JP2019079948A - 圧電薄膜、圧電薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置 - Google Patents

圧電薄膜、圧電薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置 Download PDF

Info

Publication number
JP2019079948A
JP2019079948A JP2017206190A JP2017206190A JP2019079948A JP 2019079948 A JP2019079948 A JP 2019079948A JP 2017206190 A JP2017206190 A JP 2017206190A JP 2017206190 A JP2017206190 A JP 2017206190A JP 2019079948 A JP2019079948 A JP 2019079948A
Authority
JP
Japan
Prior art keywords
thin film
piezoelectric thin
piezoelectric
single crystal
crystal substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017206190A
Other languages
English (en)
Inventor
佐藤 祐介
Yusuke Sato
祐介 佐藤
純平 森下
Jumpei Morishita
純平 森下
和希子 佐藤
Wakiko Sato
和希子 佐藤
舟窪 浩
Hiroshi Funakubo
浩 舟窪
荘雄 清水
Takao Shimizu
荘雄 清水
祐一 根本
Yuichi Nemoto
祐一 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Tokyo Institute of Technology NUC
Original Assignee
TDK Corp
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp, Tokyo Institute of Technology NUC filed Critical TDK Corp
Priority to JP2017206190A priority Critical patent/JP2019079948A/ja
Publication of JP2019079948A publication Critical patent/JP2019079948A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Moving Of The Head To Find And Align With The Track (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Supporting Of Heads In Record-Carrier Devices (AREA)

Abstract

【課題】g31が大きい圧電薄膜を提供する。【解決手段】圧電薄膜3は、下記化学式1で表される結晶質の酸化物を含む。(BixKy)TiO3(1)[上記化学式1中、x及びyは、0.30<x≦0.60、且つ0.60<y≦0.80、0.60<x≦0.80、且つ0.30≦y≦0.60、0.50<x≦0.60、0.50<y≦0.60、且つ1.10<x+y≦1.20、又は、0.60≦x≦0.80、0.60≦y≦0.80、且つ1.20≦x+y≦1.40を満たす。]【選択図】図1

