WO2022071060A1 - 加飾フィルムおよび光学デバイス - Google Patents

加飾フィルムおよび光学デバイス Download PDF

Info

Publication number
WO2022071060A1
WO2022071060A1 PCT/JP2021/034778 JP2021034778W WO2022071060A1 WO 2022071060 A1 WO2022071060 A1 WO 2022071060A1 JP 2021034778 W JP2021034778 W JP 2021034778W WO 2022071060 A1 WO2022071060 A1 WO 2022071060A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizing element
light
decorative film
main surface
film
Prior art date
Application number
PCT/JP2021/034778
Other languages
English (en)
French (fr)
Inventor
恵美 宮井
祥一 松田
麻未 川口
雄大 沼田
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2022071060A1 publication Critical patent/WO2022071060A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B11/00Filters or other obturators specially adapted for photographic purposes

Definitions

  • the present invention relates to a decorative film and an optical device including the decorative film.
  • Patent Document 1 proposes a decorative sheet having a circularly polarized light reflecting layer, a ⁇ / 4 plate A, a linear polarizing element, and a ⁇ / 4 plate B in this order.
  • the present invention has been made to solve the above problems, and a main object thereof is to provide a decorative film capable of imparting a desired design to a camera or a sensor.
  • the present invention is a decorative film having a first main surface and a second main surface, and the metric saturation of the reflected light on the first main surface is 2 or more.
  • the change in the chromaticity of the transmitted light with respect to the chromaticity of the incident light is 0.07 or less.
  • the decorative film has a first polarizing element and a second polarizing element arranged in this order from the first main surface side so that the transmission axis directions are substantially parallel to each other.
  • the first polarizing element is an absorption type polarizing element
  • the second polarizing element is a reflection type or absorption type polarizing element
  • the second polarizing element is an absorption type polarizing element.
  • a semi-transmissive light reflecting layer is further included between the first polarizing element and the second polarizing element.
  • the second polarizing element is an absorption type polarizing element
  • the semi-transmissive light reflecting layer is a reflective polarizing element
  • the transmission axis direction of the reflective polarizing element is the first. It is substantially parallel to the transmission axis direction of the stator 1 and the second polarizing element.
  • a retardation layer arranged on the second main surface side of the second polarizing element is further included, and the in-plane retardation Re (550) of the retardation layer is 100 nm to 180 nm.
  • the angle formed by the slow axis of the retardation layer and the transmission axis of the second polarizing element is 35 ° to 55 ° or 125 ° to 145 °.
  • the first polarizing element has an in-plane color difference.
  • an optical device including the decorative film and a light receiving element that utilizes light transmitted through the decorative film.
  • the decorative film is arranged so that the second main surface is on the light receiving element side.
  • the light receiving element is an image pickup element.
  • a polarizing filter including the above-mentioned decorative film.
  • a diffused reflected light prevention system generated in a subject including an image pickup device and the polarization filter detachably attached to the image pickup device.
  • the present invention has a first main surface and a second main surface, the metric saturation of the reflected light on the first main surface is 2 or more, and 5500 K ⁇ on the first main surface.
  • a decorative film in which the change in chromaticity of transmitted light with respect to the chromaticity of incident light when light having a color temperature within the range of 500 K is incident is 0.07 or less. According to such a decorative film, it is possible not only to make it difficult for the user to recognize without impairing the functions of the camera and the sensor, but also to optionally give a desired design.
  • Refractive index (nx, ny, nz) "Nx" is the refractive index in the direction in which the refractive index in the plane is maximized (that is, the direction of the slow phase axis), and "ny” is the direction orthogonal to the slow phase axis in the plane (that is, the direction of the phase advance axis). Is the refractive index of, and "nz” is the refractive index in the thickness direction.
  • In-plane phase difference (Re) “Re ( ⁇ )” is an in-plane phase difference measured with light having a wavelength of ⁇ nm at 23 ° C.
  • Re (550) is an in-plane phase difference measured with light having a wavelength of 550 nm at 23 ° C.
  • Phase difference in the thickness direction (Rth) is a phase difference in the thickness direction measured with light having a wavelength of ⁇ nm at 23 ° C.
  • Rth (550) is a phase difference in the thickness direction measured with light having a wavelength of 550 nm at 23 ° C.
  • the expression "substantially orthogonal” includes the case where the angle formed by the two directions is 90 ° ⁇ 10 °, preferably 90 ° ⁇ 7 °, and more preferably 90 ° ⁇ 5 °. Is. Further, the term “orthogonal" in the present specification may include a substantially orthogonal state.
  • substantially parallel includes the case where the angle formed by the two directions is 0 ° ⁇ 10 °, preferably 0 ° ⁇ 7 °, and more preferably 0 ° ⁇ 5 °. Is. Further, the term “parallel” in the present specification may include substantially parallel states.
  • FIG. 1 is a schematic diagram illustrating a decorative film according to an embodiment of the present invention.
  • the decorative film 100 has a first main surface and a second main surface.
  • the metric saturation of the reflected light b when light a (typically white light) is incident on the first main surface of the decorative film 100 is 2 or more, preferably 5 or more, and more preferably 10. Above, more preferably 20 or more.
  • the change in chromaticity ( ⁇ xy) of the transmitted light c when light having a color temperature within the range of 5500K ⁇ 500K as the incident light a is incident is 0.07 or less, preferably 0.05 or less. More preferably, it is 0.03 or less.
  • the upper limit of the metric saturation of the reflected light b is not particularly limited and may be 100, for example. Further, the lower limit of the change in chromaticity ( ⁇ xy) is not particularly limited and may be 0, for example.
  • the metric saturation of the reflected light b may be a uniform value on the entire surface of the decorative film 100, or may be a different value. Further, the metric saturation of the reflected light b does not have to be 2 or more on the entire surface of the decorative film 100, but may be 2 or more in at least a part of the region.
  • the decorative film according to one embodiment of the present invention has a metric saturation of 2 or more, preferably 5 or more, more preferably 10 when the light of the D65 light source is incident on the first main surface. As described above, more preferably 20 or more, and the change in chromaticity ( ⁇ xy) of the transmitted light with respect to the incident light when light having a color temperature of 5500 K is incident on the first main surface is 0.07 or less. Yes, preferably 0.05 or less, more preferably 0.03 or less.
  • the upper limit of the metric saturation of the reflected light b is not particularly limited and may be 100, for example.
  • the lower limit of the change in chromaticity ( ⁇ xy) is not particularly limited and may be 0, for example.
  • the decorative film includes a first polarizing element and a second polarizing element arranged in this order from the first main surface side so that the transmission axis directions are substantially parallel to each other.
  • the first polarizing element is an absorption type polarizing element
  • the second polarizing element is a reflection type or absorption type polarizing element
  • the second polarizing element is an absorption type polarizing element.
  • a semi-transmissive light reflecting layer is further included between the first polarizing element and the second polarizing element.
  • the decorative film having such a configuration, when white light (for example, a D65 light source or light having a color temperature within the range of 5500K ⁇ 500K) is irradiated from the first main surface side, the first Since the light transmitted through the absorption axis of the polarizing element is reflected by the reflective classifier or the semi-transmissive light reflecting layer and emitted from the first main surface, by imparting an appropriate design to the first substituent. , Reflected light having a metric saturation of 2 or more can be obtained.
  • white light for example, a D65 light source or light having a color temperature within the range of 5500K ⁇ 500K
  • the linearly polarized light incident from the first main surface side and transmitted through the transmission axis of the first substituent can pass through the transmission axis of the second substituent as it is, the transmitted light with respect to the chromaticity of the incident light is transmitted.
  • the change in chromaticity ( ⁇ xy) can be 0.07 or less.
  • an absorbent polarizing element having a desired design for example, an absorbent polarizing element exhibiting a desired color and / or pattern
  • the first polarizing element is used as the first polarizing element, and the first.
  • the front surface of the light receiving element so that the main surface side of 2 is on the light receiving element side of the optical device (camera, sensor, etc.), an optical device having a desired appearance can be obtained, and light reaches the light receiving element. It is possible to prevent undesired coloring from occurring.
  • FIG. 2 is schematic cross-sectional views of a decorative film according to one embodiment of the present invention, respectively.
  • the decorative film 100a shown in FIG. 2 includes a first polarizing element 10 which is an absorption type polarizing element and a second polarizing element 22 which is a reflection type polarizing element in this order from the first main surface side.
