WO2017110939A1 - 光学フィルタおよび光学装置 - Google Patents

光学フィルタおよび光学装置 Download PDF

Info

Publication number
WO2017110939A1
WO2017110939A1 PCT/JP2016/088233 JP2016088233W WO2017110939A1 WO 2017110939 A1 WO2017110939 A1 WO 2017110939A1 JP 2016088233 W JP2016088233 W JP 2016088233W WO 2017110939 A1 WO2017110939 A1 WO 2017110939A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength
optical filter
filter according
fine particles
Prior art date
Application number
PCT/JP2016/088233
Other languages
English (en)
French (fr)
Inventor
総 石戸
篤史 小柳
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2017110939A1 publication Critical patent/WO2017110939A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters

Definitions

  • the present invention relates to an optical filter that selectively transmits infrared light, particularly near infrared light, and an optical device using the same.
  • Near-infrared light is used for various purposes such as measurement, communication, and biometric authentication in addition to photographing applications.
  • An optical device using near infrared light generally has a near infrared light emitting part and / or a near infrared light receiving part.
  • the optical device has a near-infrared light that passes near-infrared light and blocks visible light for the purpose of emitting near-infrared light to the outside or receiving light from the outside via these light-emitting and light-receiving parts.
  • a light transmission filter is provided. Such a near-infrared light transmission filter can reduce unnecessary light such as visible light incident on the light emitting unit and the light receiving unit (for example, Patent Document 1).
  • Patent Document 2 shows an example of a light shielding film that realizes light-colored colors and realizes near-infrared light transmittance in order to enhance the design of smartphones and the like.
  • the near-infrared light transmission filter used in a mobile terminal has a high glossiness
  • a contrast is generated even when colors are matched between the housing and the near-infrared light transmission filter, and the opening is visually recognized.
  • the design of the apparatus may be deteriorated.
  • the casing has a matte feeling while being a dark color such as black, the opening is easily visually recognized by contrast.
  • the light shielding film described in Patent Document 2 includes a resin layer B containing a black pigment (or a red pigment and a blue pigment) in order to realize shielding properties, and a white pigment in order to have a scattering property with respect to visible light.
  • the resin layer A is contained. Then, by laminating the light shielding film so that the resin layer A is positioned on the substrate side, not only the shielding property against visible light and the transparency to near infrared light, but also lightening the color is realized.
  • the light shielding film described in Patent Document 2 is not described as having a problem with respect to haze with respect to near-infrared light to be transmitted.
  • the light shielding film actually scatters not only visible light but also near infrared light in the resin layer A, the straight-line transmittance of the near infrared light is not sufficient, and the light of the near infrared light is not sufficient. There was a problem that usage efficiency was low.
  • the present invention uses an optical filter that achieves both designability (particularly, low contrast with a dark housing with a matte feeling) and high sensitivity to near-infrared light, and the optical filter.
  • An object of the present invention is to provide an optical device.
  • An optical filter according to the present invention includes a wavelength-selective absorption layer containing one or more dyes that absorb visible light and fine particles in a transparent resin, and the wavelength-selective absorption layer is formed in the near infrared region.
  • the average of the straight transmittance in the first near-infrared wavelength band, which is at least a continuous 15 nm wavelength band, is 80% or more, and the diffuse reflectance for light having a wavelength of 532 nm is 0.04% or more.
  • the optical device includes a light emitting unit that emits light in a part of the near infrared region, a light receiving unit that receives light in a part of the near infrared region, and the light emitting unit or A housing that surrounds the light receiving unit and a near-infrared light transmission filter provided in an opening of the housing are provided, and the near-infrared light transmission filter is the optical filter described above.
  • an optical filter that achieves both a design with a matte dark color and a high sensitivity to near infrared light, and an optical device using the optical filter.
  • FIG. 1 is a configuration diagram illustrating an example of an optical filter 10 according to the first embodiment.
  • FIG. 2 is a conceptual diagram schematically showing an example of the refractive index wavelength dispersion characteristics of the colored resin 12 and the fine particles 13, and (a) is a graph showing an example of the refractive index wavelength dispersion characteristics of the colored resin and the fine particles. (B) is a graph which shows typically an example of the absorption spectrum of colored resin.
  • FIG. 3 is an explanatory diagram showing an example of the refractive indexes of the resin material and the fine particle material.
  • FIG. 4 is an example of the refractive index of the resin material and the fine particle material.
  • FIG. 5 is an explanatory diagram showing an outline of a method for measuring the haze of transmitted light.
  • FIG. 5 is an explanatory diagram showing an outline of a method for measuring the haze of transmitted light.
  • FIG. 6 is an explanatory view showing an outline of a method for measuring the haze of transmitted light.
  • FIG. 6A is a diagram in which test light is incident with nothing provided at the entrance opening and a reference white plate provided at the exit opening. It is a figure which shows the state which measures value T1, (b) is a state which measures test value T2 by injecting test light in the state which provided the test piece in the entrance opening, and provided the reference white board in the exit opening.
  • FIG. 7 is an explanatory diagram showing an outline of a method for measuring diffuse reflectance.
  • FIG. 8 is an explanatory view showing an outline of a method for measuring diffuse reflectance.
  • FIG. 8A shows a state in which nothing is provided at the entrance opening and the exit opening, and the test light is incident with a reference white plate provided at the reflection opening.
  • FIG. 9 is a diagram illustrating another configuration example of the optical filter 10.
  • FIG. 10 is a diagram illustrating another configuration example of the optical filter 10, and (a) illustrates an example in which the optical filter includes a dielectric multilayer film on one surface of the wavelength selective absorption layer.
  • (B) shows an example in which the optical filter includes a dielectric multilayer film outside the wavelength selective absorption layer and / or outside the substrate.
  • FIG. 11 is a diagram illustrating another configuration example of the optical filter 10.
  • FIG. 12 is a configuration diagram illustrating an example of an optical device according to the second embodiment.
  • FIG. 13 shows the evaluation results of Examples and Comparative Examples.
  • 14 (a) to 14 (c) are graphs showing the evaluation results of the straight transmittance of the example and the comparative example.
  • FIG. 15 is a configuration diagram illustrating a configuration example of an optical filter of a comparative example.
  • FIG. 16 is a configuration diagram illustrating a configuration example of an optical filter of a comparative example.
  • FIG. 1 is a configuration example of an optical filter 10 according to the first embodiment of the present invention.
  • the optical filter 10 includes a wavelength-selective absorption layer 11 containing a dye 14 having absorption in the visible region and fine particles 13 in a resin 15.
  • the state in which the pigment 14 is uniformly dissolved or dispersed in the resin 15 may be referred to as the colored resin 12.
  • the visible range is approximately 400 to 700 nm, more preferably 400 to 730 nm. Further, the near infrared region has a wavelength of about 800 nm or more. If the visible light to be absorbed and diffusely reflected or near-infrared light having the detection band of the infrared sensor is determined in advance, both the visible range and the near-infrared range are within the above range, and the target wavelength band is further increased. Light may be specified. Unless otherwise specified, the visible region has a wavelength of 400 to 700 nm, and the near infrared region has a wavelength of 780 or more, particularly a wavelength of 800 to 2000 nm.
  • the optical filter 10 transmits near infrared light at a certain rate or more, absorbs visible light at a certain rate or more, and diffuses and reflects visible light at a certain rate or more in an optical device using near infrared light. Used as a filter.
  • the optical filter 10 is observed to be colored in a dark color (for example, black) with a matte feeling in the human eye.
  • Resin 15 may absorb as long as there is no scattering with respect to visible light, and may be a resin that does not absorb and scatter against near infrared light.
  • the presence / absence of absorption may be determined using the transmittance, for example, if the average transmittance with respect to light of the target wavelength is 95% or more, there is no absorption.
  • Resin 15 is polyester resin, polyether resin, acrylic resin, polyolefin resin, cyclic olefin resin, polycarbonate resin, ene thiol resin, epoxy resin, polyamide resin, polyimide resin, polyamideimide resin, polyurethane resin, polystyrene resin, polyarylate Examples thereof include resins, polysulfone resins, polyether sulfone resins, polyparaphenylene resins, and polyarylene ether phosphine oxide resins.
  • the refractive index of the resin 15 can be adjusted by adjusting the molecular structure of the raw material components. Specifically, a method of imparting a specific structure to the main chain or side chain of the polymer of the raw material component can be mentioned.
  • the structure provided in the polymer is not particularly limited, and examples thereof include a fluorene skeleton.
  • the transparent resin may be a polymer alloy in which a plurality of different resins are combined.
  • the resin 15 may be a resin that has been polymerized in advance, or may be a resin that is coated with a low molecular weight material, polymerized (high molecular weight) by energy rays such as heat or ultraviolet rays, and cured.
  • a resin that has been polymerized in advance or may be a resin that is coated with a low molecular weight material, polymerized (high molecular weight) by energy rays such as heat or ultraviolet rays, and cured.
  • Resin 15 has a refractive index with respect to near infrared light of preferably 1.3 to 2.0, and more preferably 1.4 to 1.7. By setting the refractive index of the resin 15 within this range, a difference in refractive index with the fine particles 13 described later in the near infrared region can be reduced, and haze with respect to near infrared light can be reduced.
  • the pigment 14 is not particularly limited as long as it is a material that absorbs visible light (visible light absorbing material).
  • FIG. 1 shows an example in which a pigment 14 or the like having a predetermined particle diameter is dispersed and mixed in the resin 15, the pigment 14 may be a dye dissolved in the resin 15. In addition, two or more kinds of pigments may be contained in the resin 15.
  • the pigment 14 may be, for example, only a black pigment, or two or more types such as a black pigment and a green pigment.
  • black dyes include perylene dyes (perylene pigments), azo dyes, azine dyes, anthraquinone dyes, perinone dyes, and quinoline dyes.
  • green dyes include squarylium dyes, phthalocyanine dyes, cyanine dyes, indonaphthol dyes, xanthene dyes, dipyrromethene dyes, anthraquinone dyes, diketopyrrolopyrrole dyes, imonium dyes, diimonium dyes.
  • dye 14 may contain at least 1 sort (s) of these. In addition, the pigment
  • the pigment 14 can realize the shielding property of the wavelength selective absorption layer 11 by adjusting the type and amount thereof.
  • the wavelength-selective absorption layer 11 preferably has an average visible light transmittance of 50% or less, more preferably 40% or less when the thickness is 1 ⁇ m.
  • the dye 14 has not only a coloring effect due to absorption but also an effect of causing an abnormal refractive index dispersion in the colored resin 12.
  • the refractive index of a substance tends to monotonously decrease as the wavelength of light increases.
  • an abrupt change occurs in the vicinity of the wavelength. . That is, if the colored resin 12 has an absorption peak due to the dye 14, abnormal refractive index dispersion occurs with the absorption peak.
  • the wavelength-selective absorption layer 11 uses such refractive index anomalous dispersion in the visible region of the colored resin 12 to cause a refractive index difference between the colored resin 12 and the fine particles 13 in the visible region.
  • the wavelength selection is performed by adjusting the type and amount of the dye 14 contained in the resin 15 not only from the viewpoint of color but also from the viewpoint of anomalous refractive index dispersion (absorption peak wavelength and absorption intensity).
  • the scattering property with respect to visible light in the property absorbing layer 11 can be adjusted.
  • the fine particle 13 is preferably a material that does not absorb visible light.
  • the fine particles 13 are used to scatter visible light in the wavelength selective absorption layer 11.
  • the fine particles 13 have an average particle diameter of preferably 70 nm or more, and more preferably 100 nm or more, from the viewpoint of the visible light scattering ability, more specifically, the matte appearance.
  • the wavelength-selective absorption layer 11 may be unnecessarily thick, and is preferably 5000 nm or less, and more preferably 2000 nm or less.
  • the average particle diameter is a value of D50 measured by the microtrack method (laser diffraction / scattering method).
  • the fine particles 13 are preferably a combination of the resin 15 and the fine particles 13 such that the difference in refractive index between the resin 15 and the fine particles 13 with respect to near-infrared light is small or the refractive indexes are substantially the same.
  • the fine particles 13 include metal oxide fine particles such as silica, alumina, zirconia, yttrium oxide, yttrium oxide metal oxide, and complex oxides thereof.
  • the fine particles 13 may be acrylic, styrene, urethane, silicone, or nylon organic polymer fine particles.
  • the fine particles 13 are not limited to these, and may be, for example, fine particles of titanium dioxide depending on the refractive index of the resin 15. Further, the fine particles 13 may be fine particles made of two or more kinds of materials, and may be subjected to a coating process, for example.
  • the fine particles 13 preferably have a refractive index with respect to near infrared light of 1.3 to 2.5, and more preferably 1.4 to 2.0. By making the refractive index of the fine particles 13 within this range, the difference in refractive index with the resin 15 in the near infrared region can be reduced, and the haze for near infrared light can be reduced.
  • the average particle diameter of the fine particles 13 and the difference in refractive index between the fine particles 13 and the resin 15 serving as a binder are adjusted.
  • the scattering property of the wavelength selective absorption layer 11 with respect to visible light and near infrared light can be adjusted.
