RU2661125C1 - Способ изготовления бесшовных холоднодеформированных труб из титанового сплава типа Ti-3Al-2,5V - Google Patents

Способ изготовления бесшовных холоднодеформированных труб из титанового сплава типа Ti-3Al-2,5V Download PDF

Info

Publication number
RU2661125C1
RU2661125C1 RU2017116114A RU2017116114A RU2661125C1 RU 2661125 C1 RU2661125 C1 RU 2661125C1 RU 2017116114 A RU2017116114 A RU 2017116114A RU 2017116114 A RU2017116114 A RU 2017116114A RU 2661125 C1 RU2661125 C1 RU 2661125C1
Authority
RU
Russia
Prior art keywords
temperature
pipes
deformation
cold
deformed
Prior art date
Application number
RU2017116114A
Other languages
English (en)
Inventor
Игорь Юрьевич Пышминцев
Ярослав Игоревич Космацкий
Елена Анатольевна Филяева
Борис Владимирович Баричко
Николай Владимирович Фокин
Ксения Юрьевна Яковлева
Николай Владимирович Трутнев
Владимир Виллиевич Ананян
Валерий Борисович Восходов
Вячеслав Алексеевич Гагаринов
Евгений Михайлович Засельский
Александр Викторович Борщевский
Original Assignee
Публичное акционерное общество "Трубная металлургическая компания" (ПАО "ТМК")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество "Трубная металлургическая компания" (ПАО "ТМК") filed Critical Публичное акционерное общество "Трубная металлургическая компания" (ПАО "ТМК")
Priority to RU2017116114A priority Critical patent/RU2661125C1/ru
Application granted granted Critical
Publication of RU2661125C1 publication Critical patent/RU2661125C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Forging (AREA)

Abstract

Изобретение относится к области металлургии, в частности к трубопрокатному производству, а именно к изготовлению бесшовных холоднодеформированных труб из титанового сплава типа Ti-3Al-2,5V, и может быть использовано для изготовления изделий ответственного назначения. Способ изготовления холоднодеформированных труб из титанового сплава типа Ti-3Al-2,5V включает механическую обработку горячедеформированной цилиндрической заготовки, горячее прессование заготовки при температуре нагрева ТНПП-k⋅ε⋅υпр, не превышающей температуру ТПП полиморфного α→β-превращения, где ТПП - температура полиморфного превращения, °С, k=0,15÷0,20 - эмпирический коэффициент, учитывающий влияние деформационного разогрева, °С⋅с/мм, ε - логарифмическая степень деформации, υпр - скорость перемещения деформирующего инструмента при прессовании, мм/с. Затем проводят механическую обработку и холодную прокатку со степенью деформации от 40 до 44% для получения трубы, при этом промежуточные и конечную термические обработки осуществляют в вакууме. Обеспечиваются требуемые механические свойства труб по пределу прочности и относительному удлинению за счет сохранения микроструктуры исходной заготовки, увеличение коэффициента выхода годного с одновременным снижением трудоемкости технологического процесса и затрат на производство. 3 ил., 2 табл.