  • the first polarizing element (absorbent type polarizing element) 10 and the second polarizing element (reflection type polarizing element) 22 are arranged so that their respective transmission axis directions are substantially parallel to each other. Has been done.
  • the decorative film 100b shown in FIG. 3 contains a first polarizing element 10 which is an absorption type polarizing element and a second polarizing element 24 which is an absorption type polarizing element in this order from the first main surface side.
  • a semi-transmissive light reflecting layer 30 is further included between the first polarizing element 10 and the second polarizing element 24.
  • the first polarizing element (absorption type polarizing element) 10 and the second polarizing element (absorption type polarizing element) 24 are arranged so that their respective transmission axis directions are substantially parallel to each other. Has been done.
  • a reflective polarizing element can also be used as the semitransparent light reflecting layer 30.
  • the transmission axis direction of the reflective polarizing element is substantially parallel to the transmission axis direction of the first polarizing element (absorption type polarizing element) 10 and the second polarizing element (absorption type polarizing element) 24. Arranged like this.
  • a reflective polarizing element as the semi-transmissive light reflecting layer 30, the transmittance of light transmitted through the transmission axis of the first polarizing element can be improved.
  • the decorative film 100c shown in FIG. 4 has an in-plane retardation Re (550) of 100 nm to 180 nm with the first polarizing element 10 which is an absorption type polarizing element and the second polarizing element 24 which is an absorption type polarizing element.
  • a certain retardation layer 40 is included in this order from the first main surface side, and a semi-transmissive light reflecting layer 30 is further included between the first polarizing element 10 and the second polarizing element 24.
  • the first polarizing element (absorbing type polarizing element) 10 and the second polarizing element (absorbing type polarizing element) 24 are arranged so that their respective transmission axis directions are substantially parallel to each other. Has been done.
  • the retardation layer 40 has an angle formed by the slow axis of the retardation layer 40 and the transmission axis of the second polarizing element (absorption type polarizing element) 24 of 35 ° to 55 ° or 125 ° to 145 °, preferably 40 ° to 40 °. It is arranged so as to be 50 ° or 130 ° to 140 °. With such a configuration, stray light generated by reflected light or the like from the camera surface can be effectively suppressed. Further, in the decorative film 100c, a reflective polarizing element can be used as the semitransparent light reflecting layer 30.
  • the transmission axis direction of the reflective polarizing element is substantially parallel to the transmission axis direction of the first polarizing element (absorption type polarizing element) 10 and the second polarizing element (absorption type polarizing element) 24. Arranged like this.
  • a reflective polarizing element as the semi-transmissive light reflecting layer 30, the transmittance of light transmitted through the transmission axis of the first polarizing element can be improved.
  • each component constituting the decorative film is typically bonded via any suitable adhesive layer or pressure-sensitive adhesive layer.
  • the decorative film may further contain any suitable component depending on the purpose, as long as the effect of the present invention can be obtained.
  • protective layers may be provided on one or both sides of each substituent.
  • the protective layer may have a functional layer such as a hard coat layer or an antifouling layer, if necessary.
  • the transmittance of the decorative film can be set to an appropriate value depending on the application and the like.
  • the transmittance is, for example, 3% or more, preferably 10% or more, more preferably 30% or more, and for example, 60% or less, preferably 50% or less, more preferably 46% or less.
  • the degree of polarization of the decorative film is, for example, 90% or more, preferably 95% or more, more preferably 99% or more, and for example 100% or less.
  • the transmittance (single transmittance: Ts) and the degree of polarization referred to in the present specification can be measured using a spectrophotometer.
  • Ts, Tp and Tc are Y values corrected for luminosity factor by the JIS Z8701 double field of view (D65 light source).
  • the thickness of the decorative film can be, for example, 10 ⁇ m to 1000 ⁇ m, preferably 50 ⁇ m to 500 ⁇ m, and more preferably 100 ⁇ m to 500 ⁇ m.
  • the first substituent is an absorbent polarizing element containing a dichroic substance.
  • the dichroic substance is not particularly limited as long as the reflected light having a metric saturation of 2 or more can be obtained, and can be appropriately selected according to the color, pattern, etc. desired for the decorative film.
  • One kind of dichroic substance may be used alone, or two or more kinds of dichroic substances may be used in combination.
  • a 1st polarizing element which is an absorption type polarizing element may be referred to as a 1st absorption type polarizing element.
  • the first absorption type polarizing element has an in-plane region where the metric saturation of transmitted light is 2 or more, for example, 10 or more.
  • the first absorption type polarizing element having such a region reflected light having a metric saturation of 2 or more can be preferably obtained on the first main surface side of the decorative film.
  • a design including a pattern and / or a color can be preferably recognized.
  • the first absorption type polarizing element may have no color difference in the plane and may have uniform optical characteristics, or may have a color difference.
  • a design including a pattern can be recognized.
  • the dichroic substance for example, iodine or a dichroic dye other than iodine can be used.
  • the bicolor dye other than iodine include a bicolor direct dye composed of a disazo compound, a bicolor direct dye composed of a trisazo and a tetrakisazo compound, a liquid crystal azo dye, a polycyclic dye, and a sulfone. Examples thereof include (azo) dyes having an acid group.
  • Specific examples of the dichroic dye include C.I. I. direct. Yellow 12, C.I. I. direct. Yellow 28, C.I. I. direct. Yellow 44, C.I. I. direct. Yellow 142; C.I. I. direct. Orange 26, C.I. I.
  • Direct Violet 9 C.I. I. Direct Violet 51; C.I. I. Direct Brown 106, C.I. I. Direct Brown 223 can be mentioned.
  • dyes developed for polarizing films as disclosed in WO2009 / 057676, WO2007 / 145210, WO2006 / 057214 and JP-A-2004-251963 can also be used. These dyes are used as free acids, alkali metal salts (for example, Na salt, K salt, Li salt), ammonium salts, and amine salts.
  • the first absorbent polarizing element is composed of a resin film. Any suitable configuration can be adopted as the resin film.
  • the first absorption-type polarizing element made of a resin film may be made by using a single-layer resin film, or may be made by using a laminated body having two or more layers.
  • the first absorption-type decoder composed of a single-layer resin film include a polyvinyl alcohol (PVA) -based resin film, a partially formalized PVA-based resin film, and an ethylene / vinyl acetate copolymer system partially saponified film.
  • PVA polyvinyl alcohol
  • Examples thereof include those obtained by subjecting a hydrophilic polymer film such as, etc. to a dyeing treatment and a stretching treatment with a bicolor substance.
  • the dyeing process can be performed, for example, by applying a dyeing solution containing a dichroic substance, printing using the dyeing solution, immersing in the dyeing solution, or the like. These methods may be combined. According to coating or printing, a plurality of staining solutions containing different types and / or different concentrations of dichroic substances are used to stain a plurality of regions such as region A, region B, and region C so as to form a plurality of regions. As a result, any design (design, letter, pattern, etc.) containing two or more hues and / or shades of color can be freely (i.e., without being limited to a particular pattern) a polarizing element. Can be granted. Further, according to the immersion, a polarizing element having substantially no color difference in the plane and having uniform optical characteristics can be preferably obtained.
  • the coating method and the printing method are not particularly limited as long as the effects of the present invention can be obtained, but from the viewpoint of freely imparting any design including two or more hues and / or shades of color, dyeing by printing is performed. It is more preferable to carry out the treatment.
  • the printing method may be a plateless printing method such as an inkjet printing method, or a plate printing method such as a screen printing method, an offset printing method, a gravure printing method, or a flexographic printing method. It is preferably a plateless type, and an inkjet printing method is more preferable.
  • a extruder suitable for mass production can be obtained.
  • the dyeing treatment is performed before or after the stretching treatment. It is preferably performed after the stretching treatment. Further, it may be printed directly on a resin film, or it may be transferred on another film or the like.
  • the content of the bicolor substance in the dyeing solution is, for example, 1 ⁇ 10 -4 parts by weight to 10 parts by weight, preferably 1 ⁇ 10 -3 parts by weight to 10 parts by weight, and further, per 100 parts by weight of water. It is preferably 1 ⁇ 10-2 parts by weight to 10 parts by weight.
  • This dyeing solution may contain a surfactant, a viscosity regulator, a drying inhibitor, a pH regulator, a dyeing aid such as sodium sulfate, or the like, depending on the coating method.
  • the stretching ratio of the stretching treatment is preferably 3 to 7 times.
  • the stretching may be performed after the dyeing treatment, while dyeing, or before the dyeing treatment.
