WO2017110985A1 - 半田接続構造、および成膜方法 - Google Patents

半田接続構造、および成膜方法 Download PDF

Info

Publication number
WO2017110985A1
WO2017110985A1 PCT/JP2016/088310 JP2016088310W WO2017110985A1 WO 2017110985 A1 WO2017110985 A1 WO 2017110985A1 JP 2016088310 W JP2016088310 W JP 2016088310W WO 2017110985 A1 WO2017110985 A1 WO 2017110985A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection structure
film
solder connection
powder
solder
Prior art date
Application number
PCT/JP2016/088310
Other languages
English (en)
French (fr)
Inventor
平野 正樹
Original Assignee
タツタ電線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タツタ電線株式会社 filed Critical タツタ電線株式会社
Priority to EP16878872.7A priority Critical patent/EP3396021B1/en
Priority to US16/061,390 priority patent/US10926514B2/en
Publication of WO2017110985A1 publication Critical patent/WO2017110985A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/017Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of aluminium or an aluminium alloy, another layer being formed of an alloy based on a non ferrous metal other than aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
    • C23C24/085Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • C23C24/087Coating with metal alloys or metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • C23C24/106Coating with metal alloys or metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only

Definitions

  • the present invention relates to a solder connection structure for connecting to another member via a solder material, and a film forming method for forming a metal film on a substrate.
  • Patent Document 1 discloses the following configuration. Specifically, a metal layer made of a conductive metal that is easily soldered at a predetermined interval is partially formed on the surface of a strip-shaped flat conductor made of aluminum or an aluminum alloy. And the insulating resin film is affixed on both surfaces of a flat conductor between the said metal layers.
  • the conductive metal any one of Ni, Sn, Au, Zn, Ag, Cu, or a combination thereof is used.
  • the metal layer is formed by cold spray or the like.
  • Patent Document 1 forms a Ni film on the surface of a strip-shaped flat conductor made of aluminum or an aluminum alloy by a cold spray method.
  • the Ni film formed by the cold spray method has a problem that solder wettability is not sufficient because the surface density is low.
  • the present invention provides a solder connection structure having an aluminum base material with improved solder wettability, and a film forming method for forming a metal film with high solder wettability on an aluminum base material. For the purpose.
  • a solder connection structure is a solder connection structure that is connected to another member via a solder material, and includes an aluminum substrate and the aluminum substrate.
  • a nickel (Ni) film formed by a cold spray method and any of nickel (Ni), gold (Au), zinc (Zn), silver (Ag), copper (Cu), or two or more of these On the nickel (Ni) film, using a mixed powder material in which a first powder material composed of an alloy containing nickel and a second powder material composed of an alloy containing tin (Sn) or Sn are mixed And a mixed metal film formed by a cold spray method.
  • a film forming method is a film forming method for forming a metal film on an aluminum substrate, and is performed by a cold spray method on the aluminum substrate.
  • On the nickel (Ni) film using a mixed powder material in which a first powder material composed of an alloy containing nickel and a second powder material composed of an alloy containing tin (Sn) or Sn are mixed
  • a second film forming step of forming a mixed metal film by a cold spray method is a film forming method for forming a metal film on an aluminum substrate, and is performed by a cold spray method on the aluminum substrate.
  • the mixed metal film is formed on the aluminum base material.
  • the mixed metal film is formed using a mixed powder material in which the first powder material and the second powder material are mixed.
  • the second powder material contains a component that is more likely to be in a semi-molten state when cold sprayed than the first powder material. For this reason, the second powder material in a semi-molten state enters between the particles constituting the first powder material and plays a role of bonding the particles to each other. Further, the particles constituting the first powder material are covered with the second powder material in a semi-molten state, so that the oxide that causes a decrease in solder wettability is the particles of the first powder material. Less likely to be generated above.
  • the solder connection structure and the film forming method according to an embodiment of the present invention can improve the solder wettability as compared with the solder connection structure in which only the Ni film is formed on the aluminum base material.
  • the nickel (Ni) film and the mixed metal film preferably have a total film thickness of more than 10 ⁇ m and 30 ⁇ m or less.
  • the solder connection structure according to the embodiment of the present invention can increase the tensile strength.
  • the mixed powder material contains the first powder material in a weight ratio of 80% or more and 95% or less.
  • solder wettability of the solder connection structure according to an embodiment of the present invention can be further enhanced.
  • solder wettability in a solder connection structure having an aluminum substrate can be improved.
  • It is the schematic of a cold spray apparatus. 2 shows a flowchart of a film forming method according to the present embodiment.
  • (a) is a cross section of the solder connection structure of the comparative example 1
  • (b) is a cross section of the solder connection structure whose total film thickness is about 15 micrometers
  • (c) is A cross section of the solder connection structure having a total film thickness of about 20 ⁇ m
  • (d) a cross section of the solder connection structure having a total film thickness of about 40 ⁇ m
  • (e) a cross section of the solder connection structure having a total film thickness of about 80 ⁇ m.
  • (a) is a cross section of the solder connection structure of the comparative example 1
  • (b) is a cross section of the solder connection structure whose total film thickness is about 15 micrometers
  • (c) is A cross section of the solder connection structure having a total film thickness of about 20 ⁇ m
  • (d) a cross section of the solder connection structure having a total film thickness of about 40 ⁇ m
  • (e) a cross section of the solder connection structure having a total film thickness of about 80 ⁇ m.
  • a film forming method called a cold spray method has been used.
  • a carrier gas having a temperature lower than the melting point or softening temperature of the metal powder that is the material of the metal film is made to flow at high speed, and the metal powder is injected into the carrier gas flow to accelerate it, and the substrate remains in a solid state.
  • the film is formed by colliding with a high speed.
  • the film formation principle of the cold spray method is understood as follows.
  • a collision speed higher than a certain critical value is required, and this is called a critical speed.
  • the critical speed varies depending on the material, size, shape, temperature, oxygen content, and substrate material of the metal powder.
  • FIG. 1 is a schematic view of a cold spray device 100.
  • the cold spray apparatus 100 includes a tank 110, a heater 120, a nozzle 130, a feeder 140, a base material holder 150, and a control device (not shown).
  • the tank 110 stores a carrier gas.
  • the carrier gas is supplied from the tank 110 to the heater 120.
  • the carrier gas include nitrogen, helium, air, or a mixed gas thereof.
  • the pressure of the carrier gas is adjusted to be, for example, 70 PSI or more and 150 PSI or less (about 0.48 Mpa or more and about 1.03 Mpa or less) at the outlet of the tank 110.
  • the pressure of the carrier gas at the outlet of the tank 110 is not limited to the above range, and is appropriately adjusted depending on the material and size of the metal powder, the material of the substrate, and the like.
  • the heater 120 heats the carrier gas supplied from the tank 110. More specifically, the carrier gas is heated to a temperature lower than the melting point of the metal powder supplied from the feeder 140 to the nozzle 130. For example, the carrier gas is heated in the range of 50 ° C. or more and 500 ° C. or less when measured at the outlet of the heater 120. However, the heating temperature of the carrier gas is not limited to the above range, and is appropriately adjusted depending on the material and size of the metal powder, the material of the substrate, and the like.
  • the carrier gas is heated by the heater 120 and then supplied to the nozzle 130.
  • the nozzle 130 accelerates the carrier gas heated by the heater 120 in the range of 300 m / s or more and 1200 m / s or less and injects it toward the base material 10.
  • the speed of the carrier gas is not limited to the above range, and is appropriately adjusted depending on the material and size of the metal powder, the material of the substrate, and the like.
  • the feeder 140 supplies metal powder into the flow of carrier gas accelerated by the nozzle 130.
  • the particle size of the metal powder supplied from the feeder 140 is 1 ⁇ m or more and 50 ⁇ m or less.
  • the metal powder supplied from the feeder 140 is jetted from the nozzle 130 to the substrate 10 together with the carrier gas.
  • the base material holder 150 fixes the base material 10. Carrier gas and metal powder are sprayed from the nozzle 130 onto the base material 10 fixed to the base material holder 150.
  • the distance between the surface of the substrate 10 and the tip of the nozzle 130 is adjusted within a range of 5 mm to 30 mm, for example.
  • the distance between the surface of the base material 10 and the nozzle 130 is not limited to the above range, and is appropriately adjusted depending on the material and size of the metal powder, the material of the substrate, and the like.
  • the control device controls the cold spray device 100 based on previously stored information and / or operator input. Specifically, the control device controls the pressure of the carrier gas supplied from the tank 110 to the heater 120, the temperature of the carrier gas heated by the heater 120, the type and amount of the metal powder supplied from the feeder 140, The distance between the surface and the nozzle 130 is controlled.
  • FIG. 2 shows a flowchart of the film forming method according to the present embodiment.
  • FIG. 3 is a schematic view of the solder connection structure 50 according to the present embodiment.
  • solder connection structure 50 will be described with reference to FIG.
  • the solder connection structure 50 includes an aluminum substrate 30, a Ni film 35 formed on the aluminum substrate 30, and a mixed metal film 40 formed on the Ni film 35.
  • the Ni film 35 is formed by spraying Ni powder 41 onto the aluminum substrate 30 using a cold spray method.
  • the mixed metal film 40 is formed by injecting a mixed powder material obtained by mixing Ni powder 41 (first powder material) and Sn powder 42 (second powder material) onto the Ni film 35 using a cold spray method.
  • the first powder material may include Ni, gold (Au), zinc (Zn), silver (Ag), copper (Cu), or an alloy containing two or more of these as a component.
  • the second powder material may contain Sn or an alloy containing Sn as a component.
  • the mixed metal film 40 is described as being formed using a mixed powder material of Ni powder 41 and Sn powder 42.
