodiment.
  • Figure 19 is a view taken along the line A in Figure 16 .
  • Fig. 20 is a partially enlarged schematic view showing the closing end of the outer mesh surface of the first disk-shaped net of the fourth embodiment.
  • FIG. 21 is a schematic perspective view showing the occluder of Embodiment 5.
  • Figure 22 is a schematic view of the occluder connector of the fifth embodiment.
  • Figure 23 is a view taken along line A in Figure 21 .
  • Fig. 24 is a partially enlarged schematic view showing the closing end of the first disk-shaped net of the fifth embodiment.
  • a degradable cardiac atrial septal defect occluder comprises a first disc-shaped net 10, a tubular net 30 and a second disc-shaped net 20 which are sequentially connected.
  • the first disc-shaped net 10 and the second disc-shaped net 20 are both double-layer nets, and the two ends of the tubular net 30 are respectively connected to the inner mesh surface 11 of the first disc-shaped net 10 and the outer side of the second disc-shaped net 20
  • the mesh surface 22, the first disk mesh 10, the tubular mesh 30 and the second disk mesh 20 are integrally formed; the center of the inner mesh surface 21 of the second disk mesh 20 is provided with a connecting member 40 for closing the mesh surface,
  • the inner mesh surface 21 of the two disk-shaped mesh 20 and the connecting member 40 are thermally welded and welded;
  • the outer mesh surface 12 of the first disk-shaped mesh 10 includes a closed end 13 , and the closed end 13 is a plurality of annular network cables adjacent to each other.
  • the first disk-shaped mesh 10 is further provided with a cuff line 15 which is disposed through all the annular network wires 14. After the cuff line 15 is closed, the outer mesh surface 12 of the first disc-shaped net 10 forms a continuous mesh shape. surface.
  • the materials of the first disc-shaped net 10, the tubular net 30, the second disc-shaped net 20 and the connecting member 40 are all degradable materials.
  • the occluder of the present invention is subjected to high temperature hot-melt welding at the center of the inner mesh surface of the second disk-shaped mesh 20 as a connecting member, specifically, at the center of the inner mesh surface of the second disk-shaped mesh 20
  • the net body is hot-melted at a high temperature, and the hot-melt portion net body is shaped into the connecting member 40 by a mold, so that the degradable wires constituting the disc-shaped net are not easily spread and can be firmly connected together; at the same time, the connecting member 40 is made With group
  • the degradable filaments of the disk-shaped net can be firmly joined together and are not easily peeled off.
  • the connector 40 is tubular with a height of 1.5-2.0 mm and an outer diameter of 2.5-3.2 mm.
  • the inner mesh surface 11 of the first disc-shaped web 10 is recessed toward the tubular web 30, and the inner web surface 21 of the second disc-shaped web 20 is recessed toward the connecting member 40.
  • the outer diameter of the first disc-shaped net 10 is 4-6 mm larger than the outer diameter of the second disc-shaped net 20; the outer diameter of the first disc-shaped net 10 is 10-16 mm larger than the outer diameter of the tubular net 30; the length of the tubular net 30 It is 3.5-5.5mm.
  • the connector 40 is tubular, and the connector 40 is internally threaded at an end opposite the mating mesh surface 21.
  • the materials of the first disc-shaped net 10, the tubular net 30 and the second disc-shaped net 20 and the connecting member 40 are all polymer degradable wires.
  • the biodegradable polymer material is one of polylactic acid, polyglycolic acid, polycaprolactone, polydioxanone, polyhydroxybutyrate, polyanhydride, polyphosphate, polyurethane, polycarbonate or At least two copolymers.
  • the occluder can be filled with a polylactic acid membrane to block blood flow.
  • the connecting member of the invention is formed by hot-melting of the degradable silk, and needs to meet the use conditions, not only the structure can not be too large, which hinders the pushing of the occluder in the conveying sheath, and also avoids the connecting piece due to insufficient joint strength. Lat.
  • the first mesh disk of the occluder is a continuous mesh surface, and the mesh line is closed between the mesh wires, so that the first outer mesh disk is a smooth and smooth mesh surface without protrusions, and the structure is favorable for the shape of the occluder
  • the recovery and support are improved, which is more conducive to accelerating the endothelialization process on the surface of the occluder, so that the heart defect is repaired by its own tissue earlier.
  • the occluder of the present invention is subjected to high-temperature hot-melt welding at the center of the inner mesh surface of the second disk-shaped mesh as a connecting member, in particular, through a mesh body at the center of the inner mesh surface of the second disk-shaped mesh Hot-melting at a high temperature, and shaping the hot-melt part of the mesh body into a connecting piece by a mold, so that the degradable wires constituting the disk-shaped net are not easily spread and can be firmly connected together; at the same time, the connecting piece and the composition are disc-shaped The degradable filaments of the web can be firmly joined together and are not easily peeled off.
  • the occluder of the invention is mainly produced through several steps of mesh tube forming, connector manufacturing, mesh body shaping and polylactic acid film sewing.
  • the pin When the mesh tube is woven, the pin is inserted into the pin hole 51 of the mold bar 5 as shown in Fig. 5, and the degradable yarn is inserted into the needle hole of the suture needle, knotted and tightly connected.
  • the weaving threading rule is as shown in Fig. 6, and includes a joint forming end D, a closing end B (forming the closing end 13 after molding), and a starting point C.
  • the starting point C is tightly knotted with degradable silk, and the intersection of the up line and the down line is aligned with the center mark at the time of weaving to regulate the direction of the wire.
  • the braided mesh tube is heat set together with the mold bar. After setting, remove the pin and remove the network tube.
  • the connector manufacturing steps include:
  • step 1 the length of the edge of the closing end of the network tube is first adjusted to align the edges, and the mouth is closed by the degradable silk.
  • the specific closing mode is as shown in Fig. 7, which includes the needle point 61 and the needle insertion point 62, and the threading sequence According to the needle exit point 61 and the needle insertion point 62 in Fig. 7, the mouth is closed.
  • step 2 the already closed mesh tube is passed through the casing in the mold.
  • step 3 a portion of the original assembly length is left to make the connector, and the excess length of the network tube is removed.
  • step 4 the temperature control device is turned on, the temperature is adjusted, and the degradable filaments at the connector are continuously heated above the mold.
  • step 5 after continuous heating, the degradable filaments of the connecting part are melted together, the temperature control device is removed, then the slider in the mold is closed, and the threaded head of the mold is inserted into the slot above the mold to maintain a section. time.
  • step 6 after cooling, the threaded head of the mold is rotated out of the mold, and the slider is slowly removed to move the net body out of the mold.
  • the temperature is adjusted to be 40 ° C to 100 ° C above the melting point of the polymer, and the heating time is 5 to 15 seconds.
  • Table 2-2 below, during heating, excessive heating causes the other parts of the mesh body to be hot-melted together, resulting in damage to the mesh structure and greatly reducing the material molecular weight of the connecting part, thereby causing the material. Premature degradation. Conversely, insufficient heating may result in the degradable filament at the connector not being fully heat-melted into one body, failing to form a complete internal thread structure of the connector, resulting in insufficient connection strength between the connector and the delivery system. Therefore, a suitable heating temperature and time is required to complete the hot melt.
  • Heating time s Heating temperature °C Connector hot melt condition Other parts of the hot melt situation 1 2 240 Not fully hot melted Not hot melt 2 15 170 Not fully hot melted Not hot melt 3 5 240 Fully hot melt Not hot melt 4 5 180 Fully hot melt Not hot melt 5 15 240 Fully hot melt Not hot melt 6 15 180 Fully hot melt Not hot melt 7 5 250 Fully hot melt Partial hot melt
  • Heating time s Heating temperature °C Connector hot melt condition Other parts of the hot melt situation 1 2 200 Not fully hot melted Not hot melt 2 15 130 Not fully hot melted Not hot melt 3 5 200 Fully hot melt Not hot melt 4 5 140 Fully hot melt Not hot melt 5 15 200 Fully hot melt Not hot melt 6 15 140 Fully hot melt Not hot melt 7 5 210 Fully hot melt Partial hot melt 8 20 140 Fully hot melt Partial hot melt
  • Heating time s Heating temperature °C Connector hot melt Other parts of the hot melt situation 1 2 210 Not fully hot melted Not hot melt 2 15 140 Not fully hot melted Not hot melt 3 5 210 Fully hot melt Not hot melt 4 5 150 Fully hot melt Not hot melt 5 15 210 Fully hot melt Not hot melt 6 15 150 Fully hot melt Not hot melt 7 5 220 Fully hot melt Partial hot melt 8 20 150 Fully hot melt Partial hot melt
  • the mesh body shaping includes the heat treatment and shaping of the upper mold and the net body of the net body.
  • the net body with the connecting piece is loaded into the net body shaping mold, and fixed by the clamp, and heat-set together, and after the shaping is completed, the net body is taken out from the mold.
  • Fill the polylactic acid film into the net body with suture, and at the end of the mouth The closing is a flat surface.
  • a degradable cardiac catheter ducture occluder includes a first disc-shaped mesh 10, a tubular mesh 30, and a second disc-shaped mesh that are sequentially connected.
  • the first disk-shaped mesh 10 is a double-layer mesh cover
  • the second disk-shaped mesh 20 is a single-layer mesh cover
  • two ends of the tubular mesh 30 are respectively connected to the inner mesh surface 11 and the second disk of the first disk-shaped mesh 10
  • the mesh 20, the first disk mesh 10, the tubular mesh 30 and the second disk mesh 20 are integrally formed; the center of the second disk mesh 20 is provided with a connecting member 40 for closing the mesh surface, and the second disk mesh
  • the outer mesh surface 12 of the first disc-shaped net 10 includes a cuff end 13 and the cuff end 13 is a plurality of annular network wires 14 adjacent to each other.
  • the first disc-shaped net 10 is further A cuff line 15 is provided, and the cuff line 15 is disposed through all of the ring-shaped net wires 14. After the cuff line 15 is closed, the outer mesh surface 12 of the first disc-shaped net 10 forms a continuous mesh surface.