Description

本発明は、圧電薄膜、圧電薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置に関する。
圧電材料は、種々の目的に応じて様々な圧電薄膜素子に加工される。例えば、圧電アクチュエータは、圧電薄膜に電圧を加えて圧電薄膜を変形させる逆圧電効果により、電圧を力に変換する。また圧電センサは、圧電薄膜に圧力を加えて圧電薄膜を変形させる圧電効果により、力を電圧に変換する。これらの圧電薄膜素子は、様々な電子機器に搭載される。
従来、圧電材料として、ペロブスカイト型強誘電体であるジルコン酸チタン酸鉛(いわゆるPZT)が多用されてきた。しかしながら、PZTは、人体や環境を害する鉛を含むため、PZTの代替として、無鉛(Lead−free)の圧電材料の開発が期待されている。例えば、非特許文献1には、無鉛の圧電材料の一例として、BaTiO系材料が記載されている。BaTiO系材料は、無鉛の圧電材料の中でも比較的良好な圧電特性を有し、圧電薄膜素子への応用が特に期待されている。
High−Performance Lead−Free Barium Titanate Piezoelectric Ceramics, Advances in Science and Technology, Vol. 54, pp. 7−12, Sep. 2008
しかしながら、BaTiO系材料の比誘電率εrは高い。したがって、BaTiO系材料の圧電定数d31がPZTに匹敵していたとしても、d31をεrで除することで得られるBaTiO系材料の圧電定数g31は小さくなってしまう。例えば、大きいg31は、圧電センサ等の圧電薄膜素子に要求される。
本発明は、上記従来技術の有する課題に鑑みてなされたものであり、g31が大きい圧電薄膜、圧電薄膜素子、並びに、圧電薄膜素子を用いた圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置を提供することを目的とする。
本発明の一側面に係る圧電薄膜は、下記化学式1で表される結晶質の酸化物を含む。
(Bi)TiO (1)
[上記化学式1中、x及びyは、0.30<x≦0.60、且つ0.60<y≦0.80、0.60<x≦0.80、且つ0.30≦y≦0.60、0.50<x≦0.60、0.50<y≦0.60、且つ1.10<x+y≦1.20、又は、0.60≦x≦0.80、0.60≦y≦0.80、且つ1.20≦x+y≦1.40を満たす。]
本発明の一側面に係る圧電薄膜は、単結晶基板に重なっていてよく、(100)、(001)、(110)、(101)及び(111)からなる群より選ばれる上記酸化物の面方位の一つが、単結晶基板の法線方向において優先的に配向していてよい。酸化物の面方位とは、上記化学式1で表される酸化物の結晶面の方位と言い換えてよい。
本発明の一側面に係る圧電薄膜では、法線方向において優先的に配向している面方位は、(001)であってよい。
本発明の一側面に係る圧電薄膜素子は、圧電薄膜を備え、圧電薄膜が、下記化学式1で表される結晶質の酸化物を含む。
(Bi)TiO (1)
[上記化学式1中、x及びyは、0.30<x≦0.60、且つ0.60<y≦0.80、0.60<x≦0.80、且つ0.30≦y≦0.60、0.50<x≦0.60、0.50<y≦0.60、且つ1.10<x+y≦1.20、又は、0.60≦x≦0.80、0.60≦y≦0.80、且つ1.20≦x+y≦1.40を満たす。]
本発明の一側面に係る圧電薄膜素子は、単結晶基板と、単結晶基板に重なる上記圧電薄膜と、を備えてよく、(100)、(001)、(110)、(101)及び(111)からなる群より選ばれる上記酸化物の面方位の一つが、単結晶基板の法線方向において優先的に配向していてよい。
本発明の一側面に係る圧電薄膜素子では、法線方向において優先的に配向している面方位は、(001)であってよい。
本発明の一側面に係る圧電アクチュエータは、上記圧電薄膜素子を備える。
本発明の一側面に係る圧電センサは、上記圧電薄膜素子を備える。
本発明の一側面に係るヘッドアセンブリは、上記圧電アクチュエータを備える。
本発明の一側面に係るヘッドスタックアセンブリは、上記ヘッドアセンブリを備える。
本発明の一側面に係るハードディスクドライブは、上記ヘッドスタックアセンブリを備える。
本発明の一側面に係るプリンタヘッドは、上記圧電アクチュエータを備える。
本発明の一側面に係るインクジェットプリンタ装置は、上記プリンタヘッドを備える。
本発明によれば、g31が大きい圧電薄膜、圧電薄膜素子、並びに、圧電薄膜素子を用いた圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置が提供される。
図1中の(a)は、本発明の一実施形態に係る圧電薄膜素子の模式図であり、図1中の(b)は、図1中の(a)に示す圧電薄膜素子の斜視分解図である(図1中の(b)では、第一電極層及び第二電極層を省略する。)。 図2は、本発明の一実施形態に係るヘッドアセンブリの模式図である。 図3は、本発明の一実施形態に係る圧電アクチュエータの模式図である。 図4は、本発明の一実施形態に係るジャイロセンサの模式図(平面図)である。 図5は、図4に示すジャイロセンサのA−A線に沿った矢視断面図である。 図6は、本発明の一実施形態に係る圧力センサの模式図である。 図7は、本発明の一実施形態に係る脈波センサの模式図である。 図8は、本発明の一実施形態に係るハードディスクドライブの模式図である。 図9は、本発明の一実施形態に係るインクジェットプリンタ装置の模式図である。 本発明の実施例及び比較例其々の圧電薄膜におけるBiのモル比x及びKのモル比yのプロットである。
以下、図面を参照しながら、本発明の好適な一実施形態について詳細に説明する。なお、図面において、同一又は同等の要素については同一の符号を付す。図1に示すX,Y及びZは、互いに直交する3つの座標軸を意味する。また、説明が重複する場合にはその説明を省略する。本発明は下記実施形態に限定されない。
(圧電薄膜、及び圧電薄膜素子)
図1に示すように、本実施形態に係る圧電薄膜素子100は、単結晶基板1と、単結晶基板1に重なる第一電極層2(下部電極層)と、第一電極層2を介して単結晶基板1に重なる圧電薄膜3と、圧電薄膜3に重なる第二電極層4(上部電極層)と、を備える。すなわち、圧電薄膜素子100では、一対の電極層の間に圧電薄膜3が挟まれている。圧電薄膜素子100の変形例は、第二電極層4を備えなくてよい。例えば、第二電極層を備えない圧電薄膜素子が、製品として、電子機器の製造業者に供給された後、電子機器の組立て・製造の過程において、第二電極層が圧電薄膜素子に付加されてよい。
単結晶基板1は、例えば、Siの単結晶からなる基板、又はGaAs等の化合物半導体の単結晶からなる基板であってよい。単結晶基板1は、MgO又はペロブスカイト型酸化物(例えばSrTiO)等の酸化物の単結晶からなる基板であってもよい。単結晶基板1の厚さは、例えば、10〜1000μmであってよい。単結晶基板1が導電性を有する場合、単結晶基板1が電極として機能するので、第一電極層2はなくてもよい。つまり、単結晶基板1が導電性を有する場合、圧電薄膜3が単結晶基板1に直接重なっていてもよい。導電性を有する単結晶基板1は、例えば、Nb(ニオブ)がドープされたSrTiOの単結晶であってよい。単結晶基板1がSiの単結晶である場合、第一電極層2の密着性を向上させるために、単結晶基板1の表面にTi又はCr等からなる密着層を形成してもよい。
単結晶基板1の結晶構造のいずれかの面方位は、単結晶基板1の法線方向Dと等しくてよい。つまり、単結晶基板1の結晶構造のいずれかの結晶面が、単結晶基板1の法線方向Dを向いていてよい。単結晶基板1は一軸配向基板であってよい。例えば、(100)、(001)、(110)、(101)、及び(111)からなる群より選ばれる単結晶基板1の結晶構造の面方位の一つが、単結晶基板の法線方向Dと等しくてよい。
