WO2017111350A1 - 리튬 조촉매를 첨가하여 촉매의 활성도를 증가시킨 촉매 코팅 필터 - Google Patents

리튬 조촉매를 첨가하여 촉매의 활성도를 증가시킨 촉매 코팅 필터 Download PDF

Info

Publication number
WO2017111350A1
WO2017111350A1 PCT/KR2016/014208 KR2016014208W WO2017111350A1 WO 2017111350 A1 WO2017111350 A1 WO 2017111350A1 KR 2016014208 W KR2016014208 W KR 2016014208W WO 2017111350 A1 WO2017111350 A1 WO 2017111350A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
lithium
filter
activity
coating
Prior art date
Application number
PCT/KR2016/014208
Other languages
English (en)
French (fr)
Inventor
손희식
Original Assignee
(주)에프티넷
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에프티넷 filed Critical (주)에프티넷
Publication of WO2017111350A1 publication Critical patent/WO2017111350A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/52Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals

Definitions

  • the present invention relates to catalyst coatings and catalyst coating filters, and in particular, to purify particulate matter, odors / odors, carbon monoxide, oil components, VOCs (volatile organics) and NOx (nitrogen oxides) generated in combustion apparatus such as cookers and automobiles. It is for. More specifically, lithium (Li) cocatalyst was added to the noble metal catalyst coating and the oxide catalyst coating to improve the performance of the catalyst filter.
  • Air pollution is caused by nitrogen oxides (NOx) and particulate matter (PM) emitted from exhaust gases such as automobiles.
  • NOx nitrogen oxides
  • PM particulate matter
  • exhaust gas regulations are strengthened. Carbon monoxide is harmful to the human body.
  • the oxidation catalyst (Oxidize Catalyst) was initially applied as a post-treatment device of exhaust gas, but as the regulations are gradually tightened, recently, a particulate filter (PM) filter is additionally applied to cope with the regulation.
  • the oxidation catalyst converts incompletely burned hydrocarbons (HC, hydrocarbons) at high temperatures into H 2 O and CO 2, CO into CO 2, and NO into N 2 and NO 2.
  • the particulate matter filter plays a role of reducing particulate matter (PM), and holds PM inside the catalyst and regenerates PM by burning it in the catalyst after a certain period of time.
  • a typical filter is a porous SiC or cordierite filter, and the exhaust gas passes through a wall having fine pores to collect PM from the inner wall of the wall.
  • a catalyst of a noble metal component such as platinum, palladium or rhodium is mainly used for the ceramic carrier.
  • Republic of Korea Patent 0135141 proposed a deodorizing catalyst coating mixed with a precious metal Pt and Pd in an appropriate ratio to reduce the cooking smell of the microwave oven, but the adhesion of the coating layer is not enough to limit the filter structure to ceramic There was nothing but a problem.
  • DE 103 14 513 A1 also discloses a catalyst system for removing odorous substances in cooking, roasting, baking and grilling apparatuses, and WO00 / 59544 A1 discloses silane-based coating compounds with deodorizing activity.
  • the use of alkali metals for metal oxides in catalysts activated with catalysts is also known in the literature (E. N. Ponzi et al., Thermochim. Acta 421 (2004) 117). This document adds LiNO3 to a ceramic carrier as an oxidation catalyst for carbon soot in exhaust gas.
  • An object of the present invention for the above problems is to provide a catalyst coating filter that can more effectively remove the harmful gases, odors, oils and particulate matter generated from various devices in which combustion occurs.
  • Filter structures A catalyst layer formed on a surface of the filter structure;
  • the catalyst layer is composed of any one of (1) a catalyst component (2) a catalyst component and a binder (3) a catalyst component, a binder and a ceramic carrier;
  • the catalyst layer further comprises a lithium component, wherein the lithium component content is 0.01 to 3.0% by weight based on the metal lithium or lithium compound based on the total weight of the catalyst layer, the activity of the catalyst by adding a lithium promoter It is achieved by a catalyst coated filter with increased.
  • the lithium component may be any one or more of metal lithium, lithium oxide, or lithium compound.
  • the filter structure is made of any one or more of a ceramic material (including a ceramic carrier material), a metal and an organic material (foam), a mesh (mesh), a demister, One or more of felt, mat, foil and fiber; It may have a form of any one or more of a plate, rod, pipe, rod, cylinder, honeycomb structure.
  • the catalyst component is platinum, palladium, rhodium, iridium, ruthenium, tungsten, chromium, manganese, iron, cobalt, copper, zinc, cerium, rare earth elements (Sc, Y, La-based elements) , Cobalt, vanadium, tungsten, zirconium and oxides thereof.
  • the catalyst particle size may be in the range of 100 ⁇ m or less.
  • the binder may be any one or more of SiO 2, Al 2 O 3, TiO 2, Ce 2 O 3, ZrO 2, zeolite, rare earth oxides (Sc, Y, La-based element oxides), fine powders of glass components and inorganic polymers. have.
  • the size of the binder particles may be in the range of 1nm to 10 ⁇ m.
  • the inorganic polymer may be any one of a silicone resin and a polymeric phosphate.
  • the binder may further comprise a binder of 1 to 7% by weight of the organic component relative to the entire catalyst layer.
  • the ceramic carrier is alumina (Al2O3), silica (SiO2), titania (TiO2), zeolite, ceria (Ce2O3), zirconia (ZrO2), magnesia, vanadate (V2O5), cobalt oxide (CoOx), iron oxide (FeOx), tungsten oxide, molybdenum oxide (MoO3), antimony oxide (SbO2) and rare earth oxides (Sc, Y, La-based element oxide) may be any one or more.
  • the particle size of the ceramic carrier may have a range of 0.01 to 100 ⁇ m.
  • the catalyst layer is characterized in that it comprises a pigment or an additive, may be to increase the activity of the catalyst by adding a lithium promoter.
  • the filter structure is 200 ⁇ m in size by the mechanical micromachining process of sand blasting, shot peening, water jet, press, rolling, cutting on the surface
  • the fine concavities and convexities may be further formed.
  • the filter structure may be manufactured further comprising any one or more steps of an electrochemical surface treatment or heat treatment under an oxidizing atmosphere.
  • the catalyst layer is a wash coat (dip coating) (dip coating) (dip coating) (flow coating), spin coating (spin coating), spray coating (spray coating), brushing (brushing) may be formed by any one or more processes.
  • the addition of the lithium component in the formation of the catalyst layer is lithium metal particles, lithium oxide particles (sol), lithium dissolved in a solvent in a coating solution consisting of the catalyst component, the binder and a solvent It may be added in any one or more of the form of the precursor compound of (precusor).
  • At least one selected from the front, rear, top, bottom, left and right of the filter structure may be further disposed at least one selected from the odor adsorption filter, gas phase decomposition filter, particulate decomposition filter, heating device. .
  • Applying the catalyst coating filter of the present invention according to the above configuration can improve the efficiency of the existing noble metal catalyst filter and oxide catalyst filter to play an effective role in the oxidative decomposition of gaseous and particulate matter, thereby effectively purifying the combustion gas You can do it.
  • FIG 1 shows various types of filter structures to which the present invention can be applied.
  • FIG. 2 is a perspective view of a catalyst coating filter using a metal mesh according to an embodiment of the present invention.
  • FIG. 3 is a graph showing a change in catalyst efficiency according to an embodiment of the present invention.
  • a filter structure having a large specific surface area and a small gas passage path and a catalyst for oxidizing gas and particulate matter to a harmless gas are used.
  • a filter structure having a large specific surface area is required.
  • the structure for the catalyst must not only have a large reaction surface area, but also a long contact time with the catalyst surface.
  • Suitable structures for this purpose include various methods such as foam, mesh, demister, felt, mat, foil, and fiber made of at least one material of ceramic, metal and organic material.
  • foam, mesh, demister, felt, mat, foil, and fiber made of at least one material of ceramic, metal and organic material.
  • it can be used without limitation, such as plate, rod, pipe, rod, cylinder, honeycomb structure, etc.
  • various types of filter structure may include a pore structure.
  • the smaller the porosity of the filter structure is advantageous to purify the toxic substances, but on the contrary, the resistance (back pressure) to the gas flow increases, making it impossible to use, so that a proper compromise between the degree of compactness and the back pressure of the gas flow is required.
  • FIG. 1 illustrates various embodiments of a filter structure such as a mesh, a metal foam, a demister, a honeycomb structure, a cylindrical wound filter, and the like.
  • a filter structure such as a mesh, a metal foam, a demister, a honeycomb structure, a cylindrical wound filter, and the like.
  • FIG. 2 is a perspective view of a filter according to an embodiment of the present invention.
  • a mesh structure (1) consisting of two or more unit mesh plates (1a, 1b) made of a metal material and to increase the specific surface area of the unit mesh plates (1a, 1b) by using a mechanical micromachining process
  • the fine roughness 5 is formed on the surface.
  • the method of forming the fine iron (5, dent) may be any one or more of sand blasting, shot peening, water jet, fine press, fine rolling, and fine cutting. have.
  • the smaller the size (M) of the fine concave-convex (5) is preferably smaller than 200 ⁇ m, but is generally in the range of 1 to 200 ⁇ m due to the characteristics of the process.
  • the effect of the fine iron 5 may increase the surface area of the mesh structure 1, increase the contact area with the ceramic carrier or the catalyst layer 13 in the catalyst coating process, and the adhesion of the ceramic carrier layer or the catalyst layer by the fine iron Is increased.