  • the hydrophilic polymer film typically a PVA-based resin film
  • the hydrophilic polymer film is subjected to a swelling treatment, a crosslinking treatment, a cleaning treatment, a drying treatment and the like.
  • a swelling treatment typically a PVA-based resin film
  • the first absorption-type polarizing element obtained by using the laminate include a laminate of a resin base material and a PVA-based resin layer (PVA-based resin film) laminated on the resin base material, or a resin.
  • a polarizing element obtained by using a laminate of a base material and a PVA-based resin layer coated and formed on the resin base material examples thereof include a polarizing element obtained by using a laminate of a base material and a PVA-based resin layer coated and formed on the resin base material.
  • the polarizing element obtained by using the laminate of the resin base material and the PVA-based resin layer coated and formed on the resin base material is, for example, a resin base material obtained by applying a PVA-based resin solution to the resin base material and drying it.
  • stretching typically includes immersing the laminate in an aqueous boric acid solution for stretching. Further, stretching may further comprise, if necessary, stretching the laminate in the air at a high temperature (eg, 95 ° C. or higher) prior to stretching in boric acid aqueous solution.
  • a high temperature eg, 95 ° C. or higher
  • the obtained laminated body of the resin base material / polarizing element may be used as it is without peeling off the resin base material, or by laminating the resin base material on the protective film and then peeling off the resin base material, the polarizing material / the protective film can be obtained. It may be in the form (as a result, a polarizing plate containing a resin base material or a protective film as a protective layer is obtained). Further, as the dyeing method, the same method as the dyeing method for a polarizing element composed of a single-layer resin film, for example, coating, printing, dipping and the like can be used.
  • the first absorption type polarizing element may be a liquid crystal coated type polarizing element formed of a liquid crystal compound.
  • the liquid crystal coating type polarizing element can be produced, for example, by coating a liquid crystal composition containing a liquid crystal compound on a substrate.
  • An alignment film may be formed on the substrate before the liquid crystal composition is applied.
  • the alignment film can be formed, for example, by imparting orientation to a coating film formed by applying an alignment film forming composition on a substrate by rubbing, polarization irradiation, or the like.
  • the liquid crystal composition may contain a liquid crystal compound and a dichroic substance, or may contain a liquid crystal compound having a dichroism (in the latter, the liquid crystal compound has two colors. Also serves as a sex substance).
  • the liquid crystal composition can further contain an initiator, a solvent, a dispersant, a leveling agent, a stabilizer, a surfactant, a cross-linking agent, a silane coupling agent and the like. Any compound contained in the liquid crystal composition may have a polymerizable functional group.
  • an azo dye exhibiting a lyotropic liquid crystal property can be preferably used as the liquid crystal compound having a dichroism.
  • Specific examples of the azo dye exhibiting lyotropic liquid crystal properties and a method for producing a liquid crystal-coated polarizing element using the azo dye are described in JP-A-2019-079040, JP-A-2019-079041 and JP-A-2019-079042. It is described in Japanese Patent Laid-Open No. 2019-08676, etc., and the entire description of these publications is incorporated herein by reference.
  • the thickness of the first absorbent polarizing element when made of a resin film is preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less, and further preferably 10 ⁇ m or less. Further, the lower limit of the thickness may be, for example, 2 ⁇ m.
  • the thickness of the first absorption-type polarizing element in the case of a liquid crystal-coated type polarizing element is preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less, and further preferably 500 nm or less. Further, the lower limit of the thickness may be, for example, 10 nm.
  • the first absorption type polarizing element has an absorption axis in one direction in the plane and a transmission axis in a direction orthogonal to the absorption axis direction.
  • the first absorption type polarizing element preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm in any region randomly sampled in the plane.
  • the single transmittance in the region is, for example, 1% to 90%, preferably 5% to 80%, and more preferably 10% to 70%.
  • the degree of polarization in the region is typically 10% or more, for example, 15% or more, preferably 30% or more, more preferably 40% or more, still more preferably 50% or more.
  • Second Polarizer As the second splitter, a reflective or absorptive splitter can be used as described above.
  • the reflective splitter has a function of transmitting polarization in a specific polarization state (polarization direction) and reflecting light in other polarization states.
  • the transmittance of the reflective polarizing element is preferably 10% to 80%, more preferably 15% to 70%, and even more preferably 20% to 60%.
  • the reflectance of the reflective polarizing element is preferably 20% or more, more preferably 30% or more, still more preferably 40% or more.
  • the degree of polarization of the reflective polarizing element is, for example, 30% to 100%, preferably 60% to 100%.
  • the light transmitted through the absorption axis of the first polarizing element is reflected by the reflection axis and transmitted through the transmission axis of the first substituent.
  • Linearly polarized light can pass through the transmission axis as it is.
  • the reflection type polarizing element may be a linear polarization separation type or a circular polarization separation type, but a linear polarization separation type is preferable.
  • the linearly polarized light separation type reflective classifier will be specifically described.
  • FIG. 5 is a schematic perspective view of an example of a reflective polarizing element.
  • the reflective splitter in the illustrated example is a multilayer thin film type reflective splitter, and is a multilayer laminate in which a layer A having birefringence and a layer B having substantially no birefringence are alternately laminated. Is.
  • the total number of layers of such a multi-layer laminate can be 50-1000.
  • the refractive index nx in the x-axis direction of the A layer is larger than the refractive index ny in the y-axis direction, and the refractive index nx in the x-axis direction of the B layer and the refractive index ny in the y-axis direction are substantially the same.
  • the difference in refractive index between the A layer and the B layer is large in the x-axis direction and substantially zero in the y-axis direction.
  • the x-axis direction becomes the reflection axis
  • the y-axis direction becomes the transmission axis.
  • the difference in refractive index between the A layer and the B layer in the x-axis direction is preferably 0.2 to 0.3.
  • the x-axis direction corresponds to the stretching direction of the reflective polarizing element in the manufacturing method described later.
  • the layer A is preferably composed of a material that exhibits birefringence by stretching.
  • Representative examples of such materials include polyester naphthalenedicarboxylate (eg, polyethylene naphthalate), polycarbonate and acrylic resins (eg, polymethylmethacrylate). Polyethylene naphthalate is preferred.
  • the B layer is preferably made of a material that does not substantially exhibit birefringence even when stretched.
  • a typical example of such a material is a copolyester of naphthalenedicarboxylic acid and terephthalic acid.
  • the reflective polarizing element transmits light having a first polarization direction (for example, a p wave) at the interface between the A layer and the B layer, and has a second polarization direction orthogonal to the first polarization direction. Reflects the light it has (for example, s wave). At the interface between the A layer and the B layer, the reflected light is partially transmitted as light having a first polarization direction and partially reflected as light having a second polarization direction. By repeating such reflection and transmission in large numbers inside the reflective polarizing element, it is possible to improve the efficiency of light utilization.
  • a first polarization direction for example, a p wave
  • the reflective polarizing element may include the reflective layer R as the outermost layer on the side opposite to the visual viewing side, as shown in FIG.
  • the reflective layer R By providing the reflective layer R, it is possible to further utilize the light that has returned to the outermost side of the reflective polarizing element without being finally utilized, so that the efficiency of light utilization can be further improved.
  • the reflective layer R typically exhibits a reflective function due to the multilayer structure of the polyester resin layer.
  • the total thickness of the reflective classifier can be appropriately set according to the purpose, the total number of layers included in the reflective classifier, and the like.
  • the total thickness of the reflective polarizing element is preferably 10 ⁇ m to 150 ⁇ m.
  • the reflection type deflector can be typically produced by combining coextrusion and transverse stretching. Coextrusion can be done in any suitable manner. For example, it may be a feed block system or a multi-manifold system. For example, the material constituting the A layer and the material constituting the B layer are extruded in the feed block, and then multi-layered using a multiplier. It should be noted that such a multilayer device is known to those skilled in the art. Next, the obtained elongated multilayer laminate is typically stretched in a direction orthogonal to the transport direction (TD).
  • TD transport direction
  • the material constituting the layer A for example, polyethylene naphthalate
  • the material constituting the B layer for example, copolyester of naphthalene dicarboxylic acid and terephthalic acid
  • TD reflection axis in the stretching direction
  • MD transmission axis in the transport direction
  • TD corresponds to the x-axis direction in FIG. 5
  • MD corresponds to the y-axis. Corresponds to the direction).
  • the stretching operation can be performed using any suitable device.