  • one of the refractive index adjustment targets is the resin 15 because the dye used in the present invention hardly absorbs in the near infrared region, so that the refractive index of the colored resin 12 in the near infrared region is This is because the refractive index can be used.
  • FIG. 2 is a conceptual diagram schematically showing an example of the refractive index wavelength dispersion characteristics of the colored resin 12 and the fine particles 13.
  • 2A is a graph schematically showing an example of the refractive index wavelength dispersion characteristics of the colored resin 12 and the fine particles 13
  • FIG. 2B is a graph schematically showing an example of the absorption spectrum of the colored resin 12.
  • FIG. 2 (a) shows the wavelength dependence of the refractive index of the colored resin 12 when it is assumed that three absorption peaks have occurred in the colored resin 12 due to the dye 14, as shown in FIG. 2 (b). Is schematically shown together with the wavelength dependence of the refractive index of the fine particles 13.
  • the actual absorption spectrum is complex, and FIGS. 2A and 2B are conceptual diagrams for explaining the principle.
  • the wavelength-selective absorption layer 11 of the present embodiment uses a scattering phenomenon that occurs in a wavelength-selective manner based on the principle of the wavelength dependency of the difference in refractive index and absorbance.
  • the visible light 102 enters the optical filter 10 in the + z direction from the viewing side of the optical filter 10.
  • near-infrared light may enter the optical filter 10 in the + z direction from the viewing side of the optical filter 10 or may enter the ⁇ z direction from the non-viewing side.
  • near infrared light 101a is the former example
  • near infrared light 101b is the latter example.
  • the visible light 102 when the visible light 102 is incident on the optical filter 10, the visible light 102 is partially absorbed by the wavelength selective absorption layer 11 and partially reflected and scattered. For this reason, the optical filter 10 appears colored with a matte dark color.
  • the near-infrared light 101a, 101b when near-infrared light 101a, 101b is incident on the optical filter 10, the near-infrared light 101a, 101b is partially scattered by the wavelength-selective absorption layer 11, but many components pass straight through and remain as they are. The light passes through the wavelength selective absorption layer 11.
  • the refractive index between the colored resin 12 and the fine particles 13 in the near infrared region or a specific wavelength region (for example, a wavelength of 800 to 1000 nm) in the wavelength selective absorption layer 11 is used.
  • the difference is preferably 0.5 or less, and more preferably 0.3 or less.
  • the above conditions may replace the colored resin 12 with the resin 15. This is because the absorption by the dye 14 for near-infrared light can be considered very small.
  • FIG. 3 and 4 show examples of the refractive indexes of various resin materials and fine particle materials.
  • FIG. 3 is a graph showing typical refractive index wavelength dispersion of polyimide resin, acrylic resin, silica fine particles, alumina fine particles, and titanium dioxide fine particles as the resin material and fine particle material.
  • FIG. 4 is a list of refractive indexes for light of wavelengths 532 nm and 940 nm of the same material.
  • the resin material and the transparent fine particle material there are combinations having very close refractive indexes. If such a combination having a small difference in refractive index is used, scattering with respect to near infrared light can be suppressed.
  • the above refractive index difference may be allowed.
  • the wavelength selective absorption layer 11 transmits straight light with respect to light in the first near infrared wavelength band which is at least a continuous 15 nm wavelength band in the near infrared range.
  • the average rate is preferably 80% or more, and more preferably 85% or more.
  • variety (length of the continuous wavelength) of a 1st near-infrared wavelength band should just be 15 nm or more, 30 nm or more is more preferable, and 50 nm or more is further more preferable. Even in the case where the width is 30 nm or more and 50 nm or more, the average of the straight transmittance is preferably 80% or more, and more preferably 85% or more.
  • the first near-infrared wavelength band only needs to include at least the wavelength of near-infrared light used in an optical device including the optical filter 10.
  • the first near-infrared wavelength band may be near-infrared light wavelength ⁇ 7.5 nm, the wavelength ⁇ 15 nm, or the wavelength ⁇ 25 nm used in an optical device including the optical filter 10.
  • the wavelength-selective absorption layer 11 has a haze of transmitted light with respect to the light in the first near-infrared wavelength band of preferably 1% or less, and more preferably 0.5% or less. A method for measuring the haze of transmitted light will be described later.
  • the wavelength-selective absorption layer 11 preferably has a diffuse reflectance with respect to light having a wavelength of 532 nm of 0.04% or more, and more preferably 0.05% or more. A method for measuring the diffuse reflectance will be described later.
  • the wavelength-selective absorption layer 11 has an average transmittance with respect to visible light when the thickness is 1 ⁇ m, preferably 50% or less, and more preferably 40% or less. Further, the wavelength selective absorption layer 11 has an average transmittance for visible light of preferably 5% or less, and more preferably 2% or less. The average transmittance for visible light in the wavelength selective absorption layer 11 may be the average transmittance for visible light in the entire optical filter 10 including the wavelength selective absorption layer 11.
  • FIG. 5 and FIG. 6 are explanatory views showing an outline of a method for measuring the haze of transmitted light used in the present embodiment. Unless otherwise noted, the haze of the transmitted light is the measurement result under the following method and conditions.
  • FIG. 5 shows an example of a transmission light haze measurement system, and laser light having a wavelength of 940 ⁇ 5 nm is used as test light.
  • the laser light is adjusted so as to be parallel light having a light beam diameter of 1.0 mm.
  • the size of the integrating sphere is 2 inches in diameter, 0.5 inches of inlet opening, 0.15 inches of outlet opening, and 0.5 inches of receiver opening.
  • the receiver opening is provided at a position forming a central angle of 90 ° from the inlet opening and the outlet opening.
  • the test light is allowed to pass through the center of the inlet and outlet openings of the integrating sphere.
  • the specimen is placed at a position 10 mm away from the entrance opening.
  • the wavelength of the test light can be changed in accordance with the wavelength of near infrared light used for the optical filter, and the haze of the transmitted light can be evaluated based on the measurement result for the light of that wavelength.
  • FIG. 6 is an explanatory diagram showing a measurement procedure of measurement values T1 to T4 for measuring the haze of transmitted light.
  • the haze H [%] of the transmitted light is obtained by the following equation (1) based on the four measured values T1 to T4.
  • T1 represents the photometric result of the luminous flux of the incident light. As shown in FIG. 6A, T1 is a value measured by making test light incident in a state where nothing is provided at the entrance opening and a reference white plate is provided at the exit opening. T2 represents the photometric result of the light beam that has passed through the test piece. As shown in FIG. 6B, T2 is a value measured by making test light incident while providing a test piece at the entrance opening and a reference white plate at the exit opening. T3 represents the photometric result of the light beam diffused by the apparatus. As shown in FIG. 6C, T3 is a value measured by making test light incident in a state where nothing is provided at the entrance opening and the exit opening.
  • T4 represents the photometric result of the light beam diffused by the apparatus and the test piece. As shown in FIG. 6D, T4 is a value measured by making test light incident in a state where a test piece is provided at the entrance opening and nothing is provided at the exit opening. The reference white plate is coated so that almost 100% of the light is diffusely reflected, like the integrating sphere.
  • the method for measuring the haze of transmitted light is not limited to this, and for example, a spectral haze meter HSP-150VIR manufactured by Murakami Color Research Laboratory may be used. Also in this measurement method, the haze H of transmitted light is preferably 1% or less, and more preferably 0.5% or less.
  • 7 and 8 are explanatory views showing an outline of the diffuse reflectance measurement method used in the present embodiment. Unless otherwise specified, the diffuse reflectance is a measurement result under the following method and conditions.
  • FIG. 7 shows an example of a diffuse reflectance measurement system, and laser light having a wavelength of 532 nm is used as test light.
  • the size of the integrating sphere is 2 inches in diameter and all openings are 0.5 inches.
  • the receiver opening (not shown) is provided at a position that forms a central angle of 90 ° from the entrance opening, the exit opening, and the reflection opening.
  • the test light is allowed to pass through the center of the inlet and outlet openings of the integrating sphere.
  • the reference white plate or test piece attached to the reflection opening is provided so that specular reflection light passes through the exit opening.
  • FIG. 8 is an explanatory diagram showing a measurement procedure of measurement values R1 and R2 for measuring diffuse reflectance.
  • the diffuse reflectance DR [%] is obtained by the following formula (2) based on the two measured values R1 and R2.
  • R1 represents the photometric result of the light flux of the diffusely reflected light of the device. As shown in FIG. 8A, R1 is a value measured by making test light incident in a state where nothing is provided at the entrance opening and the exit opening and a reference white plate is provided at the reflection opening. R2 represents the photometric result of the light flux of the diffusely reflected light of the test piece. As shown in FIG. 8B, R2 is a value measured by making test light incident in a state where nothing is provided in the entrance opening and the exit opening and a test piece is provided in the reflection opening.
  • the obtained diffuse reflectance DR is preferably 0.04% or more, and more preferably 0.05% or more.
  • the optical filter 10 may further include, for example, a base material 16, and the wavelength selective absorption layer 11 may be laminated on the base material 16. Further, as shown in FIG. 10A, the optical filter 10 may further include a dielectric multilayer film 17 on one surface of the wavelength selective absorption layer 11, and as shown in FIG. The dielectric multilayer film 17 (the dielectric multilayer film 17a and the dielectric multilayer film 17b) may be provided on both surfaces of the wavelength selective absorption layer 11. When the wavelength selective absorption layer 11 is laminated on the base material 16, the dielectric multilayer film 17 (dielectric multilayer film) is formed outside the wavelength selective absorption layer 11 and / or outside the base material 16. 17a and / or dielectric multilayer film 17b) may be provided (see FIG. 10B and FIG. 11).
  • the substrate 16 may be a member that does not absorb or scatter near infrared light, and may be a member that absorbs visible light.
  • the substrate 16 may be a substrate made of glass or resin, for example.
  • the dielectric multilayer films 17, 17a, and 17b may have an antireflection function for, for example, near infrared light or light in the first near infrared wavelength band.
  • the dielectric multilayer films 17, 17a and 17b may have a function of reflecting light having a wavelength longer than that of the first near-infrared wavelength band and function as a bandpass filter, for example.
  • the dielectric multilayer films 17, 17a and 17b may have both of the above functions, or may be a combination of two dielectric multilayer films having any of the above functions.
  • achieves the reflection preventing function with respect to the light of a 1st near-infrared wavelength band and the reflection function with respect to the light of longer wavelength than a 1st near-infrared wavelength band is not restricted to a dielectric multilayer film.
  • the material used is not particularly limited as long as it is a material that does not absorb and scatter the light in the first near-infrared wavelength band.
  • a silicone resin, an acrylic resin, a fluorinated acrylic resin, a cycloolefin resin examples include fluorinated cycloolefin resins.
  • silica fine particles or hollow silica fine particles it is possible to realize a low refractive index and improve scratch resistance.
  • the thickness of the antireflection film is usually 100 to 2000 nm.
  • an adhesive layer made of a functional film or the like may be provided between the base material 16 and the wavelength selective absorption layer 11.
  • the wavelength-selective absorption layer 11 includes the dye 14 and the fine particles 13, thereby providing a design property that forms a matte dark color and high sensitivity to near-infrared light.
  • a compatible optical filter can be realized.
  • FIG. 12 is a configuration diagram illustrating an example of an optical device according to the second embodiment of the present invention.
  • the optical device 100 shown in FIG. 12 has a near-infrared light emitting unit 2 and / or a near-infrared light receiving unit 3 in the housing 4.
  • the optical device 100 is provided with the optical filter 10 described above so as to cover an opening provided in the housing 4. With such a configuration, near-infrared light is received and emitted to the outside of the housing 4 through the optical filter 10.
  • the optical device 100 measures, for example, a camera device that captures an image using near-infrared light, a distance sensor that detects the distance of an object and the presence or absence of a nearby object, and a proximity sensor using near-infrared light.
  • Optical devices such as devices, communication devices that perform information communication using near infrared light, and authentication devices that perform biometric authentication such as iris, fingerprint, and vein authentication using near infrared light.
  • the housing 4 may surround a device that performs other functions than the near infrared light emitting unit 2 and the near infrared light receiving unit 3.
  • the outer surface of the housing 4 is colored in a dark and matte color such as black.
  • the near-infrared light emitting unit 2 is not limited to a lamp or the like, and may be an LED or a laser light source. Further, the near-infrared light emitting unit 2 is not limited to the one having a function of emitting near-infrared light, but may be a transmission unit that outputs near-infrared light emitted by another.
  • the near-infrared light receiving unit 3 is not limited to a single light receiving element such as a photodiode, but may be one that acquires image information such as a CMOS sensor.
  • Example 1 This example is an embodiment of the optical filter 10 shown in FIG.
  • polyimide resin (trade name “L-3450” manufactured by Mitsubishi Gas Chemical Co., Ltd.) was used as the resin 15.
  • the dye 14 includes three kinds of dyes, specifically, the azo dye (1) (CI Solvent Orange 7), the azo dye (2) (CI Solvent Black 3), and phthalocyanine. System dye (trade name “FDN-001” manufactured by Yamada Chemical Co., Ltd.) was used.