  • the metal filter structure may be further subjected to any one or more of heat treatment under an electrochemical surface treatment or an oxidizing atmosphere.
  • a ceramic carrier layer is formed on the surface of the metal mesh using a conventional catalyst coating process, and the catalyst component is additionally coated to complete the catalyst filter.
  • the ceramic carrier layer may be omitted, and the coating of the catalyst component may simultaneously impart the role of the ceramic carrier layer by adding ceramic particles.
  • the filter structure may be made of a ceramic carrier material to directly impart the role of the carrier to the structure. The preparation and components of coatings for catalyst coating are described below.
  • the catalyst layer 13 may be used alone, in a state in which a binder is added to the catalyst component, or in a state in which a binder and a ceramic carrier are added to the catalyst component. And it is based on that the lithium component is added to each of these.
  • the significance of each component will be described.
  • the types of catalysts used to decompose gas or particulate matter are largely divided into noble metal catalysts and oxide catalysts.
  • Precious metal catalysts are mainly used in high temperature applications, and oxide catalysts are mainly suitable for low temperature applications.
  • Precious metal catalysts use noble metal components such as platinum, palladium, rhodium, iridium and ruthenium as ceramic catalysts, and oxide catalysts include MnO 2, Mn 2 O 3, rhodonite (MnO 2 ⁇ SiO 2), tefroid (MnSiO 4), and allegite Manganese oxides, such as (5MnO2.2SiO2), and oxides, such as copper oxide, are used as a catalyst.
  • the particle size of the catalyst is preferably composed of particles of 100 ⁇ m or less.
  • transition metal oxides and rare earth oxides Sc, Y, La-based elements
  • Ce cerium
  • La lanthanum
  • Co cobalt
  • Zr zirconium oxides
  • V vanadium
  • W tungsten
  • Ce cerium
  • Fe iron
  • the ceramic carrier or carrier layer serves to increase the surface area of the filter, and the filter structure may be made of a ceramic material and used as a catalyst carrier. In addition, by forming a ceramic carrier layer on the filter structure may be used as a carrier, it may be used by mixing the ceramic powder for the carrier to the catalyst coating agent. When used in combination, the ceramic powder also serves as a filler for the coating layer.
  • the particle size of the ceramic carrier is preferably composed of particles in the range of 0.01 to 100 ⁇ m, and only one type of particle size may be used, but appropriate blending and use of the particle size may be used depending on the intended use.
  • Ceramics used as a carrier are alumina (Al2O3), silica (SiO2), titania (TiO2), zeolite, ceria (Ce2O3), zirconia (ZrO2), magnesia, vanadate (V2O5), cobalt oxide (CoOx), iron oxide (FeOx). ), Tungsten oxide, molybdenum oxide (MoO 3), antimony oxide (SbO 2), and rare earth oxides (Sc, Y, La-based element oxides).
  • a binder of ceramic or catalyst oxide is required.
  • Gas cracking by a catalyst requires an appropriate temperature to increase the activity of the catalyst. Since the cooking temperature is around 250 °C and the exhaust gas after combustion in automobiles is also in the range of 150 °C to 400 °C, when the binder is an organic component, the bonding strength of the coating layer is weakened by heat, so an inorganic binder (ceramic provider) is used. It is desirable to.
  • the inorganic binder may be any one or more of SiO 2, Al 2 O 3, TiO 2, Ce 2 O 3, ZrO 2, zeolite, rare earth oxides (Sc, Y, La-based element oxides), fine powders of glass components, and inorganic polymers.
  • the particle size of the sol or the fine particles is preferably in the range of 1 nm to 10 ⁇ m, more preferably 1000 nm or less.
  • the binder content in the coating layer is preferably 2-35% by weight.
  • the inorganic polymer may be any one of a silicone resin and a phosphate polymer.
  • a suitable organic binder helps the firmness of the coating layer, but the organic component is preferably 7% by weight or less.
  • the organic component exceeds 7% by weight, heat resistance and weather resistance are deteriorated, and toxic gas is generated when a high temperature contact or fire occurs, and the coating layer is burned and combined with the attached contaminants to deteriorate the washability.
  • a lithium component is added to the noble metal-based or oxide-based catalyst coating layer, and the content of the lithium component is also optimized in the range of 0.01 wt% to 3.0 wt%.
  • the lithium component may be added to the catalyst layer in the form of metal lithium particles or lithium oxide (LiO 2, Li 2 O, Li 2 O) particles. When added as particles or sol, the particle size is preferably in the range of 5 nm to 50 ⁇ m.
  • the lithium may be added to the coating solution using a lithium compound (LiCl, LiNO 3, LiOH, LiSO 4, Li 2 CO 3, etc.) soluble in a solvent as a precursor of lithium. The precursor is then converted to lithium, lithium oxide or lithium compound when the solvent is dried.
  • the content of lithium or lithium oxide is preferably 0.01% by weight to 3.0% by weight, and more preferably 0.01% by weight to 1.5% by weight based on the total weight of the coating layer.
  • the weight of the entire coating layer means the total weight of the catalyst component and the binder including the ceramic carrier layer.
  • the performance may decrease because the active area of the catalyst is reduced due to the aggregation or overlapping phenomenon rather than evenly dispersed on the carrier, and when used too much, the dispersion degree is lowered, thereby showing low performance.
  • the dispersion degree is lowered, thereby showing low performance.
  • it when added by a specific ratio, it has excellent active properties.
  • Lithium or lithium oxides also tend to form molecules in the form of polymers with silicon oxide or aluminum oxide in solution, breaking the bonds of the linkages when dried, preventing the dense formation of silicon oxide or alumina layers, which are often used as binders. . This reduces the phenomenon that the binder surrounds the catalyst surface, thereby improving the adverse effect of the binder on the catalyst.
  • the catalyst coating mainly uses a coating agent prepared by adding water or an alcoholic solution as a solvent and adding various components such as catalyst components, ceramic particles, binders, additives, and pigments.
  • the composition of the coating agent may be composed of a catalyst component alone or a catalyst component and a binder, and may also be composed of a catalyst component, a binder, and a ceramic carrier.
  • additives or components such as pigments may be added to the coating.
  • the catalyst component, ceramic particles, and binder have been described above, and the present invention is characterized by addition of a lithium component as described above.
  • the addition method of a catalyst component, ceramic particle, and a binder may use a conventional method, and the addition method of lithium is also as mentioned above.
  • the method of forming the catalyst coating is not limited, and for example, a wash coat, a dip coating method, a flowcoating method, a spin coating method, a spray method Any method such as coating or brushing may be used.
  • the coating method is appropriately selected depending on the type and form of the substrate to be coated or the thickness of the desired coating film.
  • the catalyst coating layer preferably has a thickness of 0.1 to 100 microns.
  • At least one selected from among an odor adsorption filter, a gas phase decomposition filter, a particulate decomposition filter, and a heating device may be further disposed on at least one of the front, rear, top, bottom, left, and right sides of the filter structure. This can further increase the efficiency of the filter.
  • a stainless steel mesh net (50 mesh class) was prepared. Subsequently, fine meshes having a size of 100 ⁇ m or less were formed on the surface of the mesh line by using a microfine iron pressing process. The mesh was bent in the form of a thread from the plane and processed into a straight corrugated strip (7). At this time, the height (h) of the mountain was 0.8 mm, and the distance (p) between the mountains was 1.5 mm. The corrugated mesh was then cut into circles 150 mm in diameter (see FIG. 2).
  • a catalyst coating layer having the composition shown in Table 1 was formed by a conventional wash coat process.
  • pure water was used as the solvent
  • noble metal catalyst a one-step process in which gamma alumina was directly added to the coating solution without forming a ceramic carrier layer was used. Drying after coating was carried out at 500 °C, the thickness of the coating layer was 50 ⁇ m.
  • Oxide catalyst coating (composition ratio% by weight)
  • Kinds catalyst additive Binder 1 Binder 2 Chemical species MnO 2 Li 2 O Al 2 O 3 sol SiO 2 sol Average particle size 2.5 ⁇ m 1.0 ⁇ m 50 nm 50 nm No.
  • Precious metal catalyst coating (composition ratio% by weight)
  • Kinds catalyst Ceramic carrier additive Binder 1 Binder 2 Chemical species Pt ⁇ -Al 2 O 3 Li 2 O Al 2 O 3 sol SiO 2 sol Average particle size 2.5 ⁇ m 1.0 ⁇ m 50 nm 50 nm No. 7 1.0 84 - 5 10 8 1.0 84 0.01 5 10 9 1.0 83 0.50 5 10 10 1.0 83 1.00 5 10 11 1.0 82 1.50 5 10 12 1.0 82 2.00 5 10
  • the filter of the above example was mounted, and the internal fan was operated to measure the gas removal rate after 5 minutes.
  • the oxide catalyst has a better gas removal rate than the noble metal catalyst because the temperature is relatively low at 200 ° C.
  • FIG. 3 The removal efficiency increases rapidly with the addition of lithium, but when the addition of lithium is more than 1.5% by weight, the performance improvement effect is significantly reduced.
  • the filter of the present invention can be variously applied to other filter fields as well as the filter field for a combustion device such as a cooking appliance or a vehicle.
  • a combustion device such as a cooking appliance or a vehicle.
  • each of the embodiments illustrated above may be used in any combination according to the needs of those skilled in the art, combinations not mentioned in this specification should also be construed to be within the protection scope of the present invention.
  • catalyst layer (or carrier layer)