  • the melting point of Sn (231.97 ° C.) is lower than the melting point of Ni (1453 ° C.). Therefore, the Sn powder 42 is more likely to be in a molten state (or a semi-molten state) than Ni when cold sprayed. Therefore, when the mixed powder material is cold sprayed, Sn that has become a semi-molten state enters between the Ni particles and plays a role of bonding the Ni particles to each other. Further, due to the action of Sn, the surface of the mixed metal film 40 has a feature that there are few irregularities.
  • Ni powder 41 is sprayed onto the aluminum substrate 30 by a cold spray method (S1, first film forming step). As a result, a Ni film 35 is formed on the aluminum substrate 30 (S2, first film forming step).
  • the Ni powder 41 and the Sn powder 42 are mixed (S3).
  • a mixed powder material of Ni powder 41 and Sn powder 42 is sprayed onto the Ni film 35 by a cold spray method (S4, second film forming step).
  • the mixed metal film 40 Ni + Sn film
  • Example 1 Hereinafter, Example 1 according to the present embodiment will be described.
  • the solder connection structure of FIG. 3 is formed under the following conditions.
  • the aluminum substrate 30 in FIG. 3 corresponds to the base material 10 described in FIG.
  • the aluminum substrate 30 is a plate material made of aluminum, is rectangular, and has a thickness of 0.5 mm.
  • the Ni film 35 is formed using Ni powder 41.
  • the Ni powder 41 has an average particle size of about 10 ⁇ m.
  • the Ni film 35 is formed on the aluminum substrate 30 by spraying the Ni powder 41 from the nozzle 130 onto the aluminum substrate 30.
  • the mixed metal film 40 is formed using a mixed powder material in which Ni powder 41 and Sn powder 42 are mixed.
  • the Ni powder 41 has an average particle size of about 10 ⁇ m
  • the Sn powder 42 has an average particle size of about 38 ⁇ m.
  • the mixed metal film 40 is formed on the Ni film 35 by spraying the mixed powder material from the nozzle 130 onto the aluminum substrate 30.
  • the distance between the tip of the nozzle 130 and the aluminum substrate 30 is 12 mm.
  • the carrier gas supplied from the tank 110 is air.
  • the pressure of the carrier gas is set to 150 PSI (about 1.03 Mpa) at the outlet of the tank 110.
  • the heater 120 has a set temperature of 250 ° C., and the temperature of the carrier gas when in contact with the Ni powder and the Sn powder is lower than the melting point of Sn (231.97 ° C.).
  • the temperature when the Ni powder 41 sprayed from the nozzle 130 onto the aluminum substrate 30 reaches the aluminum substrate 30 is about 103 ° C.
  • the temperature when the mixed powder material sprayed from the nozzle 130 onto the Ni film 35 reaches the Ni film 35 is about 103 ° C.
  • solder connection structure 50 shown in FIG. 3 is formed.
  • the solder connection structure of Comparative Example 1 includes an aluminum substrate and a Ni film formed on the aluminum substrate using the cold spray device 100.
  • the Ni film is a collection of Ni particles, and a gap is formed between the Ni particles. Therefore, the Ni film has many irregularities on its surface.
  • the aluminum substrate is an aluminum plate, is rectangular, and has a thickness of 0.5 mm.
  • the Ni powder has an average particle size of about 10 ⁇ m and is sprayed from the nozzle 130 onto the aluminum substrate.
  • the distance between the tip of the nozzle 130 and the aluminum substrate is 12 mm.
  • the carrier gas supplied from the tank 110 is air.
  • the pressure of the carrier gas is set to 150 PSI (about 1.03 Mpa) at the outlet of the tank 110.
  • the set temperature of the heater 120 is 250 ° C., and the temperature of the carrier gas when contacting the Ni powder is lower than the melting point of Ni (1453 ° C.).
  • the wettability evaluation test is performed by immersing a film-forming surface coated with a flux for removing an oxide film in a crucible in which Sn is melted for 5 seconds in view of the fact that most of the solder material is Sn-based metal.
  • the “film formation surface” is a surface on the side where the mixed metal film 40 (Example 1) or the Ni film (Comparative Example 1) is formed by cold spraying in each solder connection structure.
  • FIG. 4 is a photograph showing a state after the solder connection structure (only Ni film) according to Comparative Example 1 is immersed in an Sn bath for 5 seconds.
  • Comparative Example 1 When the solder connection structure according to Comparative Example 1 was immersed in an Sn bath for 5 seconds, a plurality of locations where Sn did not adhere and the Ni film was exposed were observed (FIG. 4). The reason is as follows.
  • a metal film is formed by causing metal particles to collide with a substrate at a high speed in a solid state. Therefore, in the solder connection structure of Comparative Example 1, in the direction in which the Ni powder is sprayed, an aggregate of Ni powder particles is laminated on the aluminum substrate. On the other hand, in the direction perpendicular to the direction in which the Ni powder is sprayed, gaps and dents are likely to occur between the Ni powder particles, and as a result, many irregularities are formed on the surface of the Ni film. For this reason, in the solder connection structure of Comparative Example 1, (1) the surface density of Ni is low, and (2) the Ni film is affected by the oxide generated on the Ni film. As can be seen from the observation, the solder wettability is lowered.
  • the solder connection structure 50 includes the aluminum substrate 30, the Ni film 35 formed on the aluminum substrate 30, and the Ni film 35. And a mixed metal film 40 formed thereon.
  • the Ni film 35 is a metal film formed on the aluminum substrate 30 by cold spraying the Ni powder 41.
  • the mixed metal film 40 is a metal film formed on the Ni film 35 by cold spraying a mixed powder material of Ni powder 41 and Sn powder 42.
  • Sn has a lower melting point than Ni. Therefore, the Sn powder 42 tends to be in a semi-molten state when cold sprayed. Sn in a semi-molten state enters between the Ni particles and plays a role of bonding the Ni particles to each other.
  • FIG. 5 shows the result of immersing the solder connection structure 50 in the Sn bath for 5 seconds.
  • the solder connection structure 50 after immersing in the Sn bath for 5 seconds is observed, the portion where the Ni layer 35 is exposed is hardly recognized. This clearly shows that the solder connection structure 50 has higher solder wettability than the solder connection structure of Comparative Example 1.
  • a solder connection structure in which Ni powder is cold sprayed on an aluminum substrate is a conventional technique.
  • the inventors of the present application (a) the solder wettability of the solder connection structure according to Comparative Example 1 is not preferable; (b) the reason is that the surface density of Ni is low; It has been considered that this is due to the influence of oxides formed on the Ni film.
  • the present inventor adopted the solder connection structure of Comparative Example 1 as a comparison object.
  • a metal film is formed by causing metal particles to collide with a substrate at a high speed in a solid state. Therefore, in the solder connection structure of Comparative Example 1, in the direction in which the Ni powder is sprayed, an aggregate of Ni powder particles is laminated on the aluminum substrate. On the other hand, in the direction perpendicular to the direction in which the Ni powder is sprayed, gaps and dents are likely to occur between the Ni powder particles, and many irregularities are formed on the surface of the Ni film. Therefore, in the solder connection structure of Comparative Example 1, (1) the surface density of Ni is low, and (2) the Ni film is easily affected by the oxide generated on the Ni film. When such a solder connection structure is immersed in an Sn bath for 5 seconds, the Sn film is difficult to adhere to the surface of the Ni film, and a part of the Ni film is exposed.
  • the solder connection structure according to Comparative Example 1 has low solder wettability. This also applies to the solder connection structure of the case 5 in which the weight ratio of the Ni powder 41 in the mixed powder material of the Ni powder 41 and the Sn powder 42 is high.
  • the solder wettability of the solder connection structure of the case 4 is lowered.
  • Sn has a melting point of 231.97 ° C. Its melting point is close to the set temperature of the carrier gas. Therefore, the Sn powder 42 tends to be in a semi-molten state when cold sprayed. Sn in a semi-molten state enters between the Ni particles and plays a role of bonding the Ni particles to each other. As a result, the mixed metal film 40 becomes a continuous film with less unevenness. Further, the Ni particles are covered with Sn in a semi-molten state, and the generation of the oxide that causes the solder wettability to be reduced is suppressed.
  • the proportion of Sn particles in the mixed powder material is as high as 40%, when the solder connection structure of the case 4 is immersed in the Sn bath for 5 seconds, a part of Sn contained in the mixed metal film 40 is in the Sn bath. And a part of the underlying Ni film is exposed. As a result, the solder connection structure of the case 4 has low solder wettability.
  • solder connection structure of the cases 4 and 5 has low solder wettability.
  • the solder connection structures 50 of the cases 1, 2 and 3 since the ratio of the Ni powder 41 in the mixed powder material is high, the Ni density in the mixed metal film 40 is also increased. Thereby, even if the solder connection structure of cases 1, 2, and 3 is immersed in the Sn bath for 5 seconds, the rate at which Sn contained in the mixed metal film 40 melts in the Sn bath can be reduced. As a result, the solder connection structure 50 of the cases 1, 2, and 3 has high solder wettability.
  • the solder connection structures 50 of the cases 1, 2 and 3 can improve the solder wettability.
  • the mixed metal film 40 is formed on the Ni film 35 using the mixed powder material in which the Ni powder 41 and the Sn powder 42 are mixed, the mixed powder material is in a weight ratio, It is preferable that Ni powder is contained 80% or more and 95% or less. And the solder wettability of the solder connection structure 50 can be made high by making weight ratio of Ni powder contained in mixed powder material into said range.
  • solder connection structure 50 As described above, the solder connection structure 50 according to the present embodiment has high solder wettability. However, even if the solder connection structure 50 has high solder wettability, if the tensile strength between the target substrate to be soldered and the solder connection structure 50 is low when the solder connection structure 50 is used, the solder connection structure 50 may be soldered. It can be said that the connection structure 50 is not suitable for practical use. Therefore, in the following, the tensile strength of the solder connection structure 50 will be verified.
  • the solder connection structure of Comparative Example 2 is a solder connection structure in which only a mixed metal film is formed on an aluminum substrate, as will be described below.
  • SEM Sccanning Electron Microscope
  • the solder connection structure of Comparative Example 2 includes an aluminum substrate and a mixed metal film.
  • the mixed metal film is a mixed film formed using a mixed powder material of Ni powder and Sn powder, and is formed directly on the aluminum substrate using a cold spray.
  • the aluminum substrate is a plate made of aluminum, is rectangular, and has a thickness of 0.5 mm.
  • Ni powder has an average particle size of about 10 ⁇ m