  • the materials of the first disc-shaped net 10, the tubular net 30, the second disc-shaped net 20 and the connecting member 40 are all degradable materials.
  • the net body of the occluder of the present invention at the center of the second disk-shaped net 20 is subjected to high-temperature hot-melt welding as a connecting member, specifically, by heat at a high temperature at a center of the second disk-shaped net 20 Melting, and shaping the hot melt portion net body into the connecting member 40 by using a mold, so that the degradable wires constituting the disc-shaped net are not easily spread and can be firmly connected together; at the same time, the connecting member 40 and the disc-shaped net are formed.
  • the degradable filaments can be firmly joined together and are not easily peeled off.
  • the connector 40 is tubular with a height of 1.5-2.0 mm and an outer diameter of 2.5-3.2 mm.
  • the inner mesh surface 11 of the first disc-shaped net 10 is recessed toward the tubular net 30, and the second disc-shaped net 20 is recessed toward the connecting member 40.
  • the outer diameter of the first disc-shaped net 10 is 5.5-6.5 mm larger than the outer diameter of the second disc-shaped net 20; the length of the tubular net 30 is 4.5-6.5 mm.
  • the connector 40 is tubular and the connector 40 is internally threaded at an end opposite the mating web 20.
  • the materials of the first disc-shaped net 10, the tubular net 30 and the second disc-shaped net 20 and the connecting member 40 are all polymer degradable wires.
  • Biodegradable polymer materials are polylactic acid, polyglycolic acid, polycaprolactone, polydioxanone, polyhydroxybutyrate, polyanhydride, polyphosphate, polyurethane, polycarbonate One or at least two copolymers.
  • the occluder can be filled with a polylactic acid membrane to block blood flow.
  • a degradable cardiac ventricular septal defect occluder includes a first disc-shaped mesh 10, a tubular mesh 30, and a second disc-shaped mesh 20 that are sequentially connected.
  • the first disc-shaped net 10 and the second disc-shaped net 20 are both double-layer nets, and the two ends of the tubular net 30 are respectively connected to the inner mesh surface 11 of the first disc-shaped net 10 and the outer side of the second disc-shaped net 20
  • the mesh surface 22, the first disk mesh 10, the tubular mesh 30 and the second disk mesh 20 are integrally formed; the center of the inner mesh surface 21 of the second disk mesh 20 is provided with a connecting member 40 for closing the mesh surface,
  • the inner mesh surface 21 of the two disk-shaped mesh 20 and the connecting member 40 are thermally welded and welded;
  • the outer mesh surface 12 of the first disk-shaped mesh 10 includes a closed end 13 , and the closed end 13 is a plurality of annular network cables adjacent to each other.
  • the first disk-shaped mesh 10 is further provided with a cuff line 15 which is disposed through all the annular network wires 14. After the cuff line 15 is closed, the outer mesh surface 12 of the first disc-shaped net 10 forms a continuous mesh shape. surface.
  • the materials of the first disc-shaped net 10, the tubular net 30, the second disc-shaped net 20 and the connecting member 40 are all degradable materials.
  • the occluder of the present invention is subjected to high temperature hot-melt welding at the center of the inner mesh surface of the second disk-shaped mesh 20 as a connecting member, specifically, at the center of the inner mesh surface of the second disk-shaped mesh 20
  • the net body is hot-melted at a high temperature, and the hot-melt portion net body is shaped into the connecting member 40 by a mold, so that the degradable wires constituting the disc-shaped net are not easily spread and can be firmly connected together; at the same time, the connecting member 40 is made
  • the degradable filaments constituting the disk-shaped net can be firmly joined together and are not easily peeled off.
  • the connector 40 is tubular with a height of 1.5-2.0 mm and an outer diameter of 2.5-3.2 mm.
  • the inner mesh surface 21 of the second disc-shaped mesh 20 is recessed toward the connector 40.
  • the outer diameter of the first disc-shaped net 10 is larger or equal to the outer diameter of the second disc-shaped net 20; the length of the tubular net 30 is 3.5-9.5 mm. When the length is 3.5-5.5 mm, it corresponds to the thickness of the ventricular septal defect tissue; when the length is 6.0-9.5 mm, it corresponds to the thickness of the ventricular septal defect tissue.
  • the connecting member 40 is tubular, and the connecting member 40 is in contact with the mesh surface 21 that is in contact with The ends are provided with internal threads.
  • the materials of the first disc-shaped net 10, the tubular net 30 and the second disc-shaped net 20 and the connecting member 40 are all polymer degradable wires.
  • the biodegradable polymer material is one of polylactic acid, polyglycolic acid, polycaprolactone, polydioxanone, polyhydroxybutyrate, polyanhydride, polyphosphate, polyurethane, polycarbonate or At least two copolymers.
  • the occluder can be filled with a polylactic acid membrane to block blood flow.
  • a degradable cardiac foramen ovale occluder comprises a first disc-shaped net 10, a tubular net 30 and a first unit which are sequentially connected.
  • the two disk-shaped mesh 20, the first disk-shaped mesh 10 and the second disk-shaped mesh 20 are double-layer mesh covers, and two ends of the tubular mesh 30 are respectively connected to the inner mesh surface 11 and the second disk of the first disk-shaped mesh 10
  • the inner mesh surface 22 of the mesh 20, the first disk mesh 10, the tubular mesh 30 and the second disk mesh 20 are integrally formed; the outer surface of the outer mesh surface 21 of the second disk mesh 20 is provided with a mesh surface.
  • the connecting member 40, the outer mesh surface 21 of the second disk-shaped mesh 20 and the connecting member 40 are thermally welded and welded; the outer mesh surface 12 of the first disk-shaped mesh 10 includes a closing end 13 and the closing end 13 is sequentially Adjacent to the looped wire 14 , the first disc-shaped net 10 is further provided with a cuff line 15 .
  • the cuff line 15 is disposed through all the ring-shaped net wires 14 , and the outer mesh surface 12 of the first disc-shaped net 10 is closed after the cuff line 15 is closed. Form a continuous mesh surface.
  • the materials of the first disc-shaped net 10, the tubular net 30, the second disc-shaped net 20 and the connecting member 40 are all degradable materials.
  • the occluder of the present invention is subjected to high temperature hot-melt welding at the center of the outer mesh surface of the second disk-shaped mesh 20 as a connecting member, specifically, at the center of the outer mesh surface of the second disk-shaped mesh 20
  • the net body is hot-melted at a high temperature, and the hot-melt portion net body is shaped into the connecting member 40 by a mold, so that the degradable wires constituting the disc-shaped net are not easily spread and can be firmly connected together; at the same time, the connecting member 40 is made
  • the degradable filaments constituting the disk-shaped net can be firmly joined together and are not easily peeled off.
  • the connector 40 is tubular with a height of 1.5-2.0 mm and an outer diameter of 2.5-3.2 mm.
  • Second disk network The outer mesh surface 21 of the 20 is raised toward the connector 40.
  • the outer diameter of the second disk-shaped mesh is larger or equal to the outer diameter of the first disk-shaped mesh; the connecting member 40 is provided with internal threads at the end opposite to the mesh surface 21 that is in contact.
  • the materials of the first disc-shaped net 10, the tubular net 30 and the second disc-shaped net 20 and the connecting member 40 are all polymer degradable wires.
  • the biodegradable polymer material is one of polylactic acid, polyglycolic acid, polycaprolactone, polydioxanone, polyhydroxybutyrate, polyanhydride, polyphosphate, polyurethane, polycarbonate or At least two copolymers.
  • the occluder can be filled with a polylactic acid membrane to block blood flow.
  • a degradable cardiac left atrial appendage occluder includes a first disc-shaped net 10, a tubular net 30 and a second disc-shaped net 20 which are sequentially connected.
  • the first disk-shaped mesh 10 is a single-layer mesh cover
  • the second disk-shaped mesh 20 is a double-layer mesh cover
  • two ends of the tubular mesh 30 are respectively connected to the outer mesh surface of the first disk-shaped mesh 10 and the second disk-shaped mesh 20 22, the first disc-shaped net 10, the tubular net 30 and the second disc-shaped net 20 are integrally formed;
  • the center of the inner mesh surface 21 of the second disc-shaped net 20 is provided with a connecting member 40 for closing the mesh surface, and the second disc
  • the inner mesh surface 21 of the mesh 20 and the connecting member 40 are thermally welded and welded;
  • the first disk mesh 10 includes a receiving end 13 , and the receiving end 13 is a plurality of annular network wires 14 adjacent to each other, and the first disk mesh 10 is further provided with
  • the occluder of the present invention is subjected to high temperature hot-melt welding at the center of the inner mesh surface of the second disk-shaped mesh 20 as a connecting member, specifically, at the center of the inner mesh surface of the second disk-shaped mesh 20
  • the net body is hot-melted at a high temperature, and the hot-melt portion net body is shaped into the connecting member 40 by a mold, so that the degradable wires constituting the disc-shaped net are not easily spread and can be firmly connected together; at the same time, the connecting member 40 is made
  • the degradable filaments constituting the disk-shaped net can be firmly joined together and are not easily peeled off.
  • the connector 40 is tubular with a height of 1.5-2.0 mm and an outer diameter of 2.5-3.2 mm. Second disk network
  • the inner mesh surface 21 of 20 is recessed toward the connector 40.
  • the outer diameter of the second disk-shaped mesh 20 is larger than the outer diameter of the first disk-shaped mesh 10.
  • the connector 40 is tubular, and the connector 40 is internally threaded at an end opposite the mating mesh surface 21.
  • the materials of the first disc-shaped net 10, the tubular net 30 and the second disc-shaped net 20 and the connecting member 40 are all polymer degradable wires.
  • the biodegradable polymer material is one of polylactic acid, polyglycolic acid, polycaprolactone, polydioxanone, polyhydroxybutyrate, polyanhydride, polyphosphate, polyurethane, polycarbonate or At least two copolymers.
  • the occluder can be filled with a polylactic acid membrane to block blood flow.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Cardiology (AREA)
  • Reproductive Health (AREA)
  • Vascular Medicine (AREA)
  • Prostheses (AREA)
  • Woven Fabrics (AREA)
  • Surgical Instruments (AREA)