Abstract

본 발명은 조리기기 및 자동차 등 연소장치에서 발생하는 입자상 물질, 악취/냄새, 일산화탄소, 오일성분, VOC(휘발성 유기물) 및 NOx(질소산화물)의 정화를 위한 필터에 관한 것이다. 그 구성은; 필터 구조체; 상기 필터 구조체 표면에 형성되는 촉매층을 포함하되; 상기 촉매층은, ①촉매 성분 ②촉매 성분 및 결합제 ③촉매성분, 결합제 및 세라믹 담체 중 어느 하나로 이루어져 있으며; 상기 촉매층은 리튬 성분을 더 포함하고, 리튬 성분 함량은 촉매층 전체 중량에 대하여 금속 리튬 또는 리튬화합물을 기준으로 0.01중량% 내지 3.0중량%인 것을 특징으로 한다.

Description

리튬 조촉매를 첨가하여 촉매의 활성도를 증가시킨 촉매 코팅 필터
본 발명은 촉매 코팅 및 촉매 코팅 필터에 관한 것으로서, 특히 조리기기 및 자동차 등 연소장치에서 발생하는 입자상 물질, 악취/냄새, 일산화탄소, 오일성분, VOC(휘발성 유기물) 및 NOx(질소산화물)의 정화를 위한 것이다. 더욱 자세하게는 귀금속 촉매 코팅과 산화물 촉매 코팅에 리튬(Li) 조촉매를 첨가하여 촉매 필터의 성능을 향상시킨 것이다.
대기오염은 자동차 등 배기가스에 포함되어 배출되는 질소산화물(NOx)과 입자상물질(PM : Particulate matter)에 의한 것이며, 이에 대응하기 위하여 배기가스 규제를 강화하고 있으며, 동반되어 발생하는 악취/냄새, 일산화탄소 등은 인체에 유해하다. 배기가스의 후처리 장치로 초기에는 산화촉매(Oxidize Catalyst)를 적용하였으나, 규제가 점차 강화됨에 따라 최근에는 입자상(PM) 필터를 추가로 적용하여 그 규제에 대응하고 있다.
산화 촉매는 불완전 연소된 하이드로카본(HC, 탄화수소;hydrocarbon)을 고온에서 촉매가 H2O와 CO2로, CO를 CO2로, NO를 N2와 NO2로 변환시킨다. 입자상물질필터는 입자상물질(PM)을 저감시키는 역할을 하며, 촉매 내부에 PM을 잡아 두고 일정 기간이 지나면 PM을 촉매 안에서 태워 재생시킨다. 대표적인 것은 다공질 SiC 또는 코디어라이트 재질의 필터이며, 배기가스가 미세한 기공을 가진 벽을 통과하게 하여 벽 내면에서 PM을 포집하는 구조이다.
상기에서 사용되는 촉매는 세라믹 담체에 백금, 팔라듐 또는 로듐과 같은 귀금속 성분의 촉매가 주로 사용되고 있다.
한편 조리기기의 경우, 조리된 음식물을 조리기기 내부로부터 꺼낸 후에도 조리기기의 내부에 기름때는 물론이고 냄새, 가스상 및 입자상 물질이 남아있게 된다. 이로 인해 조리기기의 내부로부터 냄새물질이 외부로 나오게 되어, 사용자에게 불쾌감을 주고, 최근의 고온 가열 세정(500℃ 부근에서의 자체 정화(self cleaning))으로 인해 이러한 문제점이 더욱 커지고 있다.
이의 해결을 위해, 일예로 조리기기 내에서 플라즈마를 발생시켜 냄새분자를 분해하거나 유해가스를 무해가스로 변화시키는 기술이 있으며(대한민국 특허출원 제10-2008-0015930호, 제10-2006-0067638호), 플라즈마와 자외선을 결합하여 응용하는 기술도 있다(대한민국 실용신안등록출원 제20-2003-0008522호). 또한 내부에 탈취 필터를 장착하여 냄새를 줄이고자 하는 시도도 있었다(대한민국 특허출원 제10-2004- 0094306호). 그러나 이러한 방법은 여러 가지 문제점이 있고 효용성에 한계가 있어 실용화가 어렵다. 또한 대한민국 등록특허 0135141는 전자레인지의 조리냄새를 줄이기 위해 세라믹 담체에 귀금속인 Pt와 Pd를 적절한 비율로 혼합한 탈취촉매 코팅을 제안한 바 있으나, 코팅층의 밀착성이 충분하지 않아 필터 구조체를 세라믹으로 한정할 수 밖에 없는 문제점이 있었다.
또한 DE 103 14 513 A1에는 조리, 볶기, 굽기 및 그릴 장치에서의 냄새 나는 물질을 제거하기 위한 촉매 시스템이 개시되어 있으며, WO00/59544 A1은 탈취 활성을 갖는 실란계 코팅 화합물을 개시하고 있다. 또한 촉매로 활성화된 필터 내의 금속 산화물에 대한 알칼리 금속의 용도가 문헌에 공지되어 있다 (E. N. Ponzi et al., Thermochim. Acta 421 (2004) 117). 이 문헌은 배기가스의 탄소 검댕이(soot)에 대한 산화 촉매로서 세라믹 담체에 LiNO3를 첨가한 것이다.
위와 같은 문제에 대한 본 발명의 목적은, 연소 현상이 발생하는 각종 장치로부터 발생된 유해한 가스, 냄새, 오일 및 입자상 물질을 보다 효과적으로 제거할 수 있는 촉매 코팅 필터를 제공하는데 있다.
위의 과제는; 필터 구조체; 상기 필터 구조체 표면에 형성되는 촉매층을 포함하되;
상기 촉매층은, ①촉매 성분 ②촉매 성분 및 결합제 ③촉매성분, 결합제 및 세라믹 담체 중 어느 하나로 이루어져 있으며;
상기 촉매층은 리튬 성분을 더 포함하고, 상기 리튬 성분 함량은 촉매층 전체 중량에 대하여 금속 리튬 또는 리튬화합물을 기준으로 0.01중량% 내지 3.0중량%인 것을 특징으로 하는, 리튬 조촉매를 첨가하여 촉매의 활성도를 증가시킨 촉매 코팅 필터에 의해 달성된다.
본 발명의 특징에 의하면,
상기 리튬 성분은 금속 리튬, 리튬 산화물 또는 리튬 화합물 중 어느 하나 이상일 수 있다.
본 발명의 다른 특징에 의하면, 상기 필터 구조체는 세라믹(세라믹 담체 재질을 포함하는 것으로 함), 금속 및 유기물 중 어느 하나 이상의 재질로 이루어진 폼(foam), 메쉬(mesh), 데미스터(demister), 펠트, 매트, 포일 및 섬유 중 어느 하나 이상을 사용하며; 판, 막대, 파이프, 봉, 실린더, 허니컴 구조 중 어느 하나 이상의 형태를 가질 수 있다.
본 발명의 또 다른 특징에 의하면, 상기 촉매 성분은 백금, 팔라듐, 로듐, 이리듐, 루테늄, 텅스텐, 크롬, 망간, 철, 코발트, 구리, 아연, 세륨, 희토류 원소(Sc, Y, La계 원소), 코발트, 바나듐, 텅스텐, 지르코늄 및 이들의 산화물 중 어느 하나 이상일 수 있다.
본 발명의 또 다른 특징에 의하면, 상기 촉매 입자 크기는 100μm 이하의 범위일 수 있다.