  • Sn powder has an average particle size of about 38 ⁇ m.
  • the distance between the tip of the nozzle 130 and the aluminum substrate 30 is 12 mm.
  • the carrier gas supplied from the tank 110 is air.
  • the pressure of the carrier gas is set to 150 PSI (about 1.03 Mpa) at the outlet of the tank 110.
  • the set temperature of the heater 120 is 250 ° C., and the temperature of the carrier gas when in contact with the Ni powder 41 and the Sn powder 42 is lower than the melting point of Sn (231.97 ° C.).
  • FIG. 6 is an SEM photograph of a cross section of the solder connection structure taken at a magnification of 1000 times when the solder connection structure of Comparative Example 2 is soldered at 230 ° C. for 10 seconds.
  • the solder material used for soldering is Sn—Ag—Cu (lead-free solder).
  • the soldering temperature (230 ° C.) is lower than the melting point of Sn (231.97 ° C.). Therefore, even if a part of the Sn particles included in the solder connection structure of Comparative Example 2 is in a semi-molten state, it is not completely melted. For this reason, no large void is generated in the solder connection structure of Comparative Example 2 under Condition 1 (FIG. 6).
  • FIG. 7 is an SEM photograph of a cross section of the solder connection structure taken at 1000 ⁇ magnification when the solder connection structure of Comparative Example 2 is soldered at 270 ° C. for 10 seconds.
  • condition 3 is also thought to be due to the decrease in tensile strength between the Cu material soldered to the solder connection structure and the aluminum substrate due to the generation of voids.
  • FIG. 8 is an SEM photograph of a cross section of the solder connection structure 50 (Ni film 35 + mixed metal film 40) of Example 1 taken at a magnification of 1000 times.
  • FIG. 9 is an SEM photograph of the cross section of the solder connection structure taken at a magnification of 1000 times when soldered to the solder connection structure 50 (Ni film 35 + mixed metal film 40) at 270 ° C. for 15 seconds.
  • the solder connection structure 50 is connected to the Cu material 70 via the solder material 65.
  • the Ni film 35 is formed on the aluminum substrate 30, and the mixed metal film 40 is formed on the Ni film 35 (FIG. 8). For this reason, Sn particles contained in the mixed metal film 40 do not come into direct contact with the aluminum substrate 30. Thereby, in the solder connection structure 50 (Ni film 35 + mixed metal film 40), the temperature rise of Sn particle
  • solder connection structure of Comparative Example 2 As described above, in the solder connection structure of Comparative Example 2 (only the mixed metal film), the tensile strength between the Cu material soldered to the solder connection structure and the aluminum substrate is low.
  • the solder connection structure 50 Ni film 35 + mixed metal film 40 according to the present embodiment has high solder wettability, and further, the tensile strength between the Cu material soldered to the solder connection structure and the aluminum substrate. It can be said that the solder connection structure is more suitable for practical use.
  • solder connection structure of Comparative Example 1 (Ni film only) is also mentioned for reference.
  • the solder connection structure of Comparative Example 1 (Ni film only) was soldered at 270 ° C. for 10 seconds. As a result of measuring the tensile strength between the Cu material soldered to the solder connection structure of Comparative Example 1 and the aluminum substrate five times, the average value was 70.1 N. For this reason, the solder connection structure of Comparative Example 1 (only the Ni film) has durability in terms of tensile strength alone. However, as described above, the solder connection structure (only the Ni film) of Comparative Example 1 does not reach the solder connection structure 50 (Ni film 35 + mixed metal film 40) according to the present embodiment in terms of wettability.
  • FIG. 10 is a schematic view of the structure after the solder connection structure 50 and the Cu material 70 are soldered.
  • a Cu material 70 is a member connected to the mixed metal film 40 of the solder connection structure 50 via a solder material 65.
  • the solder material 65 is not limited to a specific type.
  • eutectic solder high melting point solder, high temperature solder, low melting point solder, silver-containing solder, lead-containing solder, or lead-free solder may be used.
  • the Cu material 70 may be, for example, a Cu plate material or a copper wire.
  • the Cu material 70 is not limited to a copper member, and may be another metal (including an alloy), an electric circuit, a substrate, a terminal, or the like.
  • FIG. 11 shows a flowchart of a method for connecting the Cu material 70 to the aluminum substrate 30.
  • steps S1 to S5 have been described with reference to FIG.
  • the solder material 65 is melted on the mixed metal film 40 formed in step S5 (S6). Thereafter, the Cu material 70 is soldered through the melted solder material 65 (S7).
  • solder connection structure 50 Ni film 35 + mixed metal film 40
  • voids are less likely to occur than in the conventional solder connection structure.
  • Sn enters between the Ni particles, the surface of the mixed metal film 40 has less irregularities.
  • the thickness of the mixed metal film 40 and the tensile strength in the solder connection structure 50 (Ni film 35 + mixed metal film 40) according to the present embodiment will be described with reference to FIGS.
  • the sum of the thickness of the Ni film 35 and the thickness of the mixed metal film 40 is referred to as “total film thickness”.
  • the Ni film 35 is formed with a thickness of about 10 ⁇ m.
  • the SEM photographs shown in FIG. 12 to FIG. 14 are SEM photographs taken in that order at magnifications of 500 times, 1000 times, and 3000 times. Multiple prepared).
  • FIG. 12 is a view showing an SEM photograph of a cross section of the solder connection structure (only Ni film) of Comparative Example 1.
  • the total film thickness is about 10 ⁇ m.
  • FIG. 12B is a view showing an SEM photograph of a cross section of the solder connection structure 50 (Ni film 35 + mixed metal film 40) having a total film thickness of about 15 ⁇ m.
  • FIG. 12C is a view showing an SEM photograph of a cross section of the solder connection structure 50 having a total film thickness of about 20 ⁇ m.
  • FIG. 12D is a view showing an SEM photograph of a cross section of the solder connection structure 50 having a total film thickness of about 40 ⁇ m.
  • FIG. 12E is a view showing an SEM photograph of a cross section of the solder connection structure 50 having a total film thickness of about 80 ⁇ m.
  • FIG. 13 is a view showing an SEM photograph of a cross section of the solder connection structure (only Ni film) of Comparative Example 1.
  • FIG. 13B is a view showing an SEM photograph of a cross section of the solder connection structure 50 (Ni film 35 + mixed metal film 40) having a total film thickness of about 15 ⁇ m.
  • FIG. 13C is a view showing an SEM photograph of a cross section of the solder connection structure 50 having a total film thickness of about 20 ⁇ m.
  • FIG. 13D is a view showing an SEM photograph of a cross section of the solder connection structure 50 having a total film thickness of about 40 ⁇ m.
  • FIG. 13E is a view showing an SEM photograph of a cross section of the solder connection structure 50 having a total film thickness of about 80 ⁇ m.
  • FIG. 14A is a view showing an SEM photograph of a cross section of the solder connection structure (only Ni film) of Comparative Example 1.
  • FIG. 14B is a view showing an SEM photograph of a cross section of the solder connection structure 50 (Ni film 35 + mixed metal film 40) having a total film thickness of about 15 ⁇ m.
  • FIG. 14C is a view showing an SEM photograph of a cross section of the solder connection structure 50 having a total film thickness of about 20 ⁇ m.
  • FIG. 14D is a view showing an SEM photograph of a cross section of the solder connection structure 50 having a total film thickness of about 40 ⁇ m.
  • FIG. 14E is a view showing an SEM photograph of a cross section of the solder connection structure 50 having a total film thickness of about 80 ⁇ m.
  • Total film thickness 10 ⁇ m: (a) in FIG. 12, (a) in FIG. 13, (a) in FIG. Total film thickness 15 ⁇ m: (b) in FIG. 12, (b) in FIG. 13, (b) in FIG. Total film thickness 20 ⁇ m: (c) in FIG. 12, (c) in FIG. 13, (c) in FIG. Total film thickness 40 ⁇ m: (d) in FIG. 12, (d) in FIG. 13, (d) in FIG. Total film thickness 80 ⁇ m: (e) in FIG. 12, (e) in FIG. 13, (e) in FIG.
  • Each solder connection structure is soldered at 270 ° C. for 15 seconds, and the average value obtained by measuring the tensile strength between the Cu material soldered to the solder connection structure and the aluminum substrate five times is as follows. .
  • the film thickness of the Ni layer 35 is about 10 ⁇ m
  • the total film thickness is larger than 10 ⁇ m in the solder connection structure 50 according to the present embodiment.
  • the solder connection structure 50 Ni film 35 + mixed metal film 40
  • the solder connection structure 50 has a total film thickness of more than 10 ⁇ m and 20 ⁇ m or less.
  • the tensile strength of the solder connection structure 50 (Ni film 35 + mixed metal film 40) is lower than the tensile strength of the solder connection structure of Comparative Example 1 (Ni film only).
  • the inventor can obtain a tensile strength equivalent to the tensile strength (70.01 N) of the solder connection structure of Comparative Example 1 (Ni film only, total thickness of 10 ⁇ m) when the total thickness is about 30 ⁇ m. I found. Therefore, in the solder connection structure 50 (Ni film 35 + mixed metal film 40), the total film thickness is preferably greater than 10 ⁇ m and 30 ⁇ m or less.
  • the solder connection structure 50 (Ni film 35 + mixed metal film 40) preferably has a total film thickness of more than 10 ⁇ m and 30 ⁇ m or less, and more preferably a total film thickness of more than 10 ⁇ m and 20 ⁇ m or less. . If the total film thickness of the solder connection structure 50 (Ni film 35 + mixed metal film 40) is within the above range, the solder wettability of the solder connection structure 50 can be improved and high tensile strength can be obtained.
  • the first powder material is not Ni powder but gold (Au), zinc (Zn), silver (Ag), copper (Cu), or Ni, Au
  • An alloy containing two or more of Zn, Ag, and Cu can also be used as the powder material.
  • the second powder material may be a powder material containing an alloy containing Sn instead of Sn powder.
  • alloy means a metal composed of a plurality of metal elements or metal elements and non-metal elements. Alloys come in various states, including solid solutions that are completely dissolved, eutectics in which the constituent metals are independent at the crystal level, and intermetallic compounds that are bonded at a certain ratio at the atomic level. In the present embodiment, the “alloy” includes these various states.
  • the “aluminum substrate” may be any component or member for realizing a certain function, and these can be collectively referred to as “aluminum substrate”.
  • the solder connection structure according to the present embodiment can be used for battery tabs, bus bars, and the like as applications.
  • solder connection structure uses cold spray. As a result, the solder connection structure according to the present embodiment can (1) widen the combination range of materials compared to the conventional plating, vapor deposition, and clad technology, (2) partial processing is possible, and (3) cost is reduced. It can also be suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