  • the fine particles 13 were silica fine particles (manufactured by Nissan Chemical Co., Ltd., trade name “MEK-AC-5140Z” fine particle concentration (SiO 2 solid content) 40 wt%).
  • a near-infrared light transmitting glass (trade name “D263 Teco” manufactured by Matsunami Glass Industry Co., Ltd.) plate was used for the base material 16.
  • the resin 15 of this example has a refractive index of 1.60 for light with a wavelength of 940 nm, and the fine particles 13 have a refractive index of 1.45 for light with a wavelength of 940 nm, with a difference of 0.15.
  • the average particle size of the fine particles 13 is about 100 nm.
  • the manufacturing method is as follows. First, 0.797 g of the polyimide resin, 0.062 g of the azo dye (1), 0.078 g of the azo dye (2) and 0.081 g of the phthalocyanine dye, A solution was prepared by dissolving 0.005 g of BYK-325 (manufactured by BYK Japan) and 1.275 g of the above silica fine particles in 8.5 g of cyclopentanone.
  • this solution was applied to one surface of the substrate 16 having a size of 76 mm ⁇ 76 mm ⁇ 0.145 mm, and then baked to form a structure to be the wavelength selective absorption layer 11.
  • a spin coater (Spin Coater MS-A200 manufactured by Mikasa Co., Ltd.) was used for coating.
  • the firing temperature is 150 ° C. and the firing time is 10 minutes.
  • the formed wavelength selective absorption layer 11 had a thickness of 7.2 ⁇ m, and the fine particle concentration (SiO 2 concentration) in the structure was 33 wt%.
  • FIG. 13 and FIG. 14 show the evaluation results of the optical filter 10 of this example obtained in this way. The results were obtained based on the measurement method described with reference to FIGS. 5 to 8, and the same applies to other examples and comparative examples.
  • the optical filter 10 of this example has a diffuse reflectance DR of 0.06% for light with a wavelength of 532 nm and a transmission haze H for light with a wavelength of 940 nm of 0.12%. Good results.
  • the invisibility contrast judgment
  • FIG. 14 is a graph showing the evaluation results of the straight transmittance in each example.
  • FIG. 14 (a) is a graph showing the evaluation results of the straight-line transmittance of each example with respect to light having a wavelength of 400 to 1000 nm
  • FIG. 14 (b) is a straight-line transmittance for light having a wavelength of 400 to 800 nm. Is an enlarged graph in the range of 0 to 5%
  • FIG. 14C is a graph showing the straight-line transmittance of light having a wavelength of 800 to 1000 nm in an enlarged range of 80 to 95%.
  • the optical filter 10 of the present example has a linear average transmittance of less than 5% for light in the visible region, particularly wavelengths 400 to 700 nm and wavelengths 400 to 730 nm, and also in the near infrared region, particularly wavelengths 850 to 850.
  • the straight average transmittance for light of 1000 nm is 80% or more.
  • the optical filter 10 of the present example has a small variation in the straight-line transmittance for light in the near infrared region, particularly in the wavelength range of 870 to 1000 nm, and maintains a high level of 85% or higher for light in any wavelength region.
  • Example 2 This example is different from the optical filter 10 of the first example in that alumina particles are used as the particles 13 instead of silica particles.
  • This example is also an example of the optical filter 10 shown in FIG.
  • the fine particles 13 were alumina fine particles (trade name “OP-9611A White” manufactured by Toyocolor Co., Ltd., fine particle concentration 75 wt%).
  • Other materials are the same as in the first example.
  • the fine particles 13 of this example have a refractive index of 1.76 with respect to light having a wavelength of 940 nm, and the difference from the refractive index of the resin 15 is 0.16.
  • the average particle size of the fine particles 13 is about 400 nm.
  • the manufacturing method is as follows. First, 0.548 g of the same polyimide resin as in the first example, 0.029 g of the same azo dye (1) as in the first example, 0.036 g of azo dye (2), and 0.038 g of phthalocyanine dye A solution was prepared by dissolving 0.002 g of BYK-325 (manufactured by Big Chemie Japan Co., Ltd.) as a surface conditioner and 0.046 g of the above-mentioned alumina fine particles in 5.5 g of cyclopentanone.
  • BYK-325 manufactured by Big Chemie Japan Co., Ltd.
  • This solution was formed into a film on the same substrate 16 as in the first example by the same method as in the first example to form a structure to be the wavelength selective absorption layer 11.
  • the formed wavelength selective absorption layer 11 had a thickness of 7.1 ⁇ m, and the fine particle concentration (Al 2 O 3 concentration) in the structure was 5 wt%.
  • the optical filter 10 of this example has a diffuse reflectance DR of 0.10% with respect to light with a wavelength of 532 nm and a transmission haze H with respect to light with a wavelength of 940 nm of 0.9%. Good results. Moreover, when it was actually incorporated into a dark housing with a matte feeling, it was confirmed that the invisibility (contrast judgment) was good, that is, the boundary was not noticeable and the contrast was low.
  • the optical filter 10 of the present example has a linear average transmittance of less than 5% for light in the visible region, particularly wavelengths 400 to 700 nm and wavelengths 400 to 730 nm, and the near infrared region, particularly the wavelength.
  • the straight average transmittance for light of 850 to 1000 nm is 85% or more.
  • the optical filter 10 of this example has almost no fluctuation in the straight transmittance with respect to light in the near infrared region, particularly with a wavelength of 850 to 1000 nm, and maintains a high level of 85% or more in light in any wavelength region.
  • Example 3 This example is an example in which a functional film is further provided in the configuration of the optical filter 10 of the first example.
  • a functional film As the functional film, an OCA tape (manufactured by 3M, trade name “optically clear adhesive 8211”; thickness: 25 ⁇ m) was used. Other materials are the same as in the first example.
  • the manufacturing method is as follows. First, a roll film (trade name “ZEONOR (registered trademark) ZF16” manufactured by Nippon Zeon Co., Ltd .; thickness 100 ⁇ m) is prepared as a peelable substrate, and the same method as in the first example is applied to one surface of the substrate. The structure which becomes the wavelength selective absorption layer 11 was formed. The formed wavelength selective absorption layer 11 had a thickness of 7.2 ⁇ m, and the fine particle concentration (SiO 2 concentration) in the structure was 33 wt%.
  • a slightly adhesive film (trade name “PET75-H109 (20)” manufactured by Niei Kaiko Co., Ltd.) was bonded onto the structure, and the above-mentioned peelable substrate was peeled off.
  • the OCA tape was bonded to the surface of the structure on the side that was provided, and then the OCA tape was bonded to one surface of the same base material 16 as in the first example, In this way, the optical filter 10 of this example was obtained, in which the total thickness of the structure (wavelength selective absorption layer 11) and the OCA tape was 32 ⁇ m.
  • the optical filter 10 of this example has a diffuse reflectance DR for light with a wavelength of 532 nm of 0.07% and a transmission haze H for light with a wavelength of 940 nm of 0.5%. Good results. Moreover, when it was actually incorporated into a dark housing with a matte feeling, it was confirmed that the invisibility (contrast judgment) was good, that is, the boundary was not noticeable and the contrast was low.
  • the optical filter 10 of the present example has a linear average transmittance of less than 5% for light in the visible region, particularly wavelengths 400 to 700 nm and wavelengths 400 to 730 nm, and the near infrared region, particularly the wavelength.
  • the straight average transmittance for light of 850 to 1000 nm is 85% or more.
  • the optical filter 10 of the present example has a small variation in the straight-line transmittance for light in the near infrared region, particularly in the wavelength range of 850 to 1000 nm, and maintains a high level of 85% or higher for light in any wavelength region.
  • FIG. 15 is a configuration diagram showing the configuration of the optical filter 90a of this example.
  • the optical filter 90 a of this example includes a base material 96 and a colored resin 92.
  • the base material 96 and the colored resin 92 correspond to the base material 16 and the colored resin 12 in the above embodiment.
  • the colored resin 92 is not shown, but contains a pigment in the resin.
  • the substrate 96 is the same as the substrate 16 of the first example.
  • a polyimide resin (trade name “L-3450” manufactured by Mitsubishi Gas Chemical Co., Ltd.) was used as the resin constituting the colored resin 92.
  • the coloring matter constituting the colored resin 92 includes three types of dyes, specifically, the azo dye (1) (CI Solvent Orange 7) and the azo dye (2) (CI Solvent). Black 3) and a phthalocyanine dye (trade name “FDN-001” manufactured by Yamada Chemical Co., Ltd.) were used.
  • the manufacturing method is as follows. First, 0.27 g of the above polyimide resin, 0.026 g of the above azo dye (1), 0.033 g of the azo dye (2), and 0.081 g of the phthalocyanine dye, A solution was prepared by dissolving 0.002 g of BYK-325 (manufactured by Big Chemie Japan Co., Ltd.) in 2.73 g of cyclopentanone.
  • This solution was applied to one surface of the substrate 96 and then baked to form a structure that becomes the colored resin 92.
  • a spin coater manufactured by Mikasa Co., Ltd., spin coater MS-A200
  • the firing temperature is 150 ° C. and the firing time is 10 minutes.
  • the formed colored resin 92 had a thickness of 4.2 ⁇ m.
  • the optical filter 90a of this example has a good transmission haze H with respect to light with a wavelength of 940 nm of 0.08%, but has a diffuse reflectance DR with respect to light with a wavelength of 532 nm of 0.02%. It was 0.03% or less, and the result was that the scattering property for visible light was not satisfied. When it was actually incorporated into a dark housing with a matte feeling, it was confirmed that the border was visible and that the contrast was high.
  • Comparative Example 2 This example corresponds to an example in which the wavelength selective absorption layer 11 is divided into a colored resin and a scattering layer that does not include coloring.
  • FIG. 16 is a configuration diagram showing the configuration of the optical filter 90b of this example.
  • the scattering layer 98 and the colored resin 92 are laminated on the base material 96 in this order.
  • the base material 96 and the colored resin 92 correspond to the base material 16 and the colored resin 12 in the above embodiment.
  • the scattering layer 98 includes fine particles 93 for scattering in the resin 95.
  • the substrate 96 is the same as the substrate 16 of the first example.
  • a polyimide resin (trade name “L-3450” manufactured by Mitsubishi Gas Chemical Co., Ltd.) was used as the resin constituting the colored resin 92.
  • the coloring matter constituting the colored resin 92 includes three types of dyes, specifically, the azo dye (1) (CI Solvent Orange 7) and the azo dye (2) (CI Solvent). Black 3) and a phthalocyanine dye (trade name “FDN-001” manufactured by Yamada Chemical Co., Ltd.) were used.
  • the resin 95 the same polyimide resin as the colored resin 92 (trade name “L-3450” manufactured by Mitsubishi Gas Chemical Co., Ltd.) was used.
  • silica fine particles manufactured by Nissan Chemical Co., Ltd., trade name “MEK-AC-5140Z” fine particle concentration (SiO 2 solid content) 40 wt%) were used as the fine particles 93.
  • the refractive index of the resin 95 in this example with respect to light with a wavelength of 940 nm is 1.60
  • the refractive index of the fine particles 93 with respect to light with a wavelength of 940 nm is 1.45
  • the difference is 0.15
  • the average particle diameter of the fine particles 93 is about 100 nm.
  • the manufacturing method is as follows. First, 0.36 g of the above polyimide resin as resin 95 is dissolved in 3.64 g of cyclopentanone, and then 0.1 g of the above silica fine particles are added as fine particles 93 to prepare a white scattering coating solution. did.
  • This solution was formed on the substrate 96 by the same method as in the first example, and a structure to be the scattering layer 98 was formed.
  • the formed scattering layer 98 was 0.8 ⁇ m in thickness, and the fine particle concentration (SiO 2 concentration) in the structure was 10 wt%.
  • a colored resin 92 was formed on the scattering layer 98 by the same method as in the first comparative example, to obtain an optical filter 90b of this example.
  • the optical filter 90b of the second comparative example has a good transmission haze H of 0.25% for light with a wavelength of 940 nm, but the diffuse reflectance DR for light with a wavelength of 532 nm is 0.00. It was 03%, and the result was that the scattering performance for visible light was not satisfied. When it was actually incorporated into a dark housing with a matte feeling, it was confirmed that the border was visible and that the contrast was high.
  • Comparative Example 3 This example differs from the optical filter 90b of the second comparative example in that titanium dioxide is used for the fine particles 93 instead of silica fine particles.
  • fine particles 93 were titanium dioxide fine particles (manufactured by Sakai Chemical Industry Co., Ltd., trade name “D918” average particle size 280 nm). Other materials are the same as those in the second comparative example.
  • the refractive index of the resin 95 of this example with respect to light with a wavelength of 940 nm is 1.6
  • the refractive index of the fine particles 93 with respect to light with a wavelength of 940 nm is 2.5
  • the difference is 0.9.
  • the manufacturing method is as follows. First, 0.10 g of titanium dioxide fine particles, 0.10 g of a dispersant (trade name “BYK-170”, manufactured by BYK Japan) and 10 g of cyclopentanone were weighed, glass beads were added, By carrying out dispersion treatment with a ball mill, a 1 wt% TiO 2 dispersion was obtained. Further, 0.18 g of resin 95 was dissolved in 2 g of this dispersion to prepare a solution (white scattering coating solution).
  • the solution was formed into a film on the substrate 96 by the same method as in the second comparative example, and a structure to be the scattering layer 98 was formed.
  • the formed scattering layer 98 was 3 ⁇ m in thickness, and the fine particle concentration (TiO 2 concentration) in the structure was 10 wt%.
  • a colored resin 92 was formed on the scattering layer 98 by the same method as in the first comparative example, to obtain an optical filter 90b of this example.
  • the optical filter 90b of the third comparative example has a good diffuse reflectance DR of 1.90% for light with a wavelength of 532 nm, but has a transmission haze H of 1.90% for light with a wavelength of 940 nm. 48%, which is 1% or more and does not satisfy the straight transmission performance with respect to infrared light.
  • the optical filter 90b of the present example has a straight average transmittance of less than 1% with respect to light in the visible range, but has a straight transmittance of 85 with respect to light in most of the near infrared region. % Is below.
  • the optical filter 90b of this example has a large variation in the straight transmittance with respect to light in the near infrared region, and the sensitivity is not stable.
  • the present invention can be suitably used for various apparatuses such as measurement, communication, biometric authentication, in addition to photographing applications using near-infrared light.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

