WO2017111182A1 - 단열재 및 이의 제조 방법 - Google Patents

단열재 및 이의 제조 방법 Download PDF

Info

Publication number
WO2017111182A1
WO2017111182A1 PCT/KR2015/014008 KR2015014008W WO2017111182A1 WO 2017111182 A1 WO2017111182 A1 WO 2017111182A1 KR 2015014008 W KR2015014008 W KR 2015014008W WO 2017111182 A1 WO2017111182 A1 WO 2017111182A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
insulating material
cell
size
carbon
Prior art date
Application number
PCT/KR2015/014008
Other languages
English (en)
French (fr)
Inventor
최경석
임지연
이승언
박철범
이 나규입하니
알샤라모하메드
트란민펑
공팽지안
Original Assignee
한국건설기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국건설기술연구원 filed Critical 한국건설기술연구원
Priority to CN201580085821.2A priority Critical patent/CN108699836A/zh
Priority to PCT/KR2015/014008 priority patent/WO2017111182A1/ko
Priority to KR1020187017244A priority patent/KR102077469B1/ko
Publication of WO2017111182A1 publication Critical patent/WO2017111182A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/08Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles using several expanding or moulding steps
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • C08J9/0071Nanosized fillers, i.e. having at least one dimension below 100 nanometers
    • C08J9/008Nanoparticles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • E04C2/284Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/048Bimodal pore distribution, e.g. micropores and nanopores coexisting in the same foam
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present invention relates to a heat insulating material and a method for manufacturing the same, and more particularly, to a heat insulating material and a method for manufacturing the improved structure.
  • heat insulating materials are used to increase the heat insulating performance of buildings.
  • the most widely used as such a heat insulating material is a heat insulating material consisting of a foam formed by foaming a single resin.
  • Insulation material composed of such a foam is limited to the insulation performance that can be implemented by itself, it is difficult to secure sufficient insulation performance. Therefore, there is a need for a heat insulating material that can implement sufficient heat insulating performance.
  • the present invention is to provide a heat insulating material and a manufacturing method thereof having excellent heat insulating performance.
  • Method for producing a heat insulating material forming a mixed composition of a polystyrene resin and a carbon nano material; A first foaming step of dissolving an auxiliary blowing agent pentane gas and carbon dioxide gas in the mixed composition to form a foam; And second foaming the foam in steam.
  • the first foaming step is performed by providing the pentane gas and the carbon dioxide gas to the autoclave with the mixed composition located in an autoclave.
  • the pressure in the autoclave by the pentane gas and the carbon dioxide gas in the first foaming step is 1050 psi to 3000 psi.
  • the process time of the second foaming step is shorter than the first foaming step.
  • the first foaming step is performed for 2 days to 3 days, and the second foaming step is performed for 1 minute to 3 minutes.
  • the heat insulating material includes an independent cell, and the independent cell has a bimodal structure including a first cell having a first size and a second cell having a second size smaller than the first cell.
  • the first size is 100um to 300um
  • the second size is 5um to 30um.
  • the expansion ratio of the said heat insulating material is 20 or more, the open cell content of the said heat insulating material is 8% or less, and the thermal conductivity of the said heat insulating material is 25 mW / m * K or less.
  • the carbon nanomaterial includes carbon nanotubes, and the carbon nanomaterial is included in an amount of 0.01 wt% to 0.5 wt%.
  • the polystyrene foam having an independent cell; And a carbon nanomaterial dispersed on a wall of the independent cell of the polystyrene foam, wherein the independent cell comprises a first cell having a first size and a second cell having a second size smaller than the first cell. It has a bimodal structure.
  • the first size is 100um to 300um
  • the second size is 5um to 30um.
  • the open cell content of the polystyrene foam is 8% or less, and the thermal conductivity of the insulation is 25 mW / m ⁇ K or less.
  • the carbon nanomaterial includes carbon nanotubes, and the carbon nanomaterial is included in an amount of 0.01 wt% to 0.5 wt%.
  • the carbon nanomaterial is included in an amount of 0.1 wt% to 0.3 wt%.
  • the heat insulating material which has the outstanding heat insulating property can be manufactured by a simple process.
  • the heat insulating material according to this embodiment has a bimodal structure, low open cell content and low thermal conductivity has excellent heat insulating properties.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a heat insulating material according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a heat insulating material according to an embodiment of the present invention.
  • any part of the specification “includes” other parts, unless otherwise stated, other parts are not excluded, and may further include other parts.
  • a part of a layer, film, region, plate, etc. is said to be “on” another part, this includes not only the case where the other part is “just above” but also the other part located in the middle.
  • parts such as layers, films, regions, plates, etc. are “just above” another part, it means that no other part is located in the middle.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a heat insulating material according to an embodiment of the present invention.
  • the method for manufacturing a heat insulating material includes forming a mixed composition (S10), first foaming (or saturating), and (S20) and second foaming. It includes a step (S30). This is explained in more detail.
  • the polystyrene resin and the carbon nanomaterial are mixed.
  • Polystyrene resin is a material that can form an independent cell by foaming and exhibit excellent heat insulating properties.
  • Carbon nanomaterials may have a nanoscale size (1 nm or more and less than 1 ⁇ m) to block radiation. And carbon nanomaterials can reduce nucleation energy upon foaming and improve heterogeneous bubble nucleation. In addition, carbon nanomaterials can be placed on the cell walls after foaming to increase the mechanical strength of the matrix.
  • the carbon nanomaterial may be used as the carbon nanomaterial, and for example, the carbon nanotube may effectively perform a role of blocking radiation.
  • the carbon nanomaterial may be included in an amount of 0.01 wt% to 0.5 wt% based on 100 wt% of the total composition. If the carbon nanomaterial is less than 0.01 wt%, the effect by the carbon nanomaterial may not be sufficient. If the carbon nanomaterial exceeds 0.5 wt%, the content of the open cell may be high. In this case, when the carbon nanomaterial is included in an amount of 0.1 wt% to 0.3 wt% based on 100 wt% of the total composition, the content of the open cell may be effectively reduced while maximizing the effect of the carbon nano material.
