WO2017111643A1 - Способ изготовления прутков из сплавов на основе титана - Google Patents

Способ изготовления прутков из сплавов на основе титана Download PDF

Info

Publication number
WO2017111643A1
WO2017111643A1 PCT/RU2015/000912 RU2015000912W WO2017111643A1 WO 2017111643 A1 WO2017111643 A1 WO 2017111643A1 RU 2015000912 W RU2015000912 W RU 2015000912W WO 2017111643 A1 WO2017111643 A1 WO 2017111643A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
tpp
rods
hot
tpt
Prior art date
Application number
PCT/RU2015/000912
Other languages
English (en)
French (fr)
Inventor
Андрей Владимирович ВОЛОШИН
Александр Евгеньевич МОСКАЛЕВ
Дмитрий Алексеевич НЕГОДИН
Дмитрий Валерьевич НИКУЛИН
Юрий Пантелеевич САМОЙЛОВ
Original Assignee
Акционерное Общество "Чепецкий Механический Завод" (Ао Чмз)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное Общество "Чепецкий Механический Завод" (Ао Чмз) filed Critical Акционерное Общество "Чепецкий Механический Завод" (Ао Чмз)
Priority to PCT/RU2015/000912 priority Critical patent/WO2017111643A1/ru
Priority to EP15911458.6A priority patent/EP3395464A4/en
Priority to RU2016122145A priority patent/RU2644714C2/ru
Priority to KR1020187020924A priority patent/KR102194944B1/ko
Priority to CA3009962A priority patent/CA3009962C/en
Priority to CN201580085721.XA priority patent/CN108472703B/zh
Priority to US16/065,401 priority patent/US10815558B2/en
Priority to JP2018533774A priority patent/JP6864955B2/ja
Publication of WO2017111643A1 publication Critical patent/WO2017111643A1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/04Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of bars or wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/04Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of bars or wire
    • B21C37/045Manufacture of wire or bars with particular section or properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon

Definitions

  • the invention relates to the field of metal forming, in particular to methods for the manufacture of rods of titanium alloys used as structural material for the active zones of nuclear reactors in the chemical, oil and gas industry and medicine.
  • a known method of manufacturing high-quality rods of a wide range of diameters from two-phase titanium alloys intended for the manufacture of aerospace components (RU 2178014, publ. 10.01.2002).
  • the method includes heating the workpiece to a temperature above the temperature of polymorphic transformation in the ⁇ -region, rolling at this temperature, cooling to ambient temperature, heating the rolled metal to a temperature of 20-50 ° C below the temperature of polymorphic transformation and final rolling at this temperature.
  • Heating and deformation in the ⁇ -region are carried out in two stages, while in the first stage, the preform is heated to a temperature of 40-150 ° C above the polymorphic transformation temperature, is deformed with a degree of deformation of 97-97.6% and cooled in air, in the second stage the tackle is heated to a temperature of 20 ° C above the polymorphic transformation temperature and is deformed with a degree of deformation of 37-38%, and the final rolling in the alpha + beta region is carried out with a degree of deformation of 54-55%.
  • the known method allows to obtain bars with a regulated macro- and microstructure, providing a stable level of mechanical properties over the cross section of the bar.
  • the method has low efficiency and a long production cycle of manufacture, due to the need for intermediate heating at the stage of hot rolling, machining the surface of the rods.
  • the level of rejects increases, the yield of metal decreases, which ultimately leads to an increase in the cost of manufacturing rods.
  • a known method of manufacturing intermediate billets of titanium alloys (RU 2217260, publ. 27.1 1.2003) by hot deformation.
  • the ingot is forged into a bar in several transitions at a temperature of the ⁇ -region and intermediate forged in several transitions at a temperature of ⁇ - and (a + P) -regions.
  • Intermediate forging at a temperature of (a + P) -region is carried out with a bobbin value of 1.25-1.75.
  • the indicated intermediate forging is carried out with a bail of 1.25-1.35 per bar.
  • the rod is machined, cut into blanks and the ends are formed, after which the final deformation is carried out by pressing at a temperature of the (a + P) region.
  • the known method has a long manufacturing cycle, includes a pressing operation, which requires pre-machining. Intermediate pre-machining in the manufacture of blanks for the pressing operation leads to additional metal losses.
  • a method (patent RU 2409445, publ. 20.01.2011) of manufacturing an intermediate billet from titanium alloys, including hot forging on a forging press in a four-sided forging device at a temperature lying in the temperature range 120 ° C below the polymorphic temperature transformations to a temperature 100 ° C higher than the polymorphic transformation temperature, with a total degree of deformation of at least 35%, cooling and subsequent forging at a temperature below the polymorphic transformation temperature with a total degree of deformation of at least 25%.
  • the problem to which the invention is directed is to obtain bars of high quality titanium alloys while ensuring high process performance.
  • the technical result is achieved by the fact that in the method of manufacturing rods of titanium alloys, including hot forging of the workpiece and subsequent hot deformation, hot forging of the ingot is carried out after heating to a temperature in the range of (TPP + 20) + (TPP + 150) ° C with shear deformations mainly in the longitudinal direction and a draw ratio of 1.2-2.5, after which they are carried out without cooling hot rolling of the forgings in the temperature range (TPP + 20) + (TPP + 150) ° C with shear deformations in the predominantly transverse direction and a drawing coefficient of up to 7.0, and subsequent hot deformation is carried out by heating the deformed workpieces in the temperature range from (TPP- 70) d (Tpt-20) ° C.
  • the forgings are heated to the temperature range from (TPP + 20) to (TPP + 150) ° C.
  • Hot rolling with a change in the direction of shear deformations to a predominantly transverse one and a drawing coefficient of up to 7.0 allows for additional study, to increase the ductility of the surface layers of the material, and to reduce the number and size of surface defects.
  • the manufacture of rods with the implementation of the declared actions, with the declared sequence and the stated conditions reduces the level of defect formation in the cross section of the bar and on its surface, the metal is worked out over the entire cross section, providing a regulated structure and a high level of mechanical properties that meet the requirements of customers, Russian and international standards.
  • Example 1 An ingot of titanium alloy PT-7M ( ⁇ -alloy, averaged chemical composition 2,2Al-2,5Zr, GOST 19807-74 "Titanium and wrought titanium alloys”) was heated to a temperature of TPP + 130 ° C and was hot forged forging press with a draw ratio of 1.5. High one-time deformation due to the high ductility of the metal and the deformation heating during the forging process led to the fact that the forging temperature was in the range of (TPP + 20) + (TPP + 150) ° C by the time of forging. Forgings without heating are rolled on a helical rolling mill with a drawing coefficient of 3.80. Next, the rod was cut into pieces, heated to a temperature of Tpp -> 40 ° C and conducted hot rolling on a helical rolling mill with a drawing ratio of 2.45.
  • table 1 which can be used for the manufacture of pipe blanks for subsequent hot extrusion, table 1.
  • Table 1 Physicomechanical properties of heat-treated rods made of PT-7M grade titanium alloy, the direction of specimen cutting is longitudinal
  • Example 2 An ingot of a VT6S grade titanium alloy ( ⁇ + ⁇ alloy, averaged chemical composition 5A1-4V, GOST 19807-74 "Titanium and wrought titanium alloys”) was heated to a temperature of TPP + 60 ° C and hot forged on a forging press with extraction ratio of 2.15. Then, without cooling the forgings, it was heated to a temperature of TPP + 60 ° ⁇ and the rolling was carried out on a helical rolling mill with a draw ratio of 2.78. Next, the bar was cooled to room temperature and cut into three equal parts.
  • VT6S grade titanium alloy ⁇ + ⁇ alloy, averaged chemical composition 5A1-4V, GOST 19807-74 "Titanium and wrought titanium alloys”
  • the rolled rods were heated in the furnace to a temperature of ⁇ -40 ° ⁇ and the second stage of screw rolling was performed with a draw ratio of 2.25.
  • the metal deformation proceeded stably without macro- and microdefects.
  • the rods were cooled to room temperature and cut into measured lengths.
  • Rods were divided into two groups. The first group of rods as finished large-sized rods was sent to control compliance. At the request of the customer, they were additionally machined.
  • the second group of rods was heated in an induction furnace to the temperature TPP-
  • the resulting rods were characterized by high accuracy of geometric dimensions and the absence of defects.
  • ultrasonic testing of continuity was carried out on bars.
  • Table 2 Physicomechanical properties of bars made of VT6S alloy, direction of specimen cutting — longitudinal, test temperature 20 ° C
  • the rods from the first group made of VT6S alloy comply with the requirements for large-sized rolled rods from titanium alloys, from the second group - the requirements for rolled rods from titanium alloys.
  • Example 3 illustrates the manufacture of rods from a pseudo- ⁇ alloy PT-ZV, which has significantly worse ductility than the alloys in examples 1-2.
  • the PT-ZV titanium alloy ingot (averaged chemical composition 4A1-2V, GOST 19807-74 “Titanium and wrought titanium alloys”) was heated to a temperature of TPP + 125 ° C and hot forged on a forging press with a drawing ratio of 1, 25. After that, the forging was loaded into the furnace for heating at a temperature of ⁇ PP + 125 ° ⁇ and the rolling was carried out on a helical rolling mill with a drawing ratio of 2.64. Next, the bar was cut into pieces, heated to temperature ⁇ -25 ° ⁇ and hot forged on a forging press with a drawing coefficient of 4.14 into a bar of circular cross-section of the finished size.
  • the bar after cutting was heated to a temperature of TPP-25 ° C and hot forged on a forging press with a draw ratio of 3.16 into a bar of rectangular cross-section of the finished size.
  • Table 3 Physicomechanical properties of heat-treated rods made of PT-ZV grade titanium alloy, specimen cutting direction — longitudinal
  • the present invention was tested in the production conditions of ChMZ JSC in the manufacture of rods from alloys of grades PT-7M, PT-1M (a-alloys), VT6S, PT-ZV, 2V (pseudo- ⁇ alloys), VT6, VTZ-1, VT9 ( ⁇ + ⁇ alloys) and other titanium-based alloys.
  • the results of the invention showed that it is possible to obtain bars with a cross-sectional size from 10 to 180 mm with regulated macro- and microstructures and mechanical properties.
  • the rods made by the method according to the invention meet the requirements for workpieces or products from titanium alloys in the form of rods used for the active zones of nuclear reactors, in the chemical and oil and gas industry, and medicine.
  • the method provides lower cost due to the reduction of the manufacturing cycle, increase the metal yield, a significant reduction in the level of marriage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Forging (AREA)