半田濡れ性が向上した、アルミニウム基材を有する半田接続構造、および、アルミニウム基材上に半田濡れ性の高い金属膜を成膜する成膜方法を提供する。半田接続構造(50)は、アルミニウム基板(30)と、アルミニウム基板上にコールドスプレー法により成膜されたNi膜(35)と、Ni粉末(41)と、Sn粉末(42)とが混合された混合粉末材料を用いて、Ni膜上にコールドスプレー法により成膜された混合金属膜(40)と、を備える。

Description

半田接続構造、および成膜方法
 本発明は、半田材料を介して他の部材と接続する半田接続構造、および、基材上に金属膜を成膜する成膜方法に関する。
 近年、電気部品に対して、小型化、軽量化、性能、信頼性等の観点で要求が高まっている。電気部品の例としては、電源、電池、回路基板、及びコネクタなどが挙げられる。一般に、これらの電気部品を基板、あるいは端子などに接続する場合には、コールドスプレー、螺子止め、半田付け、または溶接等が使用される。
 特許文献1は、以下の構成を開示する。具体的には、アルミニウムまたはアルミニウム合金からなる帯状の平形導体の面に、所定の間隔をおいて半田付けが容易な導電性金属からなる金属層が部分的に形成される。そして、当該金属層の間に絶縁樹脂フィルムが平形導体の両面から貼り付けられる。導電性金属は、Ni、Sn、Au、Zn、Ag、Cuのいずれかまたはそれらの組み合わせが用いられる。上記金属層は、コールドスプレー等により形成される。
特開2012-3877号公報(2012年1月5日公開)
 特許文献1の技術は、コールドスプレー法により、アルミニウムまたはアルミニウム合金からなる帯状の平形導体の面上にNi膜を成膜する。しかしながら、コールドスプレー法で成膜されたNi膜は、その表面密度が低いため、半田濡れ性が十分ではないという問題がある。
 本発明は、上記の課題に鑑み、半田濡れ性が向上した、アルミニウム基材を有する半田接続構造、および、アルミニウム基材上に半田濡れ性の高い金属膜を成膜する成膜方法を提供することを目的とする。
 上記の課題を解決するために、本発明の一実施形態に係る半田接続構造は、半田材料を介して他の部材と接続する半田接続構造であって、アルミニウム基材と、上記アルミニウム基材上にコールドスプレー法により成膜されたニッケル(Ni)膜と、ニッケル(Ni)、金(Au)、亜鉛(Zn)、銀(Ag)、銅(Cu)のいずれか、又はこれらの2種以上を含む合金を成分とする第一粉末材料と、錫(Sn)又はSnを含む合金を成分とする第二粉末材料とが混合された混合粉末材料を用いて、上記ニッケル(Ni)膜上にコールドスプレー法により成膜された混合金属膜と、を備える。
 上記の課題を解決するために、本発明の一実施形態に係る成膜方法は、アルミニウム基材上に金属膜を成膜する成膜方法であって、上記アルミニウム基材上にコールドスプレー法によりニッケル(Ni)膜を成膜する第一成膜工程と、ニッケル(Ni)、金(Au)、亜鉛(Zn)、銀(Ag)、銅(Cu)のいずれか、又はこれらの2種以上を含む合金を成分とする第一粉末材料と、錫(Sn)又はSnを含む合金を成分とする第二粉末材料とが混合された混合粉末材料を用いて、上記ニッケル(Ni)膜上にコールドスプレー法により混合金属膜を成膜する第二成膜工程と、を含む。
 上述の半田接続構造および成膜方法では、上記アルミニウム基材上に上記混合金属膜が成膜される。その混合金属膜は、上記第一粉末材料と上記第二粉末材料とが混合された混合粉末材料を用いて成膜される。ここで、上記第二粉末材料は、上記第一粉末材料よりも、コールドスプレーされたときに半溶融状態となりやすい成分を含む。そのため、半溶融状態となった上記第二粉末材料は、上記第一粉末材料を構成する粒子間に入り込み、上記粒子を互いに結合する役割を果たす。また、上記第一粉末材料を構成する粒子が、半溶融状態となった上記第二粉末材料に覆われることにより、半田濡れ性を低下させる原因となる酸化物が上記第一粉末材料の上記粒子上で生成されにくくなる。
 それゆえ、本発明の一実施形態に係る半田接続構造および成膜方法は、アルミニウム基材上にNi膜のみが成膜された半田接続構造よりも半田濡れ性を向上させることができる。
 また、本発明の一実施形態に係る半田接続構造では、上記ニッケル(Ni)膜および上記混合金属膜は、総膜厚が、10μmよりも大きく30μm以下であることが好ましい。
 上記の構成とすることにより、本発明の一実施形態に係る半田接続構造は、引っ張り強度を高くすることができる。
 また、本発明の一実施形態に係る半田接続構造では、上記混合粉末材料は、重量比で、上記第一粉末材料を80%以上95%以下含むことが好ましい。
 上記の構成とすることにより、本発明の一実施形態に係る半田接続構造の半田濡れ性をさらに高めることができる。
 本発明の一態様によれば、アルミニウム基材を有する半田接続構造における半田濡れ性を向上させることができる。
コールドスプレー装置の概略図である。 本実施の形態に係る成膜方法のフローチャートを示す。 本実施の形態に係る半田接続構造の概略図を示す。 比較例1に係る半田接続構造をSn浴に5秒間浸漬した後の様子を示す写真である。 本実施の形態に係る半田接続構造をSn浴に5秒間浸漬した後の様子を示す写真である(重量比 Ni:Sn=95:5)。 比較例2の半田接続構造に対し、230℃で10秒間半田付けを行った場合における当該半田接続構造の断面を、1000倍の倍率で撮影したSEM写真である。 比較例2の半田接続構造に対し、270℃で10秒間半田付けした場合における当該半田接続構造の断面を、1000倍の倍率で撮影したSEM写真である。 本実施の形態に係る半田接続構造の断面を、1000倍の倍率で撮影したSEM写真である。 本実施の形態の半田接続構造に対し、270℃で15秒間半田付けした場合における当該半田接続構造の断面を、1000倍の倍率で撮影したSEM写真である。 本実施の形態の半田接続構造とCu材とを半田付けした後の構造の概略図である。 アルミニウム基板にCu材を接続する方法のフローチャートを示す。 500倍の倍率で撮影されたSEM写真であって、(a)は比較例1の半田接続構造の断面、(b)は総膜厚が約15μmである半田接続構造の断面、(c)は総膜厚が約20μmである半田接続構造の断面、(d)は総膜厚が約40μmである半田接続構造の断面、(e)は総膜厚が約80μmである半田接続構造の断面を示す。 1000倍の倍率で撮影されたSEM写真であって、(a)は比較例1の半田接続構造の断面、(b)は総膜厚が約15μmである半田接続構造の断面、(c)は総膜厚が約20μmである半田接続構造の断面、(d)は総膜厚が約40μmである半田接続構造の断面、(e)は総膜厚が約80μmである半田接続構造の断面を示す。 3000倍の倍率で撮影されたSEM写真であって、(a)は比較例1の半田接続構造の断面、(b)は総膜厚が約15μmである半田接続構造の断面、(c)は総膜厚が約20μmである半田接続構造の断面、(d)は総膜厚が約40μmである半田接続構造の断面、(e)は総膜厚が約80μmである半田接続構造の断面を示す。
 以下、図面を参照しつつ、各実施形態について説明する。以下の説明では、同一の部品および構成要素には同一の符号を付している。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。
 〔コールドスプレーについて〕
 近年、コールドスプレー法と呼ばれる皮膜形成法が利用されている。コールドスプレー法は、金属皮膜の材料となる金属粉末の融点または軟化温度よりも低い温度のキャリアガスを高速流にし、そのキャリアガス流中に金属粉末を投入し加速させ、固相状態のまま基板等に高速で衝突させて皮膜を形成する方法である。
 コールドスプレー法の成膜原理は、次のように理解されている。
 金属粉末が基板に付着・堆積して成膜するには、ある臨界値以上の衝突速度が必要であり、これを臨界速度と称する。金属粉末が臨界速度よりも低い速度で基板と衝突すると、基板が摩耗し、基板には小さなクレーター状の窪みしかできない。臨界速度は、金属粉末の材質、大きさ、形状、温度、酸素含有量、及び基板の材質などによって変化する。
 金属粉末が基板に対して臨界速度以上の速度で衝突すると、金属粉末と基板(あるいはすでに形成された皮膜)との界面付近で大きなせん断による塑性変形が生じる。この塑性変形、および衝突による固体内の強い衝撃波の発生に伴い、界面付近の温度も上昇し、その過程で、金属粉末と基板、および、金属粉末と皮膜(すでに付着した金属粉末)との間で固相接合が生じる。
  〔実施形態〕
 以下、図1を参照して本実施の形態に係るコールドスプレー装置100を説明する。
 (コールドスプレー装置100)
 図1は、コールドスプレー装置100の概略図である。図1に示すように、コールドスプレー装置100は、タンク110と、ヒーター120と、ノズル130と、フィーダ140と、基材ホルダー150と、制御装置(不図示)とを備える。
 タンク110は、キャリアガスを貯蔵する。キャリアガスは、タンク110からヒーター120へ供給される。キャリアガスの一例として、窒素、ヘリウム、空気、またはそれらの混合ガスが挙げられる。キャリアガスの圧力は、タンク110の出口において、例えば70PSI以上150PSI以下(約0.48Mpa以上約1.03Mpa以下)となるよう調整される。ただし、タンク110の出口におけるキャリアガスの圧力は、上記の範囲に限られるものではなく、金属粉末の材質、大きさ、または基板の材質等により適宜調整される。
 ヒーター120は、タンク110から供給されたキャリアガスを加熱する。より具体的に、キャリアガスは、フィーダ140からノズル130に供給される金属粉末の融点より低い温度に加熱される。例えば、キャリアガスは、ヒーター120の出口において測定したときに、50℃以上500℃以下の範囲で加熱される。ただし、キャリアガスの加熱温度は、上記の範囲に限られるものではなく、金属粉末の材質、大きさ、または基板の材質等により適宜調整される。
 キャリアガスは、ヒーター120により加熱された後、ノズル130へ供給される。
 ノズル130は、ヒーター120により加熱されたキャリアガスを300m/s以上1200m/s以下の範囲で加速し、基材10へ向けて噴射する。なお、キャリアガスの速度は、上記の範囲に限られるものではなく、金属粉末の材質、大きさ、または基板の材質等により適宜調整される。
 フィーダ140は、ノズル130により加速されるキャリアガスの流れの中に、金属粉末を供給する。フィーダ140から供給される金属粉末の粒径は、1μm以上50μm以下といった大きさである。フィーダ140から供給された金属粉末は、ノズル130からキャリアガスとともに基材10へ噴射される。
 基材ホルダー150は、基材10を固定する。基材ホルダー150に固定された基材10に対して、キャリアガスおよび金属粉末がノズル130から噴射される。基材10の表面とノズル130の先端との距離は、例えば、5mm以上30mm以下の範囲で調整される。ただし、基材10の表面とノズル130との距離は、上記の範囲に限られるものではなく、金属粉末の材質、大きさ、または基板の材質等により適宜調整される。