光学フィルタは、透明樹脂に、可視光を吸収する1種以上の色素と、微粒子とを含有した波長選択性吸収層を備え、前記波長選択性吸収層は、近赤外域のうちの少なくとも連続する15nmの波長帯である第1の近赤外波長帯の光に対する直進透過率の平均が80%以上であるとともに、波長532nmの光に対する拡散反射率が0.04%以上であることを特徴とする。

Description

光学フィルタおよび光学装置
 本発明は、赤外光、特に近赤外光を選択的に透過させる光学フィルタ、およびこれを用いた光学装置に関する。
 近赤外光は、撮影用途の他、計測、通信、生体認証など様々な用途で用いられている。
 近赤外光を利用した光学装置は、一般に近赤外光発光部および/または近赤外光受光部を有している。該光学装置には、これら発光部や受光部を介して近赤外光を外部に出射したり外部から受光したりする目的で、近赤外光を通過させ、可視光を遮断させる近赤外光透過フィルタが設けられる。このような近赤外光透過フィルタは、発光部や受光部に入射する可視光等の不要光を低減できる(例えば、特許文献1)。
 また、特許文献2には、スマートフォン等の意匠性を高めるために淡色系の色を実現しつつ、近赤外光に対する透過性を実現した遮光膜の一例が示されている。
国際公開第2014/084147号 日本国特開2015-185096号公報
 このようにモバイル端末に用いられる近赤外光透過フィルタは、その光沢度が高いと、筐体と近赤外光透過フィルタとの間で色を合わせてもコントラストが生じて、開口部が視認されるなど装置の意匠性が低下することがある。特に、筐体の色味として、黒色などの濃色でありながらマット感を有する場合、コントラストにより開口部が視認されやすい。
 特許文献2に記載の遮光膜は、遮蔽性を実現するために黒色顔料(又は赤色顔料及び青色顔料)を含有した樹脂層Bと、可視光に対して散乱性を持たせるために白色顔料を含有した樹脂層Aとを有する。そして、遮光膜を、基板側に樹脂層Aが位置するように積層することで、可視光に対する遮蔽性および近赤外光に対する透過性だけでなく、色味として淡色化を実現している。
 しかし、特許文献2に記載の遮光膜は、透過させるべき近赤外光に対するヘイズについて問題としたような記載はない。ところが、実際には、該遮光膜は、樹脂層Aにおいて可視光だけでなく近赤外光も散乱してしまうため、近赤外光の直進透過率が十分でなく、近赤外光の光利用効率が低いという問題があった。
 このように遮光膜を直進透過する近赤外光の光利用効率が低いと、受光素子と組み合わせて用いる赤外線カメラ装置などの光学装置において、画像が暗くなったり、像がぼやけたりするなど品質の低下を引き起こしてしまう。
 そこで、本発明は、意匠性(特に、マット感のある濃色の筐体との間での低コントラスト化)と、近赤外光に対する高い感度とを両立した光学フィルタおよび該光学フィルタを用いた光学装置の提供を目的とする。
 本発明による光学フィルタは、透明樹脂に、可視光を吸収する1種以上の色素と、微粒子とを含有した波長選択性吸収層を備え、前記波長選択性吸収層は、近赤外域のうちの少なくとも連続する15nmの波長帯である第1の近赤外波長帯における直進透過率の平均が80%以上であるとともに、波長532nmの光に対する拡散反射率が0.04%以上であることを特徴とする。
 また、本発明による光学装置は、近赤外域の一部の波長域の光を発光する発光部、または、近赤外域の一部の波長域の光を受光する受光部と、前記発光部または前記受光部を囲う筐体と、前記筐体の開口部に設けられる近赤外光透過フィルタとを備え、前記近赤外光透過フィルタが、上記の光学フィルタであることを特徴とする。
 本発明によれば、マット感のある濃色をなす意匠性と、近赤外光に対する高い感度とを両立した光学フィルタおよび該光学フィルタを用いた光学装置を提供できる。
図1は、第1の実施形態にかかる光学フィルタ10の例を示す構成図である。 図2は、着色樹脂12と微粒子13の屈折率波長分散特性の例を模式的に示す概念図であり、(a)は、着色樹脂および微粒子の屈折率波長分散特性の一例を示すグラフであり、(b)は、着色樹脂の吸収スペクトルの一例を模式的に示すグラフである。 図3は、樹脂材料および微粒子材料の屈折率の一例を示す説明図である。 図4は、樹脂材料および微粒子材料の屈折率の一例である。 図5は、透過光のヘイズの測定方法の概要を示す説明図である。 図6は、透過光のヘイズの測定方法の概要を示す説明図であり、(a)は、入口開口に何も設けず、出口開口に参照白板を設けた状態で試験光を入射させて計測値T1を測定する状態を示す図であり、(b)は、入口開口に試験片を設けるとともに、出口開口に参照白板を設けた状態で試験光を入射させて計測値T2を測定する状態を示す図であり、(c)は、入口開口および出口開口に何も設けない状態で試験光を入射させて計測値T3を測定する状態を示す図であり、(d)は、入口開口に試験片を設け、出口開口に何も設けない状態で試験光を入射させて計測値T4を測定する状態を示す図である。 図7は、拡散反射率の測定方法の概要を示す説明図である。 図8は、拡散反射率の測定方法の概要を示す説明図であり、(a)は、入口開口および出口開口に何も設けず、反射開口に参照白板を設けた状態で試験光を入射させて計測値R1を測定する状態を示す図であり、(b)は、入口開口および出口開口に何も設けず、反射開口に試験片を設けた状態で試験光を入射させて計測値R2を測定する状態を示す図である。 図9は、光学フィルタ10の他の構成例を示す図である。 図10は、光学フィルタ10の他の構成例を示す図であり、(a)は、光学フィルタが波長選択性吸収層のいずれか一方の面に誘電体多層膜を備えている例を示し、(b)は光学フィルタが波長選択性吸収層の外側および/または基材の外側に、誘電体多層膜を備えている例を示す。 図11は、光学フィルタ10の他の構成例を示す図である。 図12は、第2の実施形態にかかる光学装置の例を示す構成図である。 図13は、実施例および比較例の評価結果である。 図14(a)~(c)は、実施例および比較例の直進透過率の評価結果を示すグラフである。 図15は、比較例の光学フィルタの構成例を示す構成図である。 図16は、比較例の光学フィルタの構成例を示す構成図である。
実施形態1.
 次に、本発明の実施形態を、図面を参照して説明する。図1は、本発明の第1の実施形態にかかる光学フィルタ10の構成例である。光学フィルタ10は、樹脂15中に、可視域に吸収を有する色素14と、微粒子13とを含有した波長選択性吸収層11を備える。なお、以下、樹脂15に色素14が均一に溶解または分散された状態を指して、着色樹脂12という場合がある。
 可視域は、およそ波長400~700nm、より好ましくは400~730nmである。また、近赤外域は、およそ波長800nm以上である。なお、吸収および拡散反射させたい可視光や、赤外センサの検出帯域を有する近赤外光が予め決まっている場合、可視域、近赤外域ともに上記範囲内において、さらに対象とする波長帯の光を特定してもよい。また、特にことわりがない場合、可視域は波長400~700nmであり、近赤外域は波長780以上、特に波長800~2000nmとする。
 光学フィルタ10は、近赤外光を用いる光学装置等において、近赤外光を一定割合以上透過させ、可視光を一定割合以上吸収するとともに可視光を一定割合以上拡散反射させる近赤外光透過フィルタとして用いられる。
 また、光学フィルタ10は、人の目には、マット感のある濃色(例えば、黒色)に着色されたように観測される。
 樹脂15は、可視光に対して散乱がなければ吸収があってよく、近赤外光に対して吸収および散乱のない樹脂であればよい。ここで、吸収の有無は、対象波長の光に対する平均透過率が95%以上であれば吸収がないとするなど、透過率を用いて判定してもよい。
 樹脂15は、ポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、ポリオレフィン樹脂、環状オレフィン樹脂、ポリカーボネート樹脂、エン・チオール樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリウレタン樹脂、ポリスチレン樹脂、ポリアリレート樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリパラフェニレン樹脂、ポリアリーレンエーテルフォスフィンオキシド樹脂等が例示できる。
 また、樹脂15は、原料成分の分子構造を調整する等により、屈折率を調整できる。具体的には、原料成分のポリマーの主鎖や側鎖に特定の構造を付与する方法が挙げられる。ポリマー内に付与する構造は特に限定されないが、例えば、フルオレン骨格が挙げられる。透明樹脂は複数の異なる樹脂を組み合わせたポリマーアロイでもよい。
 また、例えば、樹脂15は、予め高分子量化されている樹脂でも、低分子量体を塗布し、熱または紫外線等のエネルギー線により重合(高分子量化)し硬化させる樹脂でもよい。この様な樹脂を用いることで、モールドを使ったプロセスが可能となり、任意の形状にパターニングすることができる。
 樹脂15は、近赤外光に対する屈折率が、1.3~2.0が好ましく、1.4~1.7がより好ましい。樹脂15の屈折率をこの範囲にすることで、近赤外域における後述する微粒子13との屈折率差を小さくでき、近赤外光に対するヘイズを低減できる。
 色素14は、可視光に対して吸収を有する材料(可視光吸収材料)であれば、特に問わない。なお、図1には、樹脂15に、顔料などの所定の粒子径を有する色素14が分散、混入される例を示すが、色素14は、樹脂15に溶解される染料でもよい。また、樹脂15中に、2種以上の色素が含有されてもよい。
 色素14は、例えば、黒色色素のみでもよく、黒色色素と緑色色素のように2種以上でもよい。黒色色素の例としては、ペリレン系色素(ペリレン系顔料)、アゾ系色素、アジン系色素、アントラキノン系色素、ペリノン系色素、キノリン系色素が挙げられる。また、緑色色素の例としては、スクアリリウム系色素、フタロシアニン系色素、シアニン系色素、インドナフトール系色素、キサンテン系色素、ジピロメテン系色素、アントラキノン系色素、ジケトピロロピロール系色素、イモニウム系色素、ジイモニウム系色素、クロコニウム系色素、アゾキレート系色素、ジチオール金属錯体、ジチオレン金属錯体、スクアリリウム金属錯体、及びインドアニリンキレート色素が挙げられる。色素14は、これらのうちの少なくとも1種を含んでもよい。なお、色素14はこれらに限定されない。