본 발명의 또 다른 특징에 의하면, 상기 결합제는 SiO2, Al2O3, TiO2, Ce2O3, ZrO2, 제올라이트, 희토류산화물(Sc, Y, La계 원소 산화물), 유리성분의 미세분말 및 무기 폴리머 중 어느 하나 이상일 수 있다.
본 발명의 또 다른 특징에 의하면, 상기 결합제 입자의 크기는 1nm 내지 10μm 의 범위일 수 있다.
본 발명의 또 다른 특징에 의하면, 상기 무기 폴리머는 실리콘 수지 및 인산염 중합체(polymeric phosphate) 중 어느 하나일 수 있다.
본 발명의 또 다른 특징에 의하면, 상기 결합제는 전체 촉매층 대비 1~7중량%의 유기성분의 결합제를 더 포함할 수 있다.
본 발명의 또 다른 특징에 의하면, 상기 세라믹 담체는 알루미나(Al2O3), 실리카(SiO2), 타이타니아(TiO2), 제올라이트, 세리아(Ce2O3), 지르코니아(ZrO2), 마그네시아, 바나데이트(V2O5), 산화코발트(CoOx), 산화철(FeOx), 산화텅스텐, 산화몰리브데늄(MoO3), 산화안티몬(SbO2) 및 희토류산화물(Sc, Y, La계 원소 산화물) 중 어느 하나 이상일 수 있다.
본 발명의 또 다른 특징에 의하면, 상기 세라믹 담체의 입자 크기는 0.01 내지 100μm의 범위를 가질 수 있다.
본 발명의 또 다른 특징에 의하면, 상기 촉매층은 안료 또는 첨가제를 포함하는 것을 특징으로 하는, 리튬 조촉매를 첨가하여 촉매의 활성도를 증가시킨 것일 수 있다.
본 발명의 또 다른 특징에 의하면, 상기 필터 구조체는 표면에 샌드블라스트(sand blasting), 쇼트 피닝(shot peening), 워터 젯(water jet), 프레스, 롤링, 절삭의 기계적 미세가공 공정에 의해 크기 200μm 이하의 미세 요철이 더 형성되는 것일 수 있다.
본 발명의 또 다른 특징에 의하면, 상기 필터 구조체는 전기화학적 표면처리 또는 산화분위기 하에서 열처리 중 어느 하나 이상의 단계를 더 포함하는 제조될 수 있다.
본 발명의 또 다른 특징에 의하면, 상기 촉매층은 위시 코트(wash coat), 딥 코팅법(dip coating), 흘림법(flow coating), 스핀 코팅법(spin coating), 스프레이법(spray coating), 붓질(brushing) 중 어느 하나 이상의 공정에 의해 형성되는 것일 수 있다.
본 발명의 또 다른 특징에 의하면, 상기 촉매층의 형성 공정에서 리튬 성분의 첨가는 상기 촉매 성분, 상기 결합제 및 용매로 이루어진 코팅 용액에 금속 리튬의 입자, 리튬 산화물 입자(졸), 용매에 용해되는 리튬의 전구체(precusor) 화합물의 형태 중 어느 하나 이상의 형태로 첨가될 수 있다.
본 발명의 또 다른 특징에 의하면, 상기 필터 구조체의 전방, 후방 및 상하좌우 중 어느 한 곳 이상에는 냄새 흡착 필터, 가스상 분해 필터, 입자상 분해 필터, 가열장치 중 선택된 1종 이상이 더 배치될 수 있다.
위와 같은 구성에 따른 본 발명의 촉매 코팅 필터를 적용하게 되면 기존 귀금속계 촉매필터와 산화물계 촉매필터의 효율을 개선하여 가스상 및 입자상 물질의 산화 분해에 효과적인 역할을 할 수 있게 됨으로써 연소가스를 효과적으로 정화할 수 있게 된다.
도 1은 본 발명을 적용할 수 있는 다양한 종류의 필터 구조체이다.
도 2는 본 발명의 실시예에 따른 금속 메쉬를 이용한 촉매 코팅 필터의 사시도이다.
도 3은 본 발명의 실시예에 따른 촉매 효율의 변화를 나타낸 그래프이다.
이하, 첨부된 도면을 참조하여 본 발명의 구체적인 내용을 상세하게 설명한다.
연소현상의 결과로 발생하는 가스상 및 입자상 물질 제거하기 위해서는 비표면적이 크고, 작은 기체 통과경로를 가지는 필터 구조체와 가스 및 입자상 물질을 산화시켜 무해한 가스로 변환시키는 촉매가 사용된다.
먼저 본 발명의 촉매 필터를 구현하기 위해서는 비표면적을 넓게 한 필터 구조체가 필요하다. 촉매를 위한 구조체는 반응 표면적 커야 할 뿐만 아니라 촉매 표면과의 접촉시간도 길어야 한다.
이를 위해 적당한 구조체로는 세라믹, 금속 및 유기물 중 어느 하나 이상의 재질로 이루어진 폼(foam), 메쉬(mesh), 데미스터(demister), 펠트, 매트, 포일, 섬유 등 여러 방안이 있다. 그 형태에 있어서는 판, 막대, 파이프, 봉, 실린더, 허니컴 구조 등 제한 없이 사용 가능하며, 이때 여러 가지 형태의 필터 구조체는 기공 구조를 포함할 수 있다. 또한 필터 구조체의 기공도가 작을수록 유해 물질을 정화하는 데에는 유리하나 반대로 기체 유동에 저항(배압)이 커지게 되어 사용이 불가능해지므로 촘촘한 정도와 가스 유동의 역압 사이에서 적절한 타협이 필요하다.
도 1은 메쉬, 메탈폼, 데미스터, 허니컴 구조, 원통형의 권취형 필터 등 필터 구조체에 대한 다양한 실시예를 나타낸 것이다. 통상적인 형태로서 상업적으로 쉽게 입수할 수 있는 구조체의 예이다.
도 2는 본 발명의 일실시예에 의한 필터의 사시도이다. 먼저 금속 재질로 된 2장 이상의 단위메쉬판(1a,1b)으로 구성되는 메쉬구조체(1)를 준비하고 그의 비표면적을 증가시키기 위해 기계적 미세가공 공정을 이용하여 단위메쉬판(1a,1b)의 표면에 미세요철(5)을 형성시킨다. 미세요철(5, dent)을 형성시키는 방법으로는 샌드 블라스트(sand blasting), 쇼트 피닝(shot peening), 워터 젯(waterjet), 미세 프레스 가공, 미세 롤링, 미세 절삭가공 중 어느 하나 이상의 공정일 수 있다. 미세요철(5)의 크기(M)는 200㎛ 이하로 작을수록 바람직하나 공정의 특성상 1 ~ 200㎛가 범위가 일반적이다.
미세요철(5)의 효과는 메쉬구조체(1)의 표면적을 증가시킬 수 있고, 촉매 코팅 공정에서 세라믹 담체 또는 촉매층(13)과의 접촉면적을 늘리고 세라믹 담체층 또는 촉매층의 밀착성이 미세요철에 의해 증가된다는 것이다. 또한 밀착성을 더욱 개선하기 위해 금속 필터 구조체에 추가적으로 전기화학적 표면처리 또는 산화분위기 하에서 열처리 중 어느 하나 이상의 처리를 더 실시할 수 있다.