Description

Изобретение относится к трубопрокатному производству, а именно к изготовлению бесшовных холоднодеформированных труб из титанового сплава типа Ti-3Al-2.5V, и может быть использовано для изготовления изделий ответственного назначения для гражданской и военной авиации, ядерной энергетики, химического машиностроения, строительства, медицины и других отраслей.
Известен способ изготовления холоднодеформированных труб из двухфазных сплавов на основе титана (патент РФ №2463376, C22F 1/18, В21В 3/00, опубл. 10.10.2012), включающий выплавку слитка, ковку слитка в заготовку промежуточного размера с коэффициентом укова не менее 1,35 и окончанием ковки в α+β-области. Заготовку промежуточного размера подвергают механической обработке с получением «шашки», из которой прессуют трубу. Затем горячепрессованную трубу термообрабатывают при температуре на 30÷40°С ниже температуры полиморфного α↔β-превращения. После этого осуществляют холодную прокатку горячепрессованной трубы, промежуточные операции механической обработки поверхности, травления и термической обработки. В описываемом способе температуру прессования и коэффициент вытяжки при прокатке определяют расчетным путем.
При определении температуры прессования в способе учтен прирост температуры в результате деформационного разогрева, но не учтено влияние скорости прессования, что снижает точность определения температуры прессования, может привести к прессованию выше температуры ТПП полиморфного α↔β-превращения и сопровождаться необратимым переходом и формированием β-фазы. При этом нарушается наследственность фазового состава заготовки, не обеспечивается сохранение исходной микроструктуры в холоднодеформированных трубах и отрицательно сказывается на величине механических свойств холоднодеформированных труб.
Наиболее близким техническим решением, принятым за прототип, является способ изготовления холоднодеформированных бесшовных труб из титанового сплава типа Ti-3Al-2.5V (патент РФ №2583566, C22F 1/18, В21В 3/00, В21В 21/00, опубл. 10.05.2016), включающий ковку слитка в цилиндрическую заготовку за несколько переходов с чередованием деформации в β- и (α+β)-областях, финишную ковку с коэффициентом укова не менее 1,3 после нагревов в (α+β)-области, механическую обработку заготовки, прессование при температуре на 50÷90°С ниже температуры ТПП полиморфного α↔β-превращения со степенью деформации 65÷80%. Затем полученную заготовку промежуточного размера механически обрабатывают и прессуют трубу при температуре (ТПП - 50÷90)°С со степенью деформации 55÷95%, осуществляют охлаждение, правку и механическую обработку. Далее горячепрессованную трубу подвергают окислительному отжигу при температуре 700÷740°С, проводят холодную прокатку по меньшей мере в два прохода со степенью деформации 45÷60% при осуществлении промежуточных и конечной термообработок при температуре 690÷750°С. Для получения готовой холоднодеформированной трубы проводят прокатку не менее чем за три прохода со степенью деформации 45÷75% и механическую обработку после каждого прохода прокатки, осуществляют промежуточные термообработки при температуре 650÷750°С и конечную термообработку в вакууме при температуре 370÷600°С.
Однако указанный в способе диапазон температуры горячего прессования не учитывает в полной мере влияния степени и скорости прессования на деформационный разогрев материала, что может привести к превышению температуры ТПП полиморфного α↔β-превращения. При этом происходит нарушение наследственного фазового состава, не обеспечивается сохранение исходной микроструктуры в холоднодеформированных трубах, что отрицательно сказывается на уровне механических свойств готовых труб. Кроме того, проведение окислительного отжига перед холодной прокаткой оказывает отрицательное влияние на микроструктуру материала, требует проведения операции механической обработки труб после каждого прохода холодной прокатки, что существенно увеличивает трудоемкость технологического процесса и затраты на его реализацию, а также ведет к дополнительным потерям дорогостоящего металла труб.
Техническая задача, решаемая изобретением, заключается в обеспечении требуемых механических свойств холоднодеформированных труб из сплава типа Ti-3Al-2.5V за счет сохранения микроструктуры исходной заготовки, снижении потерь металла и трудоемкости технологического процесса.