 色素14は、その種類や量を調整することで、波長選択性吸収層11の遮蔽性を実現できる。遮蔽性の指標として、波長選択性吸収層11は、厚さが1μmのときの可視光の平均透過率が、50%以下が好ましく、40%以下がさらに好ましい。
 本実施形態において、色素14は、吸収による着色効果だけでなく、着色樹脂12に屈折率異常分散を生じさせる効果を有している。一般に、物質の屈折率は、光の波長が長くなるに従って単調に減少する傾向にあるが、その物質が吸収を起こす光の波長を有する場合、その波長近辺において急激な変化(異常分散)が生じる。すなわち、着色樹脂12に、色素14による吸収ピークがあると、その吸収ピークに伴い屈折率異常分散が生じる。波長選択性吸収層11は、このような着色樹脂12の可視域での屈折率異常分散を利用して、可視域において着色樹脂12と微粒子13との間に屈折率差を生じさせ、その結果、可視光を散乱させる。屈折率の変化の大きさは、吸収の強さと関係がある。このため、樹脂15に含有させる色素14の種類や量を、色味の観点だけでなく、生じる屈折率異常分散(吸収ピーク波長や吸収の強さ)の観点からも調整することにより、波長選択性吸収層11における可視光に対する散乱性を調整できる。
 微粒子13は、可視光を吸収しない材料が好ましい。本実施形態において、微粒子13は、波長選択性吸収層11内において可視光を散乱させるために用いられる。微粒子13は、可視光の散乱能、より具体的にはマット感の発現性の観点から、平均粒子径が、70nm以上が好ましく、100nm以上がより好ましい。一方、平均粒子径が大きすぎると波長選択性吸収層11の膜厚を必要以上に厚くしてしまうおそれがあるため、5000nm以下が好ましく、2000nm以下がより好ましい。ここで、平均粒子径とは、マイクロトラック法(レーザー回折・散乱法)によって測定されたD50の値である。
 また、微粒子13は、樹脂15と微粒子13との間の近赤外光に対する屈折率差が小さいまたは屈折率が略一致するような樹脂15と微粒子13の組み合わせが好ましい。
 微粒子13は、シリカ、アルミナ、ジルコニア、酸化イットリウム、酸化イットリビウムの金属酸化物およびこれらの複合酸化物等の金属酸化物微粒子が例示できる。また、微粒子13はこの他にも、アクリル系や、スチレン系、ウレタン系、シリコーン系、ナイロン系の有機高分子微粒子でもよい。なお、微粒子13はこれらに限定されず、樹脂15の屈折率によっては、例えば二酸化チタンの微粒子でもよい。また、微粒子13は、二種以上の材料からなる微粒子でもよく、例えばコーティング処理等がされてもよい。
 微粒子13は、近赤外光に対する屈折率が、1.3~2.5が好ましく、1.4~2.0がより好ましい。微粒子13の屈折率をこの範囲にすることで、近赤外域における樹脂15との屈折率差を小さくでき、近赤外光に対するヘイズを低減できる。
 このように、樹脂15に含有させる色素14の種類や量の調整に加えて、例えば、微粒子13の平均粒子径や、微粒子13とバインダーとなる樹脂15との屈折率の差を調整することで、波長選択性吸収層11の、可視光および近赤外光に対する散乱性を調整できる。なお、屈折率の調整対象の一方を樹脂15としているのは、本発明で用いる色素は近赤外域において吸収が殆ど発現しないため、近赤外域での着色樹脂12の屈折率として、樹脂15の屈折率を援用できるからである。
 図2は、着色樹脂12と微粒子13の屈折率波長分散特性の例を模式的に示す概念図である。図2(a)は、着色樹脂12および微粒子13の屈折率波長分散特性の一例を、図2(b)は、着色樹脂12の吸収スペクトルの一例を模式的に示すグラフである。なお、図2(a)は、図2(b)に示すように、色素14によって着色樹脂12に3本の吸収ピークが発生したと仮定したときの、着色樹脂12の屈折率の波長依存性を、微粒子13の屈折率の波長依存性とともに模式的に示したものである。なお、実際の吸収スペクトルは複雑であり、図2(a)、図2(b)はあくまで原理を説明するための概念図である。
 着色樹脂12が可視域に吸収を有する場合、図2(a)に示すように、着色樹脂12の屈折率波長分散において、異常分散、特に可視域における急激な変化が生じる(図中の一点鎖線で囲まれた部分参照)。すると、可視域に、微粒子13との屈折率差が大きくなる領域が生じる。一方で、着色樹脂12と微粒子13との間の近赤外域における屈折率差は小さいままである。また、微粒子13と着色樹脂12の吸光度の差は、可視域においては大きく、近赤外域においては小さい。本実施形態の波長選択性吸収層11は、このような屈折率差と吸光度の波長依存性の原理によって波長選択的に発生する散乱現象を利用する。
 図1に示す例では、可視光102は、光学フィルタ10の視認側から+z方向で光学フィルタ10に入射する。一方、近赤外光は、光学フィルタ10の視認側から+z方向で光学フィルタ10に入射してもよいし、反視認側から-z方向で入射してもよい。なお、図中の近赤外光101aは前者の例であり、近赤外光101bは後者の例である。
 例えば、光学フィルタ10に可視光102が入射すると、該可視光102は波長選択性吸収層11によって一部が吸収され、一部が反射散乱される。このため、光学フィルタ10はマット感のある濃色に着色して見える。一方、光学フィルタ10に近赤外光101a、101bが入射すると、該近赤外光101a、101bは波長選択性吸収層11で一部散乱されるが、多くの成分は直進透過して、そのまま波長選択性吸収層11を透過する。
 このような散乱性の評価指標として、波長選択性吸収層11における、近赤外域またはそのうちの特定の波長域(例えば、波長800~1000nm)での着色樹脂12と微粒子13との間の屈折率差は、0.5以下が好ましく、0.3以下がさらに好ましい。なお、上記条件は、着色樹脂12を樹脂15と置き換えてもよい。これは、近赤外光に対する色素14による吸収は非常に小さいとみなせるからである。
 図3および図4に、種々の樹脂材料および微粒子材料の屈折率の一例を示す。なお、図3は、樹脂材料および微粒子材料として、ポリイミド樹脂、アクリル樹脂、シリカ微粒子、アルミナ微粒子および二酸化チタン微粒子の代表的な屈折率波長分散を示すグラフである。また、図4は、同材料の波長532nmおよび940nmの光に対する屈折率の一覧である。このように、樹脂材料および透明微粒子材料として、屈折率が非常に近い組み合わせが存在しており、このような屈折率差の小さい組み合わせを用いれば、近赤外光に対する散乱を抑制できる。なお、光学装置において必要とされる近赤外光の直進透過率によっては、上記程度の屈折率差は許容される場合がある。
 また、近赤外光に対する透過性の評価指標として、波長選択性吸収層11は、近赤外域のうちの少なくとも連続する15nmの波長帯である第1の近赤外波長帯の光に対する直進透過率の平均が、80%以上が好ましく、85%以上がさらに好ましい。なお、第1の近赤外波長帯の幅(連続する波長の長さ)は、15nm以上であればよく、30nm以上がより好ましく、50nm以上がさらに好ましい。該幅が30nm以上、50nm以上の場合でも、上記の直進透過率の平均は、それぞれ、80%以上が好ましく、85%以上がさらに好ましい。
 ここで、第1の近赤外波長帯は、光学フィルタ10を備える光学装置において用いられる近赤外光の波長を少なくとも含んでいればよい。例えば、第1の近赤外波長帯は、光学フィルタ10を備える光学装置において用いられる近赤外光の波長±7.5nmや、該波長±15nmや、該波長±25nmでもよい。
 他の指標として、波長選択性吸収層11は、上記の第1の近赤外波長帯の光に対する透過光のヘイズが、1%以下が好ましく、0.5%以下がさらに好ましい。なお、透過光のヘイズの測定方法については後述する。
 また、可視光に対する散乱性の評価指標として、波長選択性吸収層11は、波長532nmの光に対する拡散反射率が、0.04%以上が好ましく、0.05%以上がさらに好ましい。なお、拡散反射率の測定方法については後述する。
 また、着色性の評価指標として、波長選択性吸収層11は、厚さを1μmとしたときの可視光に対する平均透過率が、50%以下が好ましく、40%以下がさらに好ましい。また、波長選択性吸収層11は、可視光に対する平均透過率が、5%以下が好ましく、2%以下がより好ましい。なお、上記の波長選択性吸収層11での可視光に対する平均透過率は、波長選択性吸収層11を含む光学フィルタ10全体での可視光に対する平均透過率でもよい。
 次に、透過光のヘイズの測定方法を説明する。図5および図6は、本実施形態で用いた透過光のヘイズの測定方法の概要を示す説明図である。なお、特にことわりがない場合、透過光のヘイズは以下に示す方法および条件での測定結果とする。
 図5は、透過光のヘイズの測定系の例であり、試験光は、波長940±5nmのレーザー光が使用される。該レーザー光は、光束の直径が1.0mmの平行光となるように調整される。積分球の大きさは、直径2インチ、入口開口0.5インチ、出口開口0.15インチ、受光器開口0.5インチとする。受光器開口は、入口開口および出口開口から90°の中心角をなす位置に設けられる。積分球の入口開口および出口開口の中心を試験光が通過するようにする。試験片は、入口開口から10mm離れた位置に置かれる。なお、試験光の波長は、光学フィルタに使用する近赤外光の波長に合わせて変更でき、その波長の光に対する測定結果をもって透過光のヘイズを評価できる。
 また、図6は、透過光のヘイズを測定するための計測値T1~T4の計測手順を示す説明図である。本実施形態では、透過光のヘイズH[%]を、4つの計測値T1~T4を基に、以下の式(1)によって求める。
H=(T4/T2-T3/T1)×100 ・・・(1)
 T1は、入射光の光束の測光結果を表す。T1は、図6(a)に示すように、入口開口に何も設けず、出口開口に参照白板を設けた状態で試験光を入射させて測定された値である。T2は、試験片を透過した光束の測光結果を表す。T2は、図6(b)に示すように、入口開口に試験片を設けるとともに、出口開口に参照白板を設けた状態で試験光を入射させて測定された値である。T3は、装置で拡散した光束の測光結果を表す。T3は、図6(c)に示すように、入口開口および出口開口に何も設けない状態で試験光を入射させて測定された値である。T4は、装置および試験片で拡散した光束の測光結果を表す。T4は、図6(d)に示すように、入口開口に試験片を設け、出口開口に何も設けない状態で試験光を入射させて測定された値である。なお、参照白板は、積分球同様、ほぼ100%の光が拡散反射されるようにコーティングされている。