그 후 금속 메쉬 표면에 통상의 촉매 코팅 공정을 이용하여 세라믹 담체층을 형성시키고, 추가적으로 촉매성분을 코팅하여 촉매필터가 완성된다. 이때 세라믹 담체층은 생략될 수도 있으며, 촉매성분의 코팅시 동시에 세라믹 입자를 첨가하여 세라믹 담체층의 역할을 부여할 수도 있다. 또한 필터 구조체를 세라믹 담체 재질로 하여 구조체에 담체의 역할을 직접 부여할 수도 있다. 촉매 코팅을 위한 코팅제의 제조와 성분에 대해서는 이하에서 설명한다.
본 발명에서의 촉매층(13)은, 촉매 성분이 단독으로 사용되거나, 촉매 성분에 결합제가 첨가된 상태로 사용되거나, 촉매성분에 결합제와 세라믹 담체가 첨가된 상태로 사용될 수 있다. 그리고 이들 각각에 리튬 성분이 추가되고 있는 것을 기본으로 하고 있다. 이하 각 성분의 의의를 설명하기로 한다.
<촉매 성분>
가스 또는 입자상 물질의 분해에 쓰이는 촉매의 종류로는 크게 귀금속 촉매와 산화물 촉매로 구분된다. 귀금속 촉매는 주로 고온의 응용처에서 사용되며, 산화물 촉매는 주로 저온의 응용처에 적합하다. 귀금속 촉매는 세라믹 담체에 백금, 팔라듐, 로듐, 이리듐, 루테늄과 같은 귀금속 성분을 촉매로 사용하고 있으며, 산화물 촉매는 MnO2, Mn2O3 , 로도나이트(MnO2ㆍSiO2 ), 테프로이드(MnSiO4), 알레그하나이트(5MnO2ㆍ2SiO2) 등의 망간 산화물과 산화구리 등의 산화물을 촉매로 사용하고 있다. 촉매의 입자 크기는 100 μm 이하의 입자로 구성되는 것이 바람직하다.
한편, 전이금속 산화물과 희토류 산화물(Sc, Y, La계 원소), 특히 Ce(세륨), La(란타늄), Co(코발트) 및 Zr(지르코늄)의 산화물이 매연 및 유기화합물의 산화에 대해서 촉매적 활성을 보인다는 것이 공지 기술로부터 알려져 있다. 또한 Cr(크롬), Zn(아연)의 산화물도 촉매로 사용될 때가 있다.
이외에도 조촉매(promoter)로서 V(바나듐), W(텅스텐), Ce(세륨), Fe(철)는 화학반응에서 촉매의 활성을 높이기 위해 사용되며, 산화/환원반응을 저온에서 활발히 유도해 내는 특징이 있다. 또한, Ce, Fe는 황(S, sulfur)에 대한 내성을 강화시켜 줄 뿐만 아니라, 촉매의 구조를 안정화시켜 줄 수 있기 때문에 안정성 및 내구성을 개선하는 효과가 있다.
<세라믹 담체>
세라믹 담체 또는 담체층은 필터의 표면적을 증가시키는 역할을 하는 것으로서, 필터 구조체를 세라믹 재질로 만들어 그 자체를 촉매의 담체로 사용할 수 있다. 또한 필터 구조체에 세라믹 담체층을 형성시켜 담체로 사용할 수도 있으며, 촉매 코팅제에 담체용 세라믹 분말을 혼합하여 사용할 수 있다. 혼합해서 사용할 경우, 세라믹 분말은 코팅층의 충진제 역할도 동시에 하게 된다. 세라믹 담체의 입자 크기는 0.01 ~ 100μm 의 범위의 입자로 구성되는 것이 바람직하며, 한 종류의 입자 크기만을 사용하여도 무방하나, 사용처에 따라 입자크기의 적절한 배합 사용도 가능하다.
담체로 사용되는 세라믹은 알루미나(Al2O3), 실리카(SiO2),타이타니아(TiO2), 제올라이트, 세리아(Ce2O3), 지르코니아(ZrO2), 마그네시아, 바나데이트(V2O5), 산화코발트(CoOx), 산화철(FeOx), 산화텅스텐, 산화몰리브데늄(MoO3), 산화안티몬(SbO2) 및 희토류산화물(Sc, Y, La계 원소 산화물) 중 어느 하나 이상일 수가 있다.
<결합제>
필터 구조체에 세라믹 담체 또는 산화물 촉매를 코팅할 경우, 세라믹 또는 촉매 산화물의 결합제가 필요하다. 촉매에 의한 가스분해는 촉매의 활성도를 높이기 위해 적정 온도가 필요하다. 조리시의 온도가 약 250℃ 부근이고 자동차 등에서 연소후의 배기가스도 150℃ 내지 400℃의 범위이므로 결합제(binder)가 유기성분일 경우 코팅층의 결합력이 열에 의해서 약화되므로 무기 결합제(세라믹 바이더)를 사용하는 것이 바람직하다.
무기 결합제는 SiO2, Al2O3, TiO2, Ce2O3, ZrO2, 제올라이트, 희토류산화물(Sc, Y, La계 원소 산화물), 유리성분의 미세분말 및 무기 폴리머 중 어느 하나 이상일 수가 있다. 이때 졸 또는 미세입자의 입자크기는 1nm 내지 10μm의 범위가 바람직하며, 1000nm 이하가 더욱 바람직하다. 본 발명에서는 코팅층 내의 결합제 함량이 2-35중량%가 바람직하다. 여기서 무기 폴리머는 실리콘 수지 및 인산염 중합체(polymeric phosphate) 중 어느 하나일 수 있다.
한편, 사용온도가 250℃ 이하일 경우, 적절한 유기 결합제는 코팅층의 견고성에 도움을 주나, 이때 유기성분은 7중량% 이하가 바람직하다. 유기성분이 7 중량%를 넘을 경우 내열성, 내후성이 떨어지고, 고온 접촉 또는 화재 발생시에 유독가스를 발생시키며, 코팅층이 연소되어 부착된 오염물과 결합하여 세척성이 저하된다.
<리튬 원소의 첨가>
Li2NH의 리튬 화합물이 암모니아를 분해하여 수소로 전환시키는 공정에서 촉매의 효율을 증가시킨다는 최근의 보고가 있다. 즉 촉매의 활성성분과 상호작용하여 활성 고체 성분의 전자구조 또는 결정구조를 변화시켜 촉매작용을 받는 물질에 미치는 화학적 효과를 변화시켜 촉매의 효율에 영향을 미친다. 또한 지르코니아(ZrO2) 담체에 LiNO3 또는 Li2O를 함유시켜 탄소의 산화 촉매반응의 개시온도를 낮추었다는 보고도 있다. 그러나 이때 함유량은 5% 이상의 첨가로 개시되어 있다.
본 발명에서는 이와는 달리 귀금속계 또는 산화물계 촉매 코팅층에 리튬 성분을 첨가한 것이며, 리튬 성분의 함유량도 0.01중량% 내지 3.0중량%의 범위로 최적화 하였다. 이때 리튬 성분은 금속리튬 입자, 리튬 산화물(LiO2, Li2O,Li2O) 입자 형태로 촉매층에 첨가할 수 있다. 입자 또는 졸로 첨가할 경우 입자의 크기는 5nm 내지 50μm 범위가 바람직하다. 또한 리튬의 첨가는 용매에 용해 가능한 리튬 화합물(LiCl, LiNO3, LiOH, LiSO4, Li2CO3 등)을 리튬의 전구체(precursor)로 사용하여 코팅 용액에 투입할 수도 있다. 이때 전구체는 용매가 건조될 때 리튬, 리튬 산화물 또는 리튬 화합물로 전환된다.
본 발명에 따르면 상기 리튬 또는 리튬 산화물의 함량은 코팅층 전체 중량에 대하여 0.01중량% 내지 3.0중량%인 것이 바람직하며, 0.01중량% 내지 1.5중량%가 더욱 바람직하다. 여기서 코팅층 전체의 중량은 세라믹 담체층을 포함하여 촉매 성분과 결합제의 전체 중량을 의미한다.
첨가량이 과다하면, 담체 위에 골고루 분산되기 보다는 응집이나 겹침 현상으로 인하여 오히려 촉매의 활성면적을 감소시키므로 성능이 떨어질 수 있고, 과소 사용하면 분산도가 낮아져 낮은 성능을 보이게 된다. 따라서 특정 비율에 의해 첨가될 경우, 우수한 활성 특성을 구비하게 된다.
또한 리튬 또는 리튬산화물은 용액 상에서 산화실리콘 또는 산화알루미늄과 폴리머 형태의 분자를 형성하는 경향이 있어, 건조될 때에 연결고리의 결합이 깨져서 결합제로 많이 쓰이는 산화실리콘 또는 산화알루미나 층의 치밀한 형성을 방해한다. 이로 인해 결합제가 촉매 표면을 포위하는 현상이 줄어들어 결합제가 촉매에 미치는 악영향을 개선시키는 효과가 있다.
<코팅제의 구성과 촉매 코팅공정>
촉매 코팅은 주로 물 또는 알콜계 용액을 용매로 하고 촉매 성분, 세라믹 입자, 결합제, 첨가제 및 안료 등 다양한 성분을 첨가하여 제조된 코팅제를 사용한다. 이때 코팅제의 구성은 촉매성분 단독 또는 촉매성분과 결합제로 구성될 수 있으며, 또한 촉매성분, 결합제 및 세라믹 담체로 구성될 수도 있다. 물론 코팅제에 추가로 첨가제 또는 안료 등의 성분이 추가될 수도 있다. 촉매 성분, 세라믹 입자, 결합제에 관해서는 전술한 바 있으며, 본 발명에서는 상술한 바와 같이 리튬 성분의 첨가를 특징으로 한다.
촉매성분, 세라믹 입자, 결합제의 첨가 방법은 통상적인 방법을 사용해도 무방하며, 리튬의 첨가 방법 역시 상술한 바와 같다.
본 발명에 있어서, 촉매 코팅의 형성 방법에는 제한이 없으며, 예컨대, 워시 코트(wash coat), 딥코팅법(dip coating), 흘림법(flowcoating), 스핀 코팅법(spin coating), 스프레이법(spray coating), 붓질(brushing) 등 어떠한 방법을 사용해도 무방하다. 상기 코팅방법은 코팅될 기판의 종류 및 형태 또는 원하는 코팅막의 두께에 따라서 적절하게 선택된다. 본 발명에 있어서 촉매 코팅층은 0.1 ~ 100미크론의 두께가 바람직하다.
또한 본 발명에 따른 촉매 필터의 경우, 상기 필터 구조체의 전방, 후방 및 상하좌우 중 어느 하나 이상에 냄새 흡착 필터, 가스상 분해 필터, 입자상 분해 필터, 가열장치 중 선택된 1종 이상이 더 배치될 수 있으며, 이를 통해 필터의 효율을 더욱 증가시킬 수 있다.
이하, 본 발명의 구체적인 실시예를 설명한다.
< 실 시 예 >
스테인레스 재질의 메쉬 그물망(50메쉬급)을 준비하였다. 그 후 메쉬에 미세요철 프레스 공정을 이용하여 메쉬 선 표면에 크기 100μm 이하의 미세요철을 형성시켰다. 메쉬는 평면으로부터 나사산 형태로 절곡하여 직선의 주름 띠(7) 형태로 가공하였다. 이때 산의 높이(h)는 0.8mm로 하였으며, 이때 산과 산과의 거리(p)는 1.5mm로 하였다. 그 후 주름진 메쉬를 직경 150mm의 원형으로 절단하였다(도2 참조).
위와 같은 방법으로 직경 150mm의 원형 금속메쉬판(1a 등)을 4개 제작한 후 이를 견고하게 겹쳐 메쉬구조체를 완성하였다. 이때 겹쳐진 메쉬구조체의 총 두께는 4mm로 제작되었다.
그 후 통상적인 워시 코트(wash coat) 공정으로 표 1과 같은 조성의 촉매코팅층을 형성시켰다. 이때 용매로는 순수를 사용하였고, 귀금속계 촉매의 경우, 세라믹 담체층의 형성없이 코팅 용액에 직접 감마 알루미나를 투입한 1 단계 공정을 이용하였다. 코팅 후 건조는 500℃에서 실시하였으며, 코팅층의 두께는 50μm 이었다.
산화물계촉매 코팅( 조성비 중량% ) 종류 촉매   첨가제 결합제 1 결합제 2
화학종 MnO2 Li2O Al2O3 sol SiO2 sol
평균 입도 2.5μm    1.0μm 50nm 50nm
No.  
1 85 - - 5 10
2 85 - 0.01 5 10
3 84 - 0.50 5 10
4 84 - 1.00 5 10
5 83 - 1.50 5 10
6 83 - 2.00 5 10
귀금속계촉매 코팅( 조성비 중량% ) 종류 촉매 세라믹담체 첨가제 결합제 1 결합제 2
화학종 Pt γ-Al2O3 Li2O Al2O3 sol SiO2 sol
평균 입도   2.5μm 1.0μm  50nm 50nm
No.          
7 1.0 84 - 5 10
8 1.0 84 0.01 5 10
9 1.0 83 0.50 5 10
10 1.0 83 1.00 5 10
11 1.0 82 1.50 5 10
12 1.0 82 2.00 5 10
- 위 실시예의 적용결과 -
0.1 m3 용기에 C4H8 가스 농도를 500ppm 으로 설정하고 온도를 200℃로 유지한 후, 상기 실시예의 필터를 장착하고, 내부 팬을 가동시켜 5분 후의 가스 제거율을 측정하였다. 이 결과를 도 3에 나타내었다. 도 3에 나타난 바와 같이 산화물 촉매가 귀금속 촉매보다 성능이 가스 제거율이 우수하였으며, 이는 온도가 200℃로 비교적 저온이기 때문이다. 리튬의 첨가에 따라 초기에는 급격히 제거효율이 상승하나 리튬의 첨가가 1.5중량% 이상이 되면 성능향상 효과가 현저하게 줄어든다.
본 발명의 필터는 조리기기, 자동차 등의 연소장치에 대한 필터분야뿐만이 아니라 여타 필터 분야에서도 다양하게 응용될 수 있음이 자명하다. 그리고 위에 예시된 각 실시 예는 당업자의 필요에 의거하여 임의로 조합되어 사용될 수 있으며, 본 명세서에 언급되지 않은 조합 역시 본 발명의 보호범위 내에 있다고 해석되어야 한다.
[부호의 설명]
1 : 메쉬구조체 1a,1b : 금속메쉬판
5 : 미세요철 7 : 주름띠
13 : 촉매층(또는 담체층)