Abstract

一种可降解的封堵器,其包括依次连接的一第一盘状网(10)、一管状网(30)和一第二盘状网(20),所述管状网(30)的两端分别连接于所述第一盘状网(10)和所述第二盘状网(20),所述第一盘状网(10)、所述管状网(30)和所述第二盘状网(20)为一体成型;所述第二盘状网(20)设有用于将网面收口的连接件(40),所述连接件(40)由所述第二盘状网(20)的网体热熔成形而成,所述第一盘状网(10)、管状网(30)、第二盘状网(20)和连接件(40)的材料均为可降解材料。该封堵器收口线收口的结构增加了封堵器的支撑力和回复性,并降低了制造难度,减少了制造成本,不但使组成盘状网(10,20)的可降解丝能牢固地连接在一起,而且使连接件(40)与组成盘状网(10,20)的可降解丝能牢固地连接在一起,不容易脱落。

Description

可降解的封堵器
本申请要求申请日为2015年12月31日的中国专利申请CN201521137713.9、CN201521137500.6、CN201521137730.2、CN201521138998.8和CN 201521137627.8的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及一种结构性心脏病介入治疗使用的可降解的封堵器。
背景技术
心脏房间隔缺损、心脏动脉导管未闭、心脏室间隔缺损、心脏卵圆孔未闭、心脏左心耳是常见的结构性心脏病,传统的治疗方式为外科手术。外科手术的治疗方法,患者需经外科手术开胸,其最大的缺点在于:(1)术中需要体外循环,手术可能造成并发症而导致死亡;(2)外科手术创伤大,术后留有疤痕;(3)手术费用昂贵。
自20世纪80年代随着导管介入诊断及治疗技术的发展与提高,我国逐步引入微创介入技术治疗结构性心脏病,通过微创介入治疗结构性心脏病的方法迅速发展,现已非常成熟。相比传统外科手术,微创介入治疗是一种现代高科技微创性治疗,通过股静脉穿刺,在医学影像设备的引导下,将导引钢丝顺股静脉或外科小切口心脏微创进入,随后将输送导管顺导引钢丝置于缺损或异常部位,最后将封堵器于输送导管内推送至缺损或异常处实施封堵治疗。这样的微创介入治疗具有创伤小、无需体外循环、并发症少、恢复快、效果好、适应症范围广且手术费用相对较低等优势。
通过微创介入手术植入封堵器的治疗方法虽有以上许多相对于传统外科手术的优势。但是,由于现在临床使用的封堵器的主体支架所用的材料主 要为镍钛合金丝,由于这类金属材料不能降解,长期植入会和人体组织发生炎症、凝血等反应,甚至是一定程度的损伤,因此存在一定的缺陷,其仍有可能存在以下使用风险:(1)镍钛合金为不可降解的金属合金材料,虽然其生物相容性得到了论证,但长期永久植入的远期风险仍无法完全得到控制;(2)由于镍钛合金封堵器被永久植入且不可降解,永久存留心脏对人体的安全性、大小固定的封堵器对儿童不断生长发育的心脏的影响尚缺乏长期的随访资料,其可能会影响未发育成熟的患者心脏的发育成长;(3)镍析出、镍过敏等并发症仍未有明确的科学论证。(4)对患者远期接受其它心脏介入治疗造成阻碍。
在封堵器表面被完全内皮化,心脏缺损被机体自身组织修复以后,封堵器完全没有在体内留存的必要。因此,理想的封堵器应该是为心脏自身修复提供一座临时桥梁,完成历史使命后被机体降解,使缺损完全由自身组织修复,从而避免金属留存体内带来的远期并发症和安全隐患。
美国专利US8480709B2中介绍的可降解封堵器的支撑结构由管子切削而成,封堵器两个盘面的连接点与双焊点类似,使两个盘面中心处凸起,会增加封堵器表面局部血栓形成的风险,不利于封堵器表面的内皮化进程,同时,在植入手术的过程中使封堵器的释放长度较长,容易损伤心脏组织,并且通过这种方法制作成的封堵器顺应性和回复性较差,需要通过锁紧装置协助其回复初始形状。锁紧装置的引入会极大地增加医生术中的操作难度,如果一开始选择的封堵器不合适,把封堵器收回输送鞘管的操作难度更大,这会极大地增加手术的风险,其中有些设计一旦锁紧装置锁定封堵器,是无法重新收回输送鞘管进行更换的,如果一开始选择的封堵器不合适,只能借助外科手术取回。
而本专利所述封堵器未安装有连接件的网面采用收口线收口的结构,使得外网面更平整,可以减少封堵器表面局部血栓形成的风险,有利于加速封堵器表面的内皮化进程,使缺损处更早的被自身组织修复;同时,减少了手 术过程中封堵器的释放长度,可大幅降低对心脏的损伤,使手术更有效、更安全;并且通过这种方法制作成的封堵器顺应性和回复性较好,无需通过锁紧装置协助其回复初始形状,在植入缺损或异常部位后,封堵器能够依靠自身材料的特性和易于回复的结构设计而回复初始的形状,从而牢固地固定在缺损或异常部位,这会极大地降低医生术中的操作难度;本专利封堵器的结构设计可以反复收放,更利于术中的操作和调整,如果一开始选择的封堵器不合适,可以很容易地把封堵器收回输送鞘管进行更换合适型号的封堵器继续手术,这会极大地降低手术的风险。
发明内容
本发明要解决的技术问题是为了解决现有临床使用的封堵器存在远期风险的问题,并且克服现有技术存在可降解封堵器的顺应性和回复性较差的缺陷,提供一种可降解的封堵器。
本发明是通过下述技术方案来解决上述技术问题:
一种可降解的封堵器,其特点在于,其包括依次连接的一第一盘状网、一管状网和一第二盘状网,所述管状网的两端分别连接于所述第一盘状网和所述第二盘状网,所述第一盘状网、所述管状网和所述第二盘状网为一体成型;所述第二盘状网设有用于将网面收口的连接件,所述连接件由所述第二盘状网的网体热熔成形而成,所述第一盘状网、管状网、第二盘状网和连接件的材料均为可降解材料。本发明所述的封堵器主要用于治疗结构性心脏病,由于心脏中缺损或异常处的尺寸和位置不同,所需的封堵器的尺寸和形状也不同,主要有五种类型,各封堵器的特点如下所述。
较佳地,所述可降解的封堵器为可降解的心脏房间隔缺损封堵器,所述第一盘状网和所述第二盘状网均为双层网罩,所述管状网的两端分别连接于所述第一盘状网的内网面和所述第二盘状网的外网面;所述第二盘状网的内网面中心处设有所述连接件,所述连接件由所述第二盘状网的内网面中心处 的网体热熔成形而成。
较佳地,所述可降解的封堵器为可降解的心脏动脉导管未闭封堵器,所述第一盘状网为双层网罩,所述第二盘状网为单层网罩,所述管状网的两端分别连接于所述第一盘状网的内网面和所述第二盘状网;所述第二盘状网的中心处设有所述连接件,所述连接件由所述第二盘状网的中心处的网体热熔成形而成。
较佳地,所述可降解的封堵器为可降解的心脏室间隔缺损封堵器,所述第一盘状网和所述第二盘状网均为双层网罩,所述管状网的两端分别连接于所述第一盘状网的内网面和所述第二盘状网的外网面;所述第二盘状网的内网面中心处设有所述连接件,所述连接件由所述第二盘状网的内网面中心处的网体热熔成形而成,所述管状网的高度为3.5-9.5mm。
较佳地,所述可降解的封堵器为可降解的心脏卵圆孔未闭封堵器,所述第一盘状网和所述第二盘状网均为双层网罩,所述管状网的两端分别连接于所述第一盘状网的内网面和所述第二盘状网的内网面;所述第二盘状网的外网面中心处设有所述连接件,所述连接件由所述第二盘状网的外网面中心处的网体热熔成形而成,所述第二盘状网的外网面朝所述连接件处凸起。
较佳地,所述可降解的封堵器为一种可降解的心脏左心耳封堵器,所述第一盘状网为单层网罩,所述第二盘状网为双层网罩,所述管状网的两端分别连接于所述第一盘状网和所述第二盘状网的外网面;所述第二盘状网的内网面中心处设有所述连接件,所述连接件由所述第二盘状网的内网面中心处的网体热熔成形而成。
较佳地,所述第一盘状网包括一收口端,所述收口端为多个依次邻接的环状网线,所述第一盘状网还设有一收口线,所述收口线穿设于所有的所述环状网线,经所述收口线收口后所述第一盘状网的外网面形成连续平整的网状面。这样,使得外网面更平整,可以增加封堵器的支撑力和回复性,可以减少封堵器表面局部血栓形成的风险,有利于加速封堵器表面的内皮化进 程,使该修复部位更早的被自身组织修复。同时,减少了手术过程中封堵器的释放长度,可大幅降低对心脏的损伤,使手术更有效、更安全。
较佳地,所述连接件为管状,所述连接件的高度为1.5-2.0mm。这样使得第二盘状网的内网面收口处有足够的强度。如果连接件的高度过小,连接件内部的螺纹圈数过少,会引起与输送系统连接不牢固而存在封堵器脱落的风险。反之,如果连接件的高度过大,会增加封堵器表面局部血栓形成的风险,会造成带有连接件的一侧封堵器表面细胞攀爬较慢,延长封堵器表面的内皮化进程。同时,在植入手术的过程中使封堵器的释放长度较长,容易损伤心脏组织。