Abstract

Изобретение относится к области обработки металлов давлением, в частности к способам изготовления прутков и заготовок из сплавов титана, применяемых в качестве конструкционного материала для активных зон атомных реакторов, в химической и нефтегазовой промышленности, медицине. Изобретение решает задачу получения прутков из сплавов титана высокого качества при одновременном обеспечении высокой эффективности процесса. Для этого в способе изготовления прутков или заготовок из титановых сплавов, включающем горячую ковку исходной заготовки и последующую горячую деформацию, горячую ковку слитка ведут после нагрева до температуры в интервале от (Тпп+20)ºС до (Тпп+150)ºС со сдвиговыми деформациями преимущественно в продольном направлении и коэффициентом вытяжки k=(1,2-2,5), после чего без охлаждения осуществляют горячую прокатку поковки в интервале температур (Тпп+20)÷ (Тпп+150)ºС со сменой направления сдвиговых деформаций на преимущественно поперечное и коэффициентом вытяжки до 7,0, а последующую горячую деформацию осуществляют при нагреве деформированных заготовок в интервале температур от (Тпп-70) до (Тпп-20)ºС.

Description

Способ изготовления прутков из сплавов на основе титана
Область техники
Изобретение относится к области обработки металлов давлением, в частности к способам изготовления прутков из сплавов титана, применяемых в качестве конструкционного материала для активных зон атомных реакторов, в химической, нефтегазовой промышленности и медицине.
Предшествующий уровень техники
Известен способ изготовления высококачественных прутков широкого диапазона диаметров из двухфазных титановых сплавов, предназначенных для изготовления деталей аэрокосмического назначения (RU 2178014, опубл. 10.01.2002). Способ включает нагрев заготовки до температуры выше температуры полиморфного превращения в β-области, прокатку при этой температуре, охлаждение до температуры окружающей среды, нагрев подката до температуры на 20-50°С ниже температуры полиморфного превращения и окончательную прокатку при этой температуре. Нагрев и деформацию в β-области проводят в два этапа, при этом на первом этапе заготовку нагревают до температуры на 40-150°С выше температуры полиморфного превращения, деформируют со степенью деформации 97-97,6% и охлаждают на воздухе, на втором этапе подкат нагревают до температуры на 20°С выше температуры полиморфного превращения и деформируют со степенью деформации 37-38%, а окончательную прокатку в альфа+бета-области проводят со степенью деформации 54-55%.
Известный способ позволяет получать прутки с регламентированной макро- и микроструктурой, обеспечивающей стабильный уровень механических свойств по сечению прутка. Однако способ имеет низкую эффективность и длительный производственный цикл изготовления, обусловленные необходимостью проведения промежуточных подогревов на этапе горячей прокатки, механической обработки поверхности прутков. В результате этого происходит снижение качества прокатанных прутков, повышается уровень брака, снижается выход металла в годное, что в итоге приводит к повышению себестоимости изготовления прутков.
Известен способ изготовления промежуточных заготовок из титановых сплавов (RU 2217260, опубл. 27.1 1.2003) методом горячего деформирования. Производят ковку слитка в пруток за несколько переходов при температуре β- области и промежуточную ковку за несколько переходов при температуре β- и (а+Р)-области. Промежуточную ковку при температуре (а+Р)-области осуществляют с величиной укова 1,25-1,75. На окончательных переходах указанную промежуточную ковку ведут с уковом 1,25-1,35 в пруток. Затем производят механическую обработку прутка, резку его на заготовки и формирование торцов, после чего осуществляют окончательное деформирование прессованием при температуре (а+Р)-области.
Известный способ имеет длительный цикл изготовления, включает операцию прессования, для которой требуется предварительная механическая обработка Промежуточная предварительная механическая обработка при изготовлении заготовок для операции прессования приводит к дополнительным потерям металла.
Наиболее близким к заявляемому способу является способ (патент RU 2409445, опубл.20.01.2011) изготовления промежуточной заготовки из титановых сплавов, включающий горячую ковку на ковочном прессе в четырехбойковом ковочном устройстве при температуре, лежащей в интервале от температуры на 120° С ниже температуры полиморфного превращения до температуры на 100°С выше температуры полиморфного превращения, с суммарной степенью деформации не менее 35%, охлаждение и последующую ковку при температуре ниже температуры полиморфного превращения с суммарной степенью деформации не менее 25%.