 なお、透過光のヘイズの測定方法はこれに限定されず、例えば、村上色彩技術研究所製分光ヘイズメーターHSP-150VIR等を用いてもよい。この測定方法においても、透過光のヘイズHは1%以下が好ましく、0.5%以下がより好ましい。
 次に、拡散反射率の測定方法を説明する。図7および図8は、本実施形態で用いた拡散反射率の測定方法の概要を示す説明図である。なお、特にことわりがない場合、拡散反射率は以下に示す方法および条件での測定結果とする。
 図7は、拡散反射率の測定系の例であり、試験光は、波長532nmのレーザー光が使用される。積分球の大きさは、直径2インチ、開口は全て0.5インチとする。受光器開口(図示省略)は、入口開口、出口開口および反射開口から90°の中心角をなす位置に設けられる。積分球の入口開口および出口開口の中心を試験光が通過するようにする。反射開口に貼り付けられる参照白板または試験片は、正反射光が出口開口を通過するように設けられる。
 また、図8は、拡散反射率を測定するための計測値R1,R2の計測手順を示す説明図である。本実施形態では、拡散反射率DR[%]を、2つの計測値R1,R2を基に、以下の式(2)によって求める。
DR=R2/R1×100 ・・・(2)
 R1は、装置の拡散反射光の光束の測光結果を表す。R1は、図8(a)に示すように、入口開口および出口開口に何も設けず、反射開口に参照白板を設けた状態で試験光を入射させて測定された値である。R2は、試験片の拡散反射光の光束の測光結果を表す。R2は、図8(b)に示すように、入口開口および出口開口に何も設けず、反射開口に試験片を設けた状態で試験光を入射させて測定された値である。得られた拡散反射率DRは、0.04%以上が好ましく、0.05%以上がより好ましい。
 また、図9~図11は、光学フィルタ10の他の構成例を示す図である。図9に示すように、光学フィルタ10は、例えば、基材16をさらに備え、基材16上に波長選択性吸収層11が積層されていてもよい。また、図10(a)に示すように、光学フィルタ10は、さらに波長選択性吸収層11のいずれか一方の面に誘電体多層膜17を備えていてもよく、図11に示すように、波長選択性吸収層11の両方の面に、誘電体多層膜17(誘電体多層膜17aおよび誘電体多層膜17b)を備えていてもよい。なお、波長選択性吸収層11が基材16の上に積層されている場合は、波長選択性吸収層11の外側および/または基材16の外側に、誘電体多層膜17(誘電体多層膜17aおよび/または誘電体多層膜17b)を備えていてもよい(図10(b)、図11参照)。
 基材16は、近赤外光に対して吸収や散乱のない部材により構成されていればよく、可視光に対して吸収を有する部材でも構わない。なお、基材16は、例えば、ガラスや樹脂等によって作製された基板でもよい。
 誘電体多層膜17、17aおよび17bは、例えば、近赤外光や上記の第1の近赤外波長帯の光に対して反射防止機能を有するものでもよい。また、誘電体多層膜17、17aおよび17bは、例えば、上記の第1の近赤外波長帯よりも長波長の光に対して反射機能を有し、バンドパスフィルタとして機能するものでもよい。また、誘電体多層膜17、17aおよび17bは、上記の両方の機能を有するものでもよく、上記機能のいずれかを有する誘電体多層膜が2種組み合わされたものでもよい。
 なお、第1の近赤外波長帯の光に対する反射防止機能および第1の近赤外波長帯よりも長波長の光に対する反射機能を実現する部材は、誘電体多層膜に限らない。例えば、第1の近赤外波長帯の光に対し、塗布法を用いて得られる反射防止膜がある。用いられる材料としては、第1の近赤外波長帯の光に対して、吸収と散乱がない材料であれば、特に制限ないが、シリコーン樹脂、アクリル樹脂、フッ素化アクリル樹脂、シクロオレフィン樹脂、フッ素化シクロオレフィン樹脂などが挙げられる。またシリカ微粒子や中空シリカ微粒子を加えることで、低屈折率化の実現や耐擦傷性の向上が可能となる。反射防止膜の厚さは通常、100~2000nmである。
 また、図示省略しているが、基材16と波長選択性吸収層11との間に機能性フィルム等による接着層を備えていてもよい。
 このように、本実施形態によれば、波長選択性吸収層11が色素14と微粒子13とを含むことにより、マット感のある濃色をなす意匠性と、近赤外光に対する高い感度とを両立した光学フィルタを実現できる。
実施形態2.
 次に、本発明の第2の実施形態を、図面を参照して説明する。図12は、本発明の第2の実施形態にかかる光学装置の例を示す構成図である。
 図12に示す光学装置100は、筐体4内に、近赤外光発光部2および/または近赤外光受光部3を有している。また、光学装置100は、筐体4に設けられた開口部を覆うように上述した光学フィルタ10が設けられている。このような構成とすることにより、近赤外光は、光学フィルタ10を通して筐体4の外部へ受発光される。
 光学装置100は、例えば、近赤外光を用いて画像を撮影するカメラ装置や、近赤外光を用いて、物体の距離や近くの物体の有無を検出する距離センサ、近接センサなどの計測装置や、近赤外光を用いて情報通信などを行う通信装置や、近赤外光を用いて虹彩や指紋、静脈の認証などの生態認証などを行う認証装置といった光学装置である。
 また、筐体4は、近赤外光発光部2や近赤外光受光部3以外の他の機能を発揮する機器を囲っていてもよい。
 本実施形態において、筐体4の外側表面は、黒色などの濃色かつマット感のある色味に着色されている。
 近赤外光発光部2は、ランプなどに限らず、LEDやレーザ光源を用いたものでもよい。また、近赤外光発光部2は、自身が近赤外光を発光する機能を有するものに限らず、他で発光された近赤外光を出力する送信部でもよい。
 また、近赤外光受光部3は、フォトダイオードのような単一の受光素子に限らず、CMOSセンサなどのように、画像情報を取得するものでもよい。
 このような構成であれば、近赤外光の送信感度および/または受信感度を低下させずに、筐体の開口部から内部が視認されず、かつ、開口部自体も外部から視認されにくい光学装置が得られる。
例1.
 本例は、図9に示した光学フィルタ10の一実施例である。本例において、樹脂15にはポリイミド樹脂(三菱ガス化学(株)製 商品名「L-3450」)を用いた。また、色素14には、3種の色素、具体的には、アゾ系色素(1)(C.I.ソルベントオレンジ7)、アゾ系色素(2)(C.I.ソルベントブラック3)、フタロシアニン系色素(山田化学工業(株)製 商品名「FDN-001」)を用いた。また、微粒子13には、シリカ微粒子(日産化学社製、商品名「MEK-AC-5140Z」微粒子濃度(SiO固形分)40wt%)を用いた。また、基材16には、近赤外光透過ガラス(松波硝子工業(株)製 商品名「D263Teco」)板を用いた。
 本例の樹脂15は、波長940nmの光に対する屈折率が1.60であり、微粒子13は、波長940nmの光に対する屈折率が1.45であり、その差は0.15である。また、微粒子13の平均粒子径は、約100nmである。
 また、製造方法は次の通りである。まず、上記のポリイミド樹脂を0.797gと、上記のアゾ系色素(1)を0.062g、アゾ系色素(2)を0.078gおよびフタロシアニン系色素を0.081gと、表面調整剤としてのBYK-325(ビックケミージャパン(社)製)を0.005gと、上記のシリカ微粒子を1.275gとを、シクロペンタノン8.5gに溶解して溶液を調製した。
 次に、この溶液を、76mm×76mm×0.145mmの上記の基材16の一方の面に塗布した後、焼成して、波長選択性吸収層11となる構造体を形成した。塗布には、スピンコータ(ミカサ(株)製 スピンコータMS-A200)を用いた。また、焼成温度は150℃、焼成時間は10分である。形成された波長選択性吸収層11は、厚さ7.2μmであり、構造体中の微粒子濃度(SiO濃度)は、33wt%であった。
 このようにして得た本例の光学フィルタ10の評価結果を図13および図14に示す。結果は、図5~8を用いて説明した測定方法に基づいて得たものであり、他の実施例、比較例についても同様である。図13に示すように、本例の光学フィルタ10は、波長532nmの光に対する拡散反射率DRが0.06%であり、波長940nmの光に対する透過ヘイズHが0.12%であり、いずれも良好な結果となった。また、実際にマット感のある濃色の筐体に組み込んだところ、非視認性(コントラスト判定)は良好すなわち境界が目立たず、低コントラストであることが確認された。
 また、図14は、各例の直進透過率の評価結果を示すグラフである。なお、図14(a)は、波長400~1000nmの光に対する各例の直進透過率の評価結果を示すグラフであり、図14(b)は、そのうちの波長400~800nmの光における直進透過率を、0~5%の値域にて拡大して示したグラフである。また、図14(c)は、そのうちの波長800~1000nmの光における直進透過率を、80~95%の値域にて拡大して示したグラフである。
 図14によれば、本例の光学フィルタ10は、可視域、特に波長400~700nmおよび波長400~730nmの光に対する直進平均透過率が5%未満であるとともに、近赤外域、特に波長850~1000nmの光に対する直進平均透過率が80%以上である。また、本例の光学フィルタ10は、近赤外域、特に波長870~1000nmの光に対する直進透過率の変動が小さく、いずれの波長域の光においても85%以上の高水準を保っている。
例2.
 本例は、第1例の光学フィルタ10と比べて、微粒子13として、シリカ微粒子ではなくアルミナ微粒子を用いた点が異なる。なお、本例も、図10に示した光学フィルタ10の一実施例である。本例において、微粒子13には、アルミナ微粒子(トーヨーカラー社製、商品名「OP-9611Aホワイト」、微粒子濃度75wt%)を用いた。なお、他の材料は第1例と同様である。
 本例の微粒子13は、波長940nmの光に対する屈折率が1.76であり、樹脂15の屈折率との差は0.16である。また、微粒子13の平均粒子径は、約400nmである。
 また、製造方法は次の通りである。まず、第1例と同じポリイミド樹脂を0.548gと、第1例と同じアゾ系色素(1)を0.029g、アゾ系色素(2)を0.036gおよびフタロシアニン系色素を0.038gと、表面調整剤としてのBYK-325(ビックケミージャパン(社)製)を0.002gと、上記のアルミナ微粒子を0.046gとを、シクロペンタノン5.5gに溶解して溶液を調製した。