 制御装置は、予め記憶した情報、および/または、オペレーターの入力に基づいて、コールドスプレー装置100を制御する。具体的に、制御装置は、タンク110からヒーター120へ供給されるキャリアガスの圧力、ヒーター120により加熱されるキャリアガスの温度、フィーダ140から供給される金属粉末の種類および量、基材10の表面とノズル130との距離などを制御する。
 (Ni膜35および混合金属膜40の成膜)
 次に、コールドスプレー法を用いて、アルミニウム基板30上にNi膜35を成膜し、さらに、Ni膜35上に混合金属膜40を成膜する方法等を図2、3により説明する。図2は、本実施の形態に係る成膜方法のフローチャートを示す。図3は、本実施の形態に係る半田接続構造50の概略図を示す。
 最初に図3を参照して半田接続構造50を説明する。
 半田接続構造50は、アルミニウム基板30と、アルミニウム基板30上に成膜されたNi膜35と、Ni膜35上に成膜された混合金属膜40とを備える。
 Ni膜35は、コールドスプレー法を用いてNi粉末41をアルミニウム基板30上に噴射することにより成膜される。混合金属膜40は、コールドスプレー法を用いてNi膜35上にNi粉末41(第一粉末材料)とSn粉末42(第二粉末材料)とを混合した混合粉末材料を噴射することにより成膜される。ここで、第一粉末材料は、Ni、金(Au)、亜鉛(Zn)、銀(Ag)、銅(Cu)のいずれか、又は、これらの2種以上を含む合金を成分としてよい。第二粉末材料は、Sn又はSnを含む合金を成分としてよい。説明の便宜上、図2、及び図3では、混合金属膜40は、Ni粉末41とSn粉末42との混合粉末材料を用いて形成されるものとして説明する。
 Snの融点(231.97℃)は、Niの融点(1453℃)より低い。そのため、Sn粉末42は、コールドスプレーされたときにNiよりも溶融状態(または、半溶融状態)となりやすい。したがって、上記混合粉末材料がコールドスプレーされたときに、半溶融状態となったSnは、Ni粒子の間に入り込み、Ni粒子を互いに結合する役割を果たす。また、そのSnの働きにより、混合金属膜40の表面には凹凸が少ないという特徴がある。
 次に、図2のフローチャートの各ステップを説明する。まず、コールドスプレー法によりアルミニウム基板30上にNi粉末41を噴射する(S1、第一成膜工程)。その結果、アルミニウム基板30上にNi膜35が成膜される(S2、第一成膜工程)。次に、Ni粉末41とSn粉末42とを混合する(S3)。そして、コールドスプレー法によりNi膜35上にNi粉末41とSn粉末42との混合粉末材料を噴射する(S4、第二成膜工程)。その結果、Ni膜35上に混合金属膜40(Ni+Sn膜)が成膜される(S5、第二成膜工程)。
  (実施例1)
 以下、本実施の形態に係る実施例1を説明する。実施例1では、図3の半田接続構造は以下の条件により形成される。
 実施例1では、図3のアルミニウム基板30が、図1に記載した基材10に相当する。アルミニウム基板30は、アルミニウム製の板材であり、矩形状で、厚みが0.5mmである。
 実施例1において、Ni膜35は、Ni粉末41を用いて成膜される。Ni粉末41は、平均粒径が約10μmである。Ni膜35は、Ni粉末41がノズル130からアルミニウム基板30に噴射されることで、アルミニウム基板30上に成膜される。
 混合金属膜40は、Ni粉末41とSn粉末42とを混合した混合粉末材料を用いて成膜される。Ni粉末41は平均粒径が約10μmであり、Sn粉末42は平均粒径が約38μmである。Ni粉末41とSn粉末42との混合比率は、重量比で、Ni:Sn=95:5である。混合金属膜40は、上記混合粉末材料がノズル130からアルミニウム基板30に噴射されることで、Ni膜35上に成膜される。
 ノズル130の先端とアルミニウム基板30との距離は12mmである。
 タンク110から供給されるキャリアガスは、空気である。キャリアガスの圧力は、タンク110の出口において150PSI(約1.03Mpa)に設定されている。ヒーター120は設定温度が250℃であり、Ni粉末およびSn粉末に接するときのキャリアガスの温度は、Snの融点(231.97℃)より低くなる。
 ノズル130からアルミニウム基板30に噴射されたNi粉末41がアルミニウム基板30へ到達したときの温度は約103℃である。また、ノズル130からNi膜35に噴射された上記混合粉末材料がNi膜35へ到達したときの温度は約103℃である。
 以上の条件により、図3の半田接続構造50が形成される。
  (比較例1)
 次に、実施例1と比較するための、比較例1の半田接続構造について説明する。比較例1の半田接続構造は、アルミニウム基板と、コールドスプレー装置100を用いてアルミニウム基板上に成膜されたNi膜とを備える。Ni膜は、Ni粒子の集まりであって、Niの粒子間に隙間が形成される。そのため、Ni膜は、その表面に多くの凹凸を有する。
 比較例1の半田接続構造において、アルミニウム基板は、アルミニウム製の板材であり、矩形状で、厚みが0.5mmである。Ni粉末は、平均粒径が約10μmであり、ノズル130からアルミニウム基板に噴射される。
 ノズル130の先端とアルミニウム基板との距離は12mmである。
 タンク110から供給されるキャリアガスは、空気である。キャリアガスの圧力は、タンク110の出口において150PSI(約1.03Mpa)に設定されている。ヒーター120の設定温度は250℃であり、Ni粉末に接するときのキャリアガスの温度は、Niの融点(1453℃)より低い。
  (Sn浴による濡れ性評価)
 次に、実施例1の半田接続構造50、および比較例1の半田接続構造に対して行った濡れ性評価試験を説明する。
 濡れ性評価試験は、半田材料の多くがSn系金属であることに鑑み、Snを溶融した坩堝内に、酸化膜を取り除くフラックスを塗布した成膜面を5秒間浸漬して行う。ここで、「成膜面」とは、それぞれの半田接続構造において、コールドスプレーにより混合金属膜40(実施例1)またはNi膜(比較例1)が形成された側の面である。
 以下、その濡れ性評価試験の結果を図4および図5を参照して説明する。図4は、比較例1に係る半田接続構造(Ni膜のみ)をSn浴に5秒間浸漬した後の様子を示す写真である。図5は、実施例1に係る半田接続構造50(Ni膜35+混合金属膜40)をSn浴に5秒間浸漬した後の様子を示す写真である(重量比 Ni:Sn=95:5)。
 最初に、比較例1における結果から説明する。比較例1に係る半田接続構造をSn浴に5秒間浸漬したところ、Snが付着せず、Ni膜が露出している箇所が複数認められた(図4)。その理由として、以下の点が挙げられる。
 コールドスプレー法では、固相状態のまま金属粒子を高速で基板に衝突させることで金属膜が成膜される。そのため、比較例1の半田接続構造では、Ni粉末が噴射される方向においては、Ni粉末の粒子の集合体がアルミニウム基板に積層した状態となる。一方、Ni粉末が噴射される方向と垂直な方向においては、Ni粉末の粒子間には隙間や凹みが生じやすく、その結果、Ni膜の表面に多くの凹凸が形成される。そのため、比較例1の半田接続構造では、(1)Niの表面密度が低くなり、(2)Ni膜が、Ni膜上に生成される酸化物の影響を受ける、等の理由から、図4を観察して分かるように、半田濡れ性が低くなる。
 一方、実施例1に係る半田接続構造50は、図2および図3を参照して説明したように、アルミニウム基板30と、アルミニウム基板30上に成膜されたNi膜35と、Ni膜35上に成膜された混合金属膜40と、を備える。Ni膜35は、Ni粉末41がコールドスプレーされることでアルミニウム基板30上に成膜された金属膜である。混合金属膜40は、Ni粉末41とSn粉末42との混合粉末材料がコールドスプレーされることでNi膜35上に成膜された金属膜である。
 ここで、Snは、Niよりも融点が低い。そのため、Sn粉末42はコールドスプレーされたときに半溶融状態となりやすい。半溶融状態となったSnは、Ni粒子の間に入り込み、Ni粒子を互いに結合する役割を果たす。
 その半田接続構造50をSn浴に5秒間浸漬した結果が図5である。Sn浴に5秒間浸漬した後の半田接続構造50を観察すると、Ni層35が露出している箇所はほとんど認められない。このことから、半田接続構造50は、比較例1の半田接続構造と比較して半田濡れ性が高いことが明示される。
  (備考1)
 比較例1として上記の半田接続構造を採用した理由は次のとおりである。
 アルミニウム基板に対してNi粉末をコールドスプレーした半田接続構造は従来技術である。しかしながら、本願の発明者は、(a)比較例1にかかる半田接続構造体の半田濡れ性が好ましくないこと、(b)その理由として、Niの表面密度が低くなり、その結果、Ni膜が、Ni膜上に生成される酸化物の影響を受ける、ことが一因であると考えるに至った。上記(a)、(b)を検証するために、本願発明者は、比較対象として比較例1の半田接続構造を採用した。
  (備考2)
 上記のSn浴による濡れ性評価試験は、溶融半田と電子部品の濡れ性を評価するソルダーチェッカを用いた「JIS C60068-2-54・JIS Z3198-4」に準拠したものではない。これは、外観観察による半田濡れ性の評価も信頼性が高いことに依る。
  (Ni粉末およびSn粉末の混合比率について)
 次に、混合金属膜40の成膜時におけるNi粉末41とSn粉末42との混合比率が半田濡れ性に与える影響を説明する。
 実施例1では、混合金属膜40におけるNi粉末41とSn粉末42との混合比率は、重量比で、Ni:Sn=95:5であった。そこで、混合金属膜40におけるNi粉末41とSn粉末42との混合比率を、重量比で、次の5つのケースに変更した場合のそれぞれの半田濡れ性を評価した。
(ケース1)Ni:Sn=95:5
(ケース2)Ni:Sn=90:10
(ケース3)Ni:Sn=80:20
(ケース4)Ni:Sn=60:40
(ケース5)Ni:Sn=98:2
 5つのケースに変更した場合のそれぞれの半田濡れ性を評価した結果、ケース1(重量比 Ni:Sn=95:5)、ケース2(重量比 Ni:Sn=90:10)、及びケース3(重量比 Ni:Sn=80:20)では、半田濡れ性は良好であることが確認された。しかしながら、ケース4(重量比 Ni:Sn=60:40)、さらには、ケース5(重量比 Ni:Sn=98:2)においては、半田濡れ性は低かった。この結果より、Ni粉末とSn粉末との混合比率が所定の範囲内であると、半田濡れ性が高くなることが見出された。その理由を以下に説明する。
 上述したように、コールドスプレー法では、固相状態のまま金属粒子を高速で基板に衝突させることで金属膜が成膜される。そのため、比較例1の半田接続構造では、Ni粉末が噴射される方向においては、Ni粉末の粒子の集合体がアルミニウム基板に積層された状態となる。一方、Ni粉末が噴射される方向と垂直な方向においては、Ni粉末の粒子間には隙間や凹みが生じやすく、Ni膜の表面に多くの凹凸が形成される。そのため、比較例1の半田接続構造では、(1)Niの表面密度が低くなり、(2)Ni膜が、Ni膜上に生成される酸化物の影響を受けやすくなる。そして、そのような半田接続構造をSn浴に5秒間浸漬すると、Ni膜の表面にSn膜が付着しにくく、Ni膜の一部が露出する。