Поставленная задача решается за счет того, что в способе изготовления холоднодеформированных бесшовных труб из титанового сплава типа Ti-3Al-2.5V, включающем механическую обработку горячедеформированной цилиндрической заготовки, горячее прессование заготовки при температуре, не превышающей температуру полиморфного α→β-превращения, последующие механическую обработку, холодную прокатку по меньшей мере в три прохода при осуществлении промежуточных термических обработок при температуре 690÷740°С и конечную термическую обработку в вакууме, согласно изобретению горячее прессование осуществляют при температуре ТН, которую определяют по зависимости
Figure 00000001
где ТПП - температура полиморфного превращения, °С;
k=0,15÷0,20 - эмпирический коэффициент, учитывающий влияние деформационного разогрева, °С⋅с/мм;
ε - логарифмическая степень деформации;
υпр - скорость перемещения деформирующего инструмента, мм/с,
при этом холодную прокатку осуществляют со степенью деформации от 40 до 44%.
Учитывая, что деформационный разогрев металла в процессе прессования может привести к превышению температуры ТПП полиморфного α→β-превращения, температуру нагрева заготовки под горячее прессование предложено определять по зависимости (1). Эмпирический коэффициент k=0,15÷0,20, учитывающий влияние деформационного разогрева, определен с использованием многофункционального комплекса Gleeble на основании результатов пластометрических исследований, моделирующих реальный процесс горячего прессования титанового сплава типа Ti-3Al-2.5V. При этом меньшее значение коэффициента k=0,15 определено для минимально возможной скорости прессования и температуры, близкой к температуре ТПП полиморфного α→β-превращения, а большее значение k=0,20 - для максимально возможной скорости прессования и минимально возможной температуры нагрева (исходя из предельно допустимых нагрузок на существующее оборудование).
При нагреве заготовки до температуры, превышающей температуру ТПП полиморфного α→β-превращения, деформация будет проходить в β-области с интенсивным ростом зерна и грубым внутризеренным строением, что приведет к структурным изменениям, которые влияют на механические свойства и снижают пластичность и деформационную способность сплава. При этом не обеспечиваются требуемые эксплуатационные свойства холоднодеформированных труб.
Холодную прокатку осуществляют с оптимальными значениями степени холодной деформации в интервале от 40 до 44%, что обеспечивает постепенное измельчение микроструктуры после каждого прохода, сопровождающееся равномерным изменением механических свойств холоднодеформированных труб и отсутствием поверхностных дефектов. При величине холодной деформации более 44% существенно возрастают нагрузки на деформирующий инструмент, что отрицательно сказывается на точности холоднодеформированных труб, а также повышается вероятность образования внутренних дефектов металла, связанных с его упрочнением в процессе холодной деформации. При величине холодной деформации менее 40% существенно повышается трудоемкость технологического процесса за счет увеличения числа проходов и ухудшается проработка структуры сплава типа Ti-3Al-2.5V (не удается обеспечить требуемый размер зерна), что приводит к снижению механических свойств металла готовых труб.
Холодную прокатку осуществляют с применением жидких технологических смазок, что существенно улучшает качество поверхности труб. Проведение термической обработки труб в вакууме на всех этапах цикла холодной прокатки позволяет сохранить полученную при горячей деформации микроструктуру металла труб, предотвратить процесс наводораживания металла и снизить потери металла, связанные с проведением механической обработки поверхности труб.
Предлагаемое техническое решение иллюстрируется фотографиями микроструктуры сплава типа Ti-3Al-2.5V при увеличении ×200 на разных этапах технологического процесса, где на фиг. 1 показана микроструктура заготовки, на фиг. 2 - микроструктура горячепрессованной трубы и на фиг. 3 - микроструктура готовой холоднодеформированной трубы.
Предлагаемый способ поясняется на примере изготовления опытно-промышленной партии холоднокатаных труб размером 38,1×5,36 мм из титанового псевдо-α-сплава типа Ti-3Al-2.5V (Grade 9) с требованиями согласно ASTM В338-14. Химический состав сплава, из которого изготовлены трубы, приведен в таблице 1.
Figure 00000002
Трубы изготавливали по двум технологическим схемам.
Технологическая схема I, реализуемая в соответствии с предлагаемым техническим решением, предусматривала следующую последовательность операций и режимы их выполнения. Механическая обработка горячедеформированной цилиндрической заготовки → нагрев заготовки до температуры ТН=857°С → горячее прессование заготовки на прессе усилием 20 МН с получением горячедеформированных труб → химическая обработка поверхности труб для удаления остатков технологической смазки -» операции отделки (правка, подрезка торцов труб) → механическая обработка (обточка-расточка поверхности) горячепрессованных труб → первый проход холодной прокатки со степенью деформации 43% на стане холодной прокатки труб (далее - ХПТ) ХПТ-90М → химическая обработка → промежуточная термическая обработка в вакууме при нагреве до температуры 700÷720°C с выдержкой 120 мин, охлаждение в муфеле → правка, подрезка концов → второй проход со степенью деформации 42% на стане ХПТ-55М → химическая обработка → промежуточная термическая обработка в вакууме при нагреве до температуры 700÷720°С с выдержкой 120 мин, охлаждение в муфеле → правка, подрезка концов → третий проход со степенью деформации 41,7% на размеры готовых труб 38,1×5,36 мм на стане ХПТ-55М → химическая обработка → конечная термическая обработка в вакууме при нагреве до температуры 700÷720°С с выдержкой 120 мин, охлаждение в муфеле → правка, подрезка концов → шлифовка.
Технологическая схема II предусматривала изготовление холоднодеформированных труб в соответствии с прототипом.
Холодную деформацию по обеим технологическим схемам осуществляли на четырех горячепрессованных трубах (по две трубы на каждую схему), длина которых была подобрана таким образом, чтобы в изготовление задавалось по две трубы общей массой 220 кг.
Изготовление холоднодеформированных труб по схеме I осуществляли на модернизированных станах ХПТ-90М и ХПТ-55М с подачей смазки Castrol Iloform TDN 81 на наружную поверхность труб и смазки Castrol Iloform TDN 86 на внутреннюю поверхность. Изготовление холоднодеформированных труб по схеме II осуществляли на типовых станах ХПТ-90 и ХПТ-55 с использованием существующей технологической смазки (мыльный порошок и графит в равных соотношениях). Точность размеров сечения готовых труб, качество поверхности и механические свойства холоднодеформированных труб из титанового сплава типа Ti-3Al-2.5V полностью соответствовали требованиям ASTM В338-14. В таблице 2 приведены механические свойства изготовленных труб по обеим технологическим схемам.
Figure 00000003
По технологической схеме I было изготовлено шесть труб готовых размеров общей массой 194,7 кг и длиной 45 м, коэффициент выхода годного составил 88,5%. По технологической схеме II было изготовлено также шесть труб готовых размеров общей массой 179,2 кг и длиной 41,4 м. Коэффициент выхода годного составил 81,5%. Кроме того, на этапе проведения холодной деформации труб по предлагаемому способу было обеспечено снижение трудоемкости технологического процесса примерно на 4% и уменьшение затрат на производство до 9%.
Температуру горячей деформации рассчитывали по зависимости (1), для чего предварительно методом пробных закалок (Аношкин Н.Ф. Металлография титановых сплавов / Н.Ф. Аношкин. - М.: Металлургия, 1980. - С. 36-38) определяли температуру полиморфного превращения ТПП сплава типа Ti-3Al-2.5V. Расчеты показали, что при использовании режима горячей деформации, предусмотренного прототипом, температура горячего прессования могла превысить температуру ТПП полиморфного превращения сплава типа Ti-3Al-2.5V примерно на 20÷30°С, что привело бы к необратимым последствиям как в изменении фазовой структуры сплава, так и механических свойств готовых труб.
Горячее прессование труб из сплава типа Ti-3Al-2.5V при температуре, определенной по зависимости (1), учитывающей влияние деформационного разогрева заготовки в процессе прессования в зависимости от степени и скорости деформации, обеспечивает сохранение микроструктуры исходной заготовки, представленной псевдо-α-фазовым составом (фиг. 2). Анализ микроструктуры холоднодеформированной трубы (фиг. 3) размером 38,1×5,36 мм из псевдо-α-сплава типа Ti-3Al-2.5V показал, что в результате проведения термических обработок в вакууме при температуре 700÷720°С получены рекристаллизованные равноосные α-зерна, вытянутые вдоль направления прокатки. Сохранение фазовой структуры металла заготовки в горячепрессованной трубе и затем в холоднодеформированной со степенью деформации 40÷44% обеспечивает получение требуемых механических свойств и отсутствие дефектов на поверхности холоднодеформированных труб.
Производство бесшовных холоднодеформированных труб из титанового сплава типа Ti-3Al-2.5V по предлагаемому способу обеспечило требуемые механические свойства труб, увеличение коэффициента выхода годного с одновременным снижением трудоемкости технологического процесса и затрат на производство.

Claims (7)

  1. Способ изготовления бесшовных холоднодеформированных труб из титанового сплава типа Ti-3Al-2,5V, включающий механическую обработку горячедеформированной цилиндрической заготовки, горячее прессование заготовки при температуре, не превышающей температуру полиморфного α→β-превращения, правку и механическую обработку горячепрессованных труб, последующую холодную прокатку по меньшей мере в три прохода при осуществлении промежуточных термических обработок в вакууме при температуре 690÷740°С и конечную термическую обработку труб готового размера в вакууме, отличающийся тем, что горячее прессование осуществляют при температуре TH, которую определяют по зависимости
  2. ТНПП-k⋅ε⋅υпр,
  3. где ТПП - температура полиморфного превращения, °С;
  4. k=0,15÷0,20 - эмпирический коэффициент, учитывающий влияние деформационного разогрева, °С⋅с/мм;
  5. ε - логарифмическая степень деформации;
  6. υпр - скорость перемещения деформирующего инструмента при прессовании, мм/с,
  7. при этом холодную прокатку осуществляют со степенью деформации от 40 до 44%.
RU2017116114A 2017-05-10 2017-05-10 Способ изготовления бесшовных холоднодеформированных труб из титанового сплава типа Ti-3Al-2,5V RU2661125C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017116114A RU2661125C1 (ru) 2017-05-10 2017-05-10 Способ изготовления бесшовных холоднодеформированных труб из титанового сплава типа Ti-3Al-2,5V

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017116114A RU2661125C1 (ru) 2017-05-10 2017-05-10 Способ изготовления бесшовных холоднодеформированных труб из титанового сплава типа Ti-3Al-2,5V

Publications (1)

Publication Number Publication Date
RU2661125C1 true RU2661125C1 (ru) 2018-07-11

Family

ID=62916870

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017116114A RU2661125C1 (ru) 2017-05-10 2017-05-10 Способ изготовления бесшовных холоднодеформированных труб из титанового сплава типа Ti-3Al-2,5V

Country Status (1)

Country Link
RU (1) RU2661125C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113976658A (zh) * 2021-10-22 2022-01-28 西部金属材料股份有限公司 一种超大规格钛合金管材的制备方法
RU2778319C1 (ru) * 2021-04-29 2022-08-17 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Способ изготовления холоднодеформированных бесшовных труб из титановых сплавов
CN117358778A (zh) * 2023-12-08 2024-01-09 成都先进金属材料产业技术研究院股份有限公司 一种钛合金无缝管及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2094148C1 (ru) * 1996-03-25 1997-10-27 Верхнесалдинское металлургическое производственное объединение Способ прессования труб и устройство для его осуществления
RU2127160C1 (ru) * 1998-04-20 1999-03-10 Открытое акционерное общество Верхнесалдинское металлургическое производственное объединение СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛОЙ ТРУБНОЙ ЗАГОТОВКИ ДЛЯ ПРОИЗВОДСТВА БЕСШОВНЫХ ТРУБ ИЗ ПСЕВДО α И (α+β) ТИТАНОВЫХ СПЛАВОВ
US6884305B1 (en) * 1999-08-12 2005-04-26 Nippon Steel Corporation High-strength α+β type titanium alloy tube and production method therefor
CN102389900B (zh) * 2011-09-17 2013-06-26 西部钛业有限责任公司 一种ta18航空钛管的高精度加工方法
RU2583566C1 (ru) * 2014-12-24 2016-05-10 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" СПОСОБ ИЗГОТОВЛЕНИЯ ХОЛОДНОДЕФОРМИРОВАННЫХ БЕСШОВНЫХ ТРУБ ИЗ ТИТАНОВОГО СПЛАВА Ti-3Al-2,5V

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2094148C1 (ru) * 1996-03-25 1997-10-27 Верхнесалдинское металлургическое производственное объединение Способ прессования труб и устройство для его осуществления
RU2127160C1 (ru) * 1998-04-20 1999-03-10 Открытое акционерное общество Верхнесалдинское металлургическое производственное объединение СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛОЙ ТРУБНОЙ ЗАГОТОВКИ ДЛЯ ПРОИЗВОДСТВА БЕСШОВНЫХ ТРУБ ИЗ ПСЕВДО α И (α+β) ТИТАНОВЫХ СПЛАВОВ
US6884305B1 (en) * 1999-08-12 2005-04-26 Nippon Steel Corporation High-strength α+β type titanium alloy tube and production method therefor
CN102389900B (zh) * 2011-09-17 2013-06-26 西部钛业有限责任公司 一种ta18航空钛管的高精度加工方法
RU2583566C1 (ru) * 2014-12-24 2016-05-10 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" СПОСОБ ИЗГОТОВЛЕНИЯ ХОЛОДНОДЕФОРМИРОВАННЫХ БЕСШОВНЫХ ТРУБ ИЗ ТИТАНОВОГО СПЛАВА Ti-3Al-2,5V

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2778319C1 (ru) * 2021-04-29 2022-08-17 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Способ изготовления холоднодеформированных бесшовных труб из титановых сплавов
CN113976658A (zh) * 2021-10-22 2022-01-28 西部金属材料股份有限公司 一种超大规格钛合金管材的制备方法
CN117358778A (zh) * 2023-12-08 2024-01-09 成都先进金属材料产业技术研究院股份有限公司 一种钛合金无缝管及其制备方法
CN117358778B (zh) * 2023-12-08 2024-03-08 成都先进金属材料产业技术研究院股份有限公司 一种钛合金无缝管及其制备方法

Similar Documents

Publication Publication Date Title
Karpov et al. Radial-shear rolling of titanium alloy VT-8 bars with controlled structure for small diameter ingots (≤ 200 mm)
RU2583566C1 (ru) СПОСОБ ИЗГОТОВЛЕНИЯ ХОЛОДНОДЕФОРМИРОВАННЫХ БЕСШОВНЫХ ТРУБ ИЗ ТИТАНОВОГО СПЛАВА Ti-3Al-2,5V
EP3546606B1 (en) Alpha+beta titanium extruded material
RU2644714C2 (ru) Способ изготовления прутков из сплавов на основе титана
RU2661125C1 (ru) Способ изготовления бесшовных холоднодеформированных труб из титанового сплава типа Ti-3Al-2,5V
Ozturk et al. Mechanical and microstructural evaluations of hot formed titanium sheets by electrical resistance heating process
CN104174685A (zh) 汽轮机转子槽锲用异型棒材及其加工方法
Pyshmintsev et al. Alloy Ti–3Al–2.5 V hot-extruded pipe metal structure and properties
RU2123065C1 (ru) Способ изготовления трубных изделий из циркониевых сплавов (варианты)
RU2778319C1 (ru) Способ изготовления холоднодеформированных бесшовных труб из титановых сплавов
JP2017078206A (ja) 均質な針状組織を有し、引張特性に優れたα+β型チタン合金熱間押出形材およびその製造方法
RU2707376C1 (ru) Способ изготовления трубных изделий высокой точности из гафния
Galkin et al. Development and experimental testing of the technology for producing deformed bars of alloy D16T from continuously casting billets of small diameter with low elongation ratios
Shinkin Residual stresses in elastoplastic bending of round bar
Halaczek Analysis of manufacturing bimetallic tubes by the cold drawing process
WO2021133196A1 (ru) Способ изготовления трубных изделий из циркониевого сплава
JP6520892B2 (ja) 継目無鋼管の製造方法および継目無鋼管製造設備
JP5382518B2 (ja) チタン材
RU2110600C1 (ru) Способ получения изделий из циркониевых сплавов
RU2604075C1 (ru) Способ получения наноструктурированных прутков круглого сечения из титанового сплава вт22
RU2794154C1 (ru) Способ изготовления заготовок трубных из титановых псевдо α-сплавов 5В и 37
CN115194065B (zh) 热膨胀敏感且低塑性Ti-Al-Nb合金的锻造工艺
RU2798021C1 (ru) Способ изготовления трубных изделий из циркониевого сплава
CN113702613B (zh) 一种确定材料发生动态再结晶临界条件的方法
Maksim et al. Design of the stamping process of large-sized turbine blades taking into account the technological characteristics of titanium alloys