较佳地,所述连接件的外径为2.5-3.2mm。这样使得第二盘状网的内网面收口处有足够的强度。此外,如果连接件外径尺寸过小,容易导致在连接件成型过程中与连接件连接的降解丝发生断裂或连接强度下降。反之,如果连接件外径尺寸过大,会减小封堵器适用的输送鞘管的尺寸范围,并且不利于封堵器在输送鞘管中的推送。
较佳地,所述第一盘状网、所述管状网、所述第二盘状网和所述连接件的材料均为高分子可降解丝。生物可降解高分子材料为聚乳酸、聚乙醇酸、聚己内酯、聚对二氧环己酮、聚羟基丁酸酯、聚酸酐、聚磷酸酯、聚氨酯、聚碳酸酯中的一种或至少两种的共聚物。这些材料具有很好的生物相容性,在人体内能够完全吸收,避免了植入异物对人体的长期影响。这种封堵器只是为心脏修复提供一座临时桥梁,完成历史使命后被机体降解,使缺损完全由自身组织修复,从而避免金属留存体内带来的远期并发症和安全隐患。
较佳地,所述连接件为管状,所述连接件在与相接的网面相对的端部设有内螺纹。通过这种螺纹结构的连接件,与输送系统的连接更牢固,可以方便地将封堵器通过输送系统运送到心脏缺损或异常处。
较佳地,所述第一盘状网的内网面朝所述管状网处凹陷,所述第二盘状网的内网面朝所述连接件处凹陷。凹陷的网面可以使得封堵器使用时能稳定 牢固地封堵于心脏房间隔缺损处。
较佳地,所述第一盘状网的外径比所述第二盘状网的外径大4-6mm。第一盘状网位于心脏左心房,第二盘状网位于心脏右心房,心脏左心房压力要大于右心房压力,使血液由左心房经过房间隔缺损进入右心房,所以这种结构使位于左心房的第一盘状网具有较大的支撑力,能够抵抗血流的冲击,有利于封堵器牢固的夹持在房间隔缺损处,实现有效的封堵。
较佳地,所述第一盘状网的外径比所述管状网的外径大10-16mm。管状网的直径一般与房间隔缺损的直径相对应,第一盘状网的外径需要比管状网的外径大一些,这种结构使位于左心房的第一盘状网具有较大的支撑力,能够抵抗血流的冲击,有利于封堵器牢固的夹持在房间隔缺损处,实现有效的封堵。
较佳地,所述管状网的长度为3.5-5.5mm。这个长度与房间隔缺损组织的厚度相对应,以便使封堵器较好的固定在缺损处而不损害组织,并实现有效封堵。
较佳地,所述第二盘状网朝所述连接件处凹陷。凹陷的网面可以使得封堵器从输送鞘管中释放后具有较好的弹性回复性,从而稳定牢固地封堵于动脉导管未闭处。
较佳地,所述第一盘状网的外径比所述第二盘状网的外径大5.5-6.5mm。第一盘状网位于主动脉侧,第二盘状网位于肺动脉侧,对于动脉导管未闭的患者来说,血液通常会由主动脉经动脉导管未闭流进肺动脉,所以这种结构使位于主动脉侧的第一盘状网具有较大的支撑力,能够抵抗血流的冲击,以便使封堵器更牢固的夹持在动脉导管未闭处,实现有效的封堵。
较佳地,所述管状网的长度为4.5-6.5mm。这个长度能与动脉导管未闭处的长度相适应,使封堵器既能牢固的夹持在动脉导管未闭处,有效的封堵动脉导管未闭,也不会影响肺动脉内血液的流动。
较佳地,所述第二盘状网的内网面朝所述连接件处凹陷。凹陷的网面可 以使得封堵器使用时能稳定牢固地封堵于心脏室间隔缺损处。
较佳地,所述第一盘状网的外径比所述第二盘状网的外径大或等径。第一盘状网位于左心室,第二盘状网位于右心室,对于室间隔缺损的患者来说,血液通常会由左心室经室间隔缺损流进右心室,这种结构使位于左心室的第一盘状网具有较大的支撑力,能够抵抗血流的冲击,有利于封堵器牢固的夹持在室间隔缺损处,这样可以有效地将心脏室间隔缺损处堵住。同时,可以避开对周围组织的牵绊,减少对周围组织的损害。
较佳地,所述管状网的长度为3.5-5.5mm。这个长度与室间隔膜部缺损组织的厚度相对应,以便使封堵器较好的固定在缺损处而不损害组织,并实现有效封堵。
较佳地,所述管状网的长度为6.0-9.5mm。这个长度与室间隔肌部缺损组织的厚度相对应,以便使封堵器较好的固定在缺损处而不损害组织,并实现有效封堵。
较佳地,所述第二盘状网的外径比所述第一盘状网的外径大或等径。第一盘状网位于左心房,第二盘状网位于右心房,对于卵圆孔未闭的患者来说,当右心房压力高于左心房压力时,左侧薄弱的原发隔被推开,即出现右向左分流,这种结构使位于右心房的第二盘状网具有较大的支撑力,能够抵抗血流的冲击,有利于封堵器牢固的夹持在卵圆孔未闭处,这样可以有效地将心脏卵圆孔未闭处堵住。
较佳地,所述第二盘状网的内网面朝所述连接件处凹陷。凹陷的网面可以使得封堵器使用时能稳定牢固地封堵于心脏左心耳入口处。
较佳地,所述第二盘状网的外径比所述第一盘状网的外径大。这样使位于左心房的第二盘状网具有较大的支撑力,能够抵抗血流的冲击,可以有效地将心脏左心耳入口处堵住。
一种网管编织方法,包括将销子插入模棒的销子孔中,将可降解丝穿入缝合针针孔,打结并紧密连接。起点处用可降解丝紧密打结,编织时上行线 与下行线的交点与中心标记点对齐,以规范丝的走向。编织好的网管连同模棒一起进行热定型。定型好后,拔掉销子,取下网管。这种编织方法使网管的网格更加均匀,易于操作,减少了制作成本。
一种连接件的制作方法,制作步骤包括:
步骤1、对网管进行收口;
步骤2、将网管放入模具;
步骤3、修整网体;
步骤4、加热可降解丝;
步骤5、成型连接件外形和内部螺纹;
步骤6、移出网体;
较佳地,步骤1中,先调节网管的收口端边缘长短,使边缘对齐,用可降解丝收口。
较佳地,步骤2中,将已经收口的网管,穿过模具中的套管。
较佳地,步骤3中,在原有装配长度上留一部分用来制作连接件,去除网管的多余长度。
较佳地,步骤4中,打开温控装置,调整温度,在模具上方对着连接件处的可降解丝持续加热,其中,调整温度为高分子聚合物熔点之上40℃-100℃,持续加热时间5-15秒,加热过程中,加热过度会导致网体的其他部分一起热熔,从而导致网体结构被破坏,并且极大降低连接件部分的材料分子量,会引起材料过早降解。反之,加热不充分则会导致连接件处的可降解丝不能够充分热熔为一体,无法形成完整的连接件内螺纹结构,造成连接件与输送系统的连接强度不够。因此,需要合适的加热温度和时间才能完成热熔。
较佳地,步骤5中,在持续加热后,连接件部分的可降解丝熔融在一起,移开温控装置,然后关闭模具中的滑块,并将模具的螺纹头插入模具上方的插槽内,保持一段时间。
较佳地,步骤6中,待冷却后,将模具的螺纹头旋转移出模具,并将滑块慢慢移开,将网体移出模具。
这种连接件的制作方法易于操作,可以得到尺寸稳定的连接件,且减少了封堵器上使用材料的种类,使组成盘状网的可降解丝能牢固的连接在一起,并且使连接件和组成盘状网的可降解丝能牢固的连接在一起,不容易脱落。
一种网体定型方法,包括把带有连接件的网体装填入网体定型模具,并用夹具固定,把其一起进行热定型,定型好后,将网体从模具中取出。用缝线把可降解膜填充入网体,并在收口端进行收口为一平整盘面。这种网体定型方法易于操作,制作的封堵器尺寸稳定,由该种方法制作的封堵器具有较大的支撑力和较好的形状回复性,满足手术操作的要求,使手术更有效、更安全。
本发明的积极进步效果在于:
本发明封堵器由高分子可降解丝编织形成,其生物降解周期为6个月至2年,在人体内可以完全吸收,避免了植入异物对人体的长期影响。本发明所使用的高分子可降解丝是可降解或者人体可吸收的材料,对人体无毒无害,具有很好的生物相容性。封堵器的阻流膜是生物可降解膜,其生物降解周期是6个月至2年,在人体内完成其治疗使命后在体内降解消失,无残留异物。在第二盘状网的中心处的网体经过高温热熔焊接为连接件,具体而言,通过对第二盘状网的中心处的网体在高温下热熔,并用模具将热熔部分网体定型成连接件,这样使组成盘状网的可降解丝不容易散开,能牢固地连接在一起;同时,使得连接件与组成盘状网的可降解丝能牢固地连接在一起,不容易脱落。未安装有连接件的网面采用收口线收口的结构,使得外网面更平整,可以减少封堵器表面局部血栓形成的风险,有利于加速封堵器表面的内皮化进程,使缺损处更早的被自身组织修复;同时,减少了手术过程中封堵器的释放长度,可大幅降低对心脏的损伤,使手术更有效、更安全;并且通 过这种方法制作成的封堵器顺应性和回复性较好,无需通过锁紧装置协助其回复初始形状,在植入缺损或异常部位后,封堵器能够依靠自身材料的特性和易于回复的结构设计而回复初始的形状,从而牢固地固定在缺损或异常部位,这会极大地降低医生术中的操作难度;本专利封堵器的结构设计可以反复收放,更利于术中的操作和调整,如果一开始选择的封堵器不合适,可以很容易地把封堵器收回输送鞘管进行更换合适型号的封堵器继续手术,这会极大地降低手术的风险;此外,本封堵器还具有制造成本相对较低的优点。