  • the reflective polarizing element for example, those described in Japanese Patent Publication No. 9-507308 may be used. Further, as the reflective polarizing element, a commercially available product may be used as it is, or the commercially available product may be used after secondary processing (for example, stretching). Examples of the commercially available product include the product name "APCF” manufactured by Nitto Denko Corporation, the product name "DBEF” manufactured by 3M Company, and the product name "APF” manufactured by 3M Company.
  • a thin metal wire type reflective classifier such as a wire grid classifier can be mentioned.
  • a wire grid splitter contains a plurality of wires arranged in a striped pattern, more specifically, in parallel at predetermined intervals, and a straight line oscillating in a direction orthogonal to the longitudinal direction (extending direction) of the wires. It is possible to transmit the polarization component and reflect the linear polarization component that vibrates in the longitudinal direction of the wire.
  • the wire is preferably made of metal.
  • the diameter of the wires and the spacing between the wires can be appropriately set according to the purpose.
  • the spacing between the wires can be set, for example, from 10 nm to 350 nm, preferably from 50 nm to 300 nm.
  • the polarization separation function can be suitably obtained at a wavelength of 350 nm to 2000 nm.
  • the absorption-type polarizing element used as the second polarizing element (sometimes referred to as the second absorption-type splitter) has an absorption axis in one direction in the plane and is orthogonal to the absorption axis direction. It has a transmission axis in the direction of polarization.
  • the orthogonal hue a * value of the second absorption type polarizing element is, for example, ⁇ 5 to 5, preferably -3 to 3, and more preferably -1 to 1.
  • the orthogonal hue b * value is, for example, ⁇ 5 to 5, preferably -3 to 3, and more preferably -1 to 1. According to the second absorption type modulator whose orthogonal hue is within such a range, undesired coloring of transmitted light can be suitably prevented.
  • the second absorption type polarizing element the same one as that of the first absorption type polarizing element described in the item B-1 can be used. From the viewpoint of exhibiting a neutral hue and preventing coloration of transmitted light, a substituent containing iodine as a dichroic substance is preferable.
  • the second absorption type polarizing element has substantially no color difference in the plane and has uniform optical characteristics (typically, simple substance transmittance and degree of polarization).
  • the second absorbent polarizing element preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm.
  • the simple substance transmittance of the second absorption type polarizing element is preferably 40% to 50%, more preferably 42% to 46%.
  • the degree of polarization of the second absorption type polarizing element is preferably 90% or more, more preferably 95% or more, and further preferably 99% or more.
  • the thickness of the second absorption type polarizing element is preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less, and further preferably 10 ⁇ m or less. Further, the lower limit of the thickness may be, for example, 2 ⁇ m.
  • the semi-transmissive light reflection layer has transmission characteristics and reflection characteristics that reflect a part of incident light and transmit the rest of the light.
  • the transmittance of the semitransparent light reflecting layer is, for example, 10% to 85%, preferably 10% to 80%, more preferably 15% to 70%, and further preferably 20% to 60%.
  • the reflectance of the semitransparent light reflecting layer is preferably 20% or more, more preferably 30% or more, still more preferably 40% or more.
  • As the semitransparent light reflecting layer for example, a half mirror, a louver film, a reflecting splitter, or the like can be used.
  • half mirror for example, a multi-layer laminate in which two or more dielectric films having different refractive indexes are laminated can be used. Such half mirrors preferably have a metallic luster.
  • the material for forming the dielectric film examples include metal oxides, metal nitrides, metal fluorides, thermoplastic resins (for example, polyethylene terephthalate (PET)) and the like.
  • the multilayer laminate of the dielectric films reflects a part of the incident light at the interface due to the difference in the refractive index of the laminated dielectric films. The reflectance can be adjusted by changing the phase of the incident light and the reflected light according to the thickness of the dielectric film and adjusting the degree of interference between the two lights.
  • the thickness of the half mirror made of a multi-layered laminate of dielectric films can be, for example, 50 ⁇ m to 200 ⁇ m. As such a half mirror, for example, a commercially available product such as the trade name "Picassus" manufactured by Toray Industries, Inc. can be used.
  • the half mirror includes, for example, aluminum (Al), indium (In), zinc (Zn), lead (Pb), copper (Cu), silver (Ag), or an alloy thereof on a resin film such as PET.
  • a metal-deposited film on which a metal such as the above is vapor-deposited can be used. Although the metal-deposited film has a metal-like luster due to reflection, it can transmit a part of light, and the light transmittance can be controlled by changing the vapor-deposited film thickness.
  • the vapor deposition film thickness is preferably 1 nm to 50 nm, more preferably 10 nm to 30 nm.
  • the film thickness of the resin film is preferably 1 ⁇ m to 1000 ⁇ m, more preferably 20 ⁇ m to 100 ⁇ m.
  • the louver film includes a louver layer having louver portions alternately formed in stripes and a light transmitting portion, and the louver portion is configured to reflect light.
  • the louver film may further include a substrate layer on one or both sides of the louver layer, if desired.
  • the widths of the light transmitting portion and the louver portion can be appropriately set according to the desired transmittance or reflectance.
  • the angle of the louver portion is usually in the range of 0 ° to 45 °.
  • the angle of the louver portion means the angle of the louver portion with respect to the main surface of the louver film, and the case where it is orthogonal to the main surface is 0 °.
  • the thickness of the louver layer can be set to an arbitrary appropriate thickness according to the purpose.
  • the thickness of the louver layer can be, for example, 10 ⁇ m to 1000 ⁇ m, preferably 50 ⁇ m to 800 ⁇ m.
  • the reflective classifier As the reflective classifier, the reflective classifier described in Section B-2-1 can be used.
  • phase difference layer The phase difference layer preferably functions as a ⁇ / 4 plate.
  • the retardation layer may be, for example, a single layer, or may be a laminated body in which a plurality of retardation layers are combined to exhibit a function as a ⁇ / 4 plate.
  • the in-plane retardation Re (550) of the retardation layer is, for example, 100 nm to 180 nm, preferably 110 nm to 170 nm, more preferably 120 nm to 160 nm, and particularly preferably 135 nm to 155 nm.
  • the Nz coefficient of the retardation layer is, for example, 0.9 to 2, preferably 1 to 1.5, and more preferably 1 to 1.3.
  • the thickness of the retardation layer can be set so that it can function most appropriately as a ⁇ / 4 plate. In other words, the thickness can be set to obtain the desired in-plane phase difference. Specifically, the thickness is preferably 10 ⁇ m to 80 ⁇ m, more preferably 10 ⁇ m to 60 ⁇ m, and most preferably 30 ⁇ m to 50 ⁇ m.
  • the retardation layer may exhibit a reverse dispersion wavelength characteristic in which the retardation value increases according to the wavelength of the measurement light, or may exhibit a positive wavelength dispersion characteristic in which the retardation value decreases according to the wavelength of the measurement light. It is also possible to exhibit a flat wavelength dispersion characteristic in which the phase difference value hardly changes depending on the wavelength of the measured light.
  • the retardation layer exhibits inverse dispersion wavelength characteristics.
  • Re (450) / Re (550) of the retardation layer is preferably 0.8 or more and less than 1, and more preferably 0.8 or more and 0.95 or less.
  • the retardation layer is preferably a stretched film of a polymer film.
  • a ⁇ / 4 plate can be obtained by appropriately selecting the type of polymer and the stretching treatment (for example, stretching method, stretching temperature, stretching ratio, stretching direction).
  • any suitable resin is used as the resin for forming the polymer film.
  • suitable resin include cycloolefin resins such as polynorbornene, polycarbonate resins, cellulose resins, polyvinyl alcohol resins, polysulfone resins and other resins constituting a positive compound refraction film. Of these, norbornene-based resins and polycarbonate-based resins are preferable. Details of the resin forming the polymer film are described in, for example, Japanese Patent Application Laid-Open No. 2014-010291. This description is incorporated herein by reference.
  • Examples of the stretching method include horizontal uniaxial stretching, fixed-end biaxial stretching, and sequential biaxial stretching.
  • Specific examples of the fixed-end biaxial stretching include a method of stretching the polymer film in the lateral direction (lateral direction) while running the polymer film in the longitudinal direction. This method may apparently be laterally uniaxially stretched.
  • diagonal stretching can also be adopted. By adopting diagonal stretching, it is possible to obtain a long stretched film having an orientation axis (slow phase axis) at a predetermined angle with respect to the width direction.
  • optical device including the decorative film and a light receiving element that utilizes light transmitted through the decorative film.
  • Typical examples of the optical device include an image pickup device (image sensor) such as a camera, an illuminance sensor, a color sensor, an infrared sensor, a LiDAR, and a visible light communication device.
  • the light receiving element is typically a photoelectric effect type element that detects light and converts it into an electric signal, and is appropriately selected according to the purpose.
  • Specific examples include an image pickup device such as a CCD and CMOS, a phototransistor, a photoresistor, and the like.
  • the decorative film is arranged on the front surface of the light receiving element (more specifically, the light incident side of the light receiving element) so that the second main surface is on the light receiving element side. ..
  • the decorative film is arranged on the front surface of the light receiving element (more specifically, the light incident side of the light receiving element) so that the second main surface is on the light receiving element side. ..
  • the decorative film according to item B can be used as a polarizing filter for an image pickup device to control reflected light generated on a subject. Therefore, according to another aspect of the present invention, there is provided a polarizing filter including the decorative film.
  • the polarizing filter may further include a holder for holding the decorative film.
  • the decorative film is preferably held in a holder in a rotatable state.
  • FIG. 6 is a schematic perspective view illustrating a polarizing filter according to one embodiment of the present invention.
  • the polarizing filter 200 includes a decorative film 100 and a holder 110 for holding the decorative film 100.
  • the holder 110 is provided on one side (more specifically, the side opposite to the side mounted on the imaging device) of the fixed frame 112 and the fixed frame 112 for mounting the polarizing filter 200 on the imaging device. It has a rotating frame 114 for holding the decorative film 100.
  • the rotating frame 114 is configured to be rotatable in the circumferential direction, and holds the decorative film 100 so that the first main surface is on the subject side.
  • FIG. 7 is a schematic exploded perspective view illustrating a mounting portion of an imaging device to which a polarizing filter is detachably mounted according to the system.
  • the polarizing filter 200 is mounted on the front surface of the lens of the imaging device (camera) 300 so that the absorption axis direction (broken line direction in the figure) of the first polarizing element is an appropriate angle with respect to the subject.
  • the Y values obtained by correcting the visual sensitivity from the spectrum, the parallel transmission rate spectrum, and the orthogonal transmission rate spectrum using the JIS Z8701 double-degree field (D65 light source) were defined as the single transmission rate Ts, the parallel transmission rate Tp, and the orthogonal transmission rate Tc, respectively. .. From the obtained Tp and Tc, the degree of polarization was determined using the following formula.
  • Metric saturation The reflected light spectrum with a wavelength of 380 nm to 780 nm when light is irradiated from an angle of 5 ° with respect to the normal direction with respect to the first main surface of the measurement sample is the ultraviolet-visible near-infrared spectral luminosity.
  • thermoplastic resin base material an amorphous isophthal copolymerized polyethylene terephthalate film (thickness: 100 ⁇ m) having a long shape and a Tg of about 75 ° C. was used, and one side of the resin base material was subjected to corona treatment. 100 parts by weight of PVA-based resin in which polyvinyl alcohol (polymerization degree 4200, saponification degree 99.2 mol%) and acetacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "Gosefimer”) are mixed at a ratio of 9: 1.
  • a PVA aqueous solution (coating solution) was prepared by dissolving 13 parts by weight of potassium iodide in water.
  • the PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60 ° C. to form a PVA-based resin layer having a thickness of 13 ⁇ m, and a laminate was prepared.
  • the obtained laminate was uniaxially stretched 2.4 times in the vertical direction (longitudinal direction) in an oven at 130 ° C. (aerial auxiliary stretching treatment). Next, the laminate was immersed in an insolubilizing bath at a liquid temperature of 40 ° C.
  • boric acid aqueous solution obtained by blending 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with respect to 100 parts by weight of water
  • a boric acid aqueous solution obtained by blending 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with respect to 100 parts by weight of water
  • a boric acid aqueous solution boric acid concentration 4% by weight, potassium iodide concentration 5% by weight
  • Uniaxial stretching was performed so that the stretching ratio was 5.5 times (underwater stretching treatment).
  • the laminate was immersed in a washing bath having a liquid temperature of 20 ° C.
  • the simple substance transmittance of the polarizing plate (substantially an iodine-based polarizing element) was 42.2%, and the degree of polarization was 99.996%.
  • [Preparation Example C-1: Preparation of Red Adhesive Layer] 1.
  • Preparation of Adhesive Composition 100 parts of a monomer mixture containing 2-ethylhexyl acrylate (2EHA), NVP, and hydroxyethyl acrylate (HEA) in a weight ratio of 78/18/4 as a photopolymerization initiator is used as a trade name: Irgacure 651. (Ciba Specialty Chemicals Co., Ltd.) 0.035 parts and trade name: Irgacure 184 (Ciba Specialty Chemicals Co., Ltd.) 0.035 parts were put into a four-necked flask, and the viscosity (BH viscometer, No.
  • a monomer syrup containing a partial polymer of the above-mentioned monomer mixture was prepared by irradiating with ultraviolet rays until the temperature (5 rotors, 10 rpm, measurement temperature: 30 ° C.) reached about 15 Pa ⁇ s and photopolymerizing.
  • this monomer syrup 17.6 parts of hydroxyethyl acrylate (HEA), 5.9 parts of acrylic oligomer, 0.088 part of 1,6-hexanediol diacrylate (HDDA), and 3-glyceride as a silane coupling agent.
  • HOA hydroxyethyl acrylate
  • HDDA 1,6-hexanediol diacrylate
  • 3-glyceride as a silane coupling agent.
  • a red pressure-sensitive adhesive composition was prepared by blending 0.05 parts by mass of aryline-7,14 (5H, 12H) -dione (manufactured by BLD Phasetech Ltd.).
  • acrylic oligomer one synthesized by the following method was used. 100 parts of toluene, 60 parts of dicyclopentanyl methacrylate (DCPMA) (trade name: FA-513M, manufactured by Hitachi Kasei Kogyo Co., Ltd.), 40 parts of methyl methacrylate (MMA), and 3.5 parts of ⁇ -thioglycerol as a chain transfer agent. was put into a four-necked flask. Then, after stirring at 70 ° C. under a nitrogen atmosphere for 1 hour, 0.2 part of AIBN was added as a thermal polymerization initiator, and the mixture was reacted at 70 ° C. for 2 hours and then at 80 ° C. for 2 hours.
  • DCPMA dicyclopentanyl methacrylate
  • MMA methyl methacrylate
  • reaction solution was put into a temperature atmosphere of 130 ° C., and toluene, a chain transfer agent, and an unreacted monomer were dried and removed to obtain a solid acrylic oligomer.
  • the Tg of this acrylic oligomer was 144 ° C. and the Mw was 4300.
  • the red adhesive composition obtained above was applied to a release film R1 (MRF # 38, manufactured by Mitsubishi Resin Co., Ltd.) having a thickness of 38 ⁇ m in which one side of the polyester film was a release surface, and the polyester film was formed.
  • a release film R2 (MRE # 38 manufactured by Mitsubishi Resin Co., Ltd.) having a thickness of 38 ⁇ m, one of which is a release surface, is covered to block air, and the film is cured by irradiating with ultraviolet rays to obtain a thickness of 50 ⁇ m and a single transmission rate of 33.
  • Preparation Example C-2 Preparation of Blue Adhesive Layer
  • 0.05 parts of a blue pigment manufactured by Tokyo Kasei Kogyo Co., Ltd., product name "Pigment Blue 15"
  • the thickness is 50 ⁇ m and the single permeability is 35.1.
  • % Blue adhesive sheet blue adhesive layer was obtained.
  • Example 1 The red polarizing element obtained in Production Example B-1 was used as the first polarizing element.
  • a reflective splitter manufactured by Nitto Denko Corporation, product name "APCF", single transmittance: 45
  • APCF acrylic pressure-sensitive adhesive layer
  • a laminated body having a structure of a red polarizing element / a reflective polarizing element.
  • the layers were laminated so that the transmission axis direction of the reflective polarizing element and the transmission axis direction of the red polarizing element were parallel to each other.
  • a triacetyl cellulose (TAC) film (manufactured by FUJIFILM Corporation, product name "TG60UL", thickness) as a protective layer via an acrylic pressure-sensitive adhesive layer (thickness: 23 ⁇ m) on the surface of the obtained laminate on the red polarizing element side. : 60 ⁇ m) were laminated.
  • TAC triacetyl cellulose
  • Example 2 In the same manner as in Example 1 except that the blue polarizing element obtained in Fabrication Example B-2 was used instead of the red polarizing element, the blue polarizing element and the reflecting type polarizing element were subjected to this from the first main surface side. A decorative film 2 having the order was obtained.
  • Example 3 In the same manner as in Example 1 except that the yellow polarizing element obtained in Production Example B-3 was used instead of the red polarizing element, the yellow polarizing element and the reflecting type polarizing element were subjected to this from the first main surface side. A decorative film 3 having the order was obtained.
  • Example 4 The same as in Example 1 except that a reflective classifier (manufactured by Asahi Kasei Co., Ltd., wire grid polarizing film, product name "WGF TM ", thickness 80 ⁇ m, single transmittance 45.7%) was used as the second polarizing element.
  • a decorative film 4 having a red polarizing element and a reflective polarizing element in this order was obtained from the first main surface side.
  • Example 5 The red polarizing element obtained in Production Example B-1 was used as the first polarizing element.
  • a half mirror manufactured by Toray Co., Ltd., product name "Picasus", thickness: 100 ⁇ m, transmittance: 26.6%
  • the polarizing plate obtained in Production Example A was laminated as a second splitter on the half mirror side surface of the obtained laminate via an acrylic pressure-sensitive adhesive layer (thickness: 23 ⁇ m).
  • the transmission axes of the red polarizing element and the transmission axis of the iodine-based polarizing element were laminated so as to be parallel to each other.
  • TAC triacetyl cellulose
  • Example 6 A red splitter and a red splitter in the same manner as in Example 5 except that a half mirror (manufactured by Toray Co., Ltd., product name "Picassus", thickness: 100 ⁇ m, transmittance: 53.6%) was used as the semitransmissive light reflecting layer.
  • a decorative film 6 having a half mirror and an iodine-based splitter in this order was obtained from the first main surface side.
  • Example 7 A red splitter and a red splitter in the same manner as in Example 5 except that a half mirror (manufactured by Toray Co., Ltd., product name "Picassus", thickness: 100 ⁇ m, transmittance: 83.7%) was used as the semitransmissive light reflecting layer.
  • a decorative film 7 having a half mirror and an iodine-based splitter in this order was obtained from the first main surface side.
  • Example 8 The same as in Example 5 except that a half mirror (a metal-deposited film having an aluminum vapor-deposited film having a thickness of 25 nm formed on the surface of a PET film having a thickness of 50 ⁇ m, transmittance: 11.7%) was used as the semi-transmissive light-reflecting layer.
  • Example 9 The same as in Example 5, except that a reflective classifier (manufactured by Nitto Denko Co., Ltd., product name "APCF”, single transmittance: 45.7%) was used as the semi-transmissive light reflecting layer, the red polarizing element was used. A decorative film 9 having a reflective polarizing element and an iodine-based polarizing element in this order from the first main surface side was obtained. The reflective splitters were laminated so that their transmission axis directions were parallel to the transmission axis directions of the red and iodine-based splitters.
  • a reflective classifier manufactured by Nitto Denko Co., Ltd., product name "APCF”, single transmittance: 45.7%
  • Example 10 A retardation film (manufactured by Teijin Co., Ltd., trade name "Pure Ace WR", thickness) is interposed on the surface of the decorative film 9 obtained in Example 9 on the side of the iodine-based polarizing element via an acrylic pressure-sensitive adhesive layer (thickness: 23 ⁇ m). 50 ⁇ m) was laminated to obtain a decorative film 10 having a red splitter, a reflective splitter, an iodine-based splitter, and a retardation film in this order from the first main surface side. The retardation film was laminated so that its slow axis direction was at an angle of 45 ° with the transmission axis direction of the iodine-based polarizing element.
  • TAC triacetyl cellulose
  • Tables 1 and 2 summarize the configurations of the decorative films obtained in the above Examples and Comparative Examples, the metric saturation of the reflected light (C * ), and the change in the chromaticity of the transmitted light with respect to the incident light ( ⁇ xy). .. Further, for each decorative film, an image taken when the transmitted light emitted from the second main surface is measured using a 2D spectroradiometer is shown in FIG. 8 (the image shown as "blank" in the figure is shown. , It is an image of the light emitted from the surface light source directly captured without passing through the decorative film).