 この溶液を、第1例と同じ基材16上に第1例と同様の方法で製膜し、波長選択性吸収層11となる構造体を形成した。形成された波長選択性吸収層11は、厚さ7.1μmであり、構造体中の微粒子濃度(Al濃度)は、5wt%であった。
 図13に示すように、本例の光学フィルタ10は、波長532nmの光に対する拡散反射率DRが0.10%であり、波長940nmの光に対する透過ヘイズHが0.9%であり、いずれも良好な結果となった。また、実際にマット感のある濃色の筐体に組み込んだところ、非視認性(コントラスト判定)は良好すなわち境界が目立たず、低コントラストであることが確認された。
 また、図14によれば、本例の光学フィルタ10は、可視域、特に波長400~700nmおよび波長400~730nmの光に対する直進平均透過率が5%未満であるとともに、近赤外域、特に波長850~1000nmの光に対する直進平均透過率が85%以上である。また、本例の光学フィルタ10は、近赤外域、特に波長850~1000nmの光に対する直進透過率の変動がほとんどなく、いずれの波長域の光においても85%以上の高水準を保っている。
例3.
 本例は、第1例の光学フィルタ10の構成に、さらに、機能性フィルムを備えた例である。機能性フィルムには、OCAテープ(3M社製、商品名「optically clear adhesive 8211」;厚さ25μm)を用いた。なお、他の材料は第1例と同様である。
 また、製造方法は次の通りである。まず、剥離性基材としてロールフィルム(日本ゼオン(株)製 商品名「ゼオノア(登録商標)ZF16」;厚さ100μm)を用意し、該基材の一方の面に第1例と同様の方法で波長選択性吸収層11となる構造体を形成した。形成された波長選択性吸収層11は、厚さ7.2μmであり、構造体中の微粒子濃度(SiO濃度)は、33wt%であった。
 次に、該構造体上に微粘着フィルム(日栄化工(株)製 商品名「PET75-H109(20)」を貼り合わせ、上記の剥離性基材を剥離した。次に、剥離性基材が備えられていた側の構造体の表面に、上記のOCAテープを貼り合わせた。この後、第1例と同じ基材16の一方の面に上記OCAテープを貼り合わせ、上記の微粘着フィルムを剥離した。このようにして本例の光学フィルタ10を得た。該光学フィルタ10において、構造体(波長選択性吸収層11)およびOCAテープの厚さの合計は32μmであった。
 図13に示すように、本例の光学フィルタ10は、波長532nmの光に対する拡散反射率DRが0.07%であり、波長940nmの光に対する透過ヘイズHが0.5%であり、いずれも良好な結果となった。また、実際にマット感のある濃色の筐体に組み込んだところ、非視認性(コントラスト判定)は良好すなわち境界が目立たず、低コントラストであることが確認された。
 また、図14によれば、本例の光学フィルタ10は、可視域、特に波長400~700nmおよび波長400~730nmの光に対する直進平均透過率が5%未満であるとともに、近赤外域、特に波長850~1000nmの光に対する直進平均透過率が85%以上である。また、本例の光学フィルタ10は、近赤外域、特に波長850~1000nmの光に対する直進透過率の変動が小さく、いずれの波長域の光においても85%以上の高水準を保っている。
比較例1.
 本例は、波長選択性吸収層11が微粒子13を含まない例に相当する。図15は、本例の光学フィルタ90aの構成を示す構成図である。本例の光学フィルタ90aは、基材96と、着色樹脂92とを備える。基材96および着色樹脂92は、上記の実施形態の基材16、着色樹脂12に相当する。なお、着色樹脂92は、図示省略しているが、樹脂中に色素を含有したものである。
 本例において、基材96には、第1例の基材16と同様のものを用いた。また、着色樹脂92を構成する樹脂には、ポリイミド樹脂(三菱ガス化学(株)製 商品名「L-3450」)を用いた。また、着色樹脂92を構成する色素には、3種の色素、具体的には、アゾ系色素(1)(C.I.ソルベントオレンジ7)、アゾ系色素(2)(C.I.ソルベントブラック3)、フタロシアニン系色素(山田化学工業(株)製 商品名「FDN-001」)を用いた。
 また、製造方法は次の通りである。まず、上記のポリイミド樹脂を0.27gと、上記のアゾ系色素(1)を0.026g、アゾ系色素(2)を0.033gおよびフタロシアニン系色素を0.081gと、表面調整剤としてのBYK-325(ビックケミージャパン(社)製)を0.002gとを、シクロペンタノン2.73gに溶解して溶液を調製した。
 この溶液を、上記の基材96の一方の面に塗布した後、焼成し、着色樹脂92となる構造体を形成した。塗布には、スピンコータ(ミカサ(株)製 スピンコータMS-A200)を用いた。また、焼成温度は150℃、焼成時間は10分である。このようにして本例の光学フィルタ90aを得た。形成された着色樹脂92は、厚さ4.2μmであった。
 図13に示すように、本例の光学フィルタ90aは、波長940nmの光に対する透過ヘイズHが0.08%であって良好であるが、波長532nmの光に対する拡散反射率DRが0.02%であり、0.03%以下であって可視光に対する散乱性を満足しない結果となった。実際にマット感のある濃色の筐体に組み込んだところ、境界が視認されるなど、高コントラストであることが確認された。
比較例2.
 本例は、波長選択性吸収層11が、着色樹脂と、着色を含まない散乱層とに分かれて備えられた例に相当する。図16は、本例の光学フィルタ90bの構成を示す構成図である。本例の光学フィルタ90bでは、基材96上に、散乱層98と、着色樹脂92とがこの順序で積層されている。基材96および着色樹脂92は、上記の実施形態の基材16、着色樹脂12に相当する。また、散乱層98は、樹脂95中に散乱のための微粒子93を含有したものである。
 本例において、基材96には、第1例の基材16と同様のものを用いた。また、着色樹脂92を構成する樹脂には、ポリイミド樹脂(三菱ガス化学(株)製 商品名「L-3450」)を用いた。また、着色樹脂92を構成する色素には、3種の色素、具体的には、アゾ系色素(1)(C.I.ソルベントオレンジ7)、アゾ系色素(2)(C.I.ソルベントブラック3)、フタロシアニン系色素(山田化学工業(株)製 商品名「FDN-001」)を用いた。また、樹脂95には、着色樹脂92と同様の、ポリイミド樹脂(三菱ガス化学(株)製 商品名「L-3450」)を用いた。また、微粒子93には、シリカ微粒子(日産化学社製、商品名「MEK-AC-5140Z」微粒子濃度(SiO固形分)40wt%)を用いた。
 本例の樹脂95の波長940nmの光に対する屈折率は1.60であり、微粒子93の波長940nmの光に対する屈折率は1.45であり、その差は0.15である。また、微粒子93の平均粒子径は、約100nmである。
 また、製造方法は次の通りである。まず、樹脂95として、上記のポリイミド樹脂0.36gを、シクロペンタノン3.64gに溶解させ、次に、微粒子93として、上記のシリカ微粒子を0.1g加えて、白色散乱塗工液を調整した。
 この溶液を、上記の基材96上に第1例と同様の方法で製膜し、散乱層98となる構造体を形成した。形成された散乱層98は、厚さ0.8μmであり、構造体中の微粒子濃度(SiO濃度)は、10wt%であった。
 次に、この散乱層98上に、第1の比較例と同様の方法で着色樹脂92を形成し、本例の光学フィルタ90bを得た。
 図13に示すように、第2比較例の光学フィルタ90bは、波長940nmの光に対する透過ヘイズHが0.25%であって良好であるが、波長532nmの光に対する拡散反射率DRが0.03%であり、可視光に対する散乱性能を満足しない結果となった。実際にマット感のある濃色の筐体に組み込んだところ、境界が視認されるなど、高コントラストであることが確認された。
比較例3.
 本例は、第2の比較例の光学フィルタ90bと比べて、微粒子93にシリカ微粒子ではなく二酸化チタンを用いた点が異なる。本例において、微粒子93には、二酸化チタン微粒子(堺化学社製、商品名「D918」平均粒子径280nm)を用いた。なお、他の材料は第2比較例と同様である。
 本例の樹脂95の波長940nmの光に対する屈折率は1.6であり、微粒子93の波長940nmの光に対する屈折率は2.5であり、その差は0.9である。
 また、製造方法は次の通りである。まず、0.10gの二酸化チタン微粒子と、0.10gの分散剤(ビックケミージャパン社製、商品名「BYK-170」)と、10gのシクロペンタノンとをそれぞれ秤量し、ガラスビーズを加え、ボールミルで分散処理を行うことで、1wt%のTiO分散液を得た。さらに、この分散液2gに、樹脂95を0.18g溶解して、溶液(白色散乱塗工液)を調整した。
 次に、この溶液を、基材96上に第2の比較例と同様の方法で製膜し、散乱層98となる構造体を形成した。形成された散乱層98は、厚さ3μmであり、構造体中の微粒子濃度(TiO濃度)は、10wt%であった。
 次に、この散乱層98上に、第1の比較例と同様の方法で着色樹脂92を形成し、本例の光学フィルタ90bを得た。
 図13に示すように、第3比較例の光学フィルタ90bは、波長532nmの光に対する拡散反射率DRが1.90%であって良好であるが、波長940nmの光に対する透過ヘイズHが1.48%であり、1%以上であって赤外光に対する直進透過性能を満足しない結果となった。
 また、図14によれば、本例の光学フィルタ90bは、可視域の光に対する直進平均透過率は1%未満であるが、近赤外域のほとんどの領域の光に対して直進透過率が85%を下回っている。また、本例の光学フィルタ90bは、近赤外域の光に対する直進透過率の変動も大きく、感度が安定しないことが予想される。
 本出願は、2015年12月25日出願の日本特許出願、特願2015-254058に基づくものであり、その内容はここに参照として取り込まれる。
 本発明は、近赤外光を利用する撮影用途の他、計測、通信、生体認証など様々な装置に好適に利用できる。
 100 光学装置
 10 光学フィルタ
 11 波長選択性吸収層
 12 着色樹脂
 13 微粒子
 14 色素
 15 樹脂
 16 基材
 17、17a、17b 誘電体多層膜
 101a、101b 近赤外光
 102 可視光
 2 近赤外光発光部
 3 近赤外光受光部
 4 筐体
 90a、90b 光学フィルタ
 92 着色樹脂
 93 微粒子
 95 樹脂
 96 基材
 98 散乱層