附图说明
图1为实施例1的封堵器立体结构示意图。
图2为实施例1的封堵器连接件示意图。
图3为图1中的A向视图。
图4为实施例1的第一盘状网的外网面的收口端处局部放大示意图。
图5为实施例1的模棒结构示意图。
图6为实施例1的网管的编织穿线示意图。
图7为实施例1的网管的收口端展开示意图。
图8为实施例2的封堵器立体结构示意图。
图9为实施例2的封堵器连接件示意图。
图10为图8中的A向视图。
图11为实施例2的第一盘状网的外网面的收口端处局部放大示意图。
图12为实施例3的封堵器立体结构示意图。
图13为实施例3的封堵器连接件示意图。
图14为图12中的A向视图。
图15为实施例3的第一盘状网的外网面的收口端处局部放大示意图。
图16为实施例4的封堵器立体结构示意图。
图17为实施例4的封堵器侧部结构示意图。
图18为实施例4的封堵器连接件示意图。
图19为图16中的A向视图。
图20为实施例4的第一盘状网的外网面的收口端处局部放大示意图。
图21为实施例5的封堵器立体结构示意图。
图22为实施例5的封堵器连接件示意图。
图23为图21中的A向视图。
图24为实施例5的第一盘状网的收口端处局部放大示意图。
具体实施方式
实施例1
如图1、图2、图3、图4所示,一种可降解的心脏房间隔缺损封堵器,其包括依次连接的第一盘状网10、管状网30和第二盘状网20,第一盘状网10和第二盘状网20均为双层网罩,管状网30的两端分别连接于第一盘状网10的内网面11和第二盘状网20的外网面22,第一盘状网10、管状网30和第二盘状网20为一体成型;第二盘状网20的内网面21中心处设有将网面收口的连接件40,第二盘状网20的内网面21与连接件40之间为热熔焊接连接;第一盘状网10的外网面12包括收口端13,收口端13为多个依次邻接的环状网线14,第一盘状网10还设有收口线15,收口线15穿设于所有的环状网线14,经收口线15收口后第一盘状网10的外网面12形成连续的网状面。第一盘状网10、管状网30、第二盘状网20和连接件40的材料均为可降解材料。
本发明的封堵器在第二盘状网20的内网面中心处的网体经过高温热熔焊接为连接件,具体而言,通过对第二盘状网20的内网面中心处的网体在高温下热熔,并用模具将热熔部分网体定型成连接件40,这样使组成盘状网的可降解丝不容易散开,能牢固地连接在一起;同时,使得连接件40与组 成盘状网的可降解丝能牢固地连接在一起,不容易脱落。
连接件40为管状,高度为1.5-2.0mm,外径为2.5-3.2mm。第一盘状网10的内网面11朝管状网30处凹陷,第二盘状网20的内网面21朝连接件40处凹陷。第一盘状网10的外径比第二盘状网20的外径大4-6mm;第一盘状网10的外径比管状网30的外径大10-16mm;管状网30的长度为3.5-5.5mm。连接件40为管状,连接件40在与相接的网面21相对的端部设有内螺纹。
第一盘状网10、管状网30和第二盘状网20和连接件40的材料均为高分子可降解丝。生物可降解高分子材料为聚乳酸、聚乙醇酸、聚己内酯、聚对二氧环己酮、聚羟基丁酸酯、聚酸酐、聚磷酸酯、聚氨酯、聚碳酸酯中的一种或至少两种的共聚物。封堵器内可填充聚乳酸膜从而起到阻挡血流的作用。
本发明连接件的是由可降解丝热熔而成,而且需要满足使用条件,不仅结构不能过大导致阻碍封堵器在输送鞘管中的推送,也要避免因为连接强度不够导致的连接件拉脱。
表1、连接件尺寸、抗拉脱力及在输送鞘管中推送测试表
  高度mm 外径mm 抗拉脱力N 是否阻碍推送
1 2.0 1.8 6(弱) 不阻碍
2 2.0 2.0 11(弱) 不阻碍
3 2.0 2.5 25(强) 不阻碍
4 1.5 2.5 20(强) 不阻碍
5 1.8 2.8 31(强) 不阻碍
6 1.5 3.0 34(强) 不阻碍
7 2.0 3.2 41(强) 不阻碍
8 2.0 3.5 52(强) 阻碍
测试中发现,当抗拉脱力达到15N就可以保证使用中连接件不会被拉 脱。通过上表1中可以看到连接件的尺寸大小直接影响到封堵器是否能够正常运用到手术之中。连接件的不合适的尺寸设计会导致连接件被拉脱,或者无法进入输送鞘管中进行推送,这些都会导致产品无法使用。
本封堵器第一网状盘为连续的网状面,其网线之间采用收口线收口,使得第一外网盘为平整光滑的网面,无凸起,该结构有利于封堵器形状的回复和支撑力提高,更利于加速封堵器表面的内皮化进程,使心脏缺损更早地被自身组织修复。本发明的封堵器在第二盘状网的内网面中心处的网体经过高温热熔焊接为连接件,具体而言,通过对第二盘状网的内网面中心处的网体在高温下热熔,并用模具将热熔部分网体定型成连接件,这样使组成盘状网的可降解丝不容易散开,能牢固地连接在一起;同时,使得连接件与组成盘状网的可降解丝能牢固地连接在一起,不容易脱落。
本发明封堵器的制作主要经过网管成型、连接件制作、网体定型及聚乳酸膜缝制几个步骤。
网管编织时,将销子插入如图5的模棒5的销子孔51中,将可降解丝穿入缝合针针孔,打结并紧密连接。编织的穿线规律如图6所示,包括连接件制作端D、收口端B(成型后成为收口端13)和起点C。起点C处用可降解丝紧密打结,编织时上行线与下行线的交点与中心标记点对齐,以规范丝的走向。编织好的网管连同模棒一起进行热定型。定型好后,拔掉销子,取下网管。
连接件制作步骤包括:
1、对网管进行收口;
2、将网管放入模具;
3、修整网体;
4、加热可降解丝;
5、成型连接件外形和内部螺纹;
6、移出网体;
其中,步骤1中,先调节网管的收口端边缘长短,使边缘对齐,用可降解丝收口,具体的收口方式如图7所示,其中包括出针点61和进针点62,穿线的顺序按照图7中的出针点61和进针点62进行收口。在步骤2中,将已经收口的网管,穿过模具中的套管。步骤3中,在原有装配长度上留一部分用来制作连接件,去除网管的多余长度。步骤4中,打开温控装置,调整温度,在模具上方对着连接件处的可降解丝持续加热。步骤5中,在持续加热后,连接件部分的可降解丝熔融在一起,移开温控装置,然后关闭模具中的滑块,并将模具的螺纹头插入模具上方的插槽内,保持一段时间。步骤6中,待冷却后,将模具的螺纹头旋转移出模具,并将滑块慢慢移开,将网体移出模具。
此外,步骤4中,调整温度为高分子聚合物熔点之上40℃-100℃,持续加热时间5-15秒。具体如下表2-表4所示,加热过程中,加热过度会导致网体的其他部分一起热熔,从而导致网体结构被破坏,并且极大降低连接件部分的材料分子量,从而会引起材料过早降解。反之,加热不充分则会导致连接件处的可降解丝不能够充分热熔为一体,无法形成完整的连接件内螺纹结构,造成连接件与输送系统的连接强度不够。因此,需要合适的加热温度和时间才能完成热熔。
表2、L-丙交酯/乙交酯(82/18)可降解材料热熔测试表
  加热时间s 加热温度℃ 连接件热熔情况 其他部分热熔情况
1 2 240 未充分热熔 未热熔
2 15 170 未充分热熔 未热熔
3 5 240 充分热熔 未热熔
4 5 180 充分热熔 未热熔
5 15 240 充分热熔 未热熔
6 15 180 充分热熔 未热熔
7 5 250 充分热熔 部分热熔
8 20 180 充分热熔 部分热熔
表3、聚对二氧环己酮可降解材料热熔测试表
  加热时间s 加热温度℃ 连接件热熔情况 其他部分热熔情况
1 2 200 未充分热熔 未热熔
2 15 130 未充分热熔 未热熔
3 5 200 充分热熔 未热熔
4 5 140 充分热熔 未热熔
5 15 200 充分热熔 未热熔
6 15 140 充分热熔 未热熔
7 5 210 充分热熔 部分热熔
8 20 140 充分热熔 部分热熔
表4、L-丙交酯/己内酯(70/30)可降解材料热熔测试表
  加热时间s 加热温度℃ 连接件热熔情况 其他部分热熔情况
1 2 210 未充分热熔 未热熔
2 15 140 未充分热熔 未热熔
3 5 210 充分热熔 未热熔
4 5 150 充分热熔 未热熔
5 15 210 充分热熔 未热熔