В известном способе многократные операции нагрева под горячую ковку и охлаждения на воздухе отрицательно влияют на качество поверхности прутка. Кроме того, способ требует проведения дорогостоящей операции абразивной обработки для удаления ковочных дефектов и поверхностного некондиционного слоя. В результате повышается уровень брака, снижается выход металла в годное, что в конечном счёте приводит к повышению себестоимости изготовления прутков.
Раскрытие изобретения
Задача, на решение которой направлено заявляемое изобретение, заключается в получении прутков из сплавов титана высокого качества при одновременном обеспечении высокой производительности процесса.
Технический результат достигается тем, что в способе изготовления прутков из титановых сплавов, включающем горячую ковку заготовки и последующую горячую деформацию, горячую ковку слитка ведут после нагрева до температуры в интервале (Тпп+20) + (Тпп+150)°С со сдвиговыми деформациями преимущественно в продольном направлении и коэффициентом вытяжки 1,2-2,5, после чего без охлаждения осуществляют горячую прокатку поковки в интервале температур (Тпп+20) + (Тпп+150)°С со сдвиговыми деформациями в преимущественно поперечном направлении и коэффициентом вытяжки до 7,0, а последующую горячую деформацию осуществляют при нагреве деформированных заготовок в интервале температур от (Тпп-70) до (Тпп-20) °С.
В частном случае выполнения, например при продолжительном процессе ковки, перед горячей прокаткой выполняют подогрев поковок до интервала температур от (Тпп+20) до (Тпп+150) °С.
После проведения горячей ковки и горячей прокатки в интервале температур (Тпп+20) до (Тпп+150) °С возможно осуществлять охлаждение полученных штанг до температуры 350 00 °С с последующим их подогревом до температуры в интервале от (Тпп-70) до (Тпп-20) °С и горячей деформацией.
Ковка с коэффициентом вытяжки 1,20-2,50 после нагрева до температуры в интервале (Тпп+20) + (Тпп+150) °С со сдвиговыми деформациями преимущественно в продольном направлении обеспечивает разрушение литой структуры материала и повышение пластичности.
Горячая прокатка со сменой направления сдвиговых деформаций на преимущественно поперечное и коэффициентом вытяжки до 7,0 позволяет осуществить дополнительную проработку, повысить пластичность поверхностных слоев материала, снизить количество и размеры поверхностных дефектов.
Проведение горячей прокатки непосредственно за горячей ковкой, без охлаждения, позволяет избежать образование корки на поверхности поковки, которая, вследствие растрескивания при продолжительном охлаждении и газонасыщении, могла бы стать причиной глубоких закатов при прокатке и образования вследствие этого окисленных участков внутри прутка, что привело бы к необходимости механического удаления названной корки. Соответственно, заявленный способ позволяет исключить операцию механического удаления корки.
Таким образом, изготовление прутков с осуществлением заявленных действий, при заявленной последовательности и заявленных условиях, снижает уровень дефектообразования по сечению прутка и на его поверхности, металл прорабатывается по всему сечению, обеспечивая получение регламентированной структуры и высокого уровня механических свойств, соответствующих требованиям заказчиков, российских и международных стандартов.
Ниже приведены варианты осуществления предлагаемого способа.
Варианты осуществления изобретения
Пример 1. Слиток титанового сплава ПТ-7М (α-сплав, усредненный химический состав 2,2Al-2,5Zr, ГОСТ 19807-74 «Титан и сплавы титановые деформируемые») нагрели до температуры Тпп+130 °С и провели горячую ковку на ковочном прессе с коэффициентом вытяжки 1,5. Высокая разовая деформация, обусловленная высокой пластичностью металла, и деформационный разогрев в процессе ковки привели к тому, что к моменту окончания ковки температура поковки находилась в диапазоне (Тпп+20)+(Тпп+150) °С. Поковка без подогрева прокатана на стане винтовой прокатки с коэффициентом вытяжки 3,80. Далее штангу разрезали на части, нагрели до температуры Тпп-^40 °С и провели горячую прокатку на стане винтовой прокатки с коэффициентом вытяжки 2,45.
Получили пруток заданного размера с требуемыми свойствами, таблица 1, который может быть использован для изготовления трубных заготовок под последующее горячее выдавливание, таблица 1.
Таблица 1— Физико-механические свойства термообработанных прутков из сплава титана марки ПТ-7М, направление вырезки образцов— продольное
Figure imgf000006_0001
Как следует из таблицы 1 , изготовленные прутки полностью соответствуют предъявляемым требованиям.
Аналогичный результат получен и при изготовлении прутков из других а- сплавов.