第一電極層2は、例えば、Pt(白金)、Pd(パラジウム)、Rh(ロジウム)、Au(金)、Ru(ルテニウム)、Ir(イリジウム)、Mo(モリブデン)、Ti(チタン)、Ta(タンタル)、及びNi(ニッケル)からなる群より選ばれる少なくとも一種の金属からなっていてよい。第一電極層2は、例えば、SrRuO又はLaNiO等の導電性金属酸化物からなっていてよい。第一電極層2は、結晶質であってよい。第一電極層2の結晶構造の面方位のいずれか一つが、単結晶基板1の法線方向Dにおいて配向していてよい。単結晶基板1の面方位と、第一電極層2の結晶構造の面方位と、の両方が、単結晶基板1の法線方向Dにおいて配向してよい。法線方向Dにおいて配向する第一電極層2の結晶構造の面方位が、法線方向Dにおいて配向する単結晶基板1の面方位と同じであってよい。第一電極層2の厚さは、例えば、1nm〜1.0μmであってよい。第一電極層2の形成方法は、スパッタリング法、真空蒸着法、印刷法、スピンコート法、又はゾルゲル法であってよい。印刷法、スピンコート法、又はゾルゲル法では、第一電極層2の結晶性を高めるために、第一電極層2の加熱を行ってもよい。
圧電薄膜3は、主成分として、下記化学式1で表される結晶質の酸化物を含む。なお、主成分とは、圧電薄膜3を構成する全成分に対する割合が99%モル以上である成分を意味する。以下では、下記化学式1で表される酸化物を、「酸化物bkt」と記す。圧電薄膜3は、結晶質の酸化物bktのみからなっていてもよい。結晶質の酸化物bktは、ペロブスカイト構造を有する。結晶質の酸化物bktは、常温において正方晶であってよい。
(Bi)TiO (1)
[上記化学式1中、x及びyは、0.30<x≦0.60、且つ0.60<y≦0.80、0.60<x≦0.80、且つ0.30≦y≦0.60、0.50<x≦0.60、0.50<y≦0.60、且つ1.10<x+y≦1.20、又は、0.60≦x≦0.80、0.60≦y≦0.80、且つ1.20≦x+y≦1.40を満たす。]
上記化学式1におけるOの係数が3からずれていてもよく、酸化物bktは、下記化学式2で表される酸化物であってもよい。例えば、酸化物bktをABOというペロブスカイト型酸化物の一般式で表す場合、BサイトであるTiの一部が、AサイトであるBi及びKのうち少なくともいずれかに置換されることにより、酸化物bktに酸素欠陥が生じていてもよい。圧電薄膜3が下記化学式2で表される結晶質の酸化物を含む場合、圧電薄膜3のg31が大きくなり易い。
(Bi)TiO3±δ (2)
[上記化学式1中、x及びyは、0.30<x≦0.60、且つ0.60<y≦0.80、0.60<x≦0.80、且つ0.30≦y≦0.60、0.50<x≦0.60、0.50<y≦0.60、且つ1.10<x+y≦1.20、又は、0.60≦x≦0.80、0.60≦y≦0.80、且つ1.20≦x+y≦1.40を満たし、δは正の実数を表す。]
上記化学式2におけるδは、ペロブスカイト構造を取りうる範囲内で、例えば、0より大きく1.0以下であってよい。δは、例えば、XPS(X線光電子分光法)により測定される酸化物bktのAサイトイオン及びBサイトイオン其々の価数から算出される。
圧電薄膜3は、酸化物bkt以外の成分を含んでもよい。ただし、圧電薄膜3は、鉄(Fe)及びマンガン(Mn)を含まないことが好ましい。例えば、圧電薄膜3は、鉄酸マンガン酸ビスマスを含まないことが好ましい。圧電薄膜3が鉄及びマンガンを含む場合、圧電薄膜3の電気抵抗率が低くなり易く、比誘電率εrが高くなり易く、g31が低くなり易い。
(100)、(001)、(110)、(101)及び(111)からなる群より選ばれる結晶質の酸化物bktの面方位の一つが、単結晶基板1の法線方向Dにおいて優先的に配向していてよい。結晶質の酸化物bktの面方位の優先配向により、圧電薄膜3のd31及びg31が大きくなり易い。酸化物bkt又は圧電薄膜3全体は、単結晶であってよい。酸化物bkt又は圧電薄膜3全体は、多結晶であってもよい。
酸化物bktの面方位の優先配向の有無は、酸化物bktの面方位の配向度によって決定される。配向度は、F(HKL)と表記される。配向度F(HKL)とは、酸化物bktの面方位(HKL)の配向度と言い換えてよい。配向度F(HKL)とは、酸化物bktの(HKL)面の配向度と言い換えてもよい。面方位(HKL)は、(100)、(001)、(110)、(101)及び(111)からなる群より選ばれるいずれかの面方位を意味する。配向度F(HKL)は、ロットゲーリング法によって規定される値である。配向度F(HKL)の単位は[%]である。配向度F(HKL)は、下記式Aによって定義される。
F(HKL)={(ρ−ρ)/(1−ρ)}×100 (A)
ρ=ΣI(HKL)/ΣI(hkl)
ρ=ΣI0(HKL)/ΣI0(hkl)
ΣI(hkl)は、結晶質の酸化物bktの全ての結晶面(hkl)のX線回折強度(測定値)の総和である。
ΣI(HKL)は、結晶質の酸化物bktにおいて結晶学的に等価である特定の結晶面(HKL)のX線回折強度(測定値)の総和である。例えば、等価である結晶面は、各(M00)面である。ここで、Mは1以上の整数である。
ΣI(hkl)は、配向性が無い(Bi0.50.5)TiOの全ての結晶面(hkl)のX線回折強度(測定値)の総和である。
ΣI(HKL)は、配向性が無い(Bi0.50.5)TiOにおいて結晶学的に等価である特定の結晶面(HKL)のX線回折強度の総和である。結晶質の酸化物bktの各面方位の配向度のうち、単結晶基板1の法線方向Dに一致する面方位の配向度が80%以上100%以下である場合、その面方位(HKL)は、単結晶基板1の法線方向Dにおいて優先的に配向している。特に、配向度F(HKL)が100%である場合、面方位(HKL)は、単結晶基板1の法線方向Dにおいて完全に配向している。配向度F(HKL)が0.0%である場合、単結晶基板1の法線方向Dにおける酸化物bktの面方位(HKL)の配向性は無い。単結晶基板1の法線方向Dにおいて、酸化物bktの面方位(HKL)の配向度F(HKL)は、80〜98%であってよい。
配向度F(HKL)の計算のために圧電薄膜素子100のX線回折パターンを測定するとき、圧電薄膜素子100の温度は、酸化物bktのキュリー点未満(例えば室温)であればよい。
図1の(b)に記載のD(HKL)は、単結晶基板1の法線方向Dにおいて優先的に配向している酸化物bktの(HKL)面の方位である。図1の(b)に示すように、面方位D(HKL)は、単結晶基板1の法線方向Dと平行であってよい面方位D(HKL)は、法線方向Dと同じであってよい。法線方向Dにおいて優先的に配向している面方位D(HKL)は、(001)であることが好ましい。酸化物bktは室温で正方晶構造を有し、酸化物bktの自発分極方向の面方位は(001)である。この自発分極方向の面方位が単結晶基板1の法線方向Dにおいて優先的に配向している場合、圧電d定数(d31)が大きくなり易く、かつ比誘電率εrも小さくなり易く、d31をεrで除した圧電g定数(g31)も大きくなり易い。法線方向Dにおいて優先的に配向している面方位D(HKL)が(001)であるとき、単結晶基板1の法線方向Dにおいて配向する単結晶基板1の結晶面の方位は(001)であってよい。
単結晶基板1の法線方向Dが単結晶基板1の面方位(001)と同じであるとき、酸化物bktの面方位D(HKL)は、(100)又は(001)であってよい。単結晶基板1の法線方向Dが単結晶基板1の面方位(110)と同じであるとき、酸化物bktの面方位D(HKL)は(110)又は(101)であってよい。単結晶基板1の法線方向Dが単結晶基板1の面方位(111)と同じであるとき、酸化物bktの面方位D(HKL)は(111)であってよい。