6 15 150 充分热熔 未热熔
7 5 220 充分热熔 部分热熔
8 20 150 充分热熔 部分热熔
网体定型包括网体上模和网体热处理定型。网体上模时,把前述带有连接件的网体装填入网体定型模具,并用夹具固定,把其一起进行热定型,定型好后,将网体从模具中取出。用缝线把聚乳酸膜填充入网体,并在收口端 进行收口为一平整盘面。
实施例2
如图8、图9、图10、图11所示,一种可降解的心脏动脉导管未闭封堵器,其包括依次连接的第一盘状网10、管状网30和第二盘状网20,第一盘状网10为双层网罩,第二盘状网20为单层网罩,管状网30的两端分别连接于第一盘状网10的内网面11和第二盘状网20,第一盘状网10、管状网30和第二盘状网20为一体成型;第二盘状网20的中心处设有将网面收口的连接件40,第二盘状网20与连接件40之间为热熔焊接连接;第一盘状网10的外网面12包括收口端13,收口端13为多个依次邻接的环状网线14,第一盘状网10还设有收口线15,收口线15穿设于所有的环状网线14,经收口线15收口后第一盘状网10的外网面12形成连续的网状面。第一盘状网10、管状网30、第二盘状网20和连接件40的材料均为可降解材料。
本发明的封堵器在第二盘状网20的中心处的网体经过高温热熔焊接为连接件,具体而言,通过对第二盘状网20的中心处的网体在高温下热熔,并用模具将热熔部分网体定型成连接件40,这样使组成盘状网的可降解丝不容易散开,能牢固地连接在一起;同时,使得连接件40与组成盘状网的可降解丝能牢固地连接在一起,不容易脱落。
连接件40为管状,高度为1.5-2.0mm,外径为2.5-3.2mm。第一盘状网10的内网面11朝管状网30处凹陷,第二盘状网20朝连接件40处凹陷。第一盘状网10的外径比第二盘状网20的外径大5.5-6.5mm;管状网30的长度为4.5-6.5mm。连接件40为管状,连接件40在与相接的网面20相对的端部设有内螺纹。
第一盘状网10、管状网30和第二盘状网20和连接件40的材料均为高分子可降解丝。生物可降解高分子材料为聚乳酸、聚乙醇酸、聚己内酯、聚对二氧环己酮、聚羟基丁酸酯、聚酸酐、聚磷酸酯、聚氨酯、聚碳酸酯中的 一种或至少两种的共聚物。封堵器内可填充聚乳酸膜从而起到阻挡血流的作用。
此外,本实施例其他部分可与实施例1相同,故在此不作赘述。
实施例3
如图12、图13、图14、图15所示,一种可降解的心脏室间隔缺损封堵器,其包括依次连接的第一盘状网10、管状网30和第二盘状网20,第一盘状网10和第二盘状网20均为双层网罩,管状网30的两端分别连接于第一盘状网10的内网面11和第二盘状网20的外网面22,第一盘状网10、管状网30和第二盘状网20为一体成型;第二盘状网20的内网面21中心处设有将网面收口的连接件40,第二盘状网20的内网面21与连接件40之间为热熔焊接连接;第一盘状网10的外网面12包括收口端13,收口端13为多个依次邻接的环状网线14,第一盘状网10还设有收口线15,收口线15穿设于所有的环状网线14,经收口线15收口后第一盘状网10的外网面12形成连续的网状面。第一盘状网10、管状网30、第二盘状网20和连接件40的材料均为可降解材料。
本发明的封堵器在第二盘状网20的内网面中心处的网体经过高温热熔焊接为连接件,具体而言,通过对第二盘状网20的内网面中心处的网体在高温下热熔,并用模具将热熔部分网体定型成连接件40,这样使组成盘状网的可降解丝不容易散开,能牢固地连接在一起;同时,使得连接件40与组成盘状网的可降解丝能牢固地连接在一起,不容易脱落。
连接件40为管状,高度为1.5-2.0mm,外径为2.5-3.2mm。第二盘状网20的内网面21朝连接件40处凹陷。第一盘状网10的外径比第二盘状网20的外径大或等径;管状网30的长度为3.5-9.5mm。长度为3.5-5.5mm时,与室间隔膜部缺损组织的厚度相对应;长度为6.0-9.5mm时,与室间隔肌部缺损组织的厚度相对应。连接件40为管状,连接件40在与相接的网面21相 对的端部设有内螺纹。
第一盘状网10、管状网30和第二盘状网20和连接件40的材料均为高分子可降解丝。生物可降解高分子材料为聚乳酸、聚乙醇酸、聚己内酯、聚对二氧环己酮、聚羟基丁酸酯、聚酸酐、聚磷酸酯、聚氨酯、聚碳酸酯中的一种或至少两种的共聚物。封堵器内可填充聚乳酸膜从而起到阻挡血流的作用。
此外,本实施例其他部分可与实施例1相同,故在此不作赘述。
实施例4
如图16、图17、图18、图19、图20所示,一种可降解的心脏卵圆孔未闭封堵器,其包括依次连接的第一盘状网10、管状网30和第二盘状网20,第一盘状网10和第二盘状网20均为双层网罩,管状网30的两端分别连接于第一盘状网10的内网面11和第二盘状网20的内网面22,第一盘状网10、管状网30和第二盘状网20为一体成型;第二盘状网20的外网面21中心处设有将网面收口的连接件40,第二盘状网20的外网面21与连接件40之间为热熔焊接连接;第一盘状网10的外网面12包括收口端13,收口端13为多个依次邻接的环状网线14,第一盘状网10还设有收口线15,收口线15穿设于所有的环状网线14,经收口线15收口后第一盘状网10的外网面12形成连续的网状面。第一盘状网10、管状网30、第二盘状网20和连接件40的材料均为可降解材料。
本发明的封堵器在第二盘状网20的外网面中心处的网体经过高温热熔焊接为连接件,具体而言,通过对第二盘状网20的外网面中心处的网体在高温下热熔,并用模具将热熔部分网体定型成连接件40,这样使组成盘状网的可降解丝不容易散开,能牢固地连接在一起;同时,使得连接件40与组成盘状网的可降解丝能牢固地连接在一起,不容易脱落。
连接件40为管状,高度为1.5-2.0mm,外径为2.5-3.2mm。第二盘状网 20的外网面21朝连接件40处凸起。第二盘状网的外径比第一盘状网的外径大或等径;连接件40在与相接的网面21相对的端部设有内螺纹。
第一盘状网10、管状网30和第二盘状网20和连接件40的材料均为高分子可降解丝。生物可降解高分子材料为聚乳酸、聚乙醇酸、聚己内酯、聚对二氧环己酮、聚羟基丁酸酯、聚酸酐、聚磷酸酯、聚氨酯、聚碳酸酯中的一种或至少两种的共聚物。封堵器内可填充聚乳酸膜从而起到阻挡血流的作用。
此外,本实施例其他部分可与实施例1相同,故在此不作赘述。
实施例5
如图21、图22、图23、图24所示,一种可降解的心脏左心耳封堵器,其包括依次连接的第一盘状网10、管状网30和第二盘状网20,第一盘状网10为单层网罩,第二盘状网20为双层网罩,管状网30的两端分别连接于第一盘状网10和第二盘状网20的外网面22,第一盘状网10、管状网30和第二盘状网20为一体成型;第二盘状网20的内网面21中心处设有将网面收口的连接件40,第二盘状网20的内网面21与连接件40之间为热熔焊接连接;第一盘状网10包括收口端13,收口端13为多个依次邻接的环状网线14,第一盘状网10还设有收口线15,收口线15穿设于所有的环状网线14,经收口线15收口后第一盘状网10形成连续的网状面。第一盘状网10、管状网30、第二盘状网20和连接件40的材料均为可降解材料。
本发明的封堵器在第二盘状网20的内网面中心处的网体经过高温热熔焊接为连接件,具体而言,通过对第二盘状网20的内网面中心处的网体在高温下热熔,并用模具将热熔部分网体定型成连接件40,这样使组成盘状网的可降解丝不容易散开,能牢固地连接在一起;同时,使得连接件40与组成盘状网的可降解丝能牢固地连接在一起,不容易脱落。
连接件40为管状,高度为1.5-2.0mm,外径为2.5-3.2mm。第二盘状网 20的内网面21朝连接件40处凹陷。第二盘状网20的外径比第一盘状网10的外径大。连接件40为管状,连接件40在与相接的网面21相对的端部设有内螺纹。
第一盘状网10、管状网30和第二盘状网20和连接件40的材料均为高分子可降解丝。生物可降解高分子材料为聚乳酸、聚乙醇酸、聚己内酯、聚对二氧环己酮、聚羟基丁酸酯、聚酸酐、聚磷酸酯、聚氨酯、聚碳酸酯中的一种或至少两种的共聚物。封堵器内可填充聚乳酸膜从而起到阻挡血流的作用。
此外,本实施例其他部分可与实施例1相同,故在此不作赘述。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改。因此,本发明的保护范围由所附权利要求书限定。

Claims (34)

  1. 一种可降解的封堵器,其特征在于,其包括依次连接的一第一盘状网、一管状网和一第二盘状网,所述管状网的两端分别连接于所述第一盘状网和所述第二盘状网,所述第一盘状网、所述管状网和所述第二盘状网为一体成型;所述第二盘状网设有用于将网面收口的连接件,所述连接件由所述第二盘状网的网体热熔成形而成,所述第一盘状网、管状网、第二盘状网和连接件的材料均为可降解材料。
  2. 如权利要求1所述的可降解的封堵器,其特征在于,所述可降解的封堵器为可降解的心脏房间隔缺损封堵器,所述第一盘状网和所述第二盘状网均为双层网罩,所述管状网的两端分别连接于所述第一盘状网的内网面和所述第二盘状网的外网面;所述第二盘状网的内网面中心处设有所述连接件,所述连接件由所述第二盘状网的内网面中心处的网体热熔成形而成。
  3. 如权利要求1所述的可降解的封堵器,其特征在于,所述可降解的封堵器为可降解的心脏动脉导管未闭封堵器,所述第一盘状网为双层网罩,所述第二盘状网为单层网罩,所述管状网的两端分别连接于所述第一盘状网的内网面和所述第二盘状网;所述第二盘状网的中心处设有所述连接件,所述连接件由所述第二盘状网的中心处的网体热熔成形而成。
  4. 如权利要求1所述的可降解的封堵器,其特征在于,所述可降解的封堵器为可降解的心脏室间隔缺损封堵器,所述第一盘状网和所述第二盘状网均为双层网罩,所述管状网的两端分别连接于所述第一盘状网的内网面和所述第二盘状网的外网面;所述第二盘状网的内网面中心处设有所述连接件,所述连接件由所述第二盘状网的内网面中心处的网体热熔成形而成,所述管状网的高度为3.5-9.5mm。
  5. 如权利要求1所述的可降解的封堵器,其特征在于,所述可降解的封堵器为可降解的心脏卵圆孔未闭封堵器,所述第一盘状网和所述第二盘状 网均为双层网罩,所述管状网的两端分别连接于所述第一盘状网的内网面和所述第二盘状网的内网面;所述第二盘状网的外网面中心处设有所述连接件,所述连接件由所述第二盘状网的外网面中心处的网体热熔成形而成,所述第二盘状网的外网面朝所述连接件处凸起。
  6. 如权利要求1所述的可降解的封堵器,其特征在于,所述可降解的封堵器为一种可降解的心脏左心耳封堵器,所述第一盘状网为单层网罩,所述第二盘状网为双层网罩,所述管状网的两端分别连接于所述第一盘状网和所述第二盘状网的外网面;所述第二盘状网的内网面中心处设有所述连接件,所述连接件由所述第二盘状网的内网面中心处的网体热熔成形而成。
  7. 如权利要求1-6中至少一项所述的可降解的封堵器,其特征在于,所述第一盘状网包括一收口端,所述收口端为多个依次邻接的环状网线,所述第一盘状网还设有一收口线,所述收口线穿设于所有的所述环状网线,经所述收口线收口后所述第一盘状网的外网面形成连续平整的网状面。
  8. 如权利要求1-6中至少一项所述的可降解的封堵器,其特征在于,所述连接件为管状,所述连接件的高度为1.5-2.0mm。
  9. 如权利要求1-6中至少一项所述的可降解的封堵器,其特征在于,所述连接件的外径为2.5-3.2mm。
  10. 如权利要求1-6中至少一项所述的可降解的封堵器,其特征在于,所述第一盘状网、所述管状网、所述第二盘状网和所述连接件的材料均为高分子可降解丝。
  11. 如权利要求1-6中至少一项所述的可降解的封堵器,其特征在于,所述连接件为管状,所述连接件在与相接的网面相对的端部设有内螺纹。
  12. 如权利要求2所述的可降解的封堵器,其特征在于,所述第一盘状网的内网面朝所述管状网处凹陷,所述第二盘状网的内网面朝所述连接件处凹陷。
  13. 如权利要求2所述的可降解的封堵器,其特征在于,所述第一盘状 网的外径比所述第二盘状网的外径大4-6mm。
  14. 如权利要求2所述的可降解的封堵器,其特征在于,所述第一盘状网的外径比所述管状网的外径大10-16mm。
  15. 如权利要求2所述的可降解的封堵器,其特征在于,所述管状网的长度为3.5-5.5mm。
  16. 如权利要求3所述的可降解的封堵器,其特征在于,所述第二盘状网朝所述连接件处凹陷。
  17. 如权利要求3所述的可降解的封堵器,其特征在于,所述第一盘状网的外径比所述第二盘状网的外径大5.5-6.5mm。
  18. 如权利要求3所述的可降解的封堵器,其特征在于,所述管状网的长度为4.5-6.5mm。
  19. 如权利要求4所述的可降解的封堵器,其特征在于,所述第二盘状网的内网面朝所述连接件处凹陷。
  20. 如权利要求4所述的可降解的封堵器,其特征在于,所述第一盘状网的外径比所述第二盘状网的外径大或等径。
  21. 如权利要求4所述的可降解的封堵器,其特征在于,所述管状网的长度为3.5-5.5mm。
  22. 如权利要求4所述的可降解的封堵器,其特征在于,所述管状网的长度为6.0-9.5mm。
  23. 如权利要求5所述的可降解的封堵器,其特征在于,所述第二盘状网的外径比所述第一盘状网的外径大或等径。
  24. 如权利要求6所述的可降解的封堵器,其特征在于,所述第二盘状网的内网面朝所述连接件处凹陷。
  25. 如权利要求6所述的可降解的封堵器,其特征在于,所述第二盘状网的外径比所述第一盘状网的外径大。
  26. 一种用于如权利要求1-25中至少一项所述的可降解的封堵器的网 管编织方法,其特征在于,包括将销子插入模棒的销子孔中,将可降解丝穿入缝合针针孔,打结并紧密连接。起点处用可降解丝紧密打结,编织时上行线与下行线的交点与中心标记点对齐,以规范丝的走向。编织好的网管连同模棒一起进行热定型。定型好后,拔掉销子,取下网管。
  27. 一种用于如权利要求1-25中至少一项所述的可降解的封堵器的连接件的制作方法,其特征在于,制作步骤包括:
    步骤1、对网管进行收口;
    步骤2、将网管放入模具;
    步骤3、修整网体;
    步骤4、加热可降解丝;
    步骤5、成型连接件外形和内部螺纹;
    步骤6、移出网体;
  28. 如权利要求27所述的连接件的制作方法,其特征在于,步骤1中,先调节网管的收口端边缘长短,使边缘对齐,用可降解丝收口。
  29. 如权利要求27所述的连接件的制作方法,其特征在于,步骤2中,将已经收口的网管,穿过模具中的套管。
  30. 如权利要求27所述的连接件的制作方法,其特征在于,步骤3中,在原有装配长度上留一部分用来制作连接件,去除网管的多余长度。
  31. 如权利要求27所述的连接件的制作方法,其特征在于,步骤4中,打开温控装置,调整温度,在模具上方对着连接件处的可降解丝持续加热,其中,调整温度为高分子聚合物熔点之上40℃-100℃,持续加热时间5-15秒。
  32. 如权利要求27所述的连接件的制作方法,其特征在于,步骤5中,在持续加热后,连接件部分的可降解丝熔融在一起,移开温控装置,然后关闭模具中的滑块,并将模具的螺纹头插入模具上方的插槽内,保持一段时间。
  33. 如权利要求27所述的连接件的制作方法,其特征在于,步骤6中, 待冷却后,将模具的螺纹头旋转移出模具,并将滑块慢慢移开,将网体移出模具。
  34. 一种用于如权利要求1-25中至少一项所述的可降解的封堵器的网体定型方法,其特征在于,包括把带有连接件的网体装填入网体定型模具,并用夹具固定,把其一起进行热定型,定型好后,将网体从模具中取出。用缝线把可降解膜填充入网体,并在收口端进行收口为一平整盘面。
PCT/CN2016/078756 2015-12-31 2016-04-08 可降解的封堵器 WO2017113531A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/066,399 US11337683B2 (en) 2015-12-31 2016-04-08 Degradable occluder
JP2018553276A JP6752289B2 (ja) 2015-12-31 2016-04-08 分解可能なオクルーダー
SG11201805561SA SG11201805561SA (en) 2015-12-31 2016-04-08 Degradable occluder
EP16880339.3A EP3398533A4 (en) 2015-12-31 2016-04-08 DEGRADABLE SHUTTER

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN201521137627.8U CN207785224U (zh) 2015-12-31 2015-12-31 可降解的心脏左心耳封堵器
CN201521138998.8 2015-12-31
CN201521137730.2 2015-12-31
CN201521137500.6 2015-12-31
CN201521138998.8U CN206995284U (zh) 2015-12-31 2015-12-31 可降解的心脏卵圆孔未闭封堵器
CN201521137627.8 2015-12-31
CN201521137730.2U CN205322380U (zh) 2015-12-31 2015-12-31 可降解的心脏室间隔缺损封堵器
CN201521137713.9 2015-12-31
CN201521137500.6U CN207996221U (zh) 2015-12-31 2015-12-31 可降解的心脏动脉导管未闭封堵器
CN201521137713.9U CN205322379U (zh) 2015-12-31 2015-12-31 可降解的心脏房间隔缺损封堵器

Publications (1)

Publication Number Publication Date
WO2017113531A1 true WO2017113531A1 (zh) 2017-07-06

Family

ID=59224379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078756 WO2017113531A1 (zh) 2015-12-31 2016-04-08 可降解的封堵器

Country Status (5)

Country Link
US (1) US11337683B2 (zh)
EP (1) EP3398533A4 (zh)
JP (1) JP6752289B2 (zh)
SG (1) SG11201805561SA (zh)
WO (1) WO2017113531A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112932589A (zh) * 2021-02-01 2021-06-11 上海锦葵医疗器械股份有限公司 两端面平整的心脏动脉导管未闭封堵器及其制造方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2015249283B2 (en) 2014-04-25 2019-07-18 Flow Medtech, Llc Left atrial appendage occlusion device
US10856881B2 (en) 2014-09-19 2020-12-08 Flow Medtech, Inc. Left atrial appendage occlusion device delivery system
CN108261214B (zh) * 2016-12-31 2020-06-12 先健科技(深圳)有限公司 封堵器及封堵器的缝合方法
EP3700432A1 (en) * 2017-10-13 2020-09-02 Sree Chitra Tirunal Institute for Medical Sciences & Technology Implantable atrial septal defect occlusion device with woven central section on left atrial flange
EP3932336A4 (en) * 2019-04-29 2022-11-23 Mallow Medical (Shanghai) Co., Ltd. CLOSURE WITHOUT PROJECTING STRUCTURE AT TWO ENDS
EP4052655A4 (en) * 2019-09-11 2023-11-01 Wuhan Vickor Medical Technology Co., Ltd. ATRIAL SHUNT DECOMPRESSION DEVICE, WEAVING APPARATUS AND WEAVING METHOD THEREOF
CN118078346A (zh) * 2019-09-11 2024-05-28 武汉唯柯医疗科技有限公司 一种心房分流减压装置使用编制装置及其编织方法
CN110680414A (zh) * 2019-09-20 2020-01-14 珠海崇健医疗科技有限公司 封闭效果更好的封堵器
US11896207B2 (en) 2020-04-02 2024-02-13 KA Medical, LLC Method for making braided medical devices
CN113925544B (zh) * 2020-06-29 2024-03-19 上海微创医疗器械(集团)有限公司 一种封堵器及其制备方法
CN111870286B (zh) * 2020-07-24 2024-07-16 广东脉搏医疗科技有限公司 一种无铆型封堵器
CN112022246B (zh) 2020-11-06 2021-02-26 上海介入医疗器械有限公司 一种左心耳封堵器及其使用方法
CN112773418B (zh) * 2020-12-31 2021-10-01 上海锦葵医疗器械股份有限公司 可降解心脏卵圆孔未闭封堵器及其制造方法
CN112914660B (zh) * 2021-02-01 2022-02-08 上海锦葵医疗器械股份有限公司 两端面平整的心脏左心耳封堵器及其制造方法
CN113509235A (zh) * 2021-08-02 2021-10-19 上海慧达医疗器械有限公司 一种左心耳填胶封堵系统
CN114559642B (zh) * 2022-02-28 2023-07-21 上海形状记忆合金材料有限公司 封堵器的收口端制备方法以及封堵器的收口端制备装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104001221A (zh) * 2014-06-10 2014-08-27 上海锦葵医疗器械有限公司 一种降解速率可控的显影生物心脏封堵器
CN204016366U (zh) * 2014-06-13 2014-12-17 上海形状记忆合金材料有限公司 一种可降解的封堵器
US8945158B2 (en) * 2004-03-03 2015-02-03 W.L. Gore & Associates, Inc. Delivery/recovery system for septal occluder
CN204181743U (zh) * 2014-09-09 2015-03-04 先健科技(深圳)有限公司 封堵器
CN205322407U (zh) * 2016-01-05 2016-06-22 上海锦葵医疗器械有限公司 可显影可降解的心脏左心耳封堵器
CN205322403U (zh) * 2015-12-31 2016-06-22 上海锦葵医疗器械有限公司 可显影可降解的心脏房间隔缺损封堵器
CN205322404U (zh) * 2015-12-31 2016-06-22 上海锦葵医疗器械有限公司 可显影可降解的心脏卵圆孔未闭封堵器
CN205433769U (zh) * 2016-01-05 2016-08-10 上海锦葵医疗器械有限公司 可降解的心脏室间隔缺损封堵器
CN205433805U (zh) * 2016-01-05 2016-08-10 上海锦葵医疗器械有限公司 可降解的心脏动脉导管未闭封堵器

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6241768B1 (en) * 1997-08-27 2001-06-05 Ethicon, Inc. Prosthetic device for the repair of a hernia
US20050228434A1 (en) 2004-03-19 2005-10-13 Aga Medical Corporation Multi-layer braided structures for occluding vascular defects
US8257389B2 (en) 2004-05-07 2012-09-04 W.L. Gore & Associates, Inc. Catching mechanisms for tubular septal occluder
US7665466B2 (en) 2005-11-14 2010-02-23 Occlutech Gmbh Self-expanding medical occlusion device
CN101049266B (zh) * 2006-04-03 2010-11-17 孟坚 医疗用闭塞器械及其制造方法
DE102006013770A1 (de) 2006-03-24 2007-09-27 Occlutech Gmbh Occlusionsinstrument und Verfahren zu dessen Herstellung
US9138213B2 (en) * 2008-03-07 2015-09-22 W.L. Gore & Associates, Inc. Heart occlusion devices
DE102008022673A1 (de) * 2008-05-07 2009-11-19 Peter Osypka Stiftung Stiftung des bürgerlichen Rechts Verschlusselement für ungewollte Öffnungen im Herzen
CN101933850B (zh) * 2010-09-16 2012-07-18 先健科技(深圳)有限公司 封堵器及其制造方法
EP2572644A1 (en) * 2011-09-22 2013-03-27 Occlutech Holding AG Medical implantable occlusion device
WO2013076276A1 (en) 2011-11-23 2013-05-30 Occlutech Holding Ag Medical occlusion device
US10716549B2 (en) * 2013-03-05 2020-07-21 St. Jude Medical, Cardiology Division, Inc. Medical device for treating a target site
CN204181658U (zh) * 2014-08-25 2015-03-04 先健科技(深圳)有限公司 心脏缺损封堵器
JP2018535756A (ja) * 2015-11-13 2018-12-06 カーディアック ペースメイカーズ, インコーポレイテッド 内皮化を促進する表面を備えた生体吸収性左心耳閉塞装置
CN205322380U (zh) 2015-12-31 2016-06-22 上海锦葵医疗器械有限公司 可降解的心脏室间隔缺损封堵器
CN206995284U (zh) 2015-12-31 2018-02-13 上海锦葵医疗器械有限公司 可降解的心脏卵圆孔未闭封堵器
CN205322379U (zh) 2015-12-31 2016-06-22 上海锦葵医疗器械有限公司 可降解的心脏房间隔缺损封堵器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8945158B2 (en) * 2004-03-03 2015-02-03 W.L. Gore & Associates, Inc. Delivery/recovery system for septal occluder
CN104001221A (zh) * 2014-06-10 2014-08-27 上海锦葵医疗器械有限公司 一种降解速率可控的显影生物心脏封堵器
CN204016366U (zh) * 2014-06-13 2014-12-17 上海形状记忆合金材料有限公司 一种可降解的封堵器
CN204181743U (zh) * 2014-09-09 2015-03-04 先健科技(深圳)有限公司 封堵器
CN205322403U (zh) * 2015-12-31 2016-06-22 上海锦葵医疗器械有限公司 可显影可降解的心脏房间隔缺损封堵器
CN205322404U (zh) * 2015-12-31 2016-06-22 上海锦葵医疗器械有限公司 可显影可降解的心脏卵圆孔未闭封堵器
CN205322407U (zh) * 2016-01-05 2016-06-22 上海锦葵医疗器械有限公司 可显影可降解的心脏左心耳封堵器
CN205433769U (zh) * 2016-01-05 2016-08-10 上海锦葵医疗器械有限公司 可降解的心脏室间隔缺损封堵器
CN205433805U (zh) * 2016-01-05 2016-08-10 上海锦葵医疗器械有限公司 可降解的心脏动脉导管未闭封堵器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3398533A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112932589A (zh) * 2021-02-01 2021-06-11 上海锦葵医疗器械股份有限公司 两端面平整的心脏动脉导管未闭封堵器及其制造方法

Also Published As

Publication number Publication date
US20190076136A1 (en) 2019-03-14
EP3398533A4 (en) 2019-05-15
JP6752289B2 (ja) 2020-09-09
US11337683B2 (en) 2022-05-24
SG11201805561SA (en) 2018-07-30
JP2019502521A (ja) 2019-01-31
EP3398533A1 (en) 2018-11-07

Similar Documents

Publication Publication Date Title
WO2017113531A1 (zh) 可降解的封堵器
US20210378646A1 (en) Multi-layer braided structures for occluding vascular defects
KR101681346B1 (ko) 심장 폐색 장치
EP2753246B1 (en) A collapsible medical closing device and a method of assembling the device
WO2017113532A1 (zh) 可显影可降解的封堵器
CN206995284U (zh) 可降解的心脏卵圆孔未闭封堵器
CN205322379U (zh) 可降解的心脏房间隔缺损封堵器
CN112773418B (zh) 可降解心脏卵圆孔未闭封堵器及其制造方法
CN205322404U (zh) 可显影可降解的心脏卵圆孔未闭封堵器
CN207996221U (zh) 可降解的心脏动脉导管未闭封堵器
CN207785224U (zh) 可降解的心脏左心耳封堵器
CN205322380U (zh) 可降解的心脏室间隔缺损封堵器
CN205433805U (zh) 可降解的心脏动脉导管未闭封堵器
CN205322403U (zh) 可显影可降解的心脏房间隔缺损封堵器
CN205849480U (zh) 可显影可降解的心脏房间隔缺损封堵器
CN110742658B (zh) 一种双侧异性可吸收封堵器
CN112914661B (zh) 可降解的心脏左心耳封堵器及其制造方法
CN112932564A (zh) 可降解的心脏房间隔缺损封堵器及其制造方法
CN205903273U (zh) 可降解的心脏房间隔缺损封堵器
CN205433769U (zh) 可降解的心脏室间隔缺损封堵器
CN205849494U (zh) 可降解的心脏左心耳封堵器
CN205849481U (zh) 可降解的心脏卵圆孔未闭封堵器
CN206995285U (zh) 可显影可降解的心脏室间隔缺损封堵器
CN115153684A (zh) 一种双侧无铆点卵圆孔未闭可降解心脏封堵器
CN207996222U (zh) 可显影可降解的心脏动脉导管未闭封堵器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880339

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018553276

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11201805561S

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016880339

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016880339

Country of ref document: EP

Effective date: 20180731