 このような理由から、比較例1に係る半田接続構造は半田濡れ性が低くなる。このことは、Ni粉末41とSn粉末42との混合粉末材料におけるNi粉末41の重量比率が高いケース5の半田接続構造においても同様である。
 次に、ケース4の半田接続構造の半田濡れ性が低くなることを説明する。上述したとおり、Snは、融点が231.97℃である。その融点は、キャリアガスの設定温度と近い。そのため、Sn粉末42は、コールドスプレーされたときに半溶融状態となりやすい。半溶融状態となったSnは、Ni粒子の間に入り込み、当該Ni粒子を互いに結合する役割を果たす。その結果、混合金属膜40は、凹凸の少ない連続膜となる。また、Ni粒子は、半溶融状態となったSnに覆われて、半田濡れ性を低くする原因となる上記酸化物の生成が抑制される。
 しかしながら、上記混合粉末材料に占めるSn粒子の割合が40%と高いことから、ケース4の半田接続構造をSn浴に5秒間浸漬すると、混合金属膜40に含まれるSnの一部がSn浴内で溶融してしまい、下層のNi膜の一部が露出する。その結果、ケース4の半田接続構造は、半田濡れ性が低くなる。
 このような理由から、ケース4、5の半田接続構造は、半田濡れ性が低い。
 一方、ケース1、2および3の半田接続構造50では、混合粉末材料に占めるNi粉末41の割合が高いことから、混合金属膜40におけるNi密度も高くなる。これにより、ケース1、2および3の半田接続構造をSn浴に5秒間浸漬したとしても、混合金属膜40に含まれるSnがSn浴内で溶融する割合を軽減することができる。その結果、ケース1、2および3の半田接続構造50は、半田濡れ性が高くなる。
 加えて、Ni粉末41はSn層に覆われていることから、半田濡れ性を低くする原因となる上記酸化物の生成は抑制される。この理由によっても、ケース1、2および3の半田接続構造50は、半田濡れ性を高めることができていると考えられる。
 以上の理由により、Ni粉末41とSn粉末42とが混合された混合粉末材料を用いてNi膜35上に混合金属膜40を成膜する場合には、当該混合粉末材料は、重量比で、Ni粉末を80%以上95%以下含むことが好ましい。そして、混合粉末材料に含まれるNi粉末の重量比を上記の範囲内にすることで、半田接続構造50の半田濡れ性を高くすることができる。
  (半田接続構造の引っ張り強度)
 上述したとおり、本実施の形態に係る半田接続構造50は半田濡れ性が高くなる。ただし、たとえ半田接続構造50の半田濡れ性が高くとも、半田接続構造50を用いたときの半田付けされる対象となる対象基材と半田接続構造50との間の引っ張り強度が低ければ、半田接続構造50は実用に適さないとも言える。そこで、以下では、半田接続構造50の引っ張り強度を検証する。
 なお、以下の説明における「引っ張り強度」とは、半田接続構造に対してCu材を7mm×10mm=70mm2の接合面積で接合した場合において、半田接続構造からCu材を剥離させるために要した力の大きさである。換言すれば、一般的な引っ張り強度、すなわち単位面積当たりの力の大きさを算出する場合には、本明細書に記載されている引っ張り強度を70mm2で除算すればよい。
 なお、半田接続構造の引っ張り強度が低下する原因の1つとして、半田接続構造の内部に発生する空隙(以下、「ボイド」と称する。)が挙げられることを先に述べておく。
 以下の説明では、比較例2の半田接続構造と実施例1の半田接続構造50とを比較することで、半田接続構造50が半田付けされる対象となる対象基材と半田接続構造50との間の引っ張り強度について検討する。
 なお、比較例2の半田接続構造は以下に説明するとおり、アルミニウム基板上に混合金属膜のみが形成された半田接続構造である。また、以下の説明に用いる図面に示されているSEM(Scanning Electron Microscope)写真は、日本電子株式会社製のJSM‐6510LAを用いて撮影されたものである。
  (比較例2)
 実施例1と比較するための、比較例2の半田接続構造について説明する。比較例2の半田接続構造は、アルミニウム基板と、混合金属膜とを備える。混合金属膜は、Ni粉末とSn粉末との混合粉末材料を用いて形成された混合膜であり、コールドスプレーを用いてアルミニウム基板上に直接成膜されている。
 比較例2の半田接続構造において、アルミニウム基板は、アルミニウム製の板材であり、矩形状で、厚みが0.5mmである。Ni粉末は平均粒径が約10μmであり、Sn粉末は平均粒径が約38μmである。Ni粉末41とSn粉末42との混合比率は、重量比で、Ni:Sn=95:5である。この混合粉末材料が、ノズル130からアルミニウム基板30に噴射される。
 ノズル130の先端とアルミニウム基板30との距離は12mmである。
 タンク110から供給されるキャリアガスは、空気である。キャリアガスの圧力は、タンク110の出口において150PSI(約1.03Mpa)に設定されている。ヒーター120の設定温度は250℃であり、Ni粉末41およびSn粉末42に接するときのキャリアガスの温度は、Snの融点(231.97℃)より低い。
   (条件1:230℃、10秒間)
 図6は、比較例2の半田接続構造に対し230℃で10秒間半田付けした場合における当該半田接続構造の断面を1000倍の倍率で撮影したSEM写真である。半田付けに用いた半田材料は、Sn-Ag-Cu系(鉛フリー半田)である。
 半田付けの温度(230℃)は、Snの融点(231.97℃)より低い。そのため、比較例2の半田接続構造に含まれるSn粒子は、一部が半溶融状態になったとしても、完全に溶融することはない。このため、条件1における比較例2の半田接続構造では、大きなボイドは発生していない(図6)。
 しかしながら、当該半田接続構造に半田付けされたCu材とアルミニウム基板との間の引っ張り強度を、「JIS Z3198-5 半田継手の引張りおよびせん断試験方法」に基づいて測定したところ、5回測定した結果の平均値は、34.9Nであった。この値は、実施例1の半田接続構造(Ni膜35+混合金属膜40)および比較例1の半田接続構造(Ni膜のみ)の引っ張り強度(後述)より低い値である。これは、半田付けにより大きなボイドは発生していないものの、微細なボイドが複数発生し、当該複数のボイドにより引っ張り強度が低下したことが原因と考えられる。
   (条件2:270℃、10秒間)
 次に、比較例2の半田接続構造(混合金属膜のみ)に対し270℃で10秒間半田付けを行った場合について図7を参照して説明する。図7は、比較例2の半田接続構造に対し270℃で10秒間半田付けした場合における当該半田接続構造の断面を1000倍の倍率で撮影したSEM写真である。
 半田付けの温度(270℃)はSnの融点(231.97℃)より高いため、比較例2の半田接続構造に含まれるSn粒子は溶融する。このため、条件2における比較例2の半田接続構造において、アルミニウム基板と混合金属膜との界面付近で混合金属膜に含まれるSnが溶融し、混合金属膜の内部に大きなボイド60が発生している(図7)。
 そのような半田接続構造に半田付けされたCu材とアルミニウム基板との間の引っ張り強度を「JIS Z3198-5 半田継手の引張りおよびせん断試験方法」に基づいて測定したところ、5回測定した結果の平均値は、12.0Nであった。比較例2の半田接続構造の内部にSnの溶融に起因する大きなボイド60が発生したことにより、アルミニウム基板と混合金属膜との接続部分の面積が減少する(図7)。その結果、比較例2の半田接続構造に半田付けされたCu材とアルミニウム基板との間の引っ張り強度が低下し、12.0Nという低い値になったと考えられる。
   (条件3:270℃、5秒間)
 比較例2の半田接続構造(混合金属膜のみ)に対し、270℃で5秒間半田付けという条件で、当該半田接続構造に半田付けされたCu材とアルミニウム基板との間の引っ張り強度を「JIS Z3198-5 半田継手の引張りおよびせん断試験方法」に基づいて測定した。5回測定したところ、7.79N、21.74N、21.91N、28.18N、11.69Nであった。平均値は、18.3Nであった。
 条件3も、条件2と同様に、ボイドの発生が一因となって、半田接続構造に半田付けされたCu材とアルミニウム基板との間の引っ張り強度が低下したものと考えられる。
  (実施例1の半田接続構造50)
 次に、実施例1の半田接続構造50に係る引っ張り強度を、図8、及び図9を参照して説明する。図8は、実施例1の半田接続構造50(Ni膜35+混合金属膜40)の断面を1000倍の倍率で撮影したSEM写真である。
   (条件4::270℃、15秒間)
 図9は、半田接続構造50(Ni膜35+混合金属膜40)に対し270℃で15秒間半田付けした場合における当該半田接続構造の断面を、1000倍の倍率で撮影したSEM写真である。半田接続構造50は、半田材65を介して、Cu材70に接続されている。
 この条件下においても、半田接続構造50では半田付け後にボイドの発生が認められなかった(図9)。また、半田接続構造50に半田付けされたCu材70とアルミニウム基板30との間の引っ張り強度を、「JIS Z3198-5 半田継手の引張りおよびせん断試験方法」に基づいて測定したところ、5回の測定値の平均値は82.0Nと高い値であった。その理由は以下が考えられる。
 半田接続構造50では、アルミニウム基板30上にNi膜35が成膜され、Ni膜35上に混合金属膜40が成膜されている(図8)。このため、混合金属膜40に含まれるSn粒子がアルミニウム基板30に直接接触することはない。これにより、半田接続構造50(Ni膜35+混合金属膜40)では、Sn粒子の温度上昇を抑えることができる。その結果、半田接続構造50(Ni膜35+混合金属膜40)では、引っ張り強度の低下を招くボイドの発生が抑制されて、引っ張り強度が高くなったものと考えられる。
  (小括)
 以上のように、比較例2の半田接続構造(混合金属膜のみ)では、半田接続構造に半田付けされたCu材とアルミニウム基板との間の引っ張り強度は低くなる。一方、本実施の形態に係る半田接続構造50(Ni膜35+混合金属膜40)は、半田濡れ性が高く、さらに、半田接続構造に半田付けされたCu材とアルミニウム基板との間の引っ張り強度も高くなり、より実用に適した半田接続構造であると言える。
 以下、参考までに比較例1の半田接続構造(Ni膜のみ)についても言及しておく。
 比較例1の半田接続構造(Ni膜のみ)に対し270℃で10秒間半田付けを行った。比較例1の半田接続構造に半田付けされたCu材とアルミニウム基板との間の引っ張り強度を5回測定した結果、平均値は70.1Nであった。そのため、比較例1の半田接続構造(Ni膜のみ)は、引っ張り強度という観点のみで言えば耐久性が認められる。しかしながら、上述したとおり、比較例1の半田接続構造(Ni膜のみ)は、濡れ性の点で本実施の形態に係る半田接続構造50(Ni膜35+混合金属膜40)には及ばない。
 (半田接続構造50とCu材70とを半田付けした後の構造について)
 次に、半田接続構造50とCu材70とを半田付けした後の構造を図10により説明する。図10は、半田接続構造50とCu材70とを半田付けした後の構造の概略図である。