Claims (15)

  1.  透明樹脂に、可視光を吸収する1種以上の色素と、微粒子とを含有した波長選択性吸収層を備え、
     前記波長選択性吸収層は、近赤外域のうちの少なくとも連続する15nmの波長帯である第1の近赤外波長帯の光に対する直進透過率の平均が80%以上であるとともに、波長532nmの光に対する拡散反射率が0.04%以上である
     ことを特徴とする光学フィルタ。
  2.  前記波長選択性吸収層は、厚さが1μmのときの可視光に対する平均透過率が50%以下である
     請求項1に記載の光学フィルタ。
  3.  可視光に対する平均透過率が5%以下である
     請求項1または請求項2に記載の光学フィルタ。
  4.  前記波長選択性吸収層は、前記第1の近赤外波長帯の光に対する透過ヘイズが1%以下である
     請求項1から3のいずれか1項に記載の光学フィルタ。
  5.  前記微粒子の平均粒子径が、70~5000nmである
     請求項1から4のいずれか1項に記載の光学フィルタ。
  6.  近赤外光に対する、前記透明樹脂に前記色素を含有した色素含有透明樹脂と前記微粒子との屈折率差が、0.5以下である
     請求項1から5のいずれか1項に記載の光学フィルタ。
  7.  前記透明樹脂の近赤外光に対する屈折率が1.3~2.0であり、
     前記微粒子の近赤外光に対する屈折率が1.3~2.5である
     請求項1から6のいずれか1項に記載の光学フィルタ。
  8.  前記微粒子は、シリカ、ポリスチレン、アルミナ、酸化イットリウム、酸化イットリビウムの金属酸化物およびこれらの複合酸化物、アクリル系、スチレン系、ウレタン系、シリコーン系、ナイロン系から選ばれる少なくとも1種を含む
     請求項1から7のいずれか1項に記載の光学フィルタ。
  9.  前記色素は、黒色色素を含む
     請求項1から8のいずれか1項に記載の光学フィルタ。
  10.  前記色素は、緑色色素および黒色色素を含む
     請求項1から9のいずれか1項に記載の光学フィルタ。
  11.  透明基板を備え、
     前記波長選択性吸収層は、前記透明基板上に形成される
     請求項1から10のいずれか1項に記載の光学フィルタ。
  12.  前記波長選択性吸収層の少なくとも一方の主面に、誘電体多層膜を備える
     請求項1から11のいずれか1項に記載の光学フィルタ。
  13.  前記誘電体多層膜は、前記第1の近赤外波長帯の光に対して反射防止機能を有する
     請求項12に記載の光学フィルタ。
  14.  前記誘電体多層膜は、前記第1の近赤外波長帯よりも長波長の光を遮蔽する反射機能を有する
     請求項12に記載の光学フィルタ。
  15.  近赤外域の一部の波長域の光を発光する発光部、または、近赤外域の一部の波長域の光を受光する受光部と、前記発光部または前記受光部を囲う筐体と、前記筐体の開口部に設けられる近赤外光透過フィルタとを備え、
     前記近赤外光透過フィルタが、請求項1から14のいずれか1項に記載の光学フィルタである
     ことを特徴とする光学装置。
PCT/JP2016/088233 2015-12-25 2016-12-21 光学フィルタおよび光学装置 WO2017110939A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015254058A JP2019032351A (ja) 2015-12-25 2015-12-25 光学フィルタおよび光学装置
JP2015-254058 2015-12-25

Publications (1)

Publication Number Publication Date
WO2017110939A1 true WO2017110939A1 (ja) 2017-06-29

Family

ID=59090720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088233 WO2017110939A1 (ja) 2015-12-25 2016-12-21 光学フィルタおよび光学装置

Country Status (2)

Country Link
JP (1) JP2019032351A (ja)
WO (1) WO2017110939A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018092600A1 (ja) * 2016-11-18 2018-05-24 富士フイルム株式会社 構造体、固体撮像素子、赤外線センサおよび組成物
WO2019021222A1 (en) * 2017-07-26 2019-01-31 3M Innovative Properties Company OPTICAL CAMOUFLAGE FILTER
CN112415646A (zh) * 2019-08-23 2021-02-26 现代自动车株式会社 Lidar车窗集成光学滤波器
WO2021106221A1 (ja) * 2019-11-29 2021-06-03 昭和電工マテリアルズ株式会社 遮光用紫外線硬化性組成物、遮光膜、及び、遮光膜を有する物品を製造する方法
WO2021224703A1 (en) * 2020-05-08 2021-11-11 3M Innovative Properties Company Optical films and stacks including optically diffusive layer
CN114690151A (zh) * 2020-12-31 2022-07-01 东丽先端材料研究开发(中国)有限公司 一种滤光器及传感器保护盖

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021056346A (ja) * 2019-09-30 2021-04-08 豊田合成株式会社 赤外線透過製品
JP7524530B2 (ja) * 2019-11-19 2024-07-30 大日本印刷株式会社 赤外線センサー
JP6892002B2 (ja) * 2019-11-19 2021-06-18 大日本印刷株式会社 樹脂パネル及び赤外線センサー
CN114747295A (zh) * 2019-12-02 2022-07-12 株式会社半导体能源研究所 发光器件、发光装置、电子设备及照明装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005323892A (ja) * 2004-05-17 2005-11-24 Hitachi Ltd 個人認証装置
JP2008009238A (ja) * 2006-06-30 2008-01-17 Mitsubishi Engineering Plastics Corp ポリカーボネート樹脂組成物及び赤外線レーザー用フィルター
JP2008160115A (ja) * 2004-11-12 2008-07-10 Tokai Kogaku Kk 赤外線受発光部
JP2010002704A (ja) * 2008-06-20 2010-01-07 Mitsubishi Engineering Plastics Corp フィルター用樹脂組成物
JP2010072616A (ja) * 2008-08-20 2010-04-02 Tokai Kogaku Kk 赤外線通信用光学物品及び赤外線通信用受光部
JP2014203063A (ja) * 2013-04-10 2014-10-27 セラテックジャパン株式会社 近赤外線カットフィルタ及びそれを備えた眼鏡

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005323892A (ja) * 2004-05-17 2005-11-24 Hitachi Ltd 個人認証装置
JP2008160115A (ja) * 2004-11-12 2008-07-10 Tokai Kogaku Kk 赤外線受発光部
JP2008009238A (ja) * 2006-06-30 2008-01-17 Mitsubishi Engineering Plastics Corp ポリカーボネート樹脂組成物及び赤外線レーザー用フィルター
JP2010002704A (ja) * 2008-06-20 2010-01-07 Mitsubishi Engineering Plastics Corp フィルター用樹脂組成物
JP2010072616A (ja) * 2008-08-20 2010-04-02 Tokai Kogaku Kk 赤外線通信用光学物品及び赤外線通信用受光部
JP2014203063A (ja) * 2013-04-10 2014-10-27 セラテックジャパン株式会社 近赤外線カットフィルタ及びそれを備えた眼鏡

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018092600A1 (ja) * 2016-11-18 2018-05-24 富士フイルム株式会社 構造体、固体撮像素子、赤外線センサおよび組成物
US11698479B2 (en) 2016-11-18 2023-07-11 Fujifilm Corporation Structure, solid image pickup element, infrared sensor, and composition
JPWO2018092600A1 (ja) * 2016-11-18 2019-10-17 富士フイルム株式会社 構造体、固体撮像素子、赤外線センサおよび組成物
CN110892295B (zh) * 2017-07-26 2022-09-02 3M创新有限公司 光学掩蔽滤光器
JP2020528574A (ja) * 2017-07-26 2020-09-24 スリーエム イノベイティブ プロパティズ カンパニー 光学カモフラージュフィルター
US11360248B2 (en) 2017-07-26 2022-06-14 3M Innovative Properties Company Optical camouflage filter
CN110892295A (zh) * 2017-07-26 2020-03-17 3M创新有限公司 光学掩蔽滤光器
WO2019021222A1 (en) * 2017-07-26 2019-01-31 3M Innovative Properties Company OPTICAL CAMOUFLAGE FILTER
JP7456927B2 (ja) 2017-07-26 2024-03-27 スリーエム イノベイティブ プロパティズ カンパニー 光学カモフラージュフィルター
CN112415646A (zh) * 2019-08-23 2021-02-26 现代自动车株式会社 Lidar车窗集成光学滤波器
WO2021106221A1 (ja) * 2019-11-29 2021-06-03 昭和電工マテリアルズ株式会社 遮光用紫外線硬化性組成物、遮光膜、及び、遮光膜を有する物品を製造する方法
JPWO2021106221A1 (ja) * 2019-11-29 2021-06-03
CN114730027A (zh) * 2019-11-29 2022-07-08 昭和电工材料株式会社 遮光用紫外线固化性组合物、遮光膜及制造具有遮光膜的物品的方法
JP7414076B2 (ja) 2019-11-29 2024-01-16 株式会社レゾナック 遮光用紫外線硬化性組成物、遮光膜、及び、遮光膜を有する物品を製造する方法
WO2021224703A1 (en) * 2020-05-08 2021-11-11 3M Innovative Properties Company Optical films and stacks including optically diffusive layer
CN114690151A (zh) * 2020-12-31 2022-07-01 东丽先端材料研究开发(中国)有限公司 一种滤光器及传感器保护盖

Also Published As

Publication number Publication date
JP2019032351A (ja) 2019-02-28

Similar Documents

Publication Publication Date Title
WO2017110939A1 (ja) 光学フィルタおよび光学装置
JP2024116131A (ja) 光学カモフラージュフィルター
TWI629051B (zh) 針對色覺障礙之個人用於加強色彩區別之濾光片
US20220050237A1 (en) Spectrally selective light control film
US9562998B2 (en) Inconspicuous optical tags and methods therefor
CN109863434B (zh) 用于光学窗口掩饰的装置
CN110596806A (zh) 光学滤波器和使用该光学滤波器的装置
KR20180104037A (ko) 광학 위장 필터들
US11686891B2 (en) Angularly and spectrally selective detector and light source systems
US10502879B1 (en) Systems with colored infrared-transparent layers
JP7456927B2 (ja) 光学カモフラージュフィルター
US11640019B2 (en) Spectrally selective retroreflective system
WO2022071060A1 (ja) 加飾フィルムおよび光学デバイス
CN111316137B (zh) 光学制品和包括光学制品的系统
US20240027262A1 (en) Optical construction including lens film and mask
US20240096127A1 (en) Optical construction including lens film and mask
US20200292737A1 (en) Optical films and systems including the same
US20210164831A1 (en) Filter assembly, detector, and method of manufacture of a filter assembly
JP2021081878A (ja) 光学素子及び指紋検出装置
CN109946779A (zh) 光学膜片及具有其的环境光传感器
JP2007271750A (ja) 明室用反射型スクリーン
CN109946778A (zh) 光学膜片及具有其的环境光传感器
CN110806611A (zh) 光学膜片及具有其的环境光传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP