WO2017111090A1 - 圧電薄膜、圧電薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置 - Google Patents

圧電薄膜、圧電薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置 Download PDF

Info

Publication number
WO2017111090A1
WO2017111090A1 PCT/JP2016/088501 JP2016088501W WO2017111090A1 WO 2017111090 A1 WO2017111090 A1 WO 2017111090A1 JP 2016088501 W JP2016088501 W JP 2016088501W WO 2017111090 A1 WO2017111090 A1 WO 2017111090A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
piezoelectric thin
piezoelectric
single crystal
crystal substrate
Prior art date
Application number
PCT/JP2016/088501
Other languages
English (en)
French (fr)
Inventor
政井 琢
佐藤 祐介
純平 森下
舟窪 浩
荘雄 清水
祐一 根本
Original Assignee
Tdk株式会社
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社, 国立大学法人東京工業大学 filed Critical Tdk株式会社
Priority to JP2017558284A priority Critical patent/JPWO2017111090A1/ja
Publication of WO2017111090A1 publication Critical patent/WO2017111090A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14233Structure of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/32Titanates; Germanates; Molybdates; Tungstates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/4806Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed specially adapted for disk drive assemblies, e.g. assembly prior to operation, hard or flexible disk drives
    • G11B5/4873Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed specially adapted for disk drive assemblies, e.g. assembly prior to operation, hard or flexible disk drives the arm comprising piezoelectric or other actuators for adjustment of the arm
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/706
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8542Alkali metal based oxides, e.g. lithium, sodium or potassium niobates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8561Bismuth based oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/03Specific materials used
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/4806Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed specially adapted for disk drive assemblies, e.g. assembly prior to operation, hard or flexible disk drives
    • G11B5/4826Mounting, aligning or attachment of the transducer head relative to the arm assembly, e.g. slider holding members, gimbals, adhesive
    • G11B5/483Piezo-electric devices between head and arm, e.g. for fine adjustment

Definitions

  • the present invention relates to a piezoelectric thin film, a piezoelectric thin film element, a piezoelectric actuator, a piezoelectric sensor, a head assembly, a head stack assembly, a hard disk drive, a printer head, and an ink jet printer apparatus.
  • Piezoelectric materials are processed into various piezoelectric thin film elements according to various purposes.
  • a piezoelectric actuator converts a voltage into a force by an inverse piezoelectric effect that applies a voltage to the piezoelectric thin film to deform the piezoelectric thin film.
  • the piezoelectric sensor converts force into voltage by a piezoelectric effect that applies pressure to the piezoelectric thin film to deform the piezoelectric thin film.
  • Non-Patent Document 1 describes a BaTiO 3 -based material as an example of a lead-free piezoelectric material.
  • the BaTiO 3 -based material has excellent piezoelectric characteristics compared to other lead-free piezoelectric materials, and is particularly expected to be applied to piezoelectric thin film elements.
  • the relative dielectric constant ⁇ r of the BaTiO 3 material is high. Therefore, even if the piezoelectric constant d 31 of the BaTiO 3 material is comparable to PZT, the piezoelectric constant g 31 of the BaTiO 3 material obtained by dividing d 31 by ⁇ r becomes small.
  • a large d 31 is required for a piezoelectric actuator, for example, and a large g 31 is required for a piezoelectric sensor, for example, but for various applications of piezoelectric thin film elements, both g 31 and d 31 are A large piezoelectric thin film is required.
  • a piezoelectric thin film having a large d 31 and g 31 a piezoelectric thin film element, a piezoelectric actuator using the piezoelectric thin film element, a piezoelectric sensor, a head assembly, It is an object to provide a head stack assembly, a hard disk drive, a printer head, and an inkjet printer apparatus.
  • a piezoelectric thin film according to one aspect of the present invention is a piezoelectric thin film overlying a single crystal substrate, and the piezoelectric thin film includes a crystalline oxide represented by the following chemical formula 1, and (100), (001), ( 110), (101), and (111), one of the plane orientations of the oxide selected from the group consisting of (111) is preferentially oriented in the normal direction of the single crystal substrate.
  • the plane orientation of the oxide may be restated as the orientation of the crystal plane of the oxide represented by the following chemical formula 1. (Bi x K y) TiO 3 (1) [In the above chemical formula 1, 0.30 ⁇ x ⁇ 0.60, 0.30 ⁇ y ⁇ 0.60, 0.60 ⁇ x + y ⁇ 1.10. ]
  • a piezoelectric thin film element includes a single crystal substrate and a piezoelectric thin film overlapping the single crystal substrate, and the piezoelectric thin film includes a crystalline oxide represented by the following chemical formula 1, (100 ), (001), (110), (101), and one of the plane orientations of the oxide selected from the group consisting of (111) is preferentially oriented in the normal direction of the single crystal substrate.
  • the plane orientation preferentially oriented in the normal direction may be (001).
  • a piezoelectric actuator according to one aspect of the present invention includes the piezoelectric thin film element.
  • a head assembly according to one aspect of the present invention includes the piezoelectric actuator.
  • a head stack assembly according to one aspect of the present invention includes the head assembly.
  • a hard disk drive according to one aspect of the present invention includes the head stack assembly.
  • a printer head includes the piezoelectric actuator.
  • An ink jet printer apparatus includes the printer head.
  • a piezoelectric thin film having a large d 31 and g 31 , a piezoelectric thin film element, and a piezoelectric actuator, a piezoelectric sensor, a head assembly, a head stack assembly, a hard disk drive, a printer head, and an inkjet printer using the piezoelectric thin film element An apparatus is provided.
  • FIG. 5 is a cross-sectional view taken along the line AA of the gyro sensor shown in FIG. 4. It is a mimetic diagram of a pressure sensor concerning one embodiment of the present invention. It is a mimetic diagram of a pulse wave sensor concerning one embodiment of the present invention.
  • 1 is a schematic diagram of a hard disk drive according to an embodiment of the present invention. 1 is a schematic diagram of an ink jet printer apparatus according to an embodiment of the present invention. It is an X-ray diffraction pattern of the piezoelectric thin film of Example 6 of the present invention. It is the plot of the molar ratio x of Bi and the molar ratio y of K in the piezoelectric thin film of each of the Example and comparative example of this invention.
  • X, Y, and Z shown in FIG. 1 mean three coordinate axes that are orthogonal to each other. Further, when the description overlaps, the description is omitted.
  • the present invention is not limited to the following embodiment.
  • a piezoelectric thin film element 100 includes a single crystal substrate 1, a first electrode layer 2 (lower electrode layer) that overlaps the single crystal substrate 1, and a first electrode layer 2.
  • a piezoelectric thin film 3 overlapping the single crystal substrate 1 and a second electrode layer 4 (upper electrode layer) overlapping the piezoelectric thin film 3 are provided. That is, in the piezoelectric thin film element 100, the piezoelectric thin film 3 is sandwiched between a pair of electrode layers.
  • the modification of the piezoelectric thin film element 100 may not include the second electrode layer 4. For example, after a piezoelectric thin film element without a second electrode layer is supplied as a product to a manufacturer of an electronic device, the second electrode layer is added to the piezoelectric thin film element in the process of assembling and manufacturing the electronic device. Good.
  • the single crystal substrate 1 may be, for example, a substrate made of a single crystal of Si or a substrate made of a single crystal of a compound semiconductor such as GaAs.
  • the single crystal substrate 1 may be a substrate made of a single crystal of an oxide such as MgO or a perovskite oxide (for example, SrTiO 3 ).
  • the thickness of the single crystal substrate 1 may be, for example, 10 to 1000 ⁇ m.
  • the first electrode layer 2 may be omitted because the single crystal substrate 1 functions as an electrode. That is, when the single crystal substrate 1 has conductivity, the piezoelectric thin film 3 may directly overlap the single crystal substrate 1.
  • the single crystal substrate 1 having conductivity may be, for example, a single crystal of SrTiO 3 doped with Nb (niobium).
  • Nb niobium
  • an adhesion layer made of Ti, Cr, or the like may be formed on the surface of the single crystal substrate 1 in order to improve the adhesion of the first electrode layer 2.
  • One of the plane orientation of the crystal structure of the single crystal substrate 1 may be equal to the normal direction D N of the single crystal substrate 1. That is, any crystal plane of the crystal structure of the single crystal substrate 1 may be oriented in the normal direction D N of the single crystal substrate 1.
  • the single crystal substrate 1 may be a uniaxially oriented substrate.
  • one of the plane orientations of the crystal structure of the single crystal substrate 1 selected from the group consisting of (100), (001), (110), (101), and (111) is the normal direction D of the single crystal substrate. N may be equal.
  • the first electrode layer 2 includes, for example, Pt (platinum), Pd (palladium), Rh (rhodium), Au (gold), Ru (ruthenium), Ir (iridium), Mo (molybdenum), Ti (titanium), Ta (Tantalum) and at least one metal selected from the group consisting of Ni (nickel) may be used.
  • the first electrode layer 2 may be made of a conductive metal oxide such as SrRuO 3 or LaNiO 3 , for example.
  • the first electrode layer 2 may be crystalline. One of the plane orientation of the crystal structure of the first electrode layer 2 may have oriented in the normal direction D N of the single crystal substrate 1.
  • the plane orientation of the single crystal substrate 1, and the plane orientation of the crystal structure of the first electrode layer 2, both may be oriented in the normal direction D N of the single crystal substrate 1.
  • the plane orientation of the crystal structure of the first electrode layer 2 to be oriented in the normal direction D N may be the same as the plane orientation of the single crystal substrate 1 for alignment in the normal direction D N.
  • the thickness of the first electrode layer 2 may be 1 nm to 1.0 ⁇ m, for example.
  • the formation method of the first electrode layer 2 may be a sputtering method, a vacuum evaporation method, a printing method, a spin coating method, or a sol-gel method. In the printing method, the spin coating method, or the sol-gel method, the first electrode layer 2 may be heated to increase the crystallinity of the first electrode layer 2.
  • the entire oxide BKT or piezoelectric thin film 3 may be a single crystal.
  • the oxide BKT or the entire piezoelectric thin film 3 may be polycrystalline.
  • Presence / absence of the preferential orientation of the surface orientation of the oxide BKT is determined by the orientation degree of the surface orientation of the oxide BKT.
  • the degree of orientation is expressed as F (HKL).
  • the orientation degree F (HKL) may be rephrased as the orientation degree of the plane orientation (HKL) of the oxide BKT.
  • the degree of orientation F (HKL) may be restated as the degree of orientation of the (HKL) plane of the oxide BKT.
  • the plane orientation (HKL) means any plane orientation selected from the group consisting of (100), (001), (110), (101) and (111).
  • the degree of orientation F (HKL) is a value defined by the Lotgering method.
  • the unit of the degree of orientation F (HKL) is [%].
  • the orientation degree F (HKL) is defined by the following formula A.
  • F (HKL) ⁇ ( ⁇ 0 ) / (1 ⁇ 0 ) ⁇ ⁇ 100
  • ⁇ I (hkl) is the sum of X-ray diffraction intensities (measured values) of all crystal planes (hkl) of the crystalline oxide BKT.
  • ⁇ I (HKL) is the sum of X-ray diffraction intensities (measured values) of a specific crystal plane (HKL) that is crystallographically equivalent in the crystalline oxide BKT.
  • the temperature of the piezoelectric thin film element 100 may be less than the Curie point of the oxide BKT (for example, room temperature).
  • the plane orientation D (HKL) of the oxide BKT may be (100) or (001).
  • the plane orientation D (HKL) of the oxide BKT may be (110) or (101).
  • the plane orientation D (HKL) of the oxide BKT may be (111).
  • the molar ratio x of Bi (bismuth) in the oxide BKT is 0.30 to 0.60
  • the molar ratio y of K (potassium) in the oxide BKT is 0.30 to 0.00. 60
  • (x + y) is 0.60 to 1.10.
  • a different phase other than the oxide BKT for example, a Bi layered compound or a Ti compound
  • the orientation degree of the plane orientation of the oxide BKT is lowered, and the piezoelectric characteristics of the piezoelectric thin film are rapidly deteriorated.
  • x may be between 0.50 and 0.60, and y may be between 0.50 and 0.60.
  • x is 0.50 to 0.60 and y is 0.50 to 0.60, the orientation degree of the surface orientation of the oxide BKT tends to be high, d 31 tends to be large, and ⁇ r is small.
  • G 31 tends to be large.
  • x may be 0.45 to 0.55, and y may be 0.45 to 0.55.
  • the Curie point of the conventional BaTiO 3 system material is low. Therefore, when the piezoelectric thin film is heated in the manufacturing process of an electronic device using the piezoelectric thin film element (for example, solder reflow process), the phase transition of the BaTiO 3 material constituting the piezoelectric thin film is likely to occur, and the mechanical strength and piezoelectricity are increased. Properties are easily lost. On the other hand, the Curie point of the oxide BKT is higher than that of the conventional BaTiO 3 material.
  • the piezoelectric thin film 3 may be formed by the following method, for example.
  • starting materials for example, raw material powders of bismuth oxide, potassium carbonate, and titanium oxide are prepared. After these starting materials are sufficiently dried at 100 ° C. or higher, the number of moles of Bi, the number of moles of K, and the number of moles of Ti are within the range defined by the above chemical formula 1 in the composition analysis after film formation. And weigh each starting material.
  • a starting material instead of the above oxide, a substance that becomes an oxide by firing, such as carbonate or oxalate, may be used.
  • the weighed starting materials are sufficiently mixed for 5 to 20 hours in an organic solvent or water using, for example, a ball mill.
  • the starting material after mixing is sufficiently dried and then molded with a press.
  • the formed starting material is calcined at 750 to 900 ° C. for about 1 to 3 hours.
  • the calcined product is pulverized in an organic solvent or water for 5 to 30 hours using a ball mill or the like.
  • the pulverized calcined product is dried again, and a binder solution is added and granulated to obtain a calcined product powder. This powder is press-molded to obtain a block-shaped molded body.
  • the block-shaped molded body is heated at 400 to 800 ° C. for about 2 to 4 hours to volatilize the binder. Subsequently, the molded body is fired at 800 to 1100 ° C. for about 2 to 4 hours. What is necessary is just to adjust the temperature increase rate and temperature decrease rate of this molded object at the time of this baking to about 50-300 degreeC / hour, for example.
  • the BKT target is obtained through the above steps.
  • the average grain size of the oxide BKT crystal grains contained in the BKT target may be, for example, about 1 to 20 ⁇ m.
  • the piezoelectric thin film 3 may be formed by a vapor phase growth method using the BKT target.
  • the vapor phase growth method elements constituting the BKT target are evaporated in a vacuum atmosphere.
  • the evaporated element is deposited and deposited on the surface of the smooth first electrode layer 2 or the surface of the single crystal substrate 1 to grow the piezoelectric thin film 3.
  • the vapor phase growth method may be, for example, a sputtering method, an electron beam evaporation method, a chemical vapor deposition method, or a pulsed laser deposition method.
  • the pulse laser deposition method is referred to as a PLD method.
  • the excitation source differs depending on the type of vapor phase growth method.
  • the excitation source of the sputtering method is Ar plasma.
  • the excitation source of the electron beam evaporation method is an electron beam.
  • the excitation source of the PLD method is laser light (for example, excimer laser). When these excitation sources are irradiated to the BKT target, the elements constituting the BKT target are evaporated.
  • the PLD method is relatively superior in the following points.
  • each element constituting the BKT target can be converted into plasma instantly and without spots by a pulse laser. Therefore, it is easy to form the piezoelectric thin film 3 having almost the same composition as the BKT target.
  • the thickness of the piezoelectric thin film 3 can be easily controlled by changing the number of pulses (repetition frequency) of the laser.
  • the piezoelectric thin film 3 is formed while heating the single crystal substrate 1 and the first electrode layer 2 in the vacuum chamber.
  • the temperature (deposition temperature) of the single crystal substrate 1 and the first electrode layer 2 may be, for example, 300 to 800 ° C., 500 to 700 ° C., or 500 to 600 ° C.
  • the higher the film formation temperature the better the cleanliness of the surface of the single crystal substrate 1 or the first electrode layer 2, the higher the crystallinity of the piezoelectric thin film 3, and the degree of orientation of the plane direction of the piezoelectric thin film 3 (oxide BKT). Easy to rise.
  • Bi or K is easily detached from the piezoelectric thin film 3, and the composition of the piezoelectric thin film 3 is difficult to control.
  • the oxygen partial pressure in the vacuum chamber may be, for example, greater than 10 mTorr and less than 400 mTorr, 15 to 300 mTorr, or 20 to 200 mTorr. In other words, the oxygen partial pressure in the vacuum chamber may be, for example, greater than 1 Pa and less than 53 Pa, 2 to 40 Pa, or 3 to 30 Pa.
  • Bi, K and Ti deposited on the surface of the single crystal substrate 1 or the first electrode layer 2 can be easily oxidized.
  • the oxygen partial pressure is too high, the growth rate and the degree of orientation of the piezoelectric thin film 3 tend to decrease.
  • Parameters other than the above controlled by the PLD method are, for example, the laser oscillation frequency and the distance between the substrate and the target. By controlling these parameters, desired piezoelectric characteristics of the piezoelectric thin film 3 can be easily obtained. For example, when the laser oscillation frequency is 10 Hz or less, the orientation degree of the plane orientation of the piezoelectric thin film 3 is likely to increase.
  • the second electrode layer 4 may be made of, for example, at least one metal selected from the group consisting of Pt, Pd, Rh, Au, Ru, Ir, Mo, Ti, Ta, and Ni.
  • the second electrode layer 4 may be made of a conductive metal oxide such as SrRuO 3 or LaNiO 3 , for example.
  • the second electrode layer 4 may be crystalline.
  • the crystal orientation of the crystal structure of the second electrode layer 4 may be the same as the crystal orientation of the crystal structure of the single crystal substrate 1.
  • the orientation of the plane orientation of the crystal structure of the second electrode layer 4 may be the same as the orientation of the plane orientation of the crystal structure of the oxide BKT.
  • the thickness of the second electrode layer 4 may be 1 nm to 1.0 ⁇ m, for example.
  • the formation method of the second electrode layer 4 may be a sputtering method, a vacuum evaporation method, a printing method, a spin coating method, or a sol-gel method.
  • the first electrode layer 2 may be heated to increase the crystallinity of the first electrode layer 2.
  • a second intermediate layer may be interposed between the piezoelectric thin film 3 and the second electrode layer 4.
  • the material constituting the second intermediate layer may be the same as the material constituting the first intermediate layer.
  • the second intermediate layer may be crystalline.
  • One of the plane orientation of the crystal structure of the second intermediate layer may have oriented in the normal direction D N of the single crystal substrate 1.
  • the plane orientation of the single crystal substrate 1, and the plane orientation of the crystal structure of the second intermediate layer, both, may be oriented in the normal direction D N of the single crystal substrate 1.
  • Plane orientation of the crystal structure of the second intermediate layer to orient in the normal direction D N may be the same as the plane orientation of the single crystal substrate 1 for alignment in the normal direction D N.
  • At least part or all of the surface of the piezoelectric thin film element 100 may be covered with a protective film.
  • a protective film By covering with the protective film, for example, the moisture resistance of the piezoelectric thin film element 100 is improved.
  • the piezoelectric thin film 3 and the piezoelectric thin film element 100 are provided with large d 31 and g 31 .
  • Applications of the piezoelectric thin film element 100 having a large d 31 and g 31 are diverse.
  • the piezoelectric thin film element 100 may be used for a piezoelectric actuator, for example.
  • the piezoelectric actuator may be used, for example, in a head assembly, a head stack assembly, or a hard disk drive.
  • the piezoelectric actuator may be used in, for example, a printer head or an ink jet printer apparatus.
  • the piezoelectric thin film element 100 may be used for a piezoelectric sensor, for example.
  • FIG. 2 shows a head assembly 200 mounted on a hard disk drive (HDD).
  • the head assembly 200 includes a base plate 9, a load beam 11, a flexure 17, first and second piezoelectric thin film elements 100, and a head slider 19.
  • the first and second piezoelectric thin film elements 100 are drive elements for the head slider 19.
  • the head slider 19 has a head element 19a.
  • the load beam 11 includes a base end portion 11b fixed to the base plate 9, a first plate spring portion 11c and a second plate spring portion 11d extending from the base end portion 11b, and plate spring portions 11c and 11d.
  • An opening portion 11e formed therebetween and a beam main portion 11f extending linearly continuously from the leaf spring portions 11c and 11d are provided.
  • the first leaf spring portion 11c and the second leaf spring portion 11d are tapered.
  • the beam main part 11f is also tapered.
  • the first and second piezoelectric thin film elements 100 are arranged on the wiring flexible substrate 15 which is a part of the flexure 17 with a predetermined interval.
  • the head slider 19 is fixed to the tip of the flexure 17 and rotates as the first and second piezoelectric thin film elements 100 expand and contract.
  • FIG. 3 shows a piezoelectric actuator 300 for a printer head.
  • the piezoelectric actuator 300 includes a base 20, an insulating film 23 overlapping the base 20, a single crystal substrate 24 overlapping the insulating film 23, a piezoelectric thin film 25 overlapping the single crystal substrate 24, and an upper electrode layer 26 ( A second electrode layer).
  • the single crystal substrate 24 has conductivity and also functions as a lower electrode layer.
  • the lower electrode layer may be rephrased as the first electrode layer.
  • the upper electrode layer may be rephrased as the second electrode layer.
  • the piezoelectric thin film 25 is deformed. Since the insulating film 23 is greatly deflected by the deformation of the piezoelectric thin film 25, the pressure in the pressure chamber 21 is instantaneously increased, and an ink droplet is ejected from the nozzle 27.
  • the gyro sensor 400 which is a kind of piezoelectric sensor.
  • the gyro sensor 400 includes a base 110 and a pair of arms 120 and 130 connected to one surface of the base 110.
  • the pair of arms 120 and 130 are tuning fork vibrators. That is, the gyro sensor 400 is a tuning fork vibrator type angular velocity detection element.
  • the gyro sensor 400 is obtained by processing the piezoelectric thin film 30, the upper electrode layer 31, and the single crystal substrate 32 constituting the above-described piezoelectric thin film element into the shape of a tuning fork vibrator.
  • the base 110 and the arms 120 and 130 are integrated with the piezoelectric thin film element.
  • the single crystal substrate 32 has conductivity and also functions as a lower electrode layer.
  • drive electrode layers 31a and 31b and a detection electrode layer 31d are formed on the first main surface of one arm 120.
  • drive electrode layers 31 a and 31 b and a detection electrode layer 31 c are formed on the first main surface of the other arm 130.
  • Each electrode layer 31a, 31b, 31c, 31d is obtained by processing the upper electrode layer 31 into a predetermined electrode shape by etching.
  • the single crystal substrate 32 (lower electrode layer) is formed on the entire second main surface (back surface of the first main surface) of each of the base 110 and the arms 120 and 130.
  • the single crystal substrate 32 (lower electrode layer) functions as a ground electrode of the gyro sensor 400.
  • the longitudinal directions of the arms 120 and 130 are defined as the Z direction, and the plane including the main surfaces of the arms 120 and 130 is defined as the XZ plane, thereby defining an XYZ orthogonal coordinate system.
  • the in-plane vibration mode is a mode in which the two arms 120 and 130 are excited in a direction parallel to the main surfaces of the two arms 120 and 130. For example, when one arm 120 is excited at the speed V1 in the ⁇ X direction, the other arm 130 is excited at the speed V2 in the + X direction.
  • the out-of-plane vibration mode is a mode in which the two arms 120 and 130 are excited in a direction orthogonal to the main surfaces of the two arms 120 and 130. For example, when the Coriolis force F1 acting on one arm 120 is in the ⁇ Y direction, the Coriolis force F2 acting on the other arm 130 is in the + Y direction.
  • FIG. 6 shows a pressure sensor 500 which is a kind of piezoelectric sensor.
  • the pressure sensor 500 includes a piezoelectric thin film element 40, a support 44 that supports the piezoelectric thin film element 40, a current amplifier 46, and a voltage measuring instrument 47.
  • the piezoelectric thin film element 40 includes a common electrode layer 41, a piezoelectric thin film 42 overlapping the common electrode layer 41, and an individual electrode layer 43 overlapping the piezoelectric thin film 42.
  • the common electrode layer 41 is a conductive single crystal substrate.
  • a cavity 45 surrounded by the common electrode layer 41 and the support 44 corresponds to pressure.
  • FIG. 7 shows a pulse wave sensor 600 which is a kind of piezoelectric sensor.
  • the pulse wave sensor 600 includes a piezoelectric thin film element 50, a support 54 that supports the piezoelectric thin film element 50, and a voltage measuring device 55.
  • the piezoelectric thin film element 50 includes a common electrode layer 51, a piezoelectric thin film 52 that overlaps the common electrode layer 51, and an individual electrode layer 53 that overlaps the piezoelectric thin film 52.
  • the common electrode layer 51 is a conductive single crystal substrate.
  • the support body 54 of the pulse wave sensor 600 When the back surface (the surface on which the piezoelectric thin film element 50 is not mounted) of the support body 54 of the pulse wave sensor 600 is brought into contact with the living artery, the support body 54 and the piezoelectric thin film element 50 are bent by the pressure of the living body pulse. The voltage is detected by the voltage measuring device 55.
  • FIG. 8 shows a hard disk drive 700 on which the head assembly shown in FIG. 2 is mounted.
  • the head assembly 65 in FIG. 8 is the same as the head assembly 200 in FIG.
  • the hard disk drive 700 includes a housing 60, a hard disk 61 (recording medium) installed in the housing 60, and a head stack assembly 62.
  • the hard disk 61 is rotated by a motor.
  • the head stack assembly 62 records magnetic information on the hard disk 61 and reproduces magnetic information recorded on the hard disk 61.
  • the head stack assembly 62 includes a voice coil motor 63, an actuator arm 64 supported by a support shaft, and a head assembly 65 connected to the actuator arm 64.
  • the actuator arm 64 is rotatable around the support shaft by the voice coil motor 63.
  • the actuator arm 64 is divided into a plurality of arms, and a head assembly 65 is connected to each arm. That is, the plurality of arms and the head assembly 65 are stacked along the support shaft.
  • a head slider 19 is attached to the tip of the head assembly 65 so as to face the hard disk 61.
  • the head assembly 65 moves the head element 19a in two stages.
  • the relatively large movement of the head element 19 a is controlled by the entire drive of the head assembly 65 and the actuator arm 64 by the voice coil motor 63.
  • the minute movement of the head element 19 a is controlled by driving the head slider 19 located at the tip of the head assembly 65.
  • FIG. 9 shows an inkjet printer device 800.
  • the ink jet printer apparatus 800 includes a printer head 70, a main body 71, a tray 72, and a head driving mechanism 73.
  • the printer head 70 in FIG. 9 has the piezoelectric actuator 300 in FIG.
  • the piezoelectric thin film 3 may be formed by a solution method instead of the vapor phase growth method.
  • Example 1 A single crystal substrate made of SrTiO 3 was prepared.
  • the orientation (001) of the crystal plane of SrTiO 3 was the same as the normal direction of the single crystal substrate.
  • the single crystal substrate was a 20 mm ⁇ 20 mm square.
  • the thickness of the single crystal substrate was 500 ⁇ m.
  • a piezoelectric thin film was formed on the entire surface of the first electrode layer.
  • the piezoelectric thin film was formed by the PLD method.
  • the temperature (film formation temperature) of the single crystal substrate during the formation of the piezoelectric thin film was maintained at 500 ° C.
  • the oxygen partial pressure in the vacuum chamber during the formation of the piezoelectric thin film was maintained at 50 mTorr.
  • a BKT target was used for forming the piezoelectric thin film.
  • the blending ratio of the BKT target raw material powder bismuth oxide, potassium carbonate and titanium oxide
  • the composition of the target piezoelectric thin film was represented by the following chemical formula 1.
  • the values of x, y and x + y in the following formula 1 were the values shown in Table 1 below.
  • the power of the laser irradiated to the BKT target was 250 mJ.
  • the thickness of the piezoelectric thin film was adjusted to 200 nm. (Bi x K y) TiO 3 (1)
  • a laminate including a single crystal substrate, a first electrode layer overlapping the single crystal substrate, and a piezoelectric thin film overlapping the first electrode layer was produced.
  • the composition of the piezoelectric thin film located on the surface of the laminate was analyzed by X-ray fluorescence analysis (XRF method).
  • XRF method X-ray fluorescence analysis
  • a device PW2404 manufactured by Phillips was used for the analysis.
  • the composition of the piezoelectric thin film of Example 1 was represented by the above chemical formula 1, and the values of x, y and x + y in the chemical formula 1 were the values shown in Table 1 below.
  • a second electrode layer made of Pt was formed on the entire surface of the piezoelectric thin film.
  • the second electrode layer was formed by a sputtering method.
  • the temperature of the single crystal substrate during the formation process of the second electrode layer was maintained at 500 ° C.
  • the thickness of the second electrode layer was adjusted to 0.1 ⁇ m.
  • a laminate including a single crystal substrate, a first electrode layer overlapping the single crystal substrate, a piezoelectric thin film overlapping the first electrode layer, and a second electrode layer overlapping the piezoelectric thin film was produced.
  • the laminated structure on the single crystal substrate was patterned by photolithography.
  • the entire laminate was cut by dicing.
  • the piezoelectric thin film element includes a single crystal substrate, a first electrode layer overlapping the single crystal substrate, a piezoelectric thin film overlapping the first electrode layer, and a second electrode layer overlapping the piezoelectric thin film.
  • the dimension of the movable part of the piezoelectric thin film was 20 mm ⁇ 1.0 mm.
  • the X-ray diffraction (XRD) pattern of the piezoelectric thin film element of Example 1 was measured.
  • XRD X-ray diffraction
  • an X-ray diffractometer SmartLab
  • Measurement conditions were set so that each peak intensity in the XRD pattern was at least three orders of magnitude higher than the background intensity. Only the peaks of the (100), (001), (110), (101), and (111) plane orientations derived from the oxide BKT constituting the piezoelectric thin film were extracted from the XRD pattern.
  • the crystal plane spacing a of the oxide BKT (lattice constant of the oxide BKT in the direction parallel to the single crystal substrate) was determined by In Plane measurement.
  • the crystal plane spacing c of the oxide BKT (the lattice constant of the oxide BKT in the direction perpendicular to the single crystal substrate) was determined by Out of plane measurement.
  • the (100) plane orientation and the (001) plane orientation were distinguished.
  • the (110) plane orientation was distinguished from the (101) plane orientation by comparing the crystal plane spacing a and the crystal plane spacing c.
  • the oxide BKT is tetragonal at room temperature, and in the oxide BKT, the (001) face spacing is larger than the (100) face spacing, and the (101) face spacing is larger than the (110) face spacing. . Therefore, the (001) plane orientation and the (101) plane orientation were defined with reference to the direction where the plane spacing is large. Based on the peak intensity of each plane orientation of (100), (001), (110), (101), and (111) derived from the oxide BKT, and the total value ⁇ I (hkl) thereof, ⁇ of each plane orientation was calculated. (Bi 0.5 K 0.5 ) TiO 3 powder (standard sample) was prepared. The X-ray diffraction pattern of this standard sample was measured.
  • the orientation degree F of each plane orientation of the oxide BKT was calculated.
  • the plane orientation coinciding with the normal direction of the single crystal substrate and the orientation degree are shown in Table 1 below.
  • the degree of orientation of the plane orientation corresponding to the normal direction of the single crystal substrate is 80% or more
  • the plane orientation of the oxide BKT is preferentially oriented in the normal direction of the single crystal substrate.
  • the plane orientation preferentially oriented in the normal direction of the crystal substrate is hereinafter referred to as “preferential orientation orientation”.
  • a continuous driving test using the piezoelectric thin film element of Example 1 was performed according to the following procedure.
  • a sine wave voltage having a maximum value of 5 V was applied between the first electrode layer and the second electrode layer of the piezoelectric thin film element.
  • This voltage is a value assumed to be applied to the piezoelectric thin film element as an actual product.
  • the displacement of the piezoelectric thin film accompanying voltage application was measured using a laser Doppler displacement meter. Measurement of the displacement, based on the values such as the thickness of the piezoelectric thin film was calculated piezoelectric constant d 31. In addition, the capacitance of the piezoelectric thin film was measured.
  • Examples 2 to 18, Comparative Examples 1 to 6, Comparative Example 9, Comparative Examples 21 to 29 Except that the composition of the BKT target used for forming the piezoelectric thin film is different, the piezoelectric thin film elements of Examples 2 to 18 and Comparative Examples 1 to 6, 9, and 21 to 29 are manufactured in the same manner as in Example 1. Produced.
  • compositions of the piezoelectric thin films of Examples 2 to 18 and Comparative Examples 1 to 6, 9, 21 to 29 were analyzed by the same XRF method as that of Example 1.
  • the compositions (x, y and x + y values) of Examples 2 to 18 and Comparative Examples 1 to 6, 9, 21 to 29 are shown in Table 1 or Table 2 below.
  • the preferential orientation directions of the oxides BKT constituting the piezoelectric thin films of Examples 2 to 18 and Comparative Examples 1 to 6, 9, and 21 to 29 were obtained.
  • the preferential orientation directions of Examples 2 to 18 and Comparative Examples 1 to 6, 9, 21 to 29 are shown in Table 1 or Table 2 below.
  • Tables 1 and 2 below show the orientation degrees of the preferred orientation directions of Examples 2 to 18 and Comparative Examples 1 to 6, 9, and 21 to 29.
  • “none” is described in the column of the preferential orientation orientation.
  • the orientation degree of the plane orientation of the oxide BKT in the normal direction of the single crystal substrate is described in the column of orientation degree in the following table.
  • d 31 , ⁇ r and g 31 of Examples 2 to 18 and Comparative Examples 1 to 6, 9, 21 to 29 obtained by the same measurement and calculation of Example 1 are shown in Table 1 or Table 2 below. Shown in In the table below, the comparative example in which d 31 , ⁇ r and g 31 are not described indicates that the electrical resistance of the piezoelectric thin film is too low to measure d 31 , ⁇ r and g 31. Yes. That is, in the comparative example in which d 31 , ⁇ r and g 31 are not described in the following table, it was desired to obtain desired piezoelectric characteristics.
  • Example 19 and 20 Comparative Examples 15 and 16
  • the oxygen partial pressure in the vacuum chamber was adjusted to the values shown in Table 3 below. Except for this difference in oxygen partial pressure, piezoelectric thin film elements of Examples 19 and 20 and Comparative Examples 15 and 16 were produced in the same manner as in Example 13.
  • compositions of the piezoelectric thin films of Examples 19 and 20 and Comparative Examples 15 and 16 were analyzed by the same XRF method as that of Example 1.
  • the compositions (x, y, and x + y values) of Examples 19 and 20 and Comparative Examples 15 and 16 are shown in Table 3 below.
  • the preferential orientation directions of the oxide BKT constituting the piezoelectric thin films of Examples 19 and 20 and Comparative Examples 15 and 16 were determined in the same manner as in Example 1.
  • the preferred orientation directions of Examples 19 and 20 and Comparative Examples 15 and 16 are shown in Table 3 below.
  • Table 3 below shows the degree of orientation of the preferred orientation directions of Examples 19 and 20 and Comparative Examples 15 and 16.
  • Table 3 below shows d 31 , ⁇ r, and g 31 of Examples 19 and 20 and Comparative Examples 15 and 16 obtained by the same measurement and calculation of Example 1.
  • Example 21 In Example 21, the temperature (film formation temperature) of the single crystal substrate during the piezoelectric thin film formation process was maintained at 600 ° C. This film formation temperature was higher than the film formation temperature (500 ° C.) in Examples 1 and 13 above. In the formation process of the piezoelectric thin film of Example 21, the oxygen partial pressure in the vacuum chamber was adjusted to the values shown in Table 4 below.
  • Example 23 In the single crystal substrates used in Examples 22 and 23, the (110) plane orientation of SrTiO 3 was the same as the normal direction of the single crystal substrate.
  • the temperature (film formation temperature) of the single crystal substrate during the piezoelectric thin film formation process was maintained at 600 ° C. This film forming temperature was higher than the film forming temperature in Example 22 (500 ° C.).
  • the oxygen partial pressure in the vacuum chamber was adjusted to the values shown in Table 4 below.
  • the (111) plane orientation of SrTiO 3 was the same as the normal direction of the single crystal substrate.
  • the oxygen partial pressure in the vacuum chamber was adjusted to the values shown in Table 4 below.
  • piezoelectric thin film elements of Examples 21 to 24 were produced in the same manner as in Example 13.
  • composition of each of the piezoelectric thin films of Examples 21 to 24 was analyzed by the same XRF method as in Example 1.
  • the compositions (x, y and x + y values) of each of the piezoelectric thin films in Examples 21 to 24 are shown in Table 4 below.
  • the preferred orientation direction of the oxide BKT constituting each of the piezoelectric thin films in Examples 21 to 24 was determined in the same manner as in Example 1.
  • the preferred orientation directions of Examples 21 to 24 are shown in Table 4 below.
  • the degree of orientation of each of the preferred orientation directions of Examples 21 to 24 is shown in Table 4 below.
  • Table 31 below shows d 31 , ⁇ r, and g 31 of Examples 21 to 24 obtained by the same measurement and calculation of Example 1.
  • the X-ray diffraction pattern of Example 6 is shown in FIG. Excluding the peak derived from SrTiO 3 (single crystal substrate) and the peak derived from SrRuO 3 (first electrode layer), the steepness derived from the (100) plane of the oriented oxide BKT (piezoelectric thin film) There was a peak. The peak intensity of the oxide BKT having a plane orientation other than (100) and (200) was slight. Moreover, the peak originating in a different phase (subcomponent which may arise in the formation process of oxide BKT) was not confirmed. The profile of this pattern suggests that an oxide BKT (piezoelectric thin film) having a high degree of orientation and no heterogeneous phase was obtained.
  • the XRD patterns of other examples and comparative examples were analyzed to evaluate the presence or absence of different phases in the piezoelectric thin films of other examples and comparative examples. The evaluation results are shown in Tables 1 to 4 below.
  • x and y of all examples and comparative examples were plotted.
  • a diamond mark in FIG. 11 corresponds to the example, and a triangle mark corresponds to the comparative example.
  • the preferred orientation direction of the piezoelectric thin film depends on the film forming temperature of the piezoelectric thin film, the oxygen partial pressure during film formation, and the plane orientation of the single crystal substrate. It has changed. Regardless of the difference in preferred orientation, d 31 of Examples 13 and 21 to 24 was 30 pm / V or more, and g 31 of Examples 13 and 21 to 24 was 10 ⁇ 10 ⁇ 3 Vm / N or more. .
  • a piezoelectric thin film having a large d 31 and g 31 , a piezoelectric thin film element, and a piezoelectric actuator, a piezoelectric sensor, a head assembly, a head stack assembly, a hard disk drive, a printer head, and an inkjet printer using the piezoelectric thin film element An apparatus is provided.
  • DESCRIPTION OF SYMBOLS 100 Piezoelectric thin film element, 1 ... Single crystal substrate, 2 ... 1st electrode layer, 3 ... Piezoelectric thin film, 4 ... 2nd electrode layer, DN ...
  • the normal direction of the single crystal substrate 1, D (HKL) ... Single crystal the plane orientation of the oxide BKT are oriented preferentially in the direction normal D N of the substrate 1, 200 ... head assembly, 9 ... base plate, 11 ... load beam, 11b ... proximal end, 11c ... first plate spring portion , 11d: second leaf spring part, 11e: opening, 11f: beam main part, 15 ... flexible substrate, 17 ... flexure, 19 ... head slider, 19a ... head element, 300 ...
  • piezoelectric actuator 20 ... base, 21 ... Pressure chamber, 23 ... insulating film, 24 ... single crystal substrate, 25 ... piezoelectric thin film, 26 ... upper electrode layer (first electrode layer), 27 ... nozzle, 400 ... gyro sensor, 110 ... base, 120, 130 ... arm, DESCRIPTION OF SYMBOLS 0 ... Piezoelectric thin film, 31 ... Upper electrode layer (first electrode layer), 31a, 31b ... Drive electrode layer, 31c, 31d ... Detection electrode layer, 32 ... Single crystal substrate, 500 ... Pressure sensor, 40 ... Piezoelectric thin film element, DESCRIPTION OF SYMBOLS 41 ... Common electrode layer, 42 ... Piezoelectric thin film, 43 ...

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

31及びg31が大きい圧電薄膜が提供される。圧電薄膜3は、単結晶基板1に重なる。圧電薄膜3は、下記化学式1で表される結晶質の酸化物を含む。(100)、(001)、(110)、(101)及び(111)からなる群より選ばれる酸化物の面方位の一つが、単結晶基板1の法線方向Dにおいて優先的に配向している。 (Bi)TiO (1) [上記化学式1中、0.30≦x≦0.60, 0.30≦y≦0.60, 0.60≦x+y≦1.10。]

Description

圧電薄膜、圧電薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置
 本発明は、圧電薄膜、圧電薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置に関する。
 圧電材料は、種々の目的に応じて様々な圧電薄膜素子に加工される。例えば、圧電アクチュエータは、圧電薄膜に電圧を加えて圧電薄膜を変形させる逆圧電効果により、電圧を力に変換する。また圧電センサは、圧電薄膜に圧力を加えて圧電薄膜を変形させる圧電効果により、力を電圧に変換する。これらの圧電薄膜素子は、様々な電子機器に搭載される。
 従来、圧電材料として、ペロブスカイト型強誘電体であるジルコン酸チタン酸鉛(いわゆるPZT)が多用されてきた。しかしながら、PZTは、人体や環境を害する鉛を含むため、PZTの代替として、無鉛(Lead-free)の圧電材料の開発が期待されている。例えば、非特許文献1には、無鉛の圧電材料の一例として、BaTiO系材料が記載されている。BaTiO系材料は、無鉛の圧電材料の中でも比較例良好な圧電特性を有し、圧電薄膜素子への応用が特に期待されている。
High-Performance Lead-Free Barium Titanate Piezoelectric Ceramics, Advances in Science and Technology, Vol. 54, pp. 7-12, Sep. 2008
 しかしながら、BaTiO系材料の比誘電率εrは高い。したがって、BaTiO系材料の圧電定数d31がPZTに匹敵していたとしても、d31をεrで除することで得られるBaTiO系材料の圧電定数g31は小さくなってしまう。大きいd31は、例えば、圧電アクチュエータに必要とされ、大きいg31は、例えば、圧電センサに必要とされるが、圧電薄膜素子の多様な用途のためには、g31及びd31の両方が大きい圧電薄膜が求められる。
 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、d31及びg31が大きい圧電薄膜、圧電薄膜素子、並びに、圧電薄膜素子を用いた圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置を提供することを目的とする。
 本発明の一側面に係る圧電薄膜は、単結晶基板に重なる圧電薄膜であって、圧電薄膜が、下記化学式1で表される結晶質の酸化物を含み、(100)、(001)、(110)、(101)及び(111)からなる群より選ばれる酸化物の面方位の一つが、単結晶基板の法線方向において優先的に配向している。酸化物の面方位とは、下記化学式1で表される酸化物の結晶面の方位と言い換えてよい。
(Bi)TiO   (1)
[上記化学式1中、0.30≦x≦0.60, 0.30≦y≦0.60, 0.60≦x+y≦1.10。]
 本発明の一側面に係る圧電薄膜素子は、単結晶基板と、単結晶基板に重なる圧電薄膜と、を備え、圧電薄膜が、下記化学式1で表される結晶質の酸化物を含み、(100)、(001)、(110)、(101)及び(111)からなる群より選ばれる酸化物の面方位の一つが、単結晶基板の法線方向において優先的に配向している。
(Bi)TiO   (1)
[上記化学式1中、0.30≦x≦0.60, 0.30≦y≦0.60, 0.60≦x+y≦1.10。]
 法線方向において優先的に配向している面方位は、(001)であってよい。
 本発明の一側面に係る圧電アクチュエータは、上記圧電薄膜素子を備える。
 本発明の一側面に係る圧電センサは、上記圧電薄膜素子を備える。
 本発明の一側面に係るヘッドアセンブリは、上記圧電アクチュエータを備える。
 本発明の一側面に係るヘッドスタックアセンブリは、上記ヘッドアセンブリを備える。
 本発明の一側面に係るハードディスクドライブは、上記ヘッドスタックアセンブリを備える。
 本発明の一側面に係るプリンタヘッドは、上記圧電アクチュエータを備える。
 本発明の一側面に係るインクジェットプリンタ装置は、上記プリンタヘッドを備える。
 本発明によれば、d31及びg31が大きい圧電薄膜、圧電薄膜素子、並びに、圧電薄膜素子を用いた圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置が提供される。
図1中の(a)は、本発明の一実施形態に係る圧電薄膜素子の模式図であり、図1中の(b)は、図1中の(a)に示す圧電薄膜素子の斜視分解図である(図1中の(b)では、第一電極層及び第二電極層を省略する。)。 本発明の一実施形態に係るヘッドアセンブリの模式図である。 本発明の一実施形態に係る圧電アクチュエータの模式図である。 本発明の一実施形態に係るジャイロセンサの模式図(平面図)である。 図4に示すジャイロセンサのA-A線に沿った矢視断面図である。 本発明の一実施形態に係る圧力センサの模式図である。 本発明の一実施形態に係る脈波センサの模式図である。 本発明の一実施形態に係るハードディスクドライブの模式図である。 本発明の一実施形態に係るインクジェットプリンタ装置の模式図である。 本発明の実施例6の圧電薄膜のX線回折パターンである。 本発明の実施例及び比較例其々の圧電薄膜におけるBiのモル比x及びKのモル比yのプロットである。
 以下、図面を参照しながら、本発明の好適な一実施形態について詳細に説明する。なお、図面において、同一又は同等の要素については同一の符号を付す。図1に示すX,Y及びZは、互いに直交する3つの座標軸を意味する。また、説明が重複する場合にはその説明を省略する。本発明は下記実施形態に限定されない。
(圧電薄膜、及び圧電薄膜素子)
 図1に示すように、本実施形態に係る圧電薄膜素子100は、単結晶基板1と、単結晶基板1に重なる第一電極層2(下部電極層)と、第一電極層2を介して単結晶基板1に重なる圧電薄膜3と、圧電薄膜3に重なる第二電極層4(上部電極層)と、を備える。すなわち、圧電薄膜素子100では、一対の電極層の間に圧電薄膜3が挟まれている。圧電薄膜素子100の変形例は、第二電極層4を備えなくてよい。例えば、第二電極層を備えない圧電薄膜素子が、製品として、電子機器の製造業者に供給された後、電子機器の組立て・製造の過程において、第二電極層が圧電薄膜素子に付加されてよい。
 単結晶基板1は、例えば、Siの単結晶からなる基板、又はGaAs等の化合物半導体の単結晶からなる基板であってよい。単結晶基板1は、MgO又はペロブスカイト型酸化物(例えばSrTiO)等の酸化物の単結晶からなる基板であってもよい。単結晶基板1の厚さは、例えば、10~1000μmであってよい。単結晶基板1が導電性を有する場合、単結晶基板1が電極として機能するので、第一電極層2はなくてもよい。つまり、単結晶基板1が導電性を有する場合、圧電薄膜3が単結晶基板1に直接重なっていてもよい。導電性を有する単結晶基板1は、例えば、Nb(ニオブ)がドープされたSrTiOの単結晶であってよい。単結晶基板1がSiの単結晶である場合、第一電極層2の密着性を向上させるために、単結晶基板1の表面にTi又はCr等からなる密着層を形成してもよい。
 単結晶基板1の結晶構造のいずれかの面方位は、単結晶基板1の法線方向Dと等しくてよい。つまり、単結晶基板1の結晶構造のいずれかの結晶面が、単結晶基板1の法線方向Dを向いていてよい。単結晶基板1は一軸配向基板であってよい。例えば、(100)、(001)、(110)、(101)、及び(111)からなる群より選ばれる単結晶基板1の結晶構造の面方位の一つが、単結晶基板の法線方向Dと等しくてよい。
 第一電極層2は、例えば、Pt(白金)、Pd(パラジウム)、Rh(ロジウム)、Au(金)、Ru(ルテニウム)、Ir(イリジウム)、Mo(モリブデン)、Ti(チタン)、Ta(タンタル)、及びNi(ニッケル)からなる群より選ばれる少なくとも一種の金属からなっていてよい。第一電極層2は、例えば、SrRuO又はLaNiO等の導電性金属酸化物からなっていてよい。第一電極層2は、結晶質であってよい。第一電極層2の結晶構造の面方位のいずれか一つが、単結晶基板1の法線方向Dにおいて配向していてよい。単結晶基板1の面方位と、第一電極層2の結晶構造の面方位と、の両方が、単結晶基板1の法線方向Dにおいて配向してよい。法線方向Dにおいて配向する第一電極層2の結晶構造の面方位が、法線方向Dにおいて配向する単結晶基板1の面方位と同じであってよい。第一電極層2の厚さは、例えば、1nm~1.0μmであってよい。第一電極層2の形成方法は、スパッタリング法、真空蒸着法、印刷法、スピンコート法、又はゾルゲル法であってよい。印刷法、スピンコート法、又はゾルゲル法では、第一電極層2の結晶性を高めるために、第一電極層2の加熱を行ってもよい。
 圧電薄膜3は、主成分として、下記化学式1で表される結晶質の酸化物を含む。なお、主成分とは、圧電薄膜3を構成する全成分に対する割合が99%モル以上である成分を意味する。以下では、下記化学式1で表される酸化物を、「酸化物BKT」と記す。圧電薄膜3は、結晶質の酸化物BKTのみからなっていてもよい。結晶質の酸化物BKTは、ペロブスカイト構造を有する。結晶質の酸化物BKTは、常温において正方晶であってよい。
(Bi)TiO   (1)
[上記化学式1中、0.30≦x≦0.60, 0.30≦y≦0.60, 0.60≦x+y≦1.10。]
 (100)、(001)、(110)、(101)及び(111)からなる群より選ばれる結晶質の酸化物BKTの面方位の一つが、単結晶基板1の法線方向Dにおいて優先的に配向している。結晶質の酸化物BKTの面方位の優先配向により、圧電薄膜3のd31及びg31が大きくなる。酸化物BKT又は圧電薄膜3全体は、単結晶であってよい。酸化物BKT又は圧電薄膜3全体は、多結晶であってもよい。
 酸化物BKTの面方位の優先配向の有無は、酸化物BKTの面方位の配向度によって決定される。配向度は、F(HKL)と表記される。配向度F(HKL)とは、酸化物BKTの面方位(HKL)の配向度と言い換えてよい。配向度F(HKL)とは、酸化物BKTの(HKL)面の配向度と言い換えてもよい。面方位(HKL)は、(100)、(001)、(110)、(101)及び(111)からなる群より選ばれるいずれかの面方位を意味する。配向度F(HKL)は、ロットゲーリング法によって規定される値である。配向度F(HKL)の単位は[%]である。配向度F(HKL)は、下記式Aによって定義される。
F(HKL)={(ρ-ρ)/(1-ρ)}×100   (A)
ρ=ΣI(HKL)/ΣI(hkl)
ρ=ΣI0(HKL)/ΣI0(hkl)
 ΣI(hkl)は、結晶質の酸化物BKTの全ての結晶面(hkl)のX線回折強度(測定値)の総和である。
 ΣI(HKL)は、結晶質の酸化物BKTにおいて結晶学的に等価である特定の結晶面(HKL)のX線回折強度(測定値)の総和である。例えば、等価である結晶面は、各(M00)面である。ここで、Mは1以上の整数である。
 ΣI(hkl)は、配向性が無い(Bi0.50.5)TiOの全ての結晶面(hkl)のX線回折強度(測定値)の総和である。
 ΣI(HKL)は、配向性が無い(Bi0.50.5)TiOにおいて結晶学的に等価である特定の結晶面(HKL)のX線回折強度の総和である。結晶質の酸化物BKTの各面方位の配向度のうち、単結晶基板1の法線方向Dに一致する面方位の配向度が80%以上100%以下である場合、その面方位(HKL)は、単結晶基板1の法線方向Dにおいて優先的に配向している。特に、配向度F(HKL)が100%である場合、面方位(HKL)は、単結晶基板1の法線方向Dにおいて完全に配向している。配向度F(HKL)が0.0%である場合、単結晶基板1の法線方向Dにおける酸化物BKTの面方位(HKL)の配向性は無い。単結晶基板1の法線方向Dにおいて、酸化物BKTの面方位(HKL)の配向度F(HKL)は、80~98%であってよい。
 配向度F(HKL)の計算のために圧電薄膜素子100のX線回折パターンを測定するとき、圧電薄膜素子100の温度は、酸化物BKTのキュリー点未満(例えば室温)であればよい。
 図1の(b)に記載のD(HKL)は、単結晶基板1の法線方向Dにおいて優先的に配向している酸化物BKTの(HKL)面の方位である。図1の(b)に示すように、面方位D(HKL)は、単結晶基板1の法線方向Dと平行であってよい面方位D(HKL)は、法線方向Dと同じであってよい。法線方向Dにおいて優先的に配向している面方位D(HKL)は、(001)であることが好ましい。酸化物BKTは室温で正方晶構造を有し、酸化物BKTの自発分極方向の面方位は(001)である。この自発分極方向の面方位が単結晶基板1の法線方向Dにおいて優先的に配向している場合、圧電d定数(d31)が大きくなり易く、かつ比誘電率εrも小さくなり易く、d31をεrで除した圧電g定数(g31)も大きくなり易い。法線方向Dにおいて優先的に配向している面方位D(HKL)が(001)であるとき、単結晶基板1の法線方向Dにおいて配向する単結晶基板1の結晶面の方位は(001)であってよい。
 単結晶基板1の法線方向Dが単結晶基板1の面方位(001)と同じであるとき、酸化物BKTの面方位D(HKL)は、(100)又は(001)であってよい。単結晶基板1の法線方向Dが単結晶基板1の面方位(110)と同じであるとき、酸化物BKTの面方位D(HKL)は(110)又は(101)であってよい。単結晶基板1の法線方向Dが単結晶基板1の面方位(111)と同じであるとき、酸化物BKTの面方位D(HKL)は(111)であってよい。
 上記化学式1に記載の通り、酸化物BKTにおけるBi(ビスマス)のモル比xは0.30~0.60であり、酸化物BKTにおけるK(カリウム)のモル比yは0.30~0.60であり、(x+y)は0.60~1.10である。x、y及び(x+y)の少なくともいずれかが上記範囲を外れる場合、圧電薄膜3の形成過程において、酸化物BKT以外の異相(例えば、Bi層状化合物、又はTi系化合物)が生成してしまう。その結果、酸化物BKTの面方位の配向度が低下して、圧電薄膜の圧電特性が急激に劣化する。xは0.50~0.60であってよく、且つyは0.50~0.60であってよい。xが0.50~0.60であり、且つyが0.50~0.60である場合、酸化物BKTの面方位の配向度が高くなり易く、d31が大きくなり易く、εrが小さくなり易く、g31が大きくなり易い。xは0.45~0.55であってもよく、且つyは0.45~0.55であってもよい。
 圧電薄膜3の厚みは、例えば、10nm~10μm程度であってよい。圧電薄膜3の面積は、例えば、1μm~500mmであってよい。単結晶基板1、第一電極層2、第二電極層4其々の面積は、圧電薄膜3の面積と同じであってよい。
 従来のBaTiO系材料のキュリー点は低い。したがって、圧電薄膜素子を用いた電子機器の製造過程(例えば、はんだリフロー工程)において圧電薄膜が加熱されると、圧電薄膜を構成するBaTiO系材料の相転移が起き易く、機械的強度や圧電特性が損なわれ易い。一方、酸化物BKTのキュリー点は、従来のBaTiO系材料に比べて高い。したがって、本実施形態に係る圧電薄膜素子100を用いた電子機器の製造過程では、圧電薄膜3が加熱されたとしても、酸化物BKTの相転移が起き難く、機械的強度や圧電特性が損なわれ難い。酸化物BKTのキュリー点は、例えば、250~400℃程度であってよい。
 圧電薄膜3は、例えば、以下の方法により形成されてよい。
 圧電薄膜3の形成には、BKTターゲットを用いる。BKTターゲットとは、上記酸化物BKTからなるターゲットである。BKTターゲットの作製方法は、次の通りである。
 出発原料として、例えば、酸化ビスマス、炭酸カリウム、酸化チタンの原料粉末を用意する。これらの出発原料を100℃以上で十分に乾燥した後、Biのモル数、Kのモル数及びTiのモル数が、成膜後の組成分析において上記化学式1で規定された範囲内になるように、各出発原料を秤量する。出発原料として、上記の酸化物に代えて、炭酸塩又はシュウ酸塩等のように、焼成により酸化物となる物質を用いてもよい。
 秤量した出発原料を、例えば、ボールミル等を用いて、有機溶媒又は水の中で、5~20時間十分に混合する。混合後の出発原料を、十分乾燥した後、プレス機で成形する。成形された出発原料を、750~900℃で1~3時間程度仮焼する。続いて、この仮焼物を、ボールミル等を用いて、有機溶媒又は水の中で、5~30時間粉砕する。粉砕された仮焼物を、再び乾燥し、バインダー溶液を加えて造粒して、仮焼物の粉を得る。この粉をプレス成形して、ブロック状の成形体を得る。
 ブロック状の成形体を、400~800℃で、2~4時間程度加熱して、バインダーを揮発させる。続いて、成形体を、800~1100℃で、2時間~4時間程度焼成する。この本焼成時の成形体の昇温速度及び降温速度は、例えば50~300℃/時間程度に調整すればよい。
 以上の工程により、BKTターゲットが得られる。BKTターゲットに含まれる酸化物BKTの結晶粒の平均粒径は、例えば、1~20μm程度であってよい。
 上記BKTターゲットを用いた気相成長法によって、圧電薄膜3を形成すればよい。気相成長法では、真空雰囲気下において、BKTターゲットを構成する元素を蒸発させる。蒸発した元素を、平滑な第一電極層2の表面又は単結晶基板1の表面に付着・堆積させることにより、圧電薄膜3を成長させる。気相成長法は、例えば、スパッタリング法、電子ビーム蒸着法、化学蒸着法(Chemical Vapor Deposition)法、又はパルスレーザー堆積(Pulsed-laser deposition)法であればよい。以下では、パルスレーザー堆積法を、PLD法と記す。これらの気相成長法を用いることによって、原子レベルでの緻密な膜形成が可能となり、偏析などが生じ難くなる。気相成長法の種類に依って、励起源が異なる。スパッタリング法の励起源は、Arプラズマである。電子ビーム蒸着法の励起源は、電子ビームである。PLD法の励起源は、レーザー光(例えば、エキシマレーザー)である。これらの励起源がBKTターゲットに照射されると、BKTターゲットを構成する元素が蒸発する。
 上記の気相成長法の中でも、以下の点において、PLD法が比較的に優れている。PLD法では、パルスレーザーにより、BKTターゲットを構成する各元素を、一瞬で斑なくプラズマ化させることができる。したがって、BKTターゲットとほぼ同じ組成を有する圧電薄膜3を形成し易い。またPLD法では、レーザーのパルス数(繰り返し周波数)を変えることで、圧電薄膜3の厚さを制御し易い。
 PLD法では、真空チャンバー内における単結晶基板1及び第一電極層2を加熱しながら、圧電薄膜3を形成する。単結晶基板1及び第一電極層2の温度(成膜温度)は、例えば、300~800℃、500~700℃、又は500~600℃であればよい。成膜温度が高いほど、単結晶基板1又は第一電極層2の表面の清浄度が改善され、圧電薄膜3の結晶性が高まり、圧電薄膜3(酸化物BKT)の面方位の配向度が高まり易い。成膜温度が高過ぎる場合、Bi又はKが圧電薄膜3から脱離し易く、圧電薄膜3の組成を制御し難くなる。
 PLD法では、真空チャンバー内の酸素分圧は、例えば、10mTorrより大きく400mTorr未満、15~300mTorr、又は20~200mTorrであってよい。換言すると、真空チャンバー内の酸素分圧は、例えば、1Paより大きく53Pa未満、2~40Pa、又は3~30Paであってよい。酸素分圧が上記範囲内に維持されることにより、単結晶基板1又は第一電極層2の表面に堆積したBi,K及びTiを十分に酸化し易い。酸素分圧が高過ぎる場合、圧電薄膜3の成長速度及び配向度が低下し易い。
 PLD法で制御される上記以外のパラメータは、例えば、レーザー発振周波数、及び基板・ターゲット間の距離などである。これらのパラメータの制御によって、圧電薄膜3の所望の圧電特性を得易い。例えば、レーザー発振周波数が10Hz以下である場合、圧電薄膜3の面方位の配向度が高まり易い。
 第二電極層4は、例えば、例えば、Pt、Pd、Rh、Au、Ru、Ir、Mo、Ti、Ta、及びNiからなる群より選ばれる少なくとも一種の金属からなっていてよい。第二電極層4は、例えば、SrRuO又はLaNiO等の導電性金属酸化物からなっていてよい。第二電極層4は、結晶質であってよい。第二電極層4の結晶構造の面方位の配向性は、単結晶基板1の結晶構造の面方位の配向性と同じであってよい。第二電極層4の結晶構造の面方位の配向性は、酸化物BKTの結晶構造の面方位の配向性と同じであってもよい。第二電極層4の厚さは、例えば、1nm~1.0μmであってよい。第二電極層4の形成方法は、スパッタリング法、真空蒸着法、印刷法、スピンコート法、又はゾルゲル法であってよい。印刷法、スピンコート法、又はゾルゲル法では、第一電極層2の結晶性を高めるために、第一電極層2の加熱を行ってもよい。
 第一電極層2と圧電薄膜3との間に第一中間層が介在していてよい。第一中間層を構成する物質は、例えば、SrRuO及びLaNiOからなる群より選ばれる少なくとも一種であってよい。第一中間層は、結晶質であってよい。第一中間層の結晶構造の面方位のいずれか一つが、単結晶基板1の法線方向Dにおいて配向していてよい。単結晶基板1の面方位と、第一中間層の結晶構造の面方位と、の両方が、単結晶基板1の法線方向Dにおいて配向してよい。法線方向Dにおいて配向する第一中間層の結晶構造の面方位が、法線方向Dにおいて配向する単結晶基板1の面方位と同じであってよい。
 圧電薄膜3と第二電極層4との間に第二中間層が介在していてよい。第二中間層を構成する物質は、第一中間層を構成する物質と同じであってよい。第二中間層は、結晶質であってよい。第二中間層の結晶構造の面方位のいずれか一つが、単結晶基板1の法線方向Dにおいて配向していてよい。単結晶基板1の面方位と、第二中間層の結晶構造の面方位と、の両方が、単結晶基板1の法線方向Dにおいて配向してよい。法線方向Dにおいて配向する第二中間層の結晶構造の面方位が、法線方向Dにおいて配向する単結晶基板1の面方位と同じであってよい。
 圧電薄膜素子100の表面の少なくとも一部又は全体が、保護膜によって被覆されていてよい。保護膜による被覆により、例えば圧電薄膜素子100の耐湿性が向上する。
 上述した本実施形態によれば、d31及びg31が大きいに圧電薄膜3及び圧電薄膜素子100が提供される。d31及びg31が大きい圧電薄膜素子100の用途は、多岐にわたる。圧電薄膜素子100は、例えば、圧電アクチュエータに用いられてよい。圧電アクチュエータは、例えば、ヘッドアセンブリ、ヘッドスタックアセンブリ、又はハードディスクドライブに用いられてもよい。圧電アクチュエータは、例えば、プリンタヘッド、又はインクジェットプリンタ装置に用いられてもよい。圧電薄膜素子100は、例えば、圧電センサに用いられてもよい。圧電センサは、例えば、ジャイロセンサ、圧力センサ、脈波センサ、又はショックセンサであってよい。特にジャイロセンサでは、d31及びg31の両方が大きいに圧電薄膜3及び圧電薄膜素子100が要求される。圧電薄膜3及び圧電薄膜素子100は、例えば、マイクロフォンへ適用されてもよい。
 以下では、圧電薄膜3及び圧電薄膜素子100の用途の具体例を詳しく説明する。
(圧電アクチュエータ)
 図2は、ハードディスクドライブ(HDD)に搭載されるヘッドアセンブリ200を示す。ヘッドアセンブリ200は、ベースプレート9、ロードビーム11、フレクシャ17、第1及び第2の圧電薄膜素子100、及びヘッドスライダ19を備えている。第1及び第2の圧電薄膜素子100は、ヘッドスライダ19用の駆動素子である。ヘッドスライダ19は、ヘッド素子19aを有する。
 ロードビーム11は、ベースプレート9に固着された基端部11bと、この基端部11bから延在する第1の板バネ部11c及び第2の板バネ部11dと、板バネ部11c及び11dの間に形成された開口部11eと、板バネ部11c及び11dに連続して直線的に延在するビーム主部11fと、を備えている。第1の板バネ部11c及び第2の板バネ部11dは、先細りになっている。ビーム主部11fも、先細りになっている。
 第1及び第2の圧電薄膜素子100は、所定の間隔をもって、フレクシャ17の一部である配線用フレキシブル基板15上に配置されている。ヘッドスライダ19は、フレクシャ17の先端部に固定されており、第1及び第2の圧電薄膜素子100の伸縮に伴って回転運動する。
 図3は、プリンタヘッド用の圧電アクチュエータ300を示す。圧電アクチュエータ300は、基体20と、基体20に重なる絶縁膜23と、絶縁膜23に重なる単結晶基板24と、単結晶基板24に重なる圧電薄膜25と、圧電薄膜25に重なる上部電極層26(第二電極層)と、を備える。単結晶基板24は導電性を有し、下部電極層としての機能も有する。下部電極層とは、上記の第一電極層と言い換えてよい。上部電極層とは、上記の第二電極層と言い換えてよい。
 所定の吐出信号が供給されず、単結晶基板24(下部電極層)と上部電極層26との間に電界が印加されていない場合、圧電薄膜25は変形しない。吐出信号が供給されていない圧電薄膜25に隣り合う圧力室21内では、圧力変化が生じず、そのノズル27からインク滴は吐出されない。
 一方、所定の吐出信号が供給され、単結晶基板24(下部電極層)と上部電極層26との間に一定電界が印加された場合、圧電薄膜25が変形する。圧電薄膜25の変形によって絶縁膜23が大きくたわむので、圧力室21内の圧力が瞬間的に高まり、ノズル27からインク滴が吐出される。
(圧電センサ)
 図4及び図5は、圧電センサの一種であるジャイロセンサ400を示す。ジャイロセンサ400は、基部110と、基部110の一面に接続する一対のアーム120及び130と、を備える。一対のアーム120及び130は、音叉振動子である。つまり、ジャイロセンサ400は、音叉振動子型の角速度検出素である。このジャイロセンサ400は、上述の圧電薄膜素子を構成する圧電薄膜30、上部電極層31、及び単結晶基板32を、音叉型振動子の形状に加工して得られたものである。基部110とアーム120及び130は、圧電薄膜素子と一体化されている。単結晶基板32は、導電性を有し、下部電極層としての機能も有する。
 一方のアーム120の第一の主面には、駆動電極層31a及び31bと、検出電極層31dとが、形成されている。同様に、他方のアーム130の第一の主面には、駆動電極層31a及び31bと、検出電極層31cとが形成されている。各電極層31a、31b、31c、31dは、上部電極層31をエッチングにより所定の電極の形状に加工することにより得られる。
 単結晶基板32(下部電極層)は、基部110、並びにアーム120及び130のそれぞれの第二の主面(第一の主面の裏面)の全体に形成されている。単結晶基板32(下部電極層)は、ジャイロセンサ400のグランド電極として機能する。
 アーム120及び130其々の長手方向をZ方向と規定し、アーム120及び130の主面を含む平面をXZ平面と規定することにより、XYZ直交座標系を定義する。
 駆動電極層31a、31bに駆動信号を供給すると、二つのアーム120、130は、面内振動モードで励振する。面内振動モードとは、二つのアーム120、130の主面に平行な向きに二つのアーム120、130が励振するモードである。例えば、一方のアーム120が-X方向に速度V1で励振しているとき、他方のアーム130は+X方向に速度V2で励振する。
この状態で、ジャイロセンサ400にZ軸を回転軸とする角速度ωの回転が加わると、アーム120、130のそれぞれに対して、速度方向に直交する向きにコリオリ力が作用する。その結果、アーム120、130が、面外振動モードで励振し始める。面外振動モードとは、二つのアーム120、130の主面に直交する向きに二つのアーム120、130が励振するモードである。例えば、一方のアーム120に作用するコリオリ力F1が-Y方向であるとき、他方のアーム130に作用するコリオリ力F2は+Y方向である。
 コリオリ力F1、F2の大きさは、角速度ωに比例するため、コリオリ力F1、F2によるアーム120、130の機械的な歪みを圧電薄膜30によって電気信号(検出信号)に変換し、これを検出電極層31c、31dから取り出すことにより、角速度ωが求められる。
 図6は、圧電センサの一種である圧力センサ500を示す。圧力センサ500は、圧電薄膜素子40と、圧電薄膜素子40を支える支持体44と、電流増幅器46と、電圧測定器47とから構成されている。圧電薄膜素子40は、共通電極層41と、共通電極層41に重なる圧電薄膜42と、圧電薄膜42に重なる個別電極層43とからなる。共通電極層41は、導電性の単結晶基板である。共通電極層41と支持体44とに囲まれた空洞45は、圧力に対応する。圧力センサ500に外力がかかると圧電薄膜素子40がたわみ、電圧測定器47で電圧が検出される。
 図7は、圧電センサの一種である脈波センサ600を示す。脈波センサ600は、圧電薄膜素子50と、圧電薄膜素子50を支える支持体54と、電圧測定器55とから構成されている。圧電薄膜素子50は、共通電極層51と、共通電極層51に重なる圧電薄膜52と、圧電薄膜52に重なる個別電極層53とからなる。共通電極層51は、導電性の単結晶基板である。脈波センサ600の支持体54の裏面(圧電薄膜素子50が搭載されていない面)を生体の動脈上に当接させると、生体の脈による圧力で支持体54と圧電薄膜素子50がたわみ、電圧測定器55で電圧が検出される。
(ハードディスクドライブ)
 図8は、図2に示すヘッドアセンブリが搭載されたハードディスクドライブ700を示す。図8のヘッドアセンブリ65は、図2のヘッドアセンブリ200と同じである。
 ハードディスクドライブ700は、筐体60と、筐体60内に設置されたハードディスク61(記録媒体)と、ヘッドスタックアセンブリ62と、を備えている。ハードディスク61は、モータによって回転させられる。ヘッドスタックアセンブリ62は、ハードディスク61へ磁気情報を記録したり、ハードディスク61に記録された磁気情報を再生したりする。
 ヘッドスタックアセンブリ62は、ボイスコイルモータ63と、支軸に支持されたアクチュエータアーム64と、アクチュエータアーム64に接続されたヘッドアセンブリ65と、を有する。アクチュエータアーム64は、ボイスコイルモータ63により、支軸周りに回転自在である。アクチュエータアーム64は、複数のアームに分かれており、各アームそれぞれにヘッドアセンブリ65が接続されている。つまり、複数のアーム及びヘッドアセンブリ65が支軸に沿って積層されている。ヘッドアセンブリ65の先端部には、ハードディスク61に対向するようにヘッドスライダ19が取り付けられている。
 ヘッドアセンブリ65(200)は、ヘッド素子19aを2段階で変動させる。ヘッド素子19aの比較的大きな移動は、ボイスコイルモータ63によるヘッドアセンブリ65及びアクチュエータアーム64の全体の駆動によって、制御される。ヘッド素子19aの微小な移動は、ヘッドアセンブリ65の先端部に位置するヘッドスライダ19の駆動により制御する。
(インクジェットプリンタ装置)
 図9は、インクジェットプリンタ装置800を示す。インクジェットプリンタ装置800は、プリンタヘッド70と、本体71と、トレイ72と、ヘッド駆動機構73と、を備えている。図9のプリンタヘッド70は、図3の圧電アクチュエータ300を有している。
 インクジェットプリンタ装置800は、イエロー、マゼンダ、シアン、ブラックの計4色のインクカートリッジを備えている。インクジェットプリンタ装置800によるフルカラー印刷が可能である。インクジェットプリンタ装置800の内部には、専用のコントローラボード等が搭載されている。コントローラボード等は、プリンタヘッド70によるインクの吐出のタイミング、及びヘッド駆動機構73の走査を制御する。本体71の背面にはトレイ72が設けられ、トレイ72の一端側にはオートシートフィーダ(自動連続給紙機構)76が設けられている。オートシートフィーダ76が、記録用紙75を自動的に送り出し、正面の排出口74から記録用紙75を排紙する。
 以上、本発明の好適な実施形態について説明したが、本発明は必ずしも上述した実施形態に限定されるものではない。本発明の趣旨を逸脱しない範囲において、本発明の種々の変更が可能であり、これ等の変更例も本発明に含まれる。
 例えば、圧電薄膜3を、気相成長法の代わりに、溶液法によって形成してもよい。
 以下、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
SrTiOからなる単結晶基板を準備した。SrTiOの結晶面の方位である(001)は、単結晶基板の法線方向と同じであった。単結晶基板は、20mm×20mmの正方形であった。単結晶基板の厚さは、500μmであった。
 真空チャンバー内で、SrRuOからなる第一電極層を単結晶基板の表面全体に形成した。第一電極層は、PLD法により形成した。第一電極層の形成過程における単結晶基板の温度は、400℃に維持した。第一電極層の形成過程における真空チャンバー内の酸素分圧は、50mTorrに維持した。SrRuOからなるターゲットとして、(株)高純度化学研究所製のターゲットを用いた。ターゲットに照射したレーザーのパワーは250mJであった。第一電極層の厚さは、0.1μmに調整した。
 真空チャンバー内で、圧電薄膜を第一電極層の表面全体に形成した。圧電薄膜は、PLD法により形成した。圧電薄膜の形成過程における単結晶基板の温度(成膜温度)は、500℃に維持した。圧電薄膜の形成過程における真空チャンバー内の酸素分圧は、50mTorrに維持した。圧電薄膜の形成には、BKTターゲットを用いた。BKTターゲットの作製の際には、目的とする圧電薄膜の組成に応じて、BKTターゲットの原料粉末(酸化ビスマス、炭酸カリウム及び酸化チタン)の配合比を決定し、BKTターゲットの組成を調整した。目的とする圧電薄膜の組成は、下記化学式1で表されるものであった。下記式1中のx、y及びx+y其々の値は、下記表1に示す値であった。BKTターゲットに照射したレーザーのパワーは250mJであった。圧電薄膜の厚さは、200nmに調整した。
(Bi)TiO   (1)
 以上の方法で、単結晶基板と、単結晶基板に重なる第一電極層と、第一電極層に重なる圧電薄膜と、を備える積層体を作製した。積層体の表面に位置する圧電薄膜の組成を、蛍光X線分析法(XRF法)により分析した。分析には、Phillips社製の装置PW2404を用いた。分析の結果、実施例1の圧電薄膜の組成は、上記化学式1で表され、上記化学式1におけるx、y及びx+y其々の値は、下記表1に示す値であることが確認された。
 上記の方法で作製した積層体を用いて更に以下の工程を実施した。
 真空チャンバー内で、Ptからなる第二電極層を、圧電薄膜の表面全体に形成した。第二電極層は、スパッタリング法により形成した。第二電極層の形成過程における単結晶基板の温度は500℃に維持した。第二電極層の厚さは、0.1μmに調整した。
 以上の工程により、単結晶基板と、単結晶基板に重なる第一電極層と、第一電極層に重なる圧電薄膜と、圧電薄膜に重なる第二電極層と、を備える積層体を作製した。続いて、フォトリソグラフィにより、単結晶基板上の積層構造のパターニングを行った。続いて、積層体全体を、ダイシングにより切断した。
 以上の工程により、短冊状の実施例1の圧電薄膜素子を得た。圧電薄膜素子は、単結晶基板と、単結晶基板に重なる第一電極層と、第一電極層に重なる圧電薄膜と、圧電薄膜に重なる第二電極層と、を備えていた。圧電薄膜の可動部分の寸法は、20mm×1.0mmであった。
 実施例1の圧電薄膜素子のX線回折(XRD)パターンを測定した。測定には、リガク社製のX線回折装置(SmartLab)を用いた。回折角2θ=10~70°の範囲で2θ‐θ測定を行った。XRDパターン中の各ピーク強度がバックグラウンド強度に対して少なくとも3桁以上高くなるように、測定条件を設定した。圧電薄膜を構成する酸化物BKTに由来する(100)、(001)、(110)、(101)、及び(111)の各面方位のピークのみをXRDパターンから抽出した。
 In Plane測定により、酸化物BKTの結晶面間隔a(単結晶基板に平行な方向における酸化物BKTの格子定数)を求めた。Out of plane測定により、酸化物BKTの結晶面間隔c(単結晶基板に垂直な方向における酸化物BKTの格子定数)を求めた。結晶面間隔aと結晶面間隔cとの比較により、(100)の面方位と(001)の面方位とを区別した。また、結晶面間隔aと結晶面間隔cとの比較により、(110)の面方位と(101)の面方位とを区別した。すなわち、酸化物BKTは室温において正方晶であり、酸化物BKTでは(001)の面間隔は(100)の面間隔よりも大きく、(101)の面間隔は(110)の面間隔よりも大きい。したがって、面間隔が大きい方向を基準として、(001)の面方位及び(101)の面方位を規定した。
 酸化物BKTに由来する(100)、(001)、(110)、(101)、及び(111)の各面方位のピーク強度と、これらの合計値ΣI(hkl)に基づき、以下の通り、各面方位のρを計算した。
 (Bi0.50.5)TiOの粉末(標準試料)を調製した。この標準試料のX線回折パターンを測定した。標準試料のX線回折パターンに基づき、各面方位のρを計算した。
 酸化物BKTの各面方位のρ及びρに基づき、酸化物BKTの各面方位の配向度Fを計算した。各面方位の配向度Fのうち、単結晶基板の法線方向に一致する面方位と、その配向度とを、下記表1に示す。単結晶基板の法線方向に一致する面方位の配向度が80%以上である場合、その酸化物BKTの面方位は単結晶基板の法線方向において優先的に配向している。結晶基板の法線方向において優先的に配向している面方位を、以下では「優先配向方位」と記す。
ρ=I(100)/ΣI(hkl)
ρ=I0(100)/ΣI0(hkl)
F(100)={(ρ-ρ)/(1-ρ)}×100
 
ρ=I(001)/ΣI(hkl)
ρ=I0(001)/ΣI0(hkl)
F(001)={(ρ-ρ)/(1-ρ)}×100
 
ρ=I(110)/ΣI(hkl)
ρ=I0(110)/ΣI0(hkl)
F(110)={(ρ-ρ)/(1-ρ)}×100
 
ρ=I(101)/ΣI(hkl)
ρ=I0(101)/ΣI0(hkl)
F(101)={(ρ-ρ)/(1-ρ)}×100
 
ρ=I(111)/ΣI(hkl)
ρ=I0(111)/ΣI0(hkl)
F(111)={(ρ-ρ)/(1-ρ)}×100
 実施例1の圧電薄膜素子を用いた連続駆動試験を、以下の手順で実施した。試験では、圧電薄膜素子の第一電極層及び第二電極層の間に最大値5Vの正弦波の電圧を印加した。この電圧は、実際の製品としての圧電薄膜素子に印加されることが想定される値である。電圧の印加に伴う圧電薄膜の変位を、レーザードップラー変位計を用いて測定した。変位の測定値、圧電薄膜の厚さなどの数値に基づき、圧電定数d31を計算した。また圧電薄膜の静電容量を測定した。静電容量の測定には、Keysight Technologies社製のLCRメータ(4980A)を用いた。静電容量の測定値、各電極層の面積、及び圧電薄膜の厚さから、圧電薄膜の比誘電率εrを計算した。圧電定数d31及び比誘電率εrを用いて、圧電薄膜の圧電定数g31を計算した。実施例1のd31[pm/V],εr[‐]及びg31[×10-3Vm/N]を、下記表1に示す。
 (実施例2~18、比較例1~6、比較例9、比較例21~29)
 圧電薄膜の形成に用いたBKTターゲットの組成が異なることを除いて実施例1と同様の方法で、実施例2~18及び比較例1~6,9,21~29其々の圧電薄膜素子を作製した。
 実施例1と同様のXRF法により、実施例2~18及び比較例1~6,9,21~29其々の圧電薄膜の組成を分析した。実施例2~18及び比較例1~6,9,21~29其々の圧電薄膜の組成(x,y及びx+y其々の値)を、下記の表1又は表2に示す。
 実施例1と同様の方法で、実施例2~18及び比較例1~6,9,21~29其々の圧電薄膜を構成する酸化物BKTの優先配向方位を求めた。実施例2~18及び比較例1~6,9,21~29其々の優先配向方位を、下記の表1又は表2に示す。実施例2~18及び比較例1~6,9,21~29其々の優先配向方位の配向度を、下記の表1又は表2に示す。下記の表では、単結晶基板の法線方向における酸化物BKTの面方位の配向度が80%未満である場合、優先配向方位の欄に「無」と記載した。ただし、優先配向方位がない場合であっても、単結晶基板の法線方向における酸化物BKTの面方位の配向度を、下記の表の配向度の欄に記載した。また、実施例1の同様の測定及び計算によって得た実施例2~18及び比較例1~6,9,21~29其々のd31,εr及びg31を、下記の表1又は表2に示す。下記の表において、d31,εr及びg31が記載されていない比較例は、圧電薄膜の電気抵抗が低過ぎて、d31,εr及びg31を測定することができなかったことを示している。つまり、下記の表においてd31,εr及びg31が記載されていない比較例では、所望の圧電特性が得られたかった。
(実施例19,20、比較例15,16)
 実施例19,20及び比較例15,16其々の圧電薄膜の形成過程では、真空チャンバー内の酸素分圧を、下記表3に示す値に調整した。この酸素分圧の違いを除いて、実施例13と同様の方法で、実施例19,20及び比較例15,16其々の圧電薄膜素子を作製した。
 実施例1と同様のXRF法により、実施例19,20及び比較例15,16其々の圧電薄膜の組成を分析した。実施例19,20及び比較例15,16其々の圧電薄膜の組成(x,y及びx+y其々の値)を、下記表3に示す。
 実施例1と同様の方法で実施例19,20及び比較例15,16其々の圧電薄膜を構成する酸化物BKTの優先配向方位を求めた。実施例19,20及び比較例15,16其々の優先配向方位を、下記表3に示す。実施例19,20及び比較例15,16其々の優先配向方位の配向度を、下記表3に示す。また、実施例1の同様の測定及び計算によって得た実施例19,20及び比較例15,16其々のd31,εr及びg31を、下記表3に示す。
(実施例21~24)
 実施例21では、圧電薄膜の形成過程における単結晶基板の温度(成膜温度)を、600℃に維持した。この成膜温度は、上記実施例1及び13の場合の成膜温度(500℃)よりも高かった。実施例21の圧電薄膜の形成過程では、真空チャンバー内の酸素分圧を、下記表4に示す値に調整した。
 実施例22及び23で用いた単結晶基板では、SrTiOの(110)の面方位が、単結晶基板の法線方向と同じであった。実施例23では、圧電薄膜の形成過程における単結晶基板の温度(成膜温度)を、600℃に維持した。この成膜温度は、実施例22の場合の成膜温度(500℃)よりも高かった。実施例22及び23其々の圧電薄膜の形成過程では、真空チャンバー内の酸素分圧を、下記表4に示す値に調整した。
 実施例24で用いた単結晶基板では、SrTiOの(111)の面方位が、単結晶基板の法線方向と同じであった。実施例24の圧電薄膜の形成過程では、真空チャンバー内の酸素分圧を、下記表4に示す値に調整した。
 以上の相違点を除いて、実施例13と同様の方法で、実施例21~24其々の圧電薄膜素子を作製した。
 実施例1と同様のXRF法により、実施例21~24其々の圧電薄膜の組成を分析した。実施例21~24其々の圧電薄膜の組成(x,y及びx+y其々の値)を、下記の表4に示す。
 実施例1と同様の方法で実施例21~24其々の圧電薄膜を構成する酸化物BKTの優先配向方位を求めた。実施例21~24其々の優先配向方位を、下記の表4に示す。実施例21~24其々の優先配向方位の配向度を、下記の表4に示す。また、実施例1の同様の測定及び計算によって得た実施例21~24其々のd31,εr及びg31を、下記表4に示す。
 実施例6のX線回折パターンを、図10に示す。SrTiO(単結晶基板)に由来するピーク、及びSrRuO(第一電極層)に由来する由来のピークを除くと、配向した酸化物BKT(圧電薄膜)の(100)面に由来する急峻なピークがあった。(100)及び(200)以外の面方位の酸化物BKTのピーク強度はわずかであった。また、異相(酸化物BKTの形成過程で生じ得る副成分)に由来するピークは確認されなかった。このパターンのプロファイルは、高い配向度を有し、且つ異相の無い酸化物BKT(圧電薄膜)が得られたことを示唆している。他の実施例及び比較例其々のXRDパターンを分析して、他の実施例及び比較例其々の圧電薄膜における異相の有無を評価した。評価結果を下記の表1~4に示す。
 図11に示すように、全ての実施例及び比較例其々のx及びyをプロットした。図11中の菱形の印は実施例に対応し、三角形の印は比較例に対応する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 上記表1~4に示す通り、全ての実施例の圧電薄膜の組成が、下記化学式1を満たしていた。全ての実施例の圧電薄膜において、酸化物BKTの面方位の一つが、単結晶基板の法線方向において優先的に配向していた。全ての実施例の圧電薄膜において、異相は検出されなかった。全ての実施例のd31が30pm/V以上であった。全ての実施例のg31が10×10-3Vm/N以上であった。
(Bi)TiO   (1)
[上記化学式1中、0.30≦x≦0.60, 0.30≦y≦0.60, 0.60≦x+y≦1.10。]
 一方、圧電薄膜の組成が上記化学式1を満たし、且つ酸化物BKTの優先配向方位が存在する比較例はなかった。また、d31が30pm/V以上であり、且つg31が10×10-3Vm/N以上である比較例もなかった。
 表3に示す通り、圧電薄膜の形成過程における真空チャンバー内の酸素分圧により、酸化物BKTの面方位の配向度が変化することが分かった。
 実施例13及び21~24(表4中のデータ)が示す通り、圧電薄膜の成膜温度、成膜時の酸素分圧及び単結晶基板の面方位に応じて、圧電薄膜の優先配向方位が変わった。優先配向方位の違いに関わらず、実施例13及び21~24のd31は30pm/V以上であり、実施例13及び21~24のg31は10×10-3Vm/N以上であった。
 本発明によれば、d31及びg31が大きい圧電薄膜、圧電薄膜素子、並びに、圧電薄膜素子を用いた圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置が提供される。
 100…圧電薄膜素子、1…単結晶基板、2…第一電極層、3…圧電薄膜、4…第二電極層、D…単結晶基板1の法線方向、D(HKL)…単結晶基板1の法線方向Dにおいて優先的に配向している酸化物BKTの面方位、200…ヘッドアセンブリ、9…ベースプレート、11…ロードビーム、11b…基端部、11c…第1板バネ部分、11d…第2板バネ部分、11e…開口部、11f…ビーム主部、15…フレキシブル基板、17…フレクシャ、19…ヘッドスライダ、19a…ヘッド素子、300…圧電アクチュエータ、20…基体、21…圧力室、23…絶縁膜、24…単結晶基板、25…圧電薄膜、26…上部電極層(第一電極層)、27…ノズル、400…ジャイロセンサ、110…基部、120,130…アーム、30…圧電薄膜、31…上部電極層(第一電極層)、31a,31b…駆動電極層、31c,31d…検出電極層、32…単結晶基板、500…圧力センサ、40…圧電薄膜素子、41…共通電極層、42…圧電薄膜、43…個別電極層、44…支持体、45…空洞、46…電流増幅器、47…電圧測定器、600…脈波センサ、50…圧電薄膜素子、51…共通電極層、52…圧電薄膜、53…個別電極層、54…支持体、55…電圧測定器、700…ハードディスクドライブ、60…筐体、61…ハードディスク、62…ヘッドスタックアセンブリ、63…ボイスコイルモータ、64…アクチュエータアーム、65…ヘッドアセンブリ、800…インクジェットプリンタ装置、70…プリンタヘッド、71…本体、72…トレイ、73…ヘッド駆動機構、74…排出口、75…記録用紙、76…オートシートフィーダ(自動連続給紙機構)。

Claims (11)

  1.  単結晶基板に重なる圧電薄膜であって、
     前記圧電薄膜が、下記化学式1で表される結晶質の酸化物を含み、
     (100)、(001)、(110)、(101)及び(111)からなる群より選ばれる前記酸化物の面方位の一つが、前記単結晶基板の法線方向において優先的に配向している、
    圧電薄膜。
    (Bi)TiO   (1)
    [上記化学式1中、0.30≦x≦0.60, 0.30≦y≦0.60, 0.60≦x+y≦1.10。]
  2.  前記法線方向において優先的に配向している前記面方位は、(001)である、
    請求項1に記載の圧電薄膜。
  3.  単結晶基板と、前記単結晶基板に重なる圧電薄膜と、を備え、
     前記圧電薄膜が、下記化学式1で表される結晶質の酸化物を含み、
     (100)、(001)、(110)、(101)及び(111)からなる群より選ばれる前記酸化物の面方位の一つが、前記単結晶基板の法線方向において優先的に配向している、
    圧電薄膜素子。
    (Bi)TiO   (1)
    [上記化学式1中、0.30≦x≦0.60, 0.30≦y≦0.60, 0.60≦x+y≦1.10。]
  4.  前記法線方向において優先的に配向している前記面方位は、(001)である、
    請求項3に記載の圧電薄膜素子。
  5.  請求項3又は4に記載の圧電薄膜素子を備える、
    圧電アクチュエータ。
  6.  請求項3又は4に記載の圧電薄膜素子を備える、
    圧電センサ。
  7.  請求項5に記載の圧電アクチュエータを備える、
    ヘッドアセンブリ。
  8.  請求項7に記載のヘッドアセンブリを備える、
    ヘッドスタックアセンブリ。
  9.  請求項8に記載のヘッドスタックアセンブリを備える、
    ハードディスクドライブ。
  10.  請求項5に記載の圧電アクチュエータを備える、
    プリンタヘッド。
  11.  請求項10に記載のプリンタヘッドを備える、
    インクジェットプリンタ装置。
PCT/JP2016/088501 2015-12-25 2016-12-22 圧電薄膜、圧電薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置 WO2017111090A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017558284A JPWO2017111090A1 (ja) 2015-12-25 2016-12-22 圧電薄膜、圧電薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015254820 2015-12-25
JP2015-254820 2015-12-25

Publications (1)

Publication Number Publication Date
WO2017111090A1 true WO2017111090A1 (ja) 2017-06-29

Family

ID=59090516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088501 WO2017111090A1 (ja) 2015-12-25 2016-12-22 圧電薄膜、圧電薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置

Country Status (2)

Country Link
JP (1) JPWO2017111090A1 (ja)
WO (1) WO2017111090A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107345551A (zh) * 2017-08-17 2017-11-14 浙江师范大学 一种自供电阻尼器
JP2020033629A (ja) * 2018-08-31 2020-03-05 Tdk株式会社 強誘電性薄膜、強誘電性薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置
WO2020054779A1 (ja) * 2018-09-12 2020-03-19 Tdk株式会社 誘電性薄膜、誘電性薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置
JP2020113649A (ja) * 2019-01-11 2020-07-27 Tdk株式会社 圧電薄膜、圧電薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003289161A (ja) * 2002-03-27 2003-10-10 Seiko Epson Corp 圧電素子、インクジェット式ヘッドおよび吐出装置
JP2008263158A (ja) * 2006-09-15 2008-10-30 Canon Inc 圧電素子及び液体吐出ヘッド
JP2008311634A (ja) * 2007-05-14 2008-12-25 Fujifilm Corp 圧電素子及びその駆動方法、圧電装置、液体吐出装置
JP2009289982A (ja) * 2008-05-29 2009-12-10 Fujifilm Corp 強誘電性酸化物構造体、及び強誘電性酸化物構造体の製造方法、液体吐出装置
JP2011035385A (ja) * 2009-07-09 2011-02-17 Fujifilm Corp ペロブスカイト型酸化物、強誘電体組成物、圧電体、圧電素子、及び液体吐出装置
JP2012006182A (ja) * 2010-06-22 2012-01-12 Seiko Epson Corp 液体噴射ヘッド、液体噴射装置、圧電素子及びアクチュエーター装置
JP2015154076A (ja) * 2014-02-10 2015-08-24 Tdk株式会社 圧電デバイス、圧電アクチュエータ、ハードディスクドライブ、及びインクジェットプリンタ装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003289161A (ja) * 2002-03-27 2003-10-10 Seiko Epson Corp 圧電素子、インクジェット式ヘッドおよび吐出装置
JP2008263158A (ja) * 2006-09-15 2008-10-30 Canon Inc 圧電素子及び液体吐出ヘッド
JP2008311634A (ja) * 2007-05-14 2008-12-25 Fujifilm Corp 圧電素子及びその駆動方法、圧電装置、液体吐出装置
JP2009289982A (ja) * 2008-05-29 2009-12-10 Fujifilm Corp 強誘電性酸化物構造体、及び強誘電性酸化物構造体の製造方法、液体吐出装置
JP2011035385A (ja) * 2009-07-09 2011-02-17 Fujifilm Corp ペロブスカイト型酸化物、強誘電体組成物、圧電体、圧電素子、及び液体吐出装置
JP2012006182A (ja) * 2010-06-22 2012-01-12 Seiko Epson Corp 液体噴射ヘッド、液体噴射装置、圧電素子及びアクチュエーター装置
JP2015154076A (ja) * 2014-02-10 2015-08-24 Tdk株式会社 圧電デバイス、圧電アクチュエータ、ハードディスクドライブ、及びインクジェットプリンタ装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107345551A (zh) * 2017-08-17 2017-11-14 浙江师范大学 一种自供电阻尼器
CN107345551B (zh) * 2017-08-17 2023-01-31 浙江师范大学 一种自供电阻尼器
JP2020033629A (ja) * 2018-08-31 2020-03-05 Tdk株式会社 強誘電性薄膜、強誘電性薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置
JP7061752B2 (ja) 2018-08-31 2022-05-02 Tdk株式会社 強誘電性薄膜、強誘電性薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置
WO2020054779A1 (ja) * 2018-09-12 2020-03-19 Tdk株式会社 誘電性薄膜、誘電性薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置
CN112640137A (zh) * 2018-09-12 2021-04-09 Tdk株式会社 介电薄膜、介电薄膜元件、压电致动器、压电传感器、磁头组件、磁头悬臂组件、硬盘驱动器、打印头和喷墨打印装置
JPWO2020054779A1 (ja) * 2018-09-12 2021-09-30 Tdk株式会社 誘電性薄膜、誘電性薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置
CN112640137B (zh) * 2018-09-12 2024-03-12 Tdk株式会社 介电薄膜、介电薄膜元件、压电致动器、和压电传感器
JP2020113649A (ja) * 2019-01-11 2020-07-27 Tdk株式会社 圧電薄膜、圧電薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置
JP7298159B2 (ja) 2019-01-11 2023-06-27 Tdk株式会社 圧電薄膜、圧電薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置

Also Published As

Publication number Publication date
JPWO2017111090A1 (ja) 2018-10-18

Similar Documents

Publication Publication Date Title
JP6413485B2 (ja) 圧電素子、圧電アクチュエータ、及び圧電センサ、並びにハードディスクドライブ、及びインクジェットプリンタ装置
JP6233112B2 (ja) 圧電素子、圧電アクチュエータ、及び圧電センサ、並びにハードディスクドライブ、及びインクジェットプリンタ装置
JP7298159B2 (ja) 圧電薄膜、圧電薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置
JP7044793B2 (ja) 可逆的相転移から誘導される電界誘起歪みを示すセラミック材料の特定方法、製造方法及びそれから得られるセラミック材料
WO2017111090A1 (ja) 圧電薄膜、圧電薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置
EP2958157B1 (en) Piezoelectric element
JP2014107563A (ja) 圧電素子、圧電アクチュエータ、及び圧電センサ、並びにハードディスクドライブ、及びインクジェットプリンタ装置
JP2020506149A (ja) 擬似立方晶相を含むセラミック材料、その調製及び使用方法
US10944040B2 (en) Piezoelectric thin film-stacked body, piezoelectric thin film substrate, piezoelectric thin film device, piezoelectric actuator, piezoelectric sensor, head assembly, head stack assembly, hard disk drive, printer head, and ink-jet printer device
WO2020054779A1 (ja) 誘電性薄膜、誘電性薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置
JP2007084424A (ja) ペブロスカイト型酸化物、これを用いた圧電素子、液体吐出ヘッド、液体吐出装置及びペブロスカイト型酸化物の製造方法
JP6690193B2 (ja) 圧電体層、圧電素子、圧電アクチュエータ、及び圧電センサ、並びにハードディスクドライブ、及びインクジェットプリンタ装置
JP2019121702A (ja) 圧電薄膜、圧電薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置
JP6233111B2 (ja) 圧電素子、圧電アクチュエータ、及び圧電センサ、並びにハードディスクドライブ、及びインクジェットプリンタ装置
JP2020140976A (ja) 圧電薄膜、圧電薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置
CN108172683B (zh) 压电薄膜层叠体、压电薄膜基板以及压电薄膜元件
JP2019079948A (ja) 圧電薄膜、圧電薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置
JPH0597437A (ja) 圧電/電歪膜型素子
JP2020140975A (ja) 圧電薄膜、圧電薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置
JP7351249B2 (ja) 圧電薄膜、圧電薄膜素子及び圧電トランスデューサ
JP2022071607A (ja) 圧電薄膜、圧電薄膜素子及び圧電トランスデューサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878976

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017558284

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878976

Country of ref document: EP

Kind code of ref document: A1