Claims (17)

  1. 필터 구조체; 상기 필터 구조체 표면에 형성되는 촉매층을 포함하되;
    상기 촉매층은,
    ①촉매 성분
    ②촉매 성분 및 결합제
    ③촉매성분, 결합제 및 세라믹 담체
    중 어느 하나로 이루어져 있으며;
    상기 촉매층은 리튬 성분을 더 포함하고, 상기 리튬 성분 함량은 촉매층 전체 중량에 대하여 금속 리튬 또는 리튬화합물을 기준으로 0.01중량% 내지 3.0중량%인 것을 특징으로 하는, 리튬 조촉매를 첨가하여 촉매의 활성도를 증가시킨 촉매코팅 필터.
  2. 제 1항에 있어서,
    상기 리튬 성분은 금속 리튬, 리튬 산화물 또는 리튬 화합물 중 어느 하나 이상인 것으로 특징으로 하는, 리튬 조촉매를 첨가하여 촉매의 활성도를 증가시킨 촉매 코팅 필터.
  3. 제 1항에 있어서,
    상기 필터 구조체는 세라믹(세라믹 담체 재질 포함하는 것으로 함), 금속 및 유기물 중 어느 하나이 상의 재질로 이루어진 폼(foam), 메쉬(mesh), 데미스터(demister), 펠트, 매트, 포일 및 섬유 중 어느 하나 이상을 사용하며;
    판, 막대, 파이프, 봉, 실린더, 허니컴 구조 중 어느 하나 이상의 형태를 가지는 것을 특징으로 하는, 리튬 조촉매를 첨가하여 촉매의 활성도를 증가시킨 촉매코팅 필터.
  4. 제 1항에 있어서,
    상기 촉매 성분은 백금, 팔라듐, 로듐, 이리듐, 루테늄, 텅스텐, 크롬, 망간, 철, 코발트, 구리, 아연, 세륨, 희토류 원소(Sc, Y, La계 원소), 코발트, 바나듐, 텅스텐, 지르코늄 및 이들의 산화물 중 어느 하나 이상인 것을 특징으로 하는, 리튬 조촉매를 첨가하여 촉매의 활성도를 증가시킨 촉매 코팅 필터.
  5. 제 4항에 있어서,
    상기 촉매 입자 크기는 100 μm 이하의 범위를 가지는 것을 특징으로 하는, 리튬 조촉매를 첨가하여 촉매의 활성도를 증가시킨 촉매 코팅 필터.
  6. 제 1항에 있어서,
    상기 결합제는 SiO2, Al2O3, TiO2, Ce2O3, ZrO2, 제올라이트, 희토류산화물(Sc, Y, La계 원소 산화물), 유리성분의 미세분말 및 무기 폴리머 중 어느 하나 이상인 것을 특징으로 하는, 리튬 조촉매를 첨가하여 촉매의 활성도를 증가시킨 촉매 코팅 필터.
  7. 제 6항에 있어서,
    상기 결합제 입자의 크기는 1nm 내지 10μm 의 범위를 가지는 것을 특징으로 하는, 리튬 조촉매를 첨가하여 촉매의 활성도를 증가시킨 촉매 코팅 필터.
  8. 제 6항에 있어서,
    상기 무기 폴리머는 실리콘 수지 및 인산염 중합체(polymeric phosphate) 중 어느 하나인 것을 특징으로 하는, 리튬 조촉매를 첨가하여 촉매의 활성도를 증가시킨 촉매 코팅 필터.
  9. 제 6항에 있어서,
    상기 결합제는 전체 촉매층 대비 1~7중량%의 유기성분의 결합제를 더 포함하는 것을 특징으로 하는, 리튬 조촉매를 첨가하여 촉매의 활성도를 증가시킨 촉매 코팅 필터.
  10. 제 1항 또는 제3항에 있어서,
    상기 세라믹 담체는 알루미나(Al2O3), 실리카(SiO2), 타이타니아(TiO2), 제올라이트, 세리아(Ce2O3), 지르코니아(ZrO2), 마그네시아, 바나데이트(V2O5), 산화코발트(CoOx), 산화철(FeOx), 산화텅스텐, 산화몰리브데늄(MoO3), 산화 안티몬(SbO2) 및 희토류산화물(Sc, Y, La계 원소 산화물) 중 어느 하나 이상인 것을 특징으로 하는, 리튬 조촉매를 첨가하여 촉매의 활성도를 증가시킨 촉매 코팅
    필터.
  11. 제 10항에 있어서,
    상기 세라믹 담체의 입자 크기는 0.01 내지 100 μm의 범위를 가지는 것을 특징으로 하는, 리튬 조촉매를 첨가하여 촉매의 활성도를 증가시킨 촉매 코팅 필터.
  12. 제 1항에 있어서,
    상기 촉매층은 안료 또는 첨가제를 더 포함하는 것을 특징으로 하는, 리튬 조촉매를 첨가하여 촉매의 활성도를 증가시킨 촉매 코팅 필터.
  13. 제 1항 또는 제3항 중 어느 하나에 있어서,
    상기 필터 구조체는 표면에 샌드 블라스트(sand blasting), 쇼트 피닝(shot peening), 워터 젯(water jet), 프레스, 롤링, 절삭의 기계적 미세가공 공정에 의해 크기 200μm 이하의 미세 요철이 더 형성되는 것을 특징으로 하는, 리튬 조촉매를 첨가하여 촉매의 활성도를 증가시킨 촉매 코팅 필터.
  14. 제 1항, 제 3항 또는 제 13항 중 어느 하나에 있어서,
    상기 필터 구조체는 전기화학적 표면처리 또는 산화분위기 하에서 열처리 중 어느 하나 이상의 단계를 더 포함하는 제조되는 것을 특징으로 하는, 리튬 조촉매를 첨가하여 촉매의 활성도를 증가시킨 촉매 코팅 필터.
  15. 제 1항에 있어서,
    상기 촉매층은 워시 코트(wash coat), 딥 코팅법(dip coating), 흘림법(flow coating), 스핀 코팅법(spin coating), 스프레이법(spray coating), 붓질(brushing) 중 어느 하나 이상의 공정에 의해 형성되는 것을 특징으로 하는, 리튬 조촉매를 첨가하여 촉매의 활성도를 증가시킨 촉매 코팅 필터.
  16. 제 15항에 있어서,
    상기 촉매층의 형성 공정에서 리튬 성분의 첨가는 상기 촉매 성분, 상기 결합제 및 용매로 이루어진 코팅 용액에 금속 리튬의 입자, 리튬 산화물 입자(졸), 용매에 용해되는 리튬의 전구체(precusor) 화합물의 형태 중 어느 하나 이상의 형태로 첨가하는 것을 특징으로 하는, 리튬 조촉매를 첨가하여 촉매의 활성도를 증가시킨 촉매 코팅 필터.
  17. 제 1항에 있어서,
    상기 필터 구조체의 전방, 후방 및 상하좌우 중 어느 한 곳 이상에는 냄새 흡착 필터, 가스상 분해 필터, 입자상 분해 필터, 가열장치 중 선택된 1종 이상이 더 배치되는 것을 특징으로 하는, 리튬 조촉매를 첨가하여 촉매의 활성도를 증가시킨 촉매 코팅 필터.
PCT/KR2016/014208 2015-12-21 2016-12-06 리튬 조촉매를 첨가하여 촉매의 활성도를 증가시킨 촉매 코팅 필터 WO2017111350A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0182961 2015-12-21
KR1020150182961A KR101982018B1 (ko) 2015-12-21 2015-12-21 리튬 조촉매를 첨가하여 촉매의 활성도를 증가시킨 촉매 코팅 필터

Publications (1)