  • the pentane gas and the carbon dioxide gas as auxiliary blowing agents are provided to the autoclave and dissolved in the mixed composition while the mixed composition is located in the autoclave.
  • pentane gas and carbon dioxide gas as auxiliary blowing agents can reduce the size of the independent cell while increasing the expansion ratio. More specifically, pentane gas plasticizes polystyrene and has high solubility in the polystyrene matrix.
  • the degree of supersaturation of the pentane gas can be limited to limit the formation of bubbles, bubbles can be effectively formed by using a carbon dioxide gas having a higher degree of supersaturation than the pentane gas together with the pentane gas.
  • the foam thus formed has a large expansion ratio and is highly supersaturated to cause heterogeneous bubble nucleation. This can cause a lot of bubble nucleation.
  • the carbon nanomaterial may reduce the nucleation energy to accelerate the bubble nucleation.
  • the pressure in the autoclave by the pentane gas and carbon dioxide gas may be 1050 psi to 3000 psi. If the pressure is less than 1050 psi foaming effect may not be sufficient, if the pressure exceeds 3000 psi the cell may be damaged or destroyed by high pressure during foaming.
  • the present invention is not limited thereto.
  • the first foaming step (S20) may be performed for 2 days to 3 days. This is because sufficient foaming with a large expansion ratio can be achieved within this process time range.
  • the present invention is not limited thereto.
  • the foam formed by the first foaming step (S20) is foamed in steam. This allows for sufficient foaming and to have a large expansion ratio.
  • the second foam may be provided by providing a foam of 100 ° C. to 120 ° C. to the foam. This is because steam in this temperature range can be easily formed and foaming properties can be improved in this temperature range.
  • the process time of the second foaming step (S30) may be shorter than the process time of the first foaming step (S20). This is because, if the second foaming step S30 is performed for a long time, various foaming characteristics by the first foaming step S20 may be difficult to control. For example, the second foaming step S30 may be performed for 1 minute to 3 minutes. Within this range, the second foaming can be carried out without enlarging the expansion characteristics while increasing the expansion ratio. However, the present invention is not limited thereto.
  • FIG. 2 is a schematic cross-sectional view of a heat insulating material according to an embodiment of the present invention.
  • the heat insulating material 100 formed by the above-described method for manufacturing a heat insulating material includes a polystyrene foam 10 formed of a matrix having independent cells and a carbon nano material 20 dispersed on a wall of the independent cells. It may include. As described above, the carbon nanomaterial 20 may be included in an amount of 0.01 wt% to 0.5 wt% (eg, 0.1 wt% to 0.3 wt%) with respect to 100 wt% of the total insulation 100.
  • the size of the independent cell may be 300um or less (for example, 5um to 300um). This is because a mixed composition including the carbon nanomaterial 20 is used, and pentane gas and carbon dioxide gas are used together as an auxiliary blowing agent. More specifically, the independent cell has a first cell 12 having a first size (eg, first average size) and a second size (eg, second average size) smaller than the first cell 12. It has a bimodal structure including the second cell 14. That is, the relatively large first cell 12 is easy to deform, but the relatively small second cell 14 has a strong modulus. Thus, the second cell 14 together with the heat insulating material 100 may have excellent mechanical strength. For example, the first size of the first cell 12 may be 100um to 300um, and the second size of the second cell 14 may be 5um to 30um. These first and second sizes can be easily produced and are limited to values with good mechanical strength.
  • the expansion ratio (volume ratio of the insulation 100 to the mixed composition) by the first and second foaming process is 20 or more (for example, 20 to 35)
  • the open cell content of the insulation 100 is 8% or less (for example, 2% to 8%)
  • the thermal conductivity of the heat insulating material 100 may be 25 mW / m ⁇ K or less (eg, 15 mW / m ⁇ K to 25 mW / m ⁇ K).
  • the open cell content may be measured by various methods, such as an air comparison pycnometer (air pycnometer) can be used.
  • the high expansion ratio and low open cell content as described above can be realized by the carbon nanomaterial 20, and pentane gas and carbon dioxide gas used as auxiliary blowing agents.
  • the content of the carbon nanomaterial 20 is limited to 0.5 wt% or less (more specifically, 0.3 wt% or less) to prevent a decrease in expansion ratio that may occur when a large amount of the carbon nanomaterial 20 is included.
  • pentane gas since pentane gas has a strong plasticizing effect on polystyrene, it is possible to expand more before the cell wall is destroyed, thereby reducing the open cell content while having a high expansion ratio.
  • Carbon nanomaterial 20 dispersed in the cell wall prevents radiation.
  • the expansion ratio is large (for example, 20 or more) as in the present embodiment, radiation may significantly affect the thermal conductivity, thereby preventing radiation by the carbon nanomaterial 20.
  • the bimodal structure enhances torsion, which can reduce conduction through the solid phase.
  • the thick cell walls of the relatively large first cells 12 can effectively block radiation.
  • the heat insulating material 100 which has the outstanding heat insulating characteristic can be manufactured by a simple process.
  • the heat insulating material 100 according to the present embodiment has a bimodal structure, low open cell content and low thermal conductivity has excellent heat insulating properties.
  • the polystyrene resin and the carbon nanotubes were mixed to form a mixed composition.
  • the carbon nanotubes were included by 0.25 wt% based on the total 100wt%.
  • the first foaming was performed by leaving it for 2 days while providing pentane gas and carbon dioxide gas at a pressure of 2000 psi.
  • the foam formed by the first foaming was placed in steam at 100 ° C. for 2 minutes to perform a second foaming to form a heat insulating material.
  • the heat insulating material has a cell of less than 300 um as a whole, a first cell having a first size of 100um to 300um and a second cell having a second size of 5um to 30um relatively small It can be seen that it has a bimodal structure.
  • the expansion ratio of the heat insulating material is 20 or more, the open cell content is 8% or less, and the thermal conductivity is very excellent at 25 mW / m ⁇ K or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Architecture (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

본 발명의 실시예에 따른 단열재의 제조 방법은, 폴리스티렌 수지와 탄소 나노 물질을 혼합한 혼합 조성물을 형성하는 단계; 상기 혼합 조성물에 보조 발포제인 펜탄 가스 및 이산화탄소 가스를 용해하여 발포체를 형성하는, 제1 발포하는 단계; 및 상기 발포체를 증기에서 제2 발포하는 단계를 포함한다.

Description

단열재 및 이의 제조 방법
본 발명은 단열재 및 이의 제조 방법에 관한 것으로서, 좀더 상세하게는, 구조를 개선한 단열재 및 이의 제조 방법에 관한 것이다.
건축물 등의 단열 성능을 높이기 위하여 사용되는 다양한 단열재를 사용하고 있다. 이러한 단열재로 가장 널리 사용되는 것이 단일 수지를 발포하여 형성된 발포체로 구성된 단열재이다.
이와 같은 발포체로 구성된 단열재는 그 자체만으로 구현할 수 있는 단열 성능에 한계가 있어 충분한 단열 성능을 확보하기 어렵다. 따라서 충분한 단열 성능을 구현할 수 있는 단열재가 요구되고 있다.
본 발명은 우수한 단열 성능을 가지는 단열재 및 이의 제조 방법을 제공하고자 한다.
본 발명의 실시예에 따른 단열재의 제조 방법은, 폴리스티렌 수지와 탄소 나노 물질을 혼합한 혼합 조성물을 형성하는 단계; 상기 혼합 조성물에 보조 발포제인 펜탄 가스 및 이산화탄소 가스를 용해하여 발포체를 형성하는, 제1 발포하는 단계; 및 상기 발포체를 증기에서 제2 발포하는 단계를 포함한다.
상기 제1 발포하는 단계는 오토 클레이브(autoclave) 내에 상기 혼합 조성물을 위치한 상태에서 상기 오토 클레이브에 상기 펜탄 가스 및 상기 이산화탄소 가스를 제공하여 수행된다.
상기 제1 발포하는 단계에서 상기 펜탄 가스 및 상기 이산화탄소 가스에 의한 상기 오토 클레이브 내의 압력이 1050 psi 내지 3000 psi이다.
상기 제1 발포하는 단계보다 상기 제2 발포하는 단계의 공정 시간이 짧다.
상기 제1 발포하는 단계가 2일 내지 3일 동안 수행되고, 상기 제2 발포하는 단계가 1분 내지 3분 동안 수행된다.
상기 단열재가 독립 셀을 포함하고, 상기 독립 셀이 제1 크기를 가지는 제1 셀과 상기 제1 셀보다 작은 제2 크기를 가지는 제2 셀을 포함하는 바이모달(bimodal) 구조를 가진다.
상기 제1 크기가 100um 내지 300um이고, 상기 제2 크기가 5um 내지 30um이다.
상기 단열재의 팽창비가 20 이상이고, 상기 단열재의 개방 셀 함량이 8% 이하이며, 상기 단열재의 열전도도가 25 mW/m·K 이하이다.
상기 탄소 나노 물질이 탄소 나노 튜브를 포함하고, 상기 탄소 나노 물질이 0.01 wt% 내지 0.5 wt%로 포함된다.
상기 탄소 나노 물질 0.1 wt% 내지 0.3 wt%로 포함된다.
본 발명의 실시예에 따른 단열재는, 독립 셀을 가지는 폴리스티렌 폼; 및 상기 폴리스티렌 폼의 상기 독립 셀의 벽면에 분산된 탄소 나노 물질을 포함하고, 상기 독립 셀이 제1 크기를 가지는 제1 셀과 상기 제1 셀보다 작은 제2 크기를 가지는 제2 셀을 포함하는 바이모달(bimodal) 구조를 가진다.
상기 제1 크기가 100um 내지 300um이고, 상기 제2 크기가 5um 내지 30um이다.
상기 폴리스티렌 폼의 개방 셀 함량이 8% 이하이며, 상기 단열재의 열전도도가 25 mW/m·K 이하이다.
상기 탄소 나노 물질이 탄소 나노 튜브를 포함하고, 상기 탄소 나노 물질이 0.01 wt% 내지 0.5 wt%로 포함된다.
상기 탄소 나노 물질이 0.1 wt% 내지 0.3 wt%로 포함된다.
본 실시예에 따른 단열재의 제조 방법에 의하면 우수한 단열 특성을 가지는 단열재를 간단한 공정에 의하여 제조할 수 있다. 그리고 본 실시예에 따른 단열재는 바이모달 구조, 낮은 개방 셀 함량 및 낮은 열전도도를 가져 우수한 단열 특성을 가진다.
도 1은 본 발명의 실시예에 따른 단열재의 제조 방법을 도시한 흐름도이다.
도 2는 본 발명의 실시예에 따른 단열재의 개략적인 단면도이다.
이하에서는 첨부한 도면을 참조하여 본 발명의 실시예를 상세하게 설명한다. 그러나 본 발명이 이러한 실시예에 한정되는 것은 아니며 다양한 형태로 변형될 수 있음은 물론이다.
도면에서는 본 발명을 명확하고 간략하게 설명하기 위하여 설명과 관계 없는 부분의 도시를 생략하였으며, 명세서 전체를 통하여 동일 또는 극히 유사한 부분에 대해서는 동일한 도면 참조부호를 사용한다. 그리고 도면에서는 설명을 좀더 명확하게 하기 위하여 두께, 넓이 등을 확대 또는 축소하여 도시하였는바, 본 발명의 두께, 넓이 등은 도면에 도시된 바에 한정되지 않는다.
그리고 명세서 전체에서 어떠한 부분이 다른 부분을 "포함"한다고 할 때, 특별히 반대되는 기재가 없는 한 다른 부분을 배제하는 것이 아니며 다른 부분을 더 포함할 수 있다. 또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우뿐 아니라 그 중간에 다른 부분이 위치하는 경우도 포함한다. 층, 막, 영역, 판 등의 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 위치하지 않는 것을 의미한다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 따른 단열재 및 이의 제조 방법을 상세하게 설명한다. 이하에서는 단열재의 제조 방법을 설명한 다음 이에 의하여 제조된 단열재를 상세하게 설명한다.
도 1은 본 발명의 실시예에 따른 단열재의 제조 방법을 도시한 흐름도이다.
도 1에 도시한 바와 같이, 본 실시예에 따른 단열재의 제조 방법은, 혼합 조성물을 형성하는 단계(S10)와, 제1 발포하는 단계(또는 포화하는 단계).(S20)와, 제2 발포하는 단계(S30)을 포함한다. 이를 좀더 상세하게 설명한다.
혼합 조성물을 형성하는 단계(S10)에서는 폴리스티렌 수지와 탄소 나노 물질을 혼합한다. 폴리스티렌 수지는 발포에 의하여 독립 셀을 형성하여 우수한 단열 특성을 나타낼 수 있는 물질이다. 탄소 나노 물질은 나노 수준의 크기(1nm 이상, 1um 미만)의 크기를 가져 복사를 차단하는 역할을 할 수 있다. 그리고 탄소 나노 물질은 발포 시 핵생성 에너지를 감소시키고 비균질적 기포 핵생성을 향상시킬 수 있다. 또한, 탄소 나노 물질은 발포 후에 셀 벽에 위치하여 매트릭스의 기계적 강도를 증가시킬 수 있다.
탄소 나노 물질로는 다양한 물질을 사용할 수 있으며, 일 예로, 탄소 나노 튜브를 사용하면 복사를 차단하는 역할 등을 효과적으로 수행할 수 있다.
이때, 탄소 나노 물질은 혼합 조성물 전체 100 wt%에 대하여 0.01 wt% 내지 0.5 wt%로 포함될 수 있다. 탄소 나노 물질이 0.01 wt% 미만이면 탄소 나노 물질에 의한 효과가 충분하지 않을 수 있다. 탄소 나노 물질이 0.5 wt%를 초과하면, 개방 셀의 함량이 높아질 수 있다. 이때, 탄소 나노 물질이 혼합 조성물 전체 100 wt%에 대하여 0.1 wt% 내지 0.3 wt%로 포함되면, 탄소 나노 물질의 효과를 최대화하면서 개방 셀의 함량을 효과적으로 감소시킬 수 있다.
제1 발포하는 단계(S20)에서는 오토 클레이브(autoclave) 내에 혼합 조성물을 위치한 상태에서 오토 클레이브에 보조 발포제인 펜탄 가스 및 이산화탄소 가스를 제공하여 혼합 조성물에 용해시킨다.
보조 발포제로 펜탄 가스 및 이산화탄소 가스를 사용하면 팽창비를 증가시키면서 독립 셀의 크기를 감소시킬 수 있다. 좀더 구체적으로, 펜탄 가스는 폴리스티렌을 가소화하며 폴리스티렌 매트릭스 내에서 높은 용해도를 가진다. 다만, 펜탄 가스의 과포화도가 낮아 기포 형성을 제한할 수 있으므로 펜탄 가스와 함께 펜탄 가스보다 높은 과포화도를 가지는 이산화탄소 가스를 함께 사용하여 기포가 효과적으로 형성될 수 있도록 한다. 이에 의하여 형성된 발포체가 큰 팽창비를 가지며 높은 과포화되에 의하여 비균질 기포 핵생성을 일으키게 된다. 이에 의하여 기포 핵생성이 많이 일으키도록 할 수 있다. 이때, 탄소 나노 물질은 핵생성 에너지를 감소시켜서 기포 핵생성을 가속화할 수 있다.
펜탄 가스 및 이산화탄소 가스에 의한 오토 클레이브 내의 압력이 1050psi 내지 3000 psi일 수 있다. 상기 압력이 1050 psi 미만이면 발포 효과가 충분하지 않을 수 있고, 상기 압력이 3000 psi를 초과하면 발포 시 높은 압력에 의하여 셀이 손상되거나 파괴될 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니다.
제1 발포하는 단계(S20)는 2일 내지 3일 동안 수행될 수 있다. 이러한 공정 시간 범위 내에서 큰 팽창비를 가지는 충분한 발포가 이루어질 수 있기 때문이다. 그러나 본 발명이 이에 한정되는 것은 아니다.
제2 발포하는 단계(S30)에서는 제1 발포하는 단계(S20)에 의하여 형성된 발포체를 증기에서 발포한다. 이에 의하여 충분한 발포가 이루어지도록 하고 큰 팽창비를 가질 수 있도록 한다.
일 예로, 제2 발포하는 단계(S30)에서는 100도씨 내지 120도씨의 증기를 발포체에 제공하여 제2 발포할 수 있다. 이러한 온도 범위의 증기를 쉽게 형성할 수 있으며 이러한 온도 범위에서 발포 특성을 향상할 수 있기 때문이다.
제2 발포하는 단계(S30)의 공정 시간이 제1 발포하는 단계(S20)의 공정 시간보다 짧을 수 있다. 이는 제2 발포하는 단계(S30)를 길게 수행하면 제1 발포하는 단계(S20)에 의한 다양한 발포 특성이 통제하기 어려운 상태가 될 수 있기 때문이다. 일 예로, 제2 발포하는 단계(S30)가 1분 내지 3분 동안 수행될 수 있다. 이러한 범위 내에서 팽창비를 크게 하면서 발포 특성을 크게 변화시키지 않으면서 제2 발포될 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니다.
도 2는 본 발명의 실시예에 따른 단열재의 개략적인 단면도이다.
도 2를 참조하면, 상술한 단열재의 제조 방법에 의하여 형성된 단열재(100)는, 독립 셀을 가지는 매트릭스로 구성되는 폴리스티렌 폼(10)과, 독립 셀의 벽면에 분산된 탄소 나노 물질(20)을 포함할 수 있다. 탄소 나노 물질(20)은 앞서 설명한 바와 같이, 전체 단열재(100) 100 wt%에 대하여 0.01 wt% 내지 0.5 wt%(일 예로, 0.1 wt% 내지 0.3 wt%)로 포함될 수 있다.
이때, 독립 셀의 크기가 300um 이하(예를 들어, 5um 내지 300um)일 수 있다. 이는 탄소 나노 물질(20)을 포함하는 혼합 조성물을 사용하며, 보조 발포제로 펜탄 가스 및 이산화탄소 가스를 함께 사용하였기 때문이다. 좀더 구체적으로, 독립 셀이 제1 크기(일 예로, 제1 평균 크기)를 가지는 제1 셀(12)과 제1 셀(12)보다 작은 제2 크기(일 예로, 제2 평균 크기)를 가지는 제2 셀(14)을 포함하는 바이모달(bimodal) 구조를 가지게 된다. 즉, 상대적으로 큰 제1 셀(12)은 변형되기 쉽지만 상대적으로 작은 제2 셀(14)은 강한 모듈러스(modulus)를 가진다. 이와 같이 제2 셀(14)을 함께 구비하여 단열재(100)가 우수한 기계적 강도를 가질 수 있다. 일 예로, 제1 셀(12)의 제1 크기가 100um 내지 300um이고, 제2 셀(14)의 제2 크기가 5um 내지 30um일 수 있다. 이러한 제1 및 제2 크기는 쉽게 제조될 수 있으며 우수한 기계적 강도를 가지는 값으로 한정된 것이다.
그리고 제1 및 제2 발포 과정에 의한 팽창비(혼합 조성물에 대한 단열재(100)의 부피 비율)이 20 이상(일 예로, 20 내지 35)이고, 단열재(100)의 개방 셀 함량이 8% 이하(일 예로, 2% 내지 8%)이며, 단열재(100)의 열전도도가 25 mW/m·K 이하(일 예로, 15 mW/m·K 내지 25 mW/m·K)일 수 있다. 여기서, 개방셀 함량은 다양한 방법에 의하여 측정될 수 있는데, 공기비교식 피크노미터(air pycnometer) 등을 사용할 수 있다.
상술한 바와 같은 높은 팽창비 및 낮은 개방 셀 함량은 탄소 나노 물질(20), 그리고 보조 발포제로 사용한 펜탄 가스 및 이산화탄소 가스에 의하여 구현될 수 있다. 특히, 탄소 나노 물질(20)의 함량을 0.5 wt% 이하(좀더 구체적으로 0.3 wt% 이하)로 한정하여 탄소 나노 물질(20)이 많은 양 포함될 경우에 발생할 수 있는 팽창비 저하를 방지한다. 그리고 펜탄 가스는 폴리스티렌에 대하여 강한 가소화 효과를 가지므로 셀 벽이 파괴되기 전에 더 많이 팽창하도록 하여 높은 팽창비를 가지면서도 개방 셀 함량을 줄일 수 있다.
그리고 상술한 바와 같이 낮은 열전도도는 본 실시예의 단열재(100)의 다양한 특성의 결합에 의하여 구현된다. 셀 벽에 분산된 탄소 나노 물질(20)은 복사를 방지한다. 특히, 본 실시예와 같이 팽창비가 크면(일 예로, 20 이상이면), 복사가 열전도도에 큰 영향을 줄 수 있으므로 탄소 나노 물질(20)에 의하여 복사를 방지하는 것이다. 그리고 바이모달 구조는 비틀림을 강화하는데 이러한 비틀림에 의하여 고체상을 통한 전도를 감소시킬 수 있다. 또한, 상대적으로 큰 제1 셀(12)의 두꺼운 셀 벽이 복사를 효과적으로 차단할 수 있다.
이와 같이 본 실시예에 따른 단열재(100)의 제조 방법에 의하면 우수한 단열 특성을 가지는 단열재(100)를 간단한 공정에 의하여 제조할 수 있다. 그리고 본 실시예에 따른 단열재(100)는 바이모달 구조, 낮은 개방 셀 함량 및 낮은 열전도도를 가져 우수한 단열 특성을 가진다.
이하, 본 발명의 제조예를 참조하여 본 발명은 좀더 상세하게 설명한다.
폴리스티렌 수지와 탄소 나노 튜브를 혼합하여 혼합 조성물을 형성하였다. 이때, 탄소 나노 튜브는 전체 100wt%에 대하여 0.25 wt%만큼 포함되었다. 그리고 혼합 조성물을 오토 클레이브에 넣은 후에 2000 psi의 압력으로 펜탄 가스 및 이산화탄소 가스를 제공하면서 2일 동안 두어 제1 발포를 수행하였다. 제1 발포에 의하여 형성된 발포체를 100도씨의 증기에서 2분 동안 두어 제2 발포를 수행하여 단열재를 형성하였다.
이에 의하여 제조된 단열재의 사진을 도 3에 나타내었고, 제1 셀의 제1 크기(일 예로, 제1 평균 크기), 제2 셀의 제2 크기(일 예로, 제2 평균 크기), 단열재의 팽창비, 개방 셀 함량, 열전도도를 측정하여 그 결과를 표 1에 나타내었다.
제1 크기 167 um
제2 크기 14.8 um
팽창비 27.7
개방셀 함량 6.6 %
열전도도 24.7 mW/m·K
도 3 및 표 1을 참조하면, 단열재가 전체적으로 300 um 이하의 셀을 가지며, 100um 내지 300um의 제1 크기를 가지는 제1 셀과 상대적으로 작은 5um 내지 30um의 제2 크기를 가지는 제2 셀을 구비하는 바이모달 구조를 가지는 것을 알 수 있다.
그리고 단열재의 팽창비가 20 이상이고, 개방 셀 함량이 8% 이하이며, 열전도도가 25 mW/m·K 이하로 매우 우수한 것을 알 수 있다.
상술한 바에 따른 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (15)

  1. 폴리스티렌 수지와 탄소 나노 물질을 혼합한 혼합 조성물을 형성하는 단계;
    상기 혼합 조성물에 보조 발포제인 펜탄 가스 및 이산화탄소 가스를 용해하여 발포체를 형성하는, 제1 발포하는 단계; 및
    상기 발포체를 증기에서 제2 발포하는 단계
    를 포함하는 단열재의 제조 방법.
  2. 제1항에 있어서,
    상기 제1 발포하는 단계는 오토 클레이브(autoclave) 내에 상기 혼합 조성물을 위치한 상태에서 상기 오토 클레이브에 상기 펜탄 가스 및 상기 이산화탄소 가스를 제공하여 수행되는 단열재의 제조 방법.
  3. 제2항에 있어서,
    상기 제1 발포하는 단계에서 상기 펜탄 가스 및 상기 이산화탄소 가스에 의한 상기 오토 클레이브 내의 압력이 1050 psi 내지 3000 psi인 단열재의 제조 방법.
  4. 제1항에 있어서,
    상기 제1 발포하는 단계보다 상기 제2 발포하는 단계의 공정 시간이 짧은 단열재의 제조 방법.
  5. 제4항에 있어서,
    상기 제1 발포하는 단계가 2일 내지 3일 동안 수행되고,
    상기 제2 발포하는 단계가 1분 내지 3분 동안 수행되는 단열재의 제조 방법.
  6. 제1항에 있어서,
    상기 단열재가 독립 셀을 포함하고,
    상기 독립 셀이 제1 크기를 가지는 제1 셀과 상기 제1 셀보다 작은 제2 크기를 가지는 제2 셀을 포함하는 바이모달(bimodal) 구조를 가지는 단열재의 제조 방법.
  7. 제6항에 있어서,
    상기 제1 크기가 100um 내지 300um이고,
    상기 제2 크기가 5um 내지 30um인 단열재의 제조 방법.
  8. 제1항에 있어서,
    상기 단열재의 팽창비가 20 이상이고,
    상기 단열재의 개방 셀 함량이 8% 이하이며,
    상기 단열재의 열전도도가 25 mW/m·K 이하인 단열재의 제조 방법.
  9. 제1항에 있어서,
    상기 탄소 나노 물질이 탄소 나노 튜브를 포함하고,
    상기 탄소 나노 물질이 0.01 wt% 내지 0.5 wt%로 포함되는 단열재의 제조 방법.
  10. 제9항에 있어서,
    상기 탄소 나노 물질 0.1 wt% 내지 0.3 wt%로 포함되는 단열재의 제조 방법.
  11. 독립 셀을 가지는 폴리스티렌 폼; 및
    상기 폴리스티렌 폼의 상기 독립 셀의 벽면에 분산된 탄소 나노 물질
    을 포함하고,
    상기 독립 셀이 제1 크기를 가지는 제1 셀과 상기 제1 셀보다 작은 제2 크기를 가지는 제2 셀을 포함하는 바이모달(bimodal) 구조를 가지는 단열재.
  12. 제11항에 있어서,
    상기 제1 크기가 100um 내지 300um이고,
    상기 제2 크기가 5um 내지 30um인 단열재.
  13. 제11항에 있어서,
    상기 폴리스티렌 폼의 개방 셀 함량이 8% 이하이며,
    상기 단열재의 열전도도가 25 mW/m·K 이하인 단열재.
  14. 제11항에 있어서,
    상기 탄소 나노 물질이 탄소 나노 튜브를 포함하고,
    상기 탄소 나노 물질이 0.01 wt% 내지 0.5 wt%로 포함되는 단열재.
  15. 제14항에 있어서,
    상기 탄소 나노 물질이 0.1 wt% 내지 0.3 wt%로 포함되는 단열재.
PCT/KR2015/014008 2015-12-21 2015-12-21 단열재 및 이의 제조 방법 WO2017111182A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580085821.2A CN108699836A (zh) 2015-12-21 2015-12-21 绝热材料及其制备方法
PCT/KR2015/014008 WO2017111182A1 (ko) 2015-12-21 2015-12-21 단열재 및 이의 제조 방법
KR1020187017244A KR102077469B1 (ko) 2015-12-21 2015-12-21 단열재 및 이의 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2015/014008 WO2017111182A1 (ko) 2015-12-21 2015-12-21 단열재 및 이의 제조 방법

Publications (1)

Publication Number Publication Date
WO2017111182A1 true WO2017111182A1 (ko) 2017-06-29

Family

ID=59090580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/014008 WO2017111182A1 (ko) 2015-12-21 2015-12-21 단열재 및 이의 제조 방법

Country Status (3)

Country Link
KR (1) KR102077469B1 (ko)
CN (1) CN108699836A (ko)
WO (1) WO2017111182A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108997666A (zh) * 2018-07-19 2018-12-14 浙江工业大学 一种具有双峰孔结构的聚合物微孔发泡材料及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210073790A (ko) * 2019-12-11 2021-06-21 한화솔루션 주식회사 발포용 프레스를 사용하는 물리발포 공정
KR20230061741A (ko) * 2021-10-29 2023-05-09 한국재료연구원 초저열전도도 나노다공체 조성물 및 이를 이용한 단열재

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030077596A (ko) * 2001-02-05 2003-10-01 도레이 가부시끼가이샤 탄소 섬유 강화 수지 조성물, 성형 재료 및 그의 성형품
US6750264B2 (en) * 2002-01-04 2004-06-15 Dow Global Technologies Inc. Multimodal polymeric foam containing an absorbent clay
KR20080003843A (ko) * 2005-04-27 2008-01-08 아르끄마 프랑스 탄소나노튜브를 포함한 중합체-기재 셀 구조, 이의 제조방법 및 용도
KR100974989B1 (ko) * 2006-02-28 2010-08-09 세키스이가세이힝코교가부시키가이샤 스티렌 개질 폴리프로필렌계 수지 입자, 발포성 스티렌 개질 폴리프로필렌계 수지 입자, 스티렌 개질 폴리프로필렌계 수지 발포 입자, 스티렌 개질 폴리프로필렌계 수지 발포성형체 및 그들의 제조방법
KR20140085261A (ko) * 2012-12-27 2014-07-07 제일모직주식회사 발포성 수지 조성물, 그 제조방법 및 이를 이용한 발포체

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4424287A (en) * 1980-06-10 1984-01-03 Mobil Oil Corporation Polymer foam process
IS1537B (is) * 1988-08-02 1994-01-28 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Útþanið tilbúið viðarkvoðufrauð (gerviresínfroða)og aðferð við framleiðslu þess
JP4570504B2 (ja) * 2004-04-26 2010-10-27 株式会社ジェイエスピー ポリスチレン系樹脂押出発泡体の製造方法
CN100549073C (zh) * 2006-03-07 2009-10-14 中国科学院化学研究所 一种制备热塑性树脂发泡制品的方法
CN101407869B (zh) * 2007-10-12 2010-12-29 西南交通大学 一种制备高孔隙率金属及复合材料的工艺方法
CN102304260A (zh) * 2011-07-18 2012-01-04 北京工商大学 一种聚乙烯醇发泡材料及其制造方法
CN203680639U (zh) * 2014-01-14 2014-07-02 兰州迅美漆业科技有限公司 膨胀聚苯乙烯发泡机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030077596A (ko) * 2001-02-05 2003-10-01 도레이 가부시끼가이샤 탄소 섬유 강화 수지 조성물, 성형 재료 및 그의 성형품
US6750264B2 (en) * 2002-01-04 2004-06-15 Dow Global Technologies Inc. Multimodal polymeric foam containing an absorbent clay
KR20080003843A (ko) * 2005-04-27 2008-01-08 아르끄마 프랑스 탄소나노튜브를 포함한 중합체-기재 셀 구조, 이의 제조방법 및 용도
KR100974989B1 (ko) * 2006-02-28 2010-08-09 세키스이가세이힝코교가부시키가이샤 스티렌 개질 폴리프로필렌계 수지 입자, 발포성 스티렌 개질 폴리프로필렌계 수지 입자, 스티렌 개질 폴리프로필렌계 수지 발포 입자, 스티렌 개질 폴리프로필렌계 수지 발포성형체 및 그들의 제조방법
KR20140085261A (ko) * 2012-12-27 2014-07-07 제일모직주식회사 발포성 수지 조성물, 그 제조방법 및 이를 이용한 발포체

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108997666A (zh) * 2018-07-19 2018-12-14 浙江工业大学 一种具有双峰孔结构的聚合物微孔发泡材料及其制备方法
CN108997666B (zh) * 2018-07-19 2020-11-17 浙江工业大学 一种具有双峰孔结构的聚合物微孔发泡材料及其制备方法

Also Published As

Publication number Publication date
KR20180091017A (ko) 2018-08-14
KR102077469B1 (ko) 2020-04-03
CN108699836A (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
WO2017111182A1 (ko) 단열재 및 이의 제조 방법
US6908950B2 (en) Asphalt filled polymer foam
KR101129203B1 (ko) 셀 형태 제어를 위해 나노-입자를 사용한 열가소성 폼의형성 방법
AU2005323239B2 (en) Polymer foams containing multi-functional layered nano-graphite
Cheng et al. Flexible and lightweight MXene/silver nanowire/polyurethane composite foam films for highly efficient electromagnetic interference shielding and photothermal conversion
US9359481B2 (en) Thermoplastic foams and method of forming them using nano-graphite
CA2655727A1 (en) Polymer foams containing multi-functional layered nano-graphite
AU2002348044A1 (en) Asphalt-filled polymer foams
WO2010008182A2 (ko) 불연성 알루미늄 복합판넬 심재용 조성물
EP3087120B1 (en) New foam materials
CN112172076B (zh) 一种三明治结构的无卤阻燃聚烯烃发泡材料及其制备方法
JP5997181B2 (ja) ポリプロピレン系樹脂発泡粒子、その製法及びポリプロピレン系樹脂発泡粒子成形体
Liu et al. Green segregated honeycomb biopolymer composites for electromagnetic interference shielding biomedical devices
CN110978366B (zh) 一种用于提高发泡材料中的功能组分添加量的方法
WO2013094800A1 (ko) 단열성 및 난연성이 우수한 발포성 폴리스티렌, 그 제조방법 및 그로부터 형성된 발포체
US11305519B2 (en) Antistatic laminated foam sheet and process for producing same
JP2003028384A (ja) 袋状物充填粉砕発泡体断熱材
CN111333957B (zh) 一种隔热母粒和低导热高阻燃发泡聚丙烯珠粒
CN111430782B (zh) 一种硅气凝胶改性锂离子电池隔膜及制备方法
JP4010863B2 (ja) スチレン系樹脂押出発泡体およびその製造方法
JPWO2004007596A1 (ja) ポリスチレン樹脂発泡体及びその製造方法
JP5915017B2 (ja) 断熱性能に優れた押出発泡体の製造方法
Shao et al. Multivariate gradient structure design of flexible thermoplastic polyurethane based composite foam for enhanced electromagnetic interference shielding performance
KR20090048432A (ko) 다기능성 층 나노 그래파이트를 함유하는 폴리머 발포체
Zhao et al. Fabrication of electromagnetic wave absorption nanocomposite foam with adjustable conductive network by supercritical carbon dioxide foaming

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15911442

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187017244

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/11/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15911442

Country of ref document: EP

Kind code of ref document: A1