上記化学式1に記載の通り、酸化物bktにおけるBi(ビスマス)のモル比xは0.30よりも大きく0.60以下であってよく、且つ酸化物bktにおけるK(カリウム)のモル比yは0.60よりも大きく0.80以下であってよい。xは0.60よりも大きく0.80以下であってもよく、且つyは0.30以上0.60以下であってもよい。xは0.50よりも大きく0.60以下であってもよく、且つyは0.50よりも大きく0.60以下であってもよく、且つ(x+y)は1.10よりも大きく1.20以下であってもよい。xは0.60以上0.80以下であってもよく、且つyは0.60以上0.80以下であってもよく、且つ(x+y)は1.20以上1.40以下であってもよい。x、y及び(x+y)が上記範囲を満たす場合、g31が大きくなる。x、y及び(x+y)のうち少なくともいずれかが上記範囲を満たさない場合、εrが高くなったり、圧電薄膜3が十分に形成されなかったり、酸化物bktの面方位の優先配向がなかったり、圧電薄膜3の形成過程において、酸化物bkt以外の異相(例えば、Bi層状化合物、又はTi系化合物)が生成したりする。その結果、g31が小さくなると考えられる。ただし、本発明の作用効果は上記事項に限定されない。xは0.60〜0.80であってよく、且つyは0.50〜0.60であってよく、且つ(x+y)は1.40であってよい。この場合、g31が大きくなり易い。
圧電薄膜3の厚みは、例えば、10nm〜10μm程度であってよい。圧電薄膜3の面積は、例えば、1μm〜500mmであってよい。単結晶基板1、第一電極層2、第二電極層4其々の面積は、圧電薄膜3の面積と同じであってよい。
従来のBaTiO系材料のキュリー点は低い。したがって、圧電薄膜素子を用いた電子機器の製造過程(例えば、はんだリフロー工程)において圧電薄膜が加熱されると、圧電薄膜を構成するBaTiO系材料の相転移が起き易く、機械的強度や圧電特性が損なわれ易い。一方、酸化物bktのキュリー点は、従来のBaTiO系材料に比べて高い。したがって、本実施形態に係る圧電薄膜素子100を用いた電子機器の製造過程では、圧電薄膜3が加熱されたとしても、酸化物bktの相転移が起き難く、機械的強度や圧電特性が損なわれ難い。酸化物bktのキュリー点は、例えば、250〜400℃程度であってよい。
圧電薄膜3は、例えば、以下の方法により形成されてよい。
圧電薄膜3の形成には、BKTターゲットを用いる。BKTターゲットとは、上記酸化物bktからなるターゲットである。BKTターゲットの作製方法は、次の通りである。
出発原料として、例えば、酸化ビスマス、炭酸カリウム、酸化チタンの原料粉末を用意する。これらの出発原料を100℃以上で十分に乾燥した後、Biのモル数、Kのモル数及びTiのモル数が、成膜後の組成分析において上記化学式1で規定された範囲内になるように、各出発原料を秤量する。出発原料として、上記の酸化物に代えて、炭酸塩又はシュウ酸塩等のように、焼成により酸化物となる物質を用いてもよい。
秤量した出発原料を、例えば、ボールミル等を用いて、有機溶媒又は水の中で、5〜20時間十分に混合する。混合後の出発原料を、十分乾燥した後、プレス機で成形する。成形された出発原料を、750〜900℃で1〜3時間程度仮焼する。続いて、この仮焼物を、ボールミル等を用いて、有機溶媒又は水の中で、5〜30時間粉砕する。粉砕された仮焼物を、再び乾燥し、バインダー溶液を加えて造粒して、仮焼物の粉を得る。この粉をプレス成形して、ブロック状の成形体を得る。
ブロック状の成形体を、400〜800℃で、2〜4時間程度加熱して、バインダーを揮発させる。続いて、成形体を、800〜1100℃で、2時間〜4時間程度焼成する。この本焼成時の成形体の昇温速度及び降温速度は、例えば50〜300℃/時間程度に調整すればよい。
以上の工程により、BKTターゲットが得られる。BKTターゲットに含まれる酸化物BKTの結晶粒の平均粒径は、例えば、1〜20μm程度であってよい。
上記BKTターゲットを用いた気相成長法によって、圧電薄膜3を形成すればよい。気相成長法では、真空雰囲気下において、BKTターゲットを構成する元素を蒸発させる。蒸発した元素を、平滑な第一電極層2の表面又は単結晶基板1の表面に付着・堆積させることにより、圧電薄膜3を成長させる。気相成長法は、例えば、スパッタリング法、電子ビーム蒸着法、化学蒸着法(Chemical Vapor Deposition)法、又はパルスレーザー堆積(Pulsed−laser deposition)法であればよい。以下では、パルスレーザー堆積法を、PLD法と記す。これらの気相成長法を用いることによって、原子レベルでの緻密な膜形成が可能となり、偏析などが生じ難くなる。気相成長法の種類に依って、励起源が異なる。スパッタリング法の励起源は、Arプラズマである。電子ビーム蒸着法の励起源は、電子ビームである。PLD法の励起源は、レーザー光(例えば、エキシマレーザー)である。これらの励起源がBKTターゲットに照射されると、BKTターゲットを構成する元素が蒸発する。
上記の気相成長法の中でも、以下の点において、PLD法が比較的に優れている。PLD法では、パルスレーザーにより、BKTターゲットを構成する各元素を、一瞬で斑なくプラズマ化させることができる。したがって、BKTターゲットとほぼ同じ組成を有する圧電薄膜3を形成し易い。またPLD法では、レーザーのパルス数(繰り返し周波数)を変えることで、圧電薄膜3の厚さを制御し易い。
PLD法では、真空チャンバー内における単結晶基板1及び第一電極層2を加熱しながら、圧電薄膜3を形成する。単結晶基板1及び第一電極層2の温度(成膜温度)は、例えば、300〜800℃、500〜700℃、又は500〜600℃であればよい。成膜温度が高いほど、単結晶基板1又は第一電極層2の表面の清浄度が改善され、圧電薄膜3の結晶性が高まり、圧電薄膜3(酸化物bkt)の面方位の配向度が高まり易い。成膜温度が高過ぎる場合、Bi又はKが圧電薄膜3から脱離し易く、圧電薄膜3の組成を制御し難くなる。
PLD法では、真空チャンバー内の酸素分圧は、例えば、10mTorrより大きく400mTorr未満、15〜300mTorr、又は20〜200mTorrであってよい。換言すると、真空チャンバー内の酸素分圧は、例えば、1Paより大きく53Pa未満、2〜40Pa、又は3〜30Paであってよい。酸素分圧が上記範囲内に維持されることにより、単結晶基板1又は第一電極層2の表面に堆積したBi,K及びTiを十分に酸化し易い。酸素分圧が高過ぎる場合、圧電薄膜3の成長速度及び配向度が低下し易い。
PLD法で制御される上記以外のパラメータは、例えば、レーザー発振周波数、及び基板・ターゲット間の距離などである。これらのパラメータの制御によって、圧電薄膜3の所望の圧電特性を得易い。例えば、レーザー発振周波数が10Hz以下である場合、圧電薄膜3の面方位の配向度が高まり易い。
第二電極層4は、例えば、例えば、Pt、Pd、Rh、Au、Ru、Ir、Mo、Ti、Ta、及びNiからなる群より選ばれる少なくとも一種の金属からなっていてよい。第二電極層4は、例えば、SrRuO又はLaNiO等の導電性金属酸化物からなっていてよい。第二電極層4は、結晶質であってよい。第二電極層4の結晶構造の面方位の配向性は、単結晶基板1の結晶構造の面方位の配向性と同じであってよい。第二電極層4の結晶構造の面方位の配向性は、酸化物bktの結晶構造の面方位の配向性と同じであってもよい。第二電極層4の厚さは、例えば、1nm〜1.0μmであってよい。第二電極層4の形成方法は、スパッタリング法、真空蒸着法、印刷法、スピンコート法、又はゾルゲル法であってよい。印刷法、スピンコート法、又はゾルゲル法では、第一電極層2の結晶性を高めるために、第一電極層2の加熱を行ってもよい。
第一電極層2と圧電薄膜3との間に第一中間層が介在していてよい。第一中間層を構成する物質は、例えば、SrRuO及びLaNiOからなる群より選ばれる少なくとも一種であってよい。第一中間層は、結晶質であってよい。第一中間層の結晶構造の面方位のいずれか一つが、単結晶基板1の法線方向Dにおいて配向していてよい。単結晶基板1の面方位と、第一中間層の結晶構造の面方位と、の両方が、単結晶基板1の法線方向Dにおいて配向してよい。法線方向Dにおいて配向する第一中間層の結晶構造の面方位が、法線方向Dにおいて配向する単結晶基板1の面方位と同じであってよい。
圧電薄膜3と第二電極層4との間に第二中間層が介在していてよい。第二中間層を構成する物質は、第一中間層を構成する物質と同じであってよい。第二中間層は、結晶質であってよい。第二中間層の結晶構造の面方位のいずれか一つが、単結晶基板1の法線方向Dにおいて配向していてよい。単結晶基板1の面方位と、第二中間層の結晶構造の面方位と、の両方が、単結晶基板1の法線方向Dにおいて配向してよい。法線方向Dにおいて配向する第二中間層の結晶構造の面方位が、法線方向Dにおいて配向する単結晶基板1の面方位と同じであってよい。
圧電薄膜素子100の表面の少なくとも一部又は全体が、保護膜によって被覆されていてよい。保護膜による被覆により、例えば圧電薄膜素子100の耐湿性が向上する。
上述した本実施形態によれば、g31が大きいに圧電薄膜3及び圧電薄膜素子100が提供される。g31が大きい圧電薄膜素子100の用途は、多岐にわたる。圧電薄膜素子100は、例えば、圧電アクチュエータに用いられてよい。圧電アクチュエータは、例えば、ヘッドアセンブリ、ヘッドスタックアセンブリ、又はハードディスクドライブに用いられてもよい。圧電アクチュエータは、例えば、プリンタヘッド、又はインクジェットプリンタ装置に用いられてもよい。圧電薄膜素子100は、例えば、圧電センサに用いられてもよい。圧電センサは、例えば、ジャイロセンサ、圧力センサ、脈波センサ、又はショックセンサであってよい。特にジャイロセンサでは、d31及びg31の両方が大きい圧電薄膜3及び圧電薄膜素子100が要求される。圧電薄膜3及び圧電薄膜素子100は、例えば、マイクロフォンへ適用されてもよい。上記の用途の中でも、g31が大きい圧電薄膜3及び圧電薄膜素子100は、圧電センサに特に適している。
以下では、圧電薄膜3及び圧電薄膜素子100の用途の具体例を詳しく説明する。
(圧電アクチュエータ)
図2は、ハードディスクドライブ(HDD)に搭載されるヘッドアセンブリ200を示す。ヘッドアセンブリ200は、ベースプレート9、ロードビーム11、フレクシャ17、第1及び第2の圧電薄膜素子100、及びヘッドスライダ19を備えている。第1及び第2の圧電薄膜素子100は、ヘッドスライダ19用の駆動素子である。ヘッドスライダ19は、ヘッド素子19aを有する。
ロードビーム11は、ベースプレート9に固着された基端部11bと、この基端部11bから延在する第1の板バネ部11c及び第2の板バネ部11dと、板バネ部11c及び11dの間に形成された開口部11eと、板バネ部11c及び11dに連続して直線的に延在するビーム主部11fと、を備えている。第1の板バネ部11c及び第2の板バネ部11dは、先細りになっている。ビーム主部11fも、先細りになっている。
第1及び第2の圧電薄膜素子100は、所定の間隔をもって、フレクシャ17の一部である配線用フレキシブル基板15上に配置されている。ヘッドスライダ19は、フレクシャ17の先端部に固定されており、第1及び第2の圧電薄膜素子100の伸縮に伴って回転運動する。
図3は、プリンタヘッド用の圧電アクチュエータ300を示す。圧電アクチュエータ300は、基体20と、基体20に重なる絶縁膜23と、絶縁膜23に重なる単結晶基板24と、単結晶基板24に重なる圧電薄膜25と、圧電薄膜25に重なる上部電極層26(第二電極層)と、を備える。単結晶基板24は導電性を有し、下部電極層としての機能も有する。下部電極層とは、上記の第一電極層と言い換えてよい。上部電極層とは、上記の第二電極層と言い換えてよい。
所定の吐出信号が供給されず、単結晶基板24(下部電極層)と上部電極層26との間に電界が印加されていない場合、圧電薄膜25は変形しない。吐出信号が供給されていない圧電薄膜25に隣り合う圧力室21内では、圧力変化が生じず、そのノズル27からインク滴は吐出されない。
一方、所定の吐出信号が供給され、単結晶基板24(下部電極層)と上部電極層26との間に一定電界が印加された場合、圧電薄膜25が変形する。圧電薄膜25の変形によって絶縁膜23が大きくたわむので、圧力室21内の圧力が瞬間的に高まり、ノズル27からインク滴が吐出される。
(圧電センサ)
図4及び図5は、圧電センサの一種であるジャイロセンサ400を示す。ジャイロセンサ400は、基部110と、基部110の一面に接続する一対のアーム120及び130と、を備える。一対のアーム120及び130は、音叉振動子である。つまり、ジャイロセンサ400は、音叉振動子型の角速度検出素である。このジャイロセンサ400は、上述の圧電薄膜素子を構成する圧電薄膜30、上部電極層31、及び単結晶基板32を、音叉型振動子の形状に加工して得られたものである。基部110とアーム120及び130は、圧電薄膜素子と一体化されている。単結晶基板32は、導電性を有し、下部電極層としての機能も有する。
一方のアーム120の第一の主面には、駆動電極層31a及び31bと、検出電極層31dとが、形成されている。同様に、他方のアーム130の第一の主面には、駆動電極層31a及び31bと、検出電極層31cとが形成されている。各電極層31a、31b、31c、31dは、上部電極層31をエッチングにより所定の電極の形状に加工することにより得られる。
単結晶基板32(下部電極層)は、基部110、並びにアーム120及び130のそれぞれの第二の主面(第一の主面の裏面)の全体に形成されている。単結晶基板32(下部電極層)は、ジャイロセンサ400のグランド電極として機能する。
アーム120及び130其々の長手方向をZ方向と規定し、アーム120及び130の主面を含む平面をXZ平面と規定することにより、XYZ直交座標系を定義する。
駆動電極層31a、31bに駆動信号を供給すると、二つのアーム120、130は、面内振動モードで励振する。面内振動モードとは、二つのアーム120、130の主面に平行な向きに二つのアーム120、130が励振するモードである。例えば、一方のアーム120が−X方向に速度V1で励振しているとき、他方のアーム130は+X方向に速度V2で励振する。
この状態で、ジャイロセンサ400にZ軸を回転軸とする角速度ωの回転が加わると、アーム120、130のそれぞれに対して、速度方向に直交する向きにコリオリ力が作用する。その結果、アーム120、130が、面外振動モードで励振し始める。面外振動モードとは、二つのアーム120、130の主面に直交する向きに二つのアーム120、130が励振するモードである。例えば、一方のアーム120に作用するコリオリ力F1が−Y方向であるとき、他方のアーム130に作用するコリオリ力F2は+Y方向である。
コリオリ力F1、F2の大きさは、角速度ωに比例するため、コリオリ力F1、F2によるアーム120、130の機械的な歪みを圧電薄膜30によって電気信号(検出信号)に変換し、これを検出電極層31c、31dから取り出すことにより、角速度ωが求められる。
図6は、圧電センサの一種である圧力センサ500を示す。圧力センサ500は、圧電薄膜素子40と、圧電薄膜素子40を支える支持体44と、電流増幅器46と、電圧測定器47とから構成されている。圧電薄膜素子40は、共通電極層41と、共通電極層41に重なる圧電薄膜42と、圧電薄膜42に重なる個別電極層43とからなる。共通電極層41は、導電性の単結晶基板である。共通電極層41と支持体44とに囲まれた空洞45は、圧力に対応する。圧力センサ500に外力がかかると圧電薄膜素子40がたわみ、電圧測定器47で電圧が検出される。
図7は、圧電センサの一種である脈波センサ600を示す。脈波センサ600は、圧電薄膜素子50と、圧電薄膜素子50を支える支持体54と、電圧測定器55とから構成されている。圧電薄膜素子50は、共通電極層51と、共通電極層51に重なる圧電薄膜52と、圧電薄膜52に重なる個別電極層53とからなる。共通電極層51は、導電性の単結晶基板である。脈波センサ600の支持体54の裏面(圧電薄膜素子50が搭載されていない面)を生体の動脈上に当接させると、生体の脈による圧力で支持体54と圧電薄膜素子50がたわみ、電圧測定器55で電圧が検出される。
(ハードディスクドライブ)
図8は、図2に示すヘッドアセンブリが搭載されたハードディスクドライブ700を示す。図8のヘッドアセンブリ65は、図2のヘッドアセンブリ200と同じである。
ハードディスクドライブ700は、筐体60と、筐体60内に設置されたハードディスク61(記録媒体)と、ヘッドスタックアセンブリ62と、を備えている。ハードディスク61は、モータによって回転させられる。ヘッドスタックアセンブリ62は、ハードディスク61へ磁気情報を記録したり、ハードディスク61に記録された磁気情報を再生したりする。
ヘッドスタックアセンブリ62は、ボイスコイルモータ63と、支軸に支持されたアクチュエータアーム64と、アクチュエータアーム64に接続されたヘッドアセンブリ65と、を有する。アクチュエータアーム64は、ボイスコイルモータ63により、支軸周りに回転自在である。アクチュエータアーム64は、複数のアームに分かれており、各アームそれぞれにヘッドアセンブリ65が接続されている。つまり、複数のアーム及びヘッドアセンブリ65が支軸に沿って積層されている。ヘッドアセンブリ65の先端部には、ハードディスク61に対向するようにヘッドスライダ19が取り付けられている。
ヘッドアセンブリ65(200)は、ヘッド素子19aを2段階で変動させる。ヘッド素子19aの比較的大きな移動は、ボイスコイルモータ63によるヘッドアセンブリ65及びアクチュエータアーム64の全体の駆動によって、制御される。ヘッド素子19aの微小な移動は、ヘッドアセンブリ65の先端部に位置するヘッドスライダ19の駆動により制御する。
(インクジェットプリンタ装置)
図9は、インクジェットプリンタ装置800を示す。インクジェットプリンタ装置800は、プリンタヘッド70と、本体71と、トレイ72と、ヘッド駆動機構73と、を備えている。図9のプリンタヘッド70は、図3の圧電アクチュエータ300を有している。
インクジェットプリンタ装置800は、イエロー、マゼンダ、シアン、ブラックの計4色のインクカートリッジを備えている。インクジェットプリンタ装置800によるフルカラー印刷が可能である。インクジェットプリンタ装置800の内部には、専用のコントローラボード等が搭載されている。コントローラボード等は、プリンタヘッド70によるインクの吐出のタイミング、及びヘッド駆動機構73の走査を制御する。本体71の背面にはトレイ72が設けられ、トレイ72の一端側にはオートシートフィーダ(自動連続給紙機構)76が設けられている。オートシートフィーダ76が、記録用紙75を自動的に送り出し、正面の排出口74から記録用紙75を排紙する。
以上、本発明の好適な実施形態について説明したが、本発明は必ずしも上述した実施形態に限定されるものではない。本発明の趣旨を逸脱しない範囲において、本発明の種々の変更が可能であり、これ等の変更例も本発明に含まれる。
例えば、圧電薄膜3を、気相成長法の代わりに、溶液法によって形成してもよい。
以下、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
SrTiOからなる単結晶基板を準備した。SrTiOの結晶面の方位である(001)は、単結晶基板の法線方向と同じであった。単結晶基板は、20mm×20mmの正方形であった。単結晶基板の厚さは、500μmであった。
真空チャンバー内で、SrRuOからなる第一電極層を単結晶基板の表面全体に形成した。第一電極層は、PLD法により形成した。第一電極層の形成過程における単結晶基板の温度は、500℃に維持した。第一電極層の形成過程における真空チャンバー内の酸素分圧は、50mTorrに維持した。SrRuOからなるターゲットとして、(株)高純度化学研究所製のターゲットを用いた。ターゲットに照射したレーザーのパワーは50mJであった。レーザーの周波数は1Hzであった。第一電極層の厚さは、0.1μmに調整した。
真空チャンバー内で、圧電薄膜を第一電極層の表面全体に形成した。圧電薄膜は、PLD法により形成した。圧電薄膜の形成過程における単結晶基板の温度(成膜温度)は、500℃に維持した。圧電薄膜の形成過程における真空チャンバー内の酸素分圧は、50mTorrに維持した。圧電薄膜の形成には、BKTターゲットを用いた。BKTターゲットの作製の際には、目的とする圧電薄膜の組成に応じて、BKTターゲットの原料粉末(酸化ビスマス、炭酸カリウム及び酸化チタン)の配合比を決定し、BKTターゲットの組成を調整した。目的とする圧電薄膜の組成は、下記化学式1で表されるものであった。下記式1中のx、y及びx+y其々の値は、下記表1に示す値であった。BKTターゲットに照射したレーザーのパワーは50mJであった。レーザーの周波数は1Hzであった。圧電薄膜の厚さは、200nmに調整した。
(Bi)TiO (1)
以上の方法で、単結晶基板と、単結晶基板に重なる第一電極層と、第一電極層に重なる圧電薄膜と、を備える積層体を作製した。積層体の表面に位置する圧電薄膜の組成を、蛍光X線分析法(XRF法)により分析した。分析には、Phillips社製の装置PW2404を用いた。分析の結果、実施例1の圧電薄膜の組成は、上記化学式1で表され、上記化学式1におけるx、y及びx+y其々の値は、下記表1に示す値であることが確認された。
上記の方法で作製した積層体を用いて更に以下の工程を実施した。
真空チャンバー内で、Ptからなる第二電極層を、圧電薄膜の表面全体に形成した。第二電極層は、スパッタリング法により形成した。第二電極層の形成過程における単結晶基板の温度は500℃に維持した。第二電極層の厚さは、0.1μmに調整した。
以上の工程により、単結晶基板と、単結晶基板に重なる第一電極層と、第一電極層に重なる圧電薄膜と、圧電薄膜に重なる第二電極層と、を備える積層体を作製した。続いて、フォトリソグラフィにより、単結晶基板上の積層構造のパターニングを行った。続いて、積層体全体を、ダイシングにより切断した。
以上の工程により、短冊状の実施例1の圧電薄膜素子を得た。圧電薄膜素子は、単結晶基板と、単結晶基板に重なる第一電極層と、第一電極層に重なる圧電薄膜と、圧電薄膜に重なる第二電極層と、を備えていた。圧電薄膜の可動部分の寸法は、20mm×1.0mmであった。
実施例1の圧電薄膜素子のX線回折(XRD)パターンを測定した。測定には、リガク社製のX線回折装置(SmartLab)を用いた。回折角2θ=10〜70°の範囲で2θ‐θ測定を行った。XRDパターン中の各ピーク強度がバックグラウンド強度に対して少なくとも3桁以上高くなるように、測定条件を設定した。圧電薄膜を構成する酸化物bktに由来する(100)、(001)、(110)、(101)、及び(111)の各面方位のピークのみをXRDパターンから抽出した。
In Plane測定により、酸化物bktの結晶面間隔a(単結晶基板に平行な方向における酸化物bktの格子定数)を求めた。Out of plane測定により、酸化物bktの結晶面間隔c(単結晶基板に垂直な方向における酸化物bktの格子定数)を求めた。結晶面間隔aと結晶面間隔cとの比較により、(100)の面方位と(001)の面方位とを区別した。また、結晶面間隔aと結晶面間隔cとの比較により、(110)の面方位と(101)の面方位とを区別した。すなわち、酸化物bktは室温において正方晶であり、酸化物bktでは(001)の面間隔は(100)の面間隔よりも大きく、(101)の面間隔は(110)の面間隔よりも大きい。したがって、面間隔が大きい方向を基準として、(001)の面方位及び(101)の面方位を規定した。
酸化物bktに由来する(100)、(001)、(110)、(101)、及び(111)の各面方位のピーク強度と、これらの合計値ΣI(hkl)に基づき、以下の通り、各面方位のρを計算した。
(Bi0.50.5)TiOの粉末(標準試料)を調製した。この標準試料のX線回折パターンを測定した。標準試料のX線回折パターンに基づき、各面方位のρを計算した。
酸化物bktの各面方位のρ及びρに基づき、酸化物bktの各面方位の配向度Fを計算した。各面方位の配向度Fのうち、単結晶基板の法線方向に一致する面方位の配向度が80%以上である場合、その酸化物bktの面方位は単結晶基板の法線方向において優先的に配向している。結晶基板の法線方向において優先的に配向している面方位を、以下では「優先配向方位」と記す。実施例1の酸化物bktの(001)の面方位は、単結晶基板の法線方向において優先的に配向していた。つまり、実施例1の優先配向方位は(001)であった。
ρ=I(100)/ΣI(hkl)
ρ=I0(100)/ΣI0(hkl)
F(100)={(ρ−ρ)/(1−ρ)}×100

ρ=I(001)/ΣI(hkl)
ρ=I0(001)/ΣI0(hkl)
F(001)={(ρ−ρ)/(1−ρ)}×100

ρ=I(110)/ΣI(hkl)
ρ=I0(110)/ΣI0(hkl)
F(110)={(ρ−ρ)/(1−ρ)}×100

ρ=I(101)/ΣI(hkl)
ρ=I0(101)/ΣI0(hkl)
F(101)={(ρ−ρ)/(1−ρ)}×100

ρ=I(111)/ΣI(hkl)
ρ=I0(111)/ΣI0(hkl)
F(111)={(ρ−ρ)/(1−ρ)}×100
実施例1の圧電薄膜素子を用いた連続駆動試験を、以下の手順で実施した。試験では、圧電薄膜素子の第一電極層及び第二電極層の間に最大値5Vの正弦波の電圧を印加した。この電圧は、実際の製品としての圧電薄膜素子に印加されることが想定される値である。電圧の印加に伴う圧電薄膜の変位を、レーザードップラー変位計を用いて測定した。変位の測定値、圧電薄膜の厚さなどの数値に基づき、圧電定数d31を計算した。また圧電薄膜の静電容量を測定した。静電容量の測定には、Keysight Technologies社製のLCRメータ(4980A)を用いた。静電容量の測定値、各電極層の面積、及び圧電薄膜の厚さから、圧電薄膜の比誘電率εrを計算した。圧電定数d31及び比誘電率εrを用いて、圧電薄膜の圧電定数g31を計算した。実施例1のg31[×10−3Vm/N]を、下記表1に示す。
(実施例2〜12、比較例1〜13)
圧電薄膜の形成に用いたBKTターゲットの組成が異なることを除いて実施例1と同様の方法で、実施例2〜12及び比較例1〜13其々の圧電薄膜素子を作製した。
実施例1と同様のXRF法により、実施例2〜12及び比較例1〜13其々の圧電薄膜の組成を分析した。実施例2〜12及び比較例1〜13其々の圧電薄膜の組成(x,y及びx+y其々の値)を、下記の表1又は表2に示す。
実施例1と同様の方法で、実施例2〜12其々の圧電薄膜を構成する酸化物bktの優先配向方位を求めた。実施例2〜12其々の酸化物bktの(001)の面方位は、単結晶基板の法線方向において優先的に配向していた。つまり、実施例2〜12其々の優先配向方位は(001)であった。また、実施例1と同様の測定及び計算によって得た実施例2〜12及び比較例1〜13其々のg31を、下記の表1又は表2に示す。
図10に示すように、全ての実施例及び比較例其々のx及びyをプロットした。図10中の丸形の印は実施例に対応し、菱形の印は比較例に対応する。
Figure 2019079948
Figure 2019079948
上記表1に示す通り、全ての実施例の圧電薄膜の組成が、下記化学式1を満たしていた。全ての実施例のg31が40×10−3Vm/N以上であった。
(Bi)TiO (1)
[上記化学式1中、x及びyは、0.30<x≦0.60、且つ0.60<y≦0.80、0.60<x≦0.80、且つ0.30≦y≦0.60、0.50<x≦0.60、0.50<y≦0.60、且つ1.10<x+y≦1.20、又は、0.60≦x≦0.80、0.60≦y≦0.80、且つ1.20≦x+y≦1.40を満たす。]
一方、表2に示す通り、圧電薄膜の組成が上記化学式1を満たす比較例はなかった。また、g31が40×10−3Vm/N以上である比較例はなかった。比較例3〜6其々のεrは、全ての実施例のεrよりも高かったため、比較例3〜6其々のg31は、全ての実施例のg31よりも小さかったと考えられる。比較例1、2及び7〜13では、圧電薄膜が十分に形成されていなかったり、圧電薄膜を構成する酸化物bktの優先配向方位がなかったり、圧電薄膜に異相(酸化物bktの形成過程で生じ得る副成分)が生じていたりした。その結果、比較例1、2及び7〜13其々のg31は、全ての実施例のg31よりも小さかったと考えられる。
本発明によれば、g31が大きい圧電薄膜、圧電薄膜素子、並びに、圧電薄膜素子を用いた圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置が提供される。
100…圧電薄膜素子、1…単結晶基板、2…第一電極層、3…圧電薄膜、4…第二電極層、D…単結晶基板1の法線方向、D(HKL)…単結晶基板1の法線方向Dにおいて優先的に配向している酸化物bktの面方位、200…ヘッドアセンブリ、9…ベースプレート、11…ロードビーム、11b…基端部、11c…第1板バネ部分、11d…第2板バネ部分、11e…開口部、11f…ビーム主部、15…フレキシブル基板、17…フレクシャ、19…ヘッドスライダ、19a…ヘッド素子、300…圧電アクチュエータ、20…基体、21…圧力室、23…絶縁膜、24…単結晶基板、25…圧電薄膜、26…上部電極層(第一電極層)、27…ノズル、400…ジャイロセンサ、110…基部、120,130…アーム、30…圧電薄膜、31…上部電極層(第一電極層)、31a,31b…駆動電極層、31c,31d…検出電極層、32…単結晶基板、500…圧力センサ、40…圧電薄膜素子、41…共通電極層、42…圧電薄膜、43…個別電極層、44…支持体、45…空洞、46…電流増幅器、47…電圧測定器、600…脈波センサ、50…圧電薄膜素子、51…共通電極層、52…圧電薄膜、53…個別電極層、54…支持体、55…電圧測定器、700…ハードディスクドライブ、60…筐体、61…ハードディスク、62…ヘッドスタックアセンブリ、63…ボイスコイルモータ、64…アクチュエータアーム、65…ヘッドアセンブリ、800…インクジェットプリンタ装置、70…プリンタヘッド、71…本体、72…トレイ、73…ヘッド駆動機構、74…排出口、75…記録用紙、76…オートシートフィーダ(自動連続給紙機構)。

Claims (13)

  1. 下記化学式1で表される結晶質の酸化物を含む、
    圧電薄膜。
    (Bi)TiO (1)
    [上記化学式1中、x及びyは、
    0.30<x≦0.60、且つ0.60<y≦0.80、
    0.60<x≦0.80、且つ0.30≦y≦0.60、
    0.50<x≦0.60、0.50<y≦0.60、且つ1.10<x+y≦1.20、
    又は、
    0.60≦x≦0.80、0.60≦y≦0.80、且つ1.20≦x+y≦1.40
    を満たす。]
  2. 前記圧電薄膜が、単結晶基板に重なり、
    (100)、(001)、(110)、(101)及び(111)からなる群より選ばれる前記酸化物の面方位の一つが、前記単結晶基板の法線方向において優先的に配向している、
    請求項1に記載の圧電薄膜。
  3. 前記法線方向において優先的に配向している前記面方位は、(001)である、
    請求項2に記載の圧電薄膜。
  4. 圧電薄膜を備え、
    前記圧電薄膜が、下記化学式1で表される結晶質の酸化物を含む、
    圧電薄膜素子。
    (Bi)TiO (1)
    [上記化学式1中、x及びyは、
    0.30<x≦0.60、且つ0.60<y≦0.80、
    0.60<x≦0.80、且つ0.30≦y≦0.60、
    0.50<x≦0.60、0.50<y≦0.60、且つ1.10<x+y≦1.20、
    又は、
    0.60≦x≦0.80、0.60≦y≦0.80、且つ1.20≦x+y≦1.40
    を満たす。]
  5. 単結晶基板と、前記単結晶基板に重なる前記圧電薄膜と、を備え、
    (100)、(001)、(110)、(101)及び(111)からなる群より選ばれる前記酸化物の面方位の一つが、前記単結晶基板の法線方向において優先的に配向している、
    請求項4に記載の圧電薄膜素子。
  6. 前記法線方向において優先的に配向している前記面方位は、(001)である、
    請求項5に記載の圧電薄膜素子。
  7. 請求項4〜6のいずれか一項に記載の圧電薄膜素子を備える、
    圧電アクチュエータ。
  8. 請求項4〜6のいずれか一項に記載の圧電薄膜素子を備える、
    圧電センサ。
  9. 請求項7に記載の圧電アクチュエータを備える、
    ヘッドアセンブリ。
  10. 請求項9に記載のヘッドアセンブリを備える、
    ヘッドスタックアセンブリ。
  11. 請求項10に記載のヘッドスタックアセンブリを備える、
    ハードディスクドライブ。
  12. 請求項7に記載の圧電アクチュエータを備える、
    プリンタヘッド。
  13. 請求項12に記載のプリンタヘッドを備える、
    インクジェットプリンタ装置。
JP2017206190A 2017-10-25 2017-10-25 圧電薄膜、圧電薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置 Pending JP2019079948A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017206190A JP2019079948A (ja) 2017-10-25 2017-10-25 圧電薄膜、圧電薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017206190A JP2019079948A (ja) 2017-10-25 2017-10-25 圧電薄膜、圧電薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置

Publications (1)

Publication Number Publication Date
JP2019079948A true JP2019079948A (ja) 2019-05-23

Family

ID=66628171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017206190A Pending JP2019079948A (ja) 2017-10-25 2017-10-25 圧電薄膜、圧電薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置

Country Status (1)

Country Link
JP (1) JP2019079948A (ja)

Similar Documents

Publication Publication Date Title
US8142678B2 (en) Perovskite type oxide material, piezoelectric element, liquid discharge head and liquid discharge apparatus using the same, and method of producing perovskite type oxide material
KR100581257B1 (ko) 압전소자, 잉크젯헤드, 각속도센서 및 이들의 제조방법,그리고 잉크젯방식 기록장치
JP6413485B2 (ja) 圧電素子、圧電アクチュエータ、及び圧電センサ、並びにハードディスクドライブ、及びインクジェットプリンタ装置
JP6233112B2 (ja) 圧電素子、圧電アクチュエータ、及び圧電センサ、並びにハードディスクドライブ、及びインクジェットプリンタ装置
JP7298159B2 (ja) 圧電薄膜、圧電薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置
JP6547418B2 (ja) 圧電素子、圧電アクチュエータ、圧電センサ、ハードディスクドライブ、及びインクジェットプリンタ装置
JP2020506149A (ja) 擬似立方晶相を含むセラミック材料、その調製及び使用方法
WO2017111090A1 (ja) 圧電薄膜、圧電薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置
JP2020506146A (ja) 可逆的相転移から誘導される電界誘起歪みを示すセラミック材料の特定方法、製造方法及びそれから得られるセラミック材料
US10944040B2 (en) Piezoelectric thin film-stacked body, piezoelectric thin film substrate, piezoelectric thin film device, piezoelectric actuator, piezoelectric sensor, head assembly, head stack assembly, hard disk drive, printer head, and ink-jet printer device
JP4953351B2 (ja) ペロブスカイト型酸化物、これを用いた圧電素子、液体吐出ヘッド及び液体吐出装置
WO2020054779A1 (ja) 誘電性薄膜、誘電性薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置
JP2019121702A (ja) 圧電薄膜、圧電薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置
JP6233111B2 (ja) 圧電素子、圧電アクチュエータ、及び圧電センサ、並びにハードディスクドライブ、及びインクジェットプリンタ装置
JP2020140976A (ja) 圧電薄膜、圧電薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置
JP2008305821A (ja) 圧電体薄膜素子、圧電体薄膜素子の製造方法、インクジェットヘッド、およびインクジェット式記録装置
JP2019079948A (ja) 圧電薄膜、圧電薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置
CN108172683B (zh) 压电薄膜层叠体、压电薄膜基板以及压电薄膜元件
JP7061752B2 (ja) 強誘電性薄膜、強誘電性薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置
JP7351249B2 (ja) 圧電薄膜、圧電薄膜素子及び圧電トランスデューサ
JP2020140975A (ja) 圧電薄膜、圧電薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置
JP2022071607A (ja) 圧電薄膜、圧電薄膜素子及び圧電トランスデューサ
JP2022137784A (ja) 圧電薄膜、圧電薄膜素子及び圧電トランスデューサ