Пример 2. Слиток титанового сплава марки ВТ6С (α+β-сплав, усредненный химический состав 5A1-4V, ГОСТ 19807-74 «Титан и сплавы титановые деформируемые») нагрели до температуры Тпп+60 °С и провели горячую ковку на ковочном прессе с коэффициентом вытяжки 2,15. Затем без охлаждения поковки ее подогрели до температуры Тпп+60 °С и вьшолнили прокатку на стане винтовой прокатки с коэффициентом вытяжки 2,78. Далее штангу охладили до комнатной температуры и разрезали на три равные части.
Катаные штанги нагрели в печи до температуры Тпп-40 °С и выполнили вторую стадию винтовой прокатки с коэффициентом вытяжки 2,25.
Деформация металла проходила устойчиво без макро- и микродефектов. После второй стадии прокатки штанги охладили до комнатной температуры и разрезали на мерные длины.
Штанги разделили на две группы. Первую группу штанг как готовых крупногабаритных прутков направили на контроль соответствия требованиям. По требованию заказчика дополнительно выполняли их механическую обработку.
Вторую группу штанг нагрели в индукционной печи до температуры Тпп-
40 °С и вьшолнили прокатку на стане винтовой прокатки с коэффициентом вытяжки 3,62 и охлаждением до комнатной температуры. Штанги также контролировали на соответствие требованиям. По требованию заказчика их дополнительно подвергали механической обработке.
Полученные прутки характеризовались высокой точностью геометрических размеров и отсутствием дефектов. На прутках помимо основных исследований (механические свойства, твердость макро- и микроструктура) проведен УЗ- контроль сплошности.
Результаты контроля свойств приведены в таблице 2. Таблица 2— Физико-механические свойства прутков из сплава марки ВТ6С, направление вырезки образцов— продольное, температура испытаний 20 °С
Figure imgf000008_0001
Изготовленные из сплава ВТ6С прутки из первой группы соответствуют требованиям, предъявляемым к пруткам катаным крупногабаритным из титановых сплавов, из второй группы — требованиям к пруткам катаным из титановых сплавов.
Аналогичный результат получен и при изготовлении прутков из других α+β- сплавов.
Пример 3 иллюстрирует изготовление прутков из псевдо-α сплава ПТ-ЗВ, который обладает значительно более худшей пластичностью, чем сплавы в примерах 1-2. Слиток титанового сплава ПТ-ЗВ (усредненный химический состав 4A1-2V, ГОСТ 19807-74 «Титан и сплавы титановые деформируемые») нагрели до температуры Тпп+125 °С и провели горячую ковку на ковочном прессе с коэффициентом вытяжки 1 ,25. После этого поковку загрузили в печь на подогрев при температуре Тпп+125 °С и выполнили прокатку на стане винтовой прокатки с коэффициентом вытяжки 2,64. Далее штангу разрезали на части, нагрели до температуры Тпп-25 °С и провели горячую ковку на ковочном прессе с коэффициентом вытяжки 4,14 в пруток круглого сечения готового размера.
По требованию заказчика дополнительно выполняли термическую или механическую обработку.
Для прутков с прямоугольным сечением штангу после порезки нагрели до температуры Тпп-25 °С и провели горячую ковку на ковочном прессе с коэффициентом вытяжки 3,16 в пруток прямоугольного сечения готового размера.
По требованию заказчика выполняли термическую или механическую обработку.
Свойства полученных прутков круглого и прямоугольного сечения из сплава
ПТ-ЗВ показаны в таблице 3.
Таблица 3— Физико-механические свойства термообработанных прутков из сплава титана марки ПТ-ЗВ, направление вырезки образцов— продольное
Figure imgf000009_0001
Как следует из таблицы 3, изготовленные прутки полностью соответствуют предъявляемым требованиям.
Аналогичный результат получен и при изготовлении прутков из псевдо-α сплавов.
Основные параметры осуществления изобретения в пределах заявляемыми пределами и полученные результаты показаны в таблице 4.
Figure imgf000010_0001
Промышленная применимость
Предлагаемое изобретение было опробовано в условиях производства АО ЧМЗ при изготовлении прутков из сплавов марок ПТ-7М, ПТ-1М (а-сплавы), ВТ6С, ПТ-ЗВ, 2В (псевдо-α сплавы), ВТ6, ВТЗ-1, ВТ9 (α+β-сплавы) и других сплавов на основе титана.
Результаты осуществления изобретения показали, что обеспечивается получение прутков с размером в сечении от 10 до 180 мм с регламентированными макро- и микроструктурами и механическими свойствами.
Прутки, изготовленные способом согласно изобретению, соответствуют требованиям, предъявляемым к заготовкам или изделиям из сплавов титана в виде прутков, применяемых для активных зон атомных реакторов, в химической и нефтегазовой промышленности, медицине.
При этом способ обеспечивает более низкую себестоимость за счёт сокращения цикла изготовления, повышения выхода металла в годное, значительного снижения уровня брака.

Claims

Формула изобретения
1. Способ изготовления прутков из титановых сплавов, включающий горячую ковку исходной заготовки и последующую горячую деформацию, отличающийся тем, что горячую ковку слитка ведут после нагрева до температуры в интервале от (Тпп+20)°С до (Тпп+150)°С со сдвиговыми деформациями преимущественно в продольном направлении и коэффициентом вытяжки к=( 1,2-2,5), после чего без охлаждения осуществляют горячую прокатку поковки в интервале температур (Тпп+20) (Тпп+150)°С со сменой направления сдвиговых деформаций на преимущественно поперечное и коэффициентом вытяжки до 7,0, а последующую горячую деформацию осуществляют при нагреве деформированных заготовок в интервале температур от (Тпп-70) до (Тпп-20)°С.
2. Способ по п.1, отличающийся тем, что перед горячей прокаткой выполняют подогрев поковок до интервала температур от (Тпп+20) до (Тпп+150) °С.
3. Способ по п.1, отличающийся тем, что после проведения горячей ковки и горячей прокатки осуществляют охлаждение штанг до температуры 350-^500 °С с последующим подогревом заготовок до температуры в интервале от (Тпп-70) до (Тпп-20) °С и горячей деформацией.
PCT/RU2015/000912 2015-12-22 2015-12-22 Способ изготовления прутков из сплавов на основе титана WO2017111643A1 (ru)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/RU2015/000912 WO2017111643A1 (ru) 2015-12-22 2015-12-22 Способ изготовления прутков из сплавов на основе титана
EP15911458.6A EP3395464A4 (en) 2015-12-22 2015-12-22 METHOD FOR PRODUCING BARS FROM TITANIUM BASED ALLOYS
RU2016122145A RU2644714C2 (ru) 2015-12-22 2015-12-22 Способ изготовления прутков из сплавов на основе титана
KR1020187020924A KR102194944B1 (ko) 2015-12-22 2015-12-22 티타늄계 합금으로부터 로드를 제조하는 방법
CA3009962A CA3009962C (en) 2015-12-22 2015-12-22 A method of manufacturing rods from titanium alloys
CN201580085721.XA CN108472703B (zh) 2015-12-22 2015-12-22 使用钛合金制造棒材的方法
US16/065,401 US10815558B2 (en) 2015-12-22 2015-12-22 Method for preparing rods from titanium-based alloys
JP2018533774A JP6864955B2 (ja) 2015-12-22 2015-12-22 チタン合金から棒材を製造する方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2015/000912 WO2017111643A1 (ru) 2015-12-22 2015-12-22 Способ изготовления прутков из сплавов на основе титана

Publications (1)

Publication Number Publication Date
WO2017111643A1 true WO2017111643A1 (ru) 2017-06-29

Family

ID=59090878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2015/000912 WO2017111643A1 (ru) 2015-12-22 2015-12-22 Способ изготовления прутков из сплавов на основе титана

Country Status (8)

Country Link
US (1) US10815558B2 (ru)
EP (1) EP3395464A4 (ru)
JP (1) JP6864955B2 (ru)
KR (1) KR102194944B1 (ru)
CN (1) CN108472703B (ru)
CA (1) CA3009962C (ru)
RU (1) RU2644714C2 (ru)
WO (1) WO2017111643A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115502202A (zh) * 2022-10-11 2022-12-23 攀钢集团攀枝花钢铁研究院有限公司 一种钛及钛合金方坯加工方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111534772A (zh) * 2020-05-27 2020-08-14 西部超导材料科技股份有限公司 一种短流程低成本tc4类钛合金成品棒材的制备方法
RU2756077C1 (ru) * 2021-02-25 2021-09-27 Федеральное государственное бюджетное учреждение науки Институт физики прочности и материаловедения Сибирского отделения Российской академии наук (ИФПМ СО РАН) Способ получения прутков круглого сечения из титанового сплава (варианты)
CN113369428A (zh) * 2021-07-07 2021-09-10 中国航发北京航空材料研究院 一种大尺寸TC17钛合金β锻整体叶盘锻件制备方法
CN115178597B (zh) * 2022-07-11 2024-10-18 宝武特冶钛金科技有限公司 一种同时提高钛合金轧棒表面质量和拉伸强度的热加工方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2175994C2 (ru) * 2000-01-12 2001-11-20 ОАО Верхнесалдинское металлургическое производственное объединение Способ получения прутков и полос из технического титана
EP1382695A1 (en) * 2001-02-28 2004-01-21 JFE Steel Corporation Titanium alloy bar and method for production thereof
RU2312722C1 (ru) * 2006-07-03 2007-12-20 Государственное образовательное учреждение высшего профессионального образования СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ИНДУСТРИАЛЬНЫЙ УНИВЕРСИТЕТ Способ прокатки и устройство для его осуществления
RU2563083C1 (ru) * 2014-03-26 2015-09-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ изготовления длинномерной заготовки из титанового сплава

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2676460B1 (fr) * 1991-05-14 1993-07-23 Cezus Co Europ Zirconium Procede de fabrication d'une piece en alliage de titane comprenant un corroyage a chaud modifie et piece obtenue.
FI94926C (fi) 1993-11-12 1995-11-27 Leiras Oy Menetelmä klodronaattivalmisteen valmistamiseksi
RU2178014C1 (ru) * 2000-05-06 2002-01-10 ОАО Верхнесалдинское металлургическое производственное объединение СПОСОБ ПРОКАТКИ ПРУТКОВ ИЗ ПСЕВДО-β-ТИТАНОВЫХ СПЛАВОВ
WO2001092589A1 (fr) * 2000-05-29 2001-12-06 Sumitomo Metal Industries, Ltd. Alliage de titane presentant une excellente ductilite, resistance a la fatigue et rigidite et son procede de production
RU2217260C1 (ru) * 2002-04-04 2003-11-27 ОАО Верхнесалдинское металлургическое производственное объединение СПОСОБ ИЗГОТОВЛЕНИЯ ПРОМЕЖУТОЧНОЙ ЗАГОТОВКИ ИЗ α- И (α+β)-ТИТАНОВЫХ СПЛАВОВ
US7837812B2 (en) * 2004-05-21 2010-11-23 Ati Properties, Inc. Metastable beta-titanium alloys and methods of processing the same by direct aging
JP4493029B2 (ja) * 2005-09-21 2010-06-30 株式会社神戸製鋼所 被削性及び熱間加工性に優れたα−β型チタン合金
JP5287062B2 (ja) * 2007-09-14 2013-09-11 大同特殊鋼株式会社 低比重チタン合金、ゴルフクラブヘッド、及び、低比重チタン合金製部品の製造方法
RU2364660C1 (ru) * 2007-11-26 2009-08-20 Владимир Валентинович Латыш Способ получения ультрамелкозернистых заготовок из титановых сплавов
JP4999828B2 (ja) * 2007-12-25 2012-08-15 ヤマハ発動機株式会社 破断分割型コンロッド、内燃機関、輸送機器および破断分割型コンロッドの製造方法
RU2409445C1 (ru) * 2009-04-27 2011-01-20 Открытое Акционерное Общество "Тяжпрессмаш" СПОСОБ ИЗГОТОВЛЕНИЯ ПРОМЕЖУТОЧНОЙ ЗАГОТОВКИ ИЗ (α+β)-ТИТАНОВЫХ СПЛАВОВ
JP4855555B2 (ja) * 2009-12-02 2012-01-18 新日本製鐵株式会社 α+β型チタン合金製部品、及びその製造方法
US9206497B2 (en) * 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
CN102418060A (zh) * 2011-12-12 2012-04-18 西部钛业有限责任公司 一种tc4钛合金大规格棒材的加工方法
US10119178B2 (en) * 2012-01-12 2018-11-06 Titanium Metals Corporation Titanium alloy with improved properties
CN103397289B (zh) * 2013-08-11 2015-06-10 西北有色金属研究院 一种tc4eli钛合金棒材的制备方法
CN104313524B (zh) * 2014-09-23 2016-06-22 西北有色金属研究院 一种tc4-dt钛合金棒材的加工方法
JP6577210B2 (ja) * 2015-03-11 2019-09-18 テイタニウム メタルス コーポレイシヨンTitanium Metals Corporation 良好な弾道及び機械特性を有する低コストのα−βチタニウム合金
CN104775053B (zh) * 2015-04-28 2017-06-13 宝鸡鑫诺新金属材料有限公司 用于制造克氏针的医用Ti‑6Al‑7Nb合金丝的制备工艺
CN105088013B (zh) * 2015-09-14 2017-08-04 沈阳泰恒通用技术有限公司 一种制作机车制动盘螺栓的钛合金材料及其加工工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2175994C2 (ru) * 2000-01-12 2001-11-20 ОАО Верхнесалдинское металлургическое производственное объединение Способ получения прутков и полос из технического титана
EP1382695A1 (en) * 2001-02-28 2004-01-21 JFE Steel Corporation Titanium alloy bar and method for production thereof
RU2312722C1 (ru) * 2006-07-03 2007-12-20 Государственное образовательное учреждение высшего профессионального образования СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ИНДУСТРИАЛЬНЫЙ УНИВЕРСИТЕТ Способ прокатки и устройство для его осуществления
RU2563083C1 (ru) * 2014-03-26 2015-09-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ изготовления длинномерной заготовки из титанового сплава

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3395464A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115502202A (zh) * 2022-10-11 2022-12-23 攀钢集团攀枝花钢铁研究院有限公司 一种钛及钛合金方坯加工方法
CN115502202B (zh) * 2022-10-11 2024-05-24 攀钢集团攀枝花钢铁研究院有限公司 一种钛及钛合金方坯加工方法

Also Published As

Publication number Publication date
CA3009962A1 (en) 2017-06-29
CN108472703A (zh) 2018-08-31
RU2016122145A (ru) 2017-12-07
US20190017159A1 (en) 2019-01-17
KR102194944B1 (ko) 2020-12-29
CA3009962C (en) 2021-11-09
KR20180105652A (ko) 2018-09-28
US10815558B2 (en) 2020-10-27
RU2644714C2 (ru) 2018-02-13
JP2019512046A (ja) 2019-05-09
JP6864955B2 (ja) 2021-04-28
EP3395464A1 (en) 2018-10-31
CN108472703B (zh) 2021-01-01
EP3395464A4 (en) 2019-08-14

Similar Documents

Publication Publication Date Title
RU2644714C2 (ru) Способ изготовления прутков из сплавов на основе титана
KR102039770B1 (ko) 단조하기 어려운, 변형-경로 민감 티타늄-기 및 니켈-기 합금들을 위한 분할-패스 개방-다이 단조
CN103320734B (zh) 医用细晶钛/钛合金棒材的生产方法
CN105331912A (zh) 一种gh4169高温合金棒材及其制备方法
RU2583566C1 (ru) СПОСОБ ИЗГОТОВЛЕНИЯ ХОЛОДНОДЕФОРМИРОВАННЫХ БЕСШОВНЫХ ТРУБ ИЗ ТИТАНОВОГО СПЛАВА Ti-3Al-2,5V
RU2467090C1 (ru) Способ изготовления изделий из алюминиевых или магниевых сплавов с нано- и субмикрокристаллической структурой и изделия, изготовленные из этих сплавов (варианты)
RU2644830C2 (ru) Способ изготовления прутковых заготовок из сплавов на основе интерметаллида титана с орто-фазой
JP2010280002A (ja) γチタン−アルミニウム−母合金から鍛造片を製造する方法
Fakhar et al. Significant improvements in mechanical properties of AA5083 aluminum alloy using dual equal channel lateral extrusion
CN110976512A (zh) 一种tc4钛合金丝材冷轧方法
CN106862863A (zh) 一种大直径超长超薄钛合金壳体的制备加工方法
RU2661125C1 (ru) Способ изготовления бесшовных холоднодеформированных труб из титанового сплава типа Ti-3Al-2,5V
AU2016424982A1 (en) Method for making deformed semi-finished products from aluminium alloys
JP2017078206A (ja) 均質な針状組織を有し、引張特性に優れたα+β型チタン合金熱間押出形材およびその製造方法
CN115106471A (zh) 一种矩形截面钛合金锻件的锻造方法
RU2707376C1 (ru) Способ изготовления трубных изделий высокой точности из гафния
RU2761398C1 (ru) Способ обработки прутков из орто-сплавов титана для получения лопаток компрессора газотурбинного двигателя
Gupta et al. Effect of variants of thermomechanical working and annealing treatment on titanium alloy Ti6Al4V closed die forgings
RU2583567C1 (ru) СПОСОБ ПОЛУЧЕНИЯ ОСОБО ТОНКИХ ЛИСТОВ ИЗ ТИТАНОВОГО СПЛАВА Ti-6,5Al-2,5Sn-4Zr-1Nb-0,7Mo-0,15Si
RU2563083C1 (ru) Способ изготовления длинномерной заготовки из титанового сплава
RU2569605C1 (ru) Способ получения тонких листов из титанового сплава ti-6,5al-2,5sn-4zr-1nb-0,7mo-0,15si
RU2691471C1 (ru) Способ изготовления листового проката из титанового сплава марки вт8
RU2751067C2 (ru) СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β)-ТИТАНОВОГО СПЛАВА ДЛЯ АДДИТИВНОЙ ТЕХНОЛОГИИ
RU2178014C1 (ru) СПОСОБ ПРОКАТКИ ПРУТКОВ ИЗ ПСЕВДО-β-ТИТАНОВЫХ СПЛАВОВ
RU2412275C1 (ru) Способ изготовления пластин из гафния

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016122145

Country of ref document: RU

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15911458

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018533774

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3009962

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187020924

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2015911458

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015911458

Country of ref document: EP

Effective date: 20180723