 図10において、Cu材70は、半田接続構造50の混合金属膜40に半田材65を介して接続される部材である。
 半田材65は、特定の種類に限定されない。例えば、共晶半田、高融点半田、高温半田、低融点半田、銀含有半田、鉛入り半田、あるいは、鉛フリー半田などであってもよい。
 Cu材70は、例えばCu板材、あるいは銅線等であってよい。あるいは、Cu材70は、銅製の部材に限られず、他の金属(合金を含む)、電気回路、基板、あるいは端子等であってもよい。
 図11は、アルミニウム基板30にCu材70を接続する方法のフローチャートを示す。図11において、ステップS1~S5については図2を用いて説明しているため、再度の説明を省略する。ステップS5によって成膜された混合金属膜40上で、半田材65を溶融させる(S6)。その後、溶融した半田材65を介してCu材70を半田付けする(S7)。以上の手順により、半田接続構造50とCu材70とを半田付けした後の構造を得ることができる。
 半田接続構造50(Ni膜35+混合金属膜40)では、Snの融点(231.97℃)よりも高い温度で半田付けしたとしても、従来の半田接続構造に比べて、ボイドが発生しにくい。また、Ni粒子の間にSnが入り込むため、混合金属膜40の表面には凹凸が少ない。これにより、半田接続構造50とCu材70とを半田付けした後の構造は、電気抵抗を小さくすることができるというさらなる効果が得られる。
 (混合金属膜40の膜厚と引っ張り強度との関係)
 本実施の形態に係る半田接続構造50(Ni膜35+混合金属膜40)における、混合金属膜40の膜厚と引っ張り強度との関係を図12~図14により説明する。以下では、Ni膜35の厚さと混合金属膜40の厚さとの和を「総膜厚」と称する。また、Ni膜35は、いずれも約10μmで成膜されている。また、図12~図14に示すSEM写真は、その順に、500倍、1000倍、3000倍の倍率で撮影されたSEM写真である(見易さを考慮して、倍率を変化させた写真を複数準備したものである)。
 図12の(a)は、比較例1の半田接続構造(Ni膜のみ)の断面を撮影したSEM写真を示す図である。図12の(a)では、総膜厚は約10μmである。図12の(b)は、総膜厚が約15μmである半田接続構造50(Ni膜35+混合金属膜40)の断面を撮影したSEM写真を示す図である。図12の(c)は、総膜厚が約20μmである半田接続構造50の断面を撮影したSEM写真を示す図である。図12の(d)は、総膜厚が約40μmである半田接続構造50の断面を撮影したSEM写真を示す図である。図12の(e)は、総膜厚が約80μmである半田接続構造50の断面を撮影したSEM写真を示す図である。
 図13の(a)は、比較例1の半田接続構造(Ni膜のみ)の断面を撮影したSEM写真を示す図である。図13の(b)は、総膜厚が約15μmである半田接続構造50(Ni膜35+混合金属膜40)の断面を撮影したSEM写真を示す図である。図13の(c)は、総膜厚が約20μmである半田接続構造50の断面を撮影したSEM写真を示す図である。図13の(d)は、総膜厚が約40μmである半田接続構造50の断面を撮影したSEM写真を示す図である。図13の(e)は、総膜厚が約80μmである半田接続構造50の断面を撮影したSEM写真を示す図である。
 図14の(a)は、比較例1の半田接続構造(Ni膜のみ)の断面を撮影したSEM写真を示す図である。図14の(b)は、総膜厚が約15μmである半田接続構造50(Ni膜35+混合金属膜40)の断面を撮影したSEM写真を示す図である。図14の(c)は、総膜厚が約20μmである半田接続構造50の断面を撮影したSEM写真を示す図である。図14の(d)は、総膜厚が約40μmである半田接続構造50の断面を撮影したSEM写真を示す図である。図14の(e)は、総膜厚が約80μmである半田接続構造50の断面を撮影したSEM写真を示す図である。
 以下に、それぞれの半田接続構造と図12~14に示したSEM写真との対応関係を示す。
 ・総膜厚10μm:図12の(a)、図13の(a)、図14の(a)
 ・総膜厚15μm:図12の(b)、図13の(b)、図14の(b)
 ・総膜厚20μm:図12の(c)、図13の(c)、図14の(c)
 ・総膜厚40μm:図12の(d)、図13の(d)、図14の(d)
 ・総膜厚80μm:図12の(e)、図13の(e)、図14の(e)
 それぞれの半田接続構造に対して270℃で15秒間半田付けを行い、半田接続構造に半田付けされたCu材とアルミニウム基板との間の引っ張り強度を5回測定した平均値は以下のとおりである。
 ・総膜厚10μm:70.01N
 ・総膜厚15μm:81.68N
 ・総膜厚20μm:73.44N
 ・総膜厚40μm:29.90N
 ・総膜厚80μm:32.66N
 この結果によると、総膜厚が20μm以下である場合には、半田接続構造50(Ni膜35+混合金属膜40)の引っ張り強度は、比較例1の半田接続構造(Ni膜のみ、総膜厚10μm)の引っ張り強度より高くなる。
 ここで、Ni層35の膜厚は約10μmであるため、本実施の形態に係る半田接続構造50では、総膜厚は10μmよりも大きくなる。そうすると、引っ張り強度の観点から、半田接続構造50(Ni膜35+混合金属膜40)は、総膜厚が10μmよりも大きく20μm以下であることが特に好ましい。
 一方、総膜厚が40μm以上である場合には、半田接続構造50(Ni膜35+混合金属膜40)の引っ張り強度は、比較例1の半田接続構造(Ni膜のみ)の引っ張り強度よりも低くなる。これは、総膜厚が大きくなると、(i)アルミニウム基板30上に堆積した膜に金属粒子が衝突することにより、コールドスプレー時のガス圧に由来する内部応力が蓄積されること、(ii)金属粒子間の接合界面が増えることにより、混合金属膜40と半田材65との境界部分で剥離が生じやすくなることによる。そして、発明者は、総膜厚が約30μmであると、比較例1の半田接続構造(Ni膜のみ、総膜厚10μm)の引っ張り強度(70.01N)と同等の引っ張り強度が得られることを見出した。そのため、半田接続構造50(Ni膜35+混合金属膜40)では、総膜厚が10μmよりも大きく30μm以下であることが好ましい。
 以上より、半田接続構造50(Ni膜35+混合金属膜40)は、総膜厚が10μmよりも大きく30μm以下であることが好ましく、総膜厚が10μmよりも大きく20μm以下であることがさらに好ましい。半田接続構造50(Ni膜35+混合金属膜40)の総膜厚が上記の範囲内であれば、半田接続構造50の半田濡れ性を高め、かつ、高い引っ張り強度を得ることができる。
  (その他1)
 本実施の形態に係る半田接続構造において、第一粉末材料は、Ni粉末ではなく、金(Au)、亜鉛(Zn)、銀(Ag)、銅(Cu)のいずれか、又は、Ni、Au、Zn、Ag、Cuのうち2種以上を含む合金を粉末材料とすることもできる。また、本実施の形態に係る半田接続構造において、第二粉末材料は、Sn粉末ではなく、Snを含む合金を成分とする粉末材料を用いてもよい。
 ここで、「合金」とは、複数の金属元素あるいは金属元素と非金属元素からなる金属をいう。合金には様々な状態があり、完全に溶け込んでいる固溶体、結晶レベルでは成分の金属がそれぞれ独立している共晶、原子のレベルにおいて一定割合で結合した金属間化合物などがある。本実施の形態において、「合金」は、これら様々な状態を含む。
 また、「アルミニウム基板」は、何らかの機能を実現するための部品、部材であればよく、これらを総称して「アルミニウム基材」と称することができる。例えば、本実施の形態に係る半田接続構造は、用途として、電池タブ、バスバー等に用いることができる。
 また、一般に、異種金属の接合(接続)技術には、主にネジ止め、半田付け、各種溶接技術が利用される。ただし、金属の材質によっては、腐食が生じる虞がある。例えば、アルミニウム基材と銅線とをネジ止めする場合、電池作用が生じ、アルミニウム基材が腐食する虞がある。また、アルミニウム基材とアルミニウムとは異なる金属材料とを溶接により固定する場合、酸化膜を除去するなどの工程が必要となり、手間とコストがかかる。そのような従来の異種金属の接合(接続)技術の有する課題に鑑み、本実施の形態に係る半田接続構造は、コールドスプレーを利用する。これにより、本実施の形態に係る半田接続構造は、(1)従来のめっき・蒸着・クラッド技術と比べ材料の組合せ範囲を広くでき、(2)部分加工が可能であり、(3)コストを抑えることもできる。
  (その他2)
 上述したように、コールドスプレー法では、固相状態のまま基板等に高速で金属粉末を衝突させて皮膜を形成するため、金属膜中に金属粒子が残ることが多い。したがって、当該金属粒子が上記金属膜中に存在するのであれば、当該金属膜はコールドスプレー法により成膜された、と判断することができる。一方、フレーム溶射、アーク溶射、あるいはプラズマ溶射等では、金属粉末を溶かして基板に吹き付けるため、金属膜中に金属粒子が残ることは殆どない。
 したがって、当業者であれば、ある金属膜がコールドスプレー法により成膜されたものであるか否かを当該金属膜の断面から見分けることが可能である。
  (その他3)
 コールドスプレー法によって成膜された金属膜をその構造又は特性により直接特定することは、不可能または非実際的である。
 第一に、使用される金属材料の各々によってその構造やそれに伴う特性が異なることに照らせば、コールドスプレー法により成膜された金属膜をある特定の文言により規定することは不可能である。第二に、コールドスプレー法により成膜された金属膜を構造上または特性上、明確に特定する文言も存在しない。なぜならば、コールドスプレー法により噴射された原材料粒子は、非処理基材上に高速で衝突して不定形状に塑性変形し、原型をとどめていないためである。第三に、コールドスプレー法によって成膜された金属膜を、測定に基づき解析し、何らかの文言で特定することも、不可能または非実際的である。なぜならば、困難な操作と測定を多数回繰り返し、統計的処理を行い、何らかの特徴を特定する指標を見いだすには、著しく多くの試行錯誤を重ねることが必要であり、およそ実際的ではないためである。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本国際出願は、2015年12月24日に出願された日本国特許出願である特願2015-252077号に基づく優先権を主張するものであり、当該日本国特許出願である特願2015-252077号の全内容は、本国際出願に援用される。
 本発明の特定の実施の形態についての上記説明は、例示を目的として提示したものである。それらは、網羅的であったり、記載した形態そのままに本発明を制限したりすることを意図したものではない。数多くの変形や変更が、上記の記載内容に照らして可能であることは当業者に自明である。
  10 基材
  30 アルミニウム基板(アルミニウム基材)
  35 Ni膜
  40 混合金属膜
  41 Ni粉末(第一粉末材料)
  42 Sn粉末(第二粉末材料)
  50 半田接続構造
  65 半田材
  70 Cu材