Publication Number Publication Date
WO2017111350A1 true WO2017111350A1 (ko) 2017-06-29

Family

ID=59090744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014208 WO2017111350A1 (ko) 2015-12-21 2016-12-06 리튬 조촉매를 첨가하여 촉매의 활성도를 증가시킨 촉매 코팅 필터

Country Status (2)

Country Link
KR (1) KR101982018B1 (ko)
WO (1) WO2017111350A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111203209A (zh) * 2020-03-04 2020-05-29 中国科学院过程工程研究所 一种嵌入式催化剂及其制备方法和一种反应器
CN114959287A (zh) * 2022-06-13 2022-08-30 赣州晨光稀土新材料有限公司 一种稀土金属或稀土合金的净化材料及其制备方法、稀土金属或稀土合金的净化方法
CN115430459A (zh) * 2022-10-13 2022-12-06 大唐南京环保科技有限责任公司 一种协同脱硝脱VOCs催化剂及其制备方法和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108654266A (zh) * 2018-07-10 2018-10-16 安徽万山红环保科技有限公司 一种车间无组织废气收集净化装置
CN110124689B (zh) * 2019-05-31 2021-12-24 金华铂锐催化科技有限公司 一种用于餐厨垃圾发酵尾气净化的催化剂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07328442A (ja) * 1994-06-14 1995-12-19 Matsushita Electric Ind Co Ltd 排ガス浄化用フィルター及びその製造方法
JP2006095369A (ja) * 2004-09-28 2006-04-13 Matsushita Electric Ind Co Ltd 油分解触媒とその製造方法、および油捕集・分解フィルタとその製造方法
KR20070064115A (ko) * 2005-12-16 2007-06-20 에스케이 주식회사 디젤차량의 입자제거필터용 촉매조성물 및 이를 이용한매연저감장치
KR20080050664A (ko) * 2006-12-04 2008-06-10 김기호 고온가스 및 입자상물질 처리를 위한 금속산화물 필터 및그 제조방법.
KR100871898B1 (ko) * 2005-10-28 2008-12-05 에스케이에너지 주식회사 디젤 엔진의 배기가스 정화 장치
KR101233773B1 (ko) * 2010-10-05 2013-02-15 현대비앤지스틸 주식회사 배기가스 정화를 위한 금속필터용 모재의 제조방법, 이를 적용한 금속필터용 모재 및 금속필터

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0135141B1 (ko) 1994-09-16 1998-04-22 구자홍 전자레인지용 탈취촉매
US6372760B1 (en) 1999-03-31 2002-04-16 Eisai Co., Ltd. Stabilized composition comprising antidementia medicament
US7123556B2 (en) 2002-01-22 2006-10-17 Matsushita Electric Industrial Co., Ltd. Multi-layered information recording medium with spare defect management areas
DE10314513A1 (de) 2003-03-31 2004-10-14 BSH Bosch und Siemens Hausgeräte GmbH Katalysatorsystem zum Geruchsabbau
US7015920B2 (en) 2003-04-30 2006-03-21 International Business Machines Corporation Method and system for providing useable images on a high resolution display when a 2D graphics window is utilized with a 3D graphics window
KR20060067638A (ko) 2004-12-15 2006-06-20 현대모비스 주식회사 차량용 냉난방기의 풍향조절장치
KR20120085079A (ko) * 2011-01-21 2012-07-31 삼성전자주식회사 복합금속 산화물 촉매, 상기 촉매를 구비한 필터 모듈 및 이를 구비한 공기청정기

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07328442A (ja) * 1994-06-14 1995-12-19 Matsushita Electric Ind Co Ltd 排ガス浄化用フィルター及びその製造方法
JP2006095369A (ja) * 2004-09-28 2006-04-13 Matsushita Electric Ind Co Ltd 油分解触媒とその製造方法、および油捕集・分解フィルタとその製造方法
KR100871898B1 (ko) * 2005-10-28 2008-12-05 에스케이에너지 주식회사 디젤 엔진의 배기가스 정화 장치
KR20070064115A (ko) * 2005-12-16 2007-06-20 에스케이 주식회사 디젤차량의 입자제거필터용 촉매조성물 및 이를 이용한매연저감장치
KR20080050664A (ko) * 2006-12-04 2008-06-10 김기호 고온가스 및 입자상물질 처리를 위한 금속산화물 필터 및그 제조방법.
KR101233773B1 (ko) * 2010-10-05 2013-02-15 현대비앤지스틸 주식회사 배기가스 정화를 위한 금속필터용 모재의 제조방법, 이를 적용한 금속필터용 모재 및 금속필터

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111203209A (zh) * 2020-03-04 2020-05-29 中国科学院过程工程研究所 一种嵌入式催化剂及其制备方法和一种反应器
CN111203209B (zh) * 2020-03-04 2021-12-14 中国科学院过程工程研究所 一种嵌入式催化剂及其制备方法和一种反应器
CN114959287A (zh) * 2022-06-13 2022-08-30 赣州晨光稀土新材料有限公司 一种稀土金属或稀土合金的净化材料及其制备方法、稀土金属或稀土合金的净化方法
CN115430459A (zh) * 2022-10-13 2022-12-06 大唐南京环保科技有限责任公司 一种协同脱硝脱VOCs催化剂及其制备方法和应用
CN115430459B (zh) * 2022-10-13 2024-03-15 大唐南京环保科技有限责任公司 一种协同脱硝脱VOCs催化剂及其制备方法和应用

Also Published As

Publication number Publication date
KR20170074005A (ko) 2017-06-29
KR101982018B1 (ko) 2019-05-24

Similar Documents

Publication Publication Date Title
WO2017111350A1 (ko) 리튬 조촉매를 첨가하여 촉매의 활성도를 증가시킨 촉매 코팅 필터
JP4144898B2 (ja) パティキュレート燃焼触媒、パティキュレートフィルター及び排ガス浄化装置
JP3297432B2 (ja) 粒子を放出せずまた周期的に浄化中断することなく、デイーゼル機関の排気ガスを酸化浄化する連続作動触媒
JP4907860B2 (ja) フィルタ触媒
JP3326836B2 (ja) 触媒体および触媒体の製造方法
WO2013042328A1 (ja) 低温プラズマと触媒体を用いるガス処理装置および方法
US20080141660A1 (en) Catalyst And System For Reducing Exhaust Of Diesel Engines
US20090263303A1 (en) Purification Device and Method for Purifying a Fluid Stream
US10682639B2 (en) Method for preparing a catalyst-containing ceramic filter for off-gas or exhaust gas cleaning
Chen et al. Recent developments on catalytic membrane for gas cleaning
CN114682297B (zh) 一种低温脱硝催化剂及其制备方法和应用
JP2000254449A (ja) 有害又は臭気ガス分解用基材及び装置
CN106807433A (zh) 一种柴油车尾气再生处理装置
JPH01500885A (ja) 車輌排出ガスシステム
WO2018106021A1 (ko) 다공극성 세라믹 3차원 입체 망상 구조체를 이용한 선박용 탈질 촉매 및 그의 제조방법
CN107288712A (zh) 调节尾气阻力的净化效果好的尾气过滤器
KR20180121848A (ko) 리튬 조촉매를 첨가하여 촉매의 활성도를 증가시킨 촉매 코팅 필터
JP3710528B2 (ja) 触媒毒除去剤、それを用いた工場排ガスの処理方法および流通式反応装置
KR20100119378A (ko) 디젤 차량의 배출가스 저감장치용 혼합촉매와 그 제조방법
JP4298071B2 (ja) 排ガス浄化材及びその製造方法
JP4696392B2 (ja) 排ガス浄化触媒及びそれを用いた排ガス浄化材
JPS60220148A (ja) ハニカム型脱臭触媒
EP4159310A1 (en) Catalytic coating
JP4190762B2 (ja) すぐれたco除去能力を有する気体処理用材料の製造法
JP2012135742A (ja) パティキュレート燃焼触媒、その製造方法、パティキュレートフィルター及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16879217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/10/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16879217

Country of ref document: EP

Kind code of ref document: A1