Claims (4)

  1.  半田材料を介して他の部材と接続する半田接続構造であって、
     アルミニウム基材と、
     上記アルミニウム基材上にコールドスプレー法により成膜されたニッケル(Ni)膜と、
     ニッケル(Ni)、金(Au)、亜鉛(Zn)、銀(Ag)、銅(Cu)のいずれか、又はこれらの2種以上を含む合金を成分とする第一粉末材料と、錫(Sn)又はSnを含む合金を成分とする第二粉末材料とが混合された混合粉末材料を用いて、上記ニッケル(Ni)膜上にコールドスプレー法により成膜された混合金属膜と、を備えることを特徴とする半田接続構造。
  2.  上記ニッケル(Ni)膜および上記混合金属膜は、総膜厚が、10μmよりも大きく30μm以下であることを特徴とする請求項1に記載の半田接続構造。
  3.  上記混合粉末材料は、重量比で、上記第一粉末材料を80%以上95%以下含むことを特徴とする請求項1または2に記載の半田接続構造。
  4.  アルミニウム基材上に金属膜を成膜する成膜方法であって、
     上記アルミニウム基材上にコールドスプレー法によりニッケル(Ni)膜を成膜する第一成膜工程と、
     ニッケル(Ni)、金(Au)、亜鉛(Zn)、銀(Ag)、銅(Cu)のいずれか、又はこれらの2種以上を含む合金を成分とする第一粉末材料と、錫(Sn)又はSnを含む合金を成分とする第二粉末材料とが混合された混合粉末材料を用いて、上記ニッケル(Ni)膜上にコールドスプレー法により混合金属膜を成膜する第二成膜工程と、を含むことを特徴とする成膜方法。
PCT/JP2016/088310 2015-12-24 2016-12-22 半田接続構造、および成膜方法 WO2017110985A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16878872.7A EP3396021B1 (en) 2015-12-24 2016-12-22 Solder connection structure and film forming method
US16/061,390 US10926514B2 (en) 2015-12-24 2016-12-22 Solder connection structure and film forming method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015252077A JP6454262B2 (ja) 2015-12-24 2015-12-24 半田接続構造、および成膜方法
JP2015-252077 2015-12-24

Publications (1)

Publication Number Publication Date
WO2017110985A1 true WO2017110985A1 (ja) 2017-06-29

Family

ID=59089530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088310 WO2017110985A1 (ja) 2015-12-24 2016-12-22 半田接続構造、および成膜方法

Country Status (5)

Country Link
US (1) US10926514B2 (ja)
EP (1) EP3396021B1 (ja)
JP (1) JP6454262B2 (ja)
TW (1) TWI663289B (ja)
WO (1) WO2017110985A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3424893A1 (en) * 2017-07-03 2019-01-09 Tatsuta Electric Wire & Cable Co., Ltd. Metal-ceramic base material, metal-ceramic joint structure, method for producing metal-ceramic joint structure, and mixed powder material

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9335296B2 (en) 2012-10-10 2016-05-10 Westinghouse Electric Company Llc Systems and methods for steam generator tube analysis for detection of tube degradation
US11203810B2 (en) 2019-05-13 2021-12-21 The Boeing Company Method and system for fabricating an electrical conductor on a substrate
US11935662B2 (en) 2019-07-02 2024-03-19 Westinghouse Electric Company Llc Elongate SiC fuel elements
ES2955292T3 (es) 2019-09-19 2023-11-29 Westinghouse Electric Co Llc Aparato para realizar pruebas de adherencia in situ de depósitos de pulverización en frío y procedimiento de empleo
JP7231586B2 (ja) * 2020-07-17 2023-03-01 株式会社神戸製鋼所 異材接合構造体の製造方法
CN113718242B (zh) * 2021-06-30 2023-04-28 中国兵器科学研究院宁波分院 一种大尺寸弥散强化铜构件的增材制造连接成形方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006319146A (ja) * 2005-05-13 2006-11-24 Fuji Electric Holdings Co Ltd 配線基板
JP2011029323A (ja) * 2009-07-23 2011-02-10 Mitsubishi Materials Corp パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法
JP2011212684A (ja) * 2010-03-31 2011-10-27 Hitachi Ltd 金属接合部材及びその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5545505A (en) 1978-09-25 1980-03-31 Ricoh Co Ltd Solderable aluminum material
JP2001164379A (ja) 1999-12-08 2001-06-19 Ebara Corp 表面処理方法及び接合方法
DE19963385C1 (de) * 1999-12-28 2001-01-25 Federal Mogul Wiesbaden Gmbh Schichtverbundwerkstoff für Gleitlager
JP3763520B2 (ja) 2000-12-25 2006-04-05 Tdk株式会社 はんだ付け用組成物
JP2006068765A (ja) 2004-09-01 2006-03-16 Toshiba Corp 接合体及び接合方法
GB2447486A (en) 2007-03-14 2008-09-17 Sandvik Osprey Ltd A brazing piece comprising a composite material including an inorganic flux
JP5549996B2 (ja) 2010-06-15 2014-07-16 住友電気工業株式会社 アルミタブリード用のフープ状部材
EP2612722B1 (en) 2010-08-31 2020-03-11 Nissan Motor Co., Ltd. Method for bonding aluminum-based metals
JP2012094595A (ja) 2010-10-25 2012-05-17 Toshiyuki Arai 放熱体及び電気機器
JP2013125952A (ja) 2011-12-16 2013-06-24 Toyota Motor Corp 半導体装置
JP5892851B2 (ja) * 2012-05-11 2016-03-23 東洋鋼鈑株式会社 太陽電池用インターコネクタ材料、太陽電池用インターコネクタ、およびインターコネクタ付き太陽電池セル
JP2014072398A (ja) 2012-09-28 2014-04-21 Asahi Kasei E-Materials Corp 半導体装置及びその製造方法
JP2015137384A (ja) 2014-01-21 2015-07-30 トヨタ自動車株式会社 金属皮膜およびその成膜方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006319146A (ja) * 2005-05-13 2006-11-24 Fuji Electric Holdings Co Ltd 配線基板
JP2011029323A (ja) * 2009-07-23 2011-02-10 Mitsubishi Materials Corp パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法
JP2011212684A (ja) * 2010-03-31 2011-10-27 Hitachi Ltd 金属接合部材及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3424893A1 (en) * 2017-07-03 2019-01-09 Tatsuta Electric Wire & Cable Co., Ltd. Metal-ceramic base material, metal-ceramic joint structure, method for producing metal-ceramic joint structure, and mixed powder material
US11060192B2 (en) 2017-07-03 2021-07-13 Tatsuta Electric Wire & Cable Co., Ltd. Metal-ceramic base material, metal-ceramic joint structure, method for producing metal-ceramic joint structure, and mixed powder material

Also Published As

Publication number Publication date
EP3396021A1 (en) 2018-10-31
EP3396021A4 (en) 2019-05-08
TWI663289B (zh) 2019-06-21
JP6454262B2 (ja) 2019-01-16
TW201742951A (zh) 2017-12-16
US20180361708A1 (en) 2018-12-20
EP3396021B1 (en) 2020-07-01
JP2017115207A (ja) 2017-06-29
US10926514B2 (en) 2021-02-23

Similar Documents

Publication Publication Date Title
JP6454262B2 (ja) 半田接続構造、および成膜方法
JP5186528B2 (ja) 導電部材及びその製造方法
CA2609565C (en) Material and method of manufacture of a solder joint with high thermal conductivity and high electrical conductivity
CN107743429B (zh) 将导体连接到端子元件的方法以及由此生产的端子组件
WO2006075459A1 (ja) はんだペースト、及び電子装置
WO2016185996A1 (ja) 半田接続構造、及び成膜方法
JP2004114069A (ja) 無電解Niメッキ部分へのはんだ付け用はんだ合金
CN101081462A (zh) 钎焊膏
CN109326530B (zh) 将导体焊接到铝金属化物
Hong et al. MLCC Solder joint property with vacuum and hot air reflow soldering processes
Chang et al. Enhancement of the wettability and solder joint reliability at the Sn–9Zn–0.5 Ag lead-free solder alloy–Cu interface by Ag precoating
US10625376B2 (en) Bonding member, method for manufacturing bonding member, and bonding method
JP2019127599A (ja) バスバー、及びバスバーの製造方法
JP5333705B1 (ja) アルミニウム基材へのSn粉末固着方法及びアルミニウム導電部材
JPH0871741A (ja) 電気部品
JP6437365B2 (ja) 固定方法、被覆導線固定構造
JP2014192494A (ja) 電子デバイス用の端子構造及び電子デバイス
JP6267427B2 (ja) はんだ付け方法及び実装基板
CN101286593B (zh) 超声波钎焊铝线卷及其制造方法
TW201114954A (en) Method for inhibiting growth of tin whiskers
JP2006083410A (ja) 電子部品の製造方法
PL242249B1 (pl) Sposób łączenia stopów aluminium z materiałami kompozytowymi na osnowie grafitu metodą lutowania miękkiego
JPH11135533A (ja) 電極構造、該電極を備えたシリコン半導体素子、その製造方法及び該素子を実装した回路基板並びにその製造方法
JP2005085590A (ja) 複合被覆銅線、複合被覆エナメル銅線および複合被覆融着エナメル銅線
JPH11214419A (ja) 電子部品および半田バンプの形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016878872

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016878872

Country of ref document: EP

Effective date: 20180724