  • the metric saturation (C * ) of the reflected light exceeds 10, and the change in the chromaticity of the transmitted light with respect to the incident light ( ⁇ xy). Since is 0.07 or less, it can be seen that the predetermined design can be recognized by the reflected light and that the transmitted light is not excessively colored. On the other hand, as shown in Table 2 and FIG. 8, it can be seen that the decorative films C1 to C4 of the comparative example all have a large change in the chromaticity of the transmitted light and are colored. Further, in the decorative film C5 using the transparent film as it is, the hue of the reflected light was small and the design could not be recognized.
  • the decorative film of the present invention can be suitably used for an optical device provided with a light receiving element such as a camera or a sensor, or a device equipped with such an optical device.
  • First absorption type polarizing element 22 Reflective type splitter 24 Second absorption type polarizing element 30
  • Semi-transmissive light reflecting layer 40 Phase difference layer 100 Decorative film 200 Polarizing filter 300 Imaging device

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Blocking Light For Cameras (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、カメラやセンサーに所望の意匠を付与することができる加飾フィルムを提供する。本発明の加飾フィルムは、第1の主面と第2の主面とを有する加飾フィルムであって、該第1の主面における反射光のメトリック彩度が、2以上であり、該第1の主面に色温度が5500K±500Kの範囲内である光を入射させた際の、入射光の色度に対する透過光の色度の変化が、0.07以下である。

Description

加飾フィルムおよび光学デバイス
 本発明は、加飾フィルムおよび該加飾フィルムを備える光学デバイスに関する。
 近年、遠隔操作、保守監視、個人認証等の技術の発達に伴い、カメラやセンサーが内蔵された種々のデバイスが開発されている。また、スマートデバイス、モバイルパソコン等の情報デバイスの多くにもカメラが内蔵されている。このようなカメラやセンサーは、通常、受光素子等の光を利用する素子を搭載しており、特定の波長または種々の波長の光強度を検出して情報を認識することができる一方で、受光素子に光を入射させるための透過領域(入光部)を有することから、周辺部分と異なる外観を呈し、使用者に認識されやすいという課題がある。
 上記課題に対し、特許文献1では、円偏光反射層とλ/4板Aと直線偏光子とλ/4板Bとをこの順に有する加飾シートが提案されており、当該加飾シートを光を利用する素子の前面に配置することにより、カメラやセンサーを使用者から認識し難くすることができる。
WO2018/212347号公報
 特許文献1の加飾シートによれば、円偏光反射層で入射光の一部を反射することによってカメラやセンサーを使用者から認識し難くすることができるものの、所望の意匠を付与することができないことから、周辺部分と一体感のある意匠を構成することが困難である。
 本発明は上記課題を解決するためになされたものであり、その主たる目的は、カメラやセンサーに所望の意匠を付与することができる加飾フィルムを提供することにある。
 本発明の1つの局面によれば、第1の主面と第2の主面とを有する加飾フィルムであって、該第1の主面における反射光のメトリック彩度が、2以上であり、該第1の主面に色温度が5500K±500Kの範囲内である光を入射させた際の、入射光の色度に対する透過光の色度の変化が、0.07以下である、加飾フィルムが提供される。
 1つの実施形態において、上記加飾フィルムは、透過軸方向が実質的に平行となるように上記第1の主面側からこの順に配置された第1の偏光子と第2の偏光子とを含み、該第1の偏光子が、吸収型偏光子であり、該第2の偏光子が、反射型偏光子または吸収型偏光子であり、ただし、該第2の偏光子が吸収型偏光子である場合、該第1の偏光子と該第2の偏光子との間に半透過性光反射層をさらに含む。
 1つの実施形態において、上記第2の偏光子が、吸収型偏光子であり、上記半透過性光反射層が、反射型偏光子であり、該反射型偏光子の透過軸方向が、上記第1の偏光子および上記第2の偏光子の透過軸方向と実質的に平行である。
 1つの実施形態において、上記第2の偏光子の上記第2の主面側に配置された位相差層をさらに含み、該位相差層の面内位相差Re(550)が、100nm~180nmであり、該位相差層の遅相軸と上記第2の偏光子の透過軸とのなす角度が、35°~55°または125°~145°である。
 1つの実施形態において、上記第1の偏光子が、面内において、色差を有する。
 本発明の別の局面によれば、上記加飾フィルムと、該加飾フィルムを透過する光を利用する受光素子とを備える、光学デバイスが提供される。
 1つの実施形態において、上記加飾フィルムが、第2の主面が上記受光素子側となるように配置されている。
 1つの実施形態において、上記受光素子が、撮像素子である。
 本発明の別の局面によれば、上記加飾フィルムを含む、偏光フィルターが提供される。
 本発明のさらに別の局面によれば、撮像デバイスと、該撮像デバイスに着脱可能に装着される上記偏光フィルターと、を含む、被写体に生じる乱反射光防止システムが提供される。
 本発明によれば、第1の主面と第2の主面とを有し、該第1の主面における反射光のメトリック彩度が2以上であり、該第1の主面に5500K±500Kの範囲内に色温度を有する光を入射させた際の入射光の色度に対する透過光の色度の変化が0.07以下である、加飾フィルムが提供される。このような加飾フィルムによれば、カメラやセンサーの機能を損なうことなく使用者から認識し難くすることができるだけでなく、所望の意匠を随意に付与することができる。
本発明の実施形態による加飾フィルムを説明する概略図である。 本発明の1つの実施形態による加飾フィルムの概略断面図である。 本発明の1つの実施形態による加飾フィルムの概略断面図である。 本発明の1つの実施形態による加飾フィルムの概略断面図である。 本発明の加飾フィルムに用いられ得る反射型偏光子の一例の概略斜視図である。 本発明の1つの実施形態による偏光フィルターを説明する概略斜視図である。 本発明の1つの実施形態による乱反射光防止システムにおける偏光フィルターの撮像デバイスへの装着を説明する概略分解斜視図である。 加飾フィルムの透過光を撮像した写真である。
 以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。また、反対の記載が無い限り、各実施形態は、適宜組み合わせることができる。
A.用語の定義
(1)屈折率(nx、ny、nz)
 「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
 「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
 「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth=(nx-nz)×dによって求められる。
(4)Nz係数
 Nz係数は、Nz=Rth/Reによって求められる。
(5)「実質的に直交」という表現は、2つの方向のなす角度が90°±10°である場合を包含し、好ましくは90°±7°であり、さらに好ましくは90°±5°である。さらに、本明細書において単に「直交」というときは、実質的に直交な状態を含み得るものとする。
(6)「実質的に平行」という表現は、2つの方向のなす角度が0°±10°である場合を包含し、好ましくは0°±7°であり、さらに好ましくは0°±5°である。さらに、本明細書において単に「平行」というときは、実質的に平行な状態を含み得るものとする。
B.加飾フィルム
 図1は、本発明の実施形態による加飾フィルムを説明する概略図である。加飾フィルム100は、第1の主面と第2の主面とを有する。加飾フィルム100の第1の主面に光a(代表的には、白色光)を入射させた際の反射光bのメトリック彩度が2以上であり、好ましくは5以上、より好ましくは10以上、さらに好ましくは20以上である。また、入射光aとして色温度が5500K±500Kの範囲内である光を入射させた際の透過光cの色度の変化(Δxy)が0.07以下であり、好ましくは0.05以下、より好ましくは0.03以下である。反射光bのメトリック彩度の上限は、特に制限されず、例えば100であり得る。また、色度の変化(Δxy)の下限は、特に制限されず、例えば0であり得る。なお、上記反射光bのメトリック彩度は、加飾フィルム100の全面において均一な値であってもよく、異なる値であってもよい。また、上記反射光bのメトリック彩度は、加飾フィルム100の全面において2以上である必要は無く、少なくとも一部の領域において2以上であればよい。
 本発明の1つの実施形態による加飾フィルムは、D65光源の光を第1の主面に入射させた際の反射光のメトリック彩度が2以上であり、好ましくは5以上、より好ましくは10以上、さらに好ましくは20以上であり、かつ、第1の主面に色温度が5500Kである光を入射させた際の入射光に対する透過光の色度の変化(Δxy)が0.07以下であり、好ましくは0.05以下、より好ましくは0.03以下である。当該実施形態において、反射光bのメトリック彩度の上限は、特に制限されず、例えば100であり得る。また、色度の変化(Δxy)の下限は、特に制限されず、例えば0であり得る。
 代表的には、上記加飾フィルムは、透過軸方向が互いに実質的に平行となるように第1の主面側からこの順に配置された第1の偏光子と第2の偏光子とを含み、該第1の偏光子が、吸収型偏光子であり、該第2の偏光子が、反射型偏光子または吸収型偏光子であり、ただし、第2の偏光子が吸収型偏光子である場合、第1の偏光子と第2の偏光子との間に半透過性光反射層をさらに含む。このような構成を有する加飾フィルムによれば、第1の主面側から白色光(例えば、D65光源または色温度が5500K±500Kの範囲内である光)を照射した場合に、第1の偏光子の吸収軸を透過した光が反射型偏光子または半透過性光反射層に反射されて第1の主面から出射することから、第1の偏光子に適切な意匠を付与することにより、メトリック彩度が2以上である反射光が得られ得る。また、第1の主面側から入射して第1の偏光子の透過軸を透過した直線偏光は、第2の偏光子の透過軸をそのまま透過できることから、入射光の色度に対する透過光の色度の変化(Δxy)を0.07以下とすることができる。また、このような加飾フィルムに関して、第1の偏光子として所望の意匠が付与された吸収型偏光子(例えば、所望の色彩および/または模様を呈する吸収型偏光子)を用い、かつ、第2の主面側が光学デバイス(カメラ、センサー等)の受光素子側となるように受光素子の前面に配置することにより、所望の外観を有する光学デバイスが得られるとともに、受光素子に到達するに光に所望しない色付きが生じることを防止できる。
 図2~図4はそれぞれ、本発明の1つの実施形態による加飾フィルムの概略断面図である。図2に示される加飾フィルム100aは、吸収型偏光子である第1の偏光子10と反射型偏光子である第2の偏光子22とを、第1の主面側からこの順に含む。加飾フィルム100aにおいて、第1の偏光子(吸収型偏光子)10と第2の偏光子(反射型偏光子)22とは、それぞれの透過軸方向が互いに実質的に平行となるように配置されている。
 図3に示される加飾フィルム100bは、吸収型偏光子である第1の偏光子10と吸収型偏光子である第2の偏光子24とを、第1の主面側からこの順に含み、第1の偏光子10と第2の偏光子24との間に半透過性光反射層30をさらに含む。加飾フィルム100bにおいて、第1の偏光子(吸収型偏光子)10と第2の偏光子(吸収型偏光子)24とは、それぞれの透過軸方向が互いに実質的に平行となるように配置されている。なお、加飾フィルム100bにおいて、半透過性光反射層30として、反射型偏光子を用いることもできる。この場合、反射型偏光子は、その透過軸方向が第1の偏光子(吸収型偏光子)10および第2の偏光子(吸収型偏光子)24の透過軸方向と実質的に平行となるように配置される。半透過性光反射層30として、反射型偏光子を用いることにより、第1の偏光子の透過軸を透過した光の透過率を向上させることが出来る。
 図4に示される加飾フィルム100cは、吸収型偏光子である第1の偏光子10と吸収型偏光子である第2の偏光子24と面内位相差Re(550)が100nm~180nmである位相差層40とを、第1の主面側からこの順に含み、第1の偏光子10と第2の偏光子24との間に半透過性光反射層30をさらに含む。加飾フィルム100cにおいて、第1の偏光子(吸収型偏光子)10と第2の偏光子(吸収型偏光子)24とは、それぞれの透過軸方向が互いに実質的に平行となるように配置されている。また、位相差層40は、その遅相軸と第2の偏光子(吸収型偏光子)24の透過軸とのなす角度が35°~55°または125°~145°、好ましくは40°~50°または130°~140°となるように配置されている。このような構成とすることにより、カメラ表面からの反射光等で生じる迷光が効果的に抑制され得る。また、加飾フィルム100cにおいて、半透過性光反射層30として、反射型偏光子を用いることもできる。この場合、反射型偏光子は、その透過軸方向が第1の偏光子(吸収型偏光子)10および第2の偏光子(吸収型偏光子)24の透過軸方向と実質的に平行となるように配置される。半透過性光反射層30として、反射型偏光子を用いることにより、第1の偏光子の透過軸を透過した光の透過率を向上させることが出来る。
 図示しないが、上記加飾フィルムを構成する各構成要素は、代表的には、任意の適切な接着剤層または粘着剤層を介して貼り合わせられている。また、加飾フィルムは、本発明の効果が得られる限りにおいて、目的に応じて任意の適切な構成要素をさらに含むことができる。例えば、各偏光子の片側または両側に保護層が設けられ得る。保護層は、必要に応じて、ハードコート層、防汚層等の機能層を有していてもよい。
 上記加飾フィルムの透過率は、用途等に応じて適切な値に設定され得る。該透過率は、例えば3%以上、好ましくは10%以上、より好ましくは30%以上であり、また例えば60%以下、好ましくは50%以下、より好ましくは46%以下である。
 上記加飾フィルムの偏光度は、例えば90%以上、好ましくは95%以上、より好ましくは99%以上であり、また例えば100%以下である。
 なお、本明細書で言及する透過率(単体透過率:Ts)および偏光度は、分光光度計を用いて測定することができる。具体的には、偏光度は、分光光度計を用いて偏光子の平行透過率Tpおよび直交透過率Tcを測定し、式:偏光度(%)={(Tp-Tc)/(Tp+Tc)}1/2×100より求めることができる。なお、これらのTs、TpおよびTcは、JIS Z8701の2度視野(D65光源)により視感度補正を行なったY値である。
 上記加飾フィルムの厚みは、例えば10μm~1000μm、好ましくは50μm~500μm、より好ましくは100μm~500μmであり得る。
 以下、上記加飾フィルムを構成する各構成要素について説明する。
B-1.第1の偏光子
 第1の偏光子は、二色性物質を含む吸収型偏光子である。上記の通り、第1の偏光子の吸収軸を透過し、反射型偏光子または半透過性光反射層で反射された光が加飾フィルムの意匠として認識され得る。よって、二色性物質は、メトリック彩度が2以上である反射光が得られる限りにおいて特に制限されず、加飾性フィルムに所望される色彩、模様等に応じて適切に選択され得る。一種の二色性物質を単独で用いてもよく、二種以上の二色性物質を組み合わせて用いてもよい。なお、本明細書においては、吸収型偏光子である第1の偏光子を第1の吸収型偏光子と称する場合がある。
 1つの実施形態において、第1の吸収型偏光子は、面内において、透過光のメトリック彩度が2以上、例えば10以上である領域を有する。このような領域を有する第1の吸収型偏光子を用いることにより、加飾フィルムの第1の主面側において、2以上のメトリック彩度である反射光が好適に得られ得る。また、模様および/または色彩を含む意匠を好適に認識することができる。
 第1の吸収型偏光子は、面内において、色差を有さず、均一な光学特性を有するものであってもよく、あるいは、色差を有するものであってもよい。面内において、色差を有する第1の吸収型偏光子によれば、模様を含む意匠を認識することができる。なお、本明細書において、面内において色差を有するとは、面内の色が均一ではなく、透過光のL色空間における色差ΔEab(={(ΔL+(Δa+(Δb1/2)が2以上、より具体的には10以上となる領域が存在することを意味する。
 上記二色性物質としては、例えば、ヨウ素またはヨウ素以外の二色性染料を用いることができる。ヨウ素以外の二色性染料の具体例としては、例えば、ジスアゾ化合物からなる二色性直接染料、トリスアゾ、テトラキスアゾ化合物等からなる二色性直接染料、液晶性アゾ色素、多環式染料、スルホン酸基を有する(アゾ)染料が挙げられる。二色性染料の具体例としては、C.I.ダイレクト.イエロー12、C.I.ダイレクト.イエロー28、C.I.ダイレクト.イエロー44、C.I.ダイレクト.イエロー142;C.I.ダイレクト.オレンジ26、C.I.ダイレクト.オレンジ39、C.I.ダイレクト.オレンジ71、C.I.ダイレクト.オレンジ107;C.I.ダイレクト.レッド2、C.I.ダイレクト.レッド31、C.I.ダイレクト.レッド39、C.I.ダイレクト.レッド79、C.I.ダイレクト.レッド81、C.I.ダイレクト.レッド117、C.I.ダイレクト.レッド247;C.I.ダイレクト.グリーン80、C.I.ダイレクト.グリーン59;C.I.ダイレクト・ブルー1、C.I.ダイレクト・ブルー71、C.I.ダイレクト・ブルー78、C.I.ダイレクト・ブルー168、C.I.ダイレクト・ブルー202;C.I.ダイレクト・バイオレット9、C.I.ダイレクト・バイオレット51;C.I.ダイレクト・ブラウン106、C.I.ダイレクト・ブラウン223が挙げられる。また、目的に応じて、WO2009/057676、WO2007/145210、WO2006/057214および特開2004-251963号公報に開示されているような偏光フィルム用に開発された染料を用いることもできる。これらの色素(染料)は遊離酸、あるいはアルカリ金属塩(例えばNa塩、K塩、Li塩)、アンモニウム塩、アミン類の塩として用いられる。
 1つの実施形態において、第1の吸収型偏光子は、樹脂フィルムで構成される。樹脂フィルムとしては、任意の適切な構成が採用され得る。例えば、樹脂フィルムで構成される第1の吸収型偏光子は、単層の樹脂フィルムを用いて作製されてもよく、二層以上の積層体を用いて作製されてもよい。
 単層の樹脂フィルムから構成される第1の吸収型偏光子の具体例としては、ポリビニルアルコール(PVA)系樹脂フィルム、部分ホルマール化PVA系樹脂フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、二色性物質による染色処理および延伸処理が施されたものが挙げられる。
 上記染色処理は、例えば、二色性物質を含む染色液の塗布、当該染色液を用いた印刷、当該染色液への浸漬等によって行われ得る。これらの方法を組み合わせて行ってもよい。塗布または印刷によれば、それぞれ異なる種類および/または異なる濃度の二色性物質を含む複数の染色液を用いて、領域A、領域B、領域C等の複数の領域を形成するように染色することができ、結果として、2つ以上の色相および/または色の濃淡を含む任意の意匠(図柄、文字、模様等)を自由に(すなわち、特定のパターンに制限されることなく)偏光子に付与することができる。また、浸漬によれば、面内において、実質的に色差を有さず、均一な光学特性を有する偏光子が好適に得られ得る。
 塗布方法および印刷方法としては、本発明の効果が得られる限りにおいて特に制限されないが、2つ以上の色相および/または色の濃淡を含む任意の意匠を自由に付与する観点からは、印刷によって染色処理を行うことがより好ましい。印刷方法としては、インクジェット印刷法等の無版式であってもよく、スクリーン印刷法、オフセット印刷法、グラビア印刷法、フレキソ印刷法等の有版式であってもよい。好ましくは無版式であり、インクジェット印刷法がより好ましい。スクリーン印刷法、オフセット印刷法、グラビア印刷法、フレキソ印刷法等の有版式染色処理によれば、大量生産に向いた偏光子が得られ得る。なお、染色処理は、延伸処理の前であっても後であっても問題はない。好ましくは延伸処理の後に行われる。また、樹脂フィルムに直接印刷してもよいし、その他のフィルム等に印刷したものを転写させても良い。
 染色液における二色性物質の含有量は、水100重量部あたり、例えば1×10-4重量部~10重量部であり、好ましくは1×10-3重量部~10重量部であり、さらに好ましくは1×10-2重量部~10重量部である。この染色液は、塗工方法に応じて界面活性剤、粘度調整剤、乾燥防止剤、pH調整剤、硫酸ナトリウム等の染色助剤等を含有していても良い。
 上記延伸処理の延伸倍率は、好ましくは3~7倍である。延伸は、染色処理後に行ってもよく、染色しながら行ってもよく、染色処理前に行ってもよい。必要に応じて、親水性高分子フィルム(代表的にはPVA系樹脂フィルム)に、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。例えば、染色の前に親水性高分子フィルムを水に浸漬して水洗することで、フィルム表面の汚れやブロッキング防止剤を洗浄することができるだけでなく、フィルムを膨潤させて染色ムラ等を防止することができる。
 積層体を用いて得られる第1の吸収型偏光子の具体例としては、樹脂基材と当該樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体、あるいは、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を偏光子とすること;により作製され得る。本実施形態においては、延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。得られた樹脂基材/偏光子の積層体は、樹脂基材を剥離することなくそのまま用いてもよく、保護フィルムに積層し、次いで樹脂基材を剥離することにより、偏光子/保護フィルムの形態にしてもよい(結果として、保護層としての樹脂基材または保護フィルムを含む偏光板が得られる)。また、染色方法としては、単層の樹脂フィルムから構成される偏光子の染色方法と同様の方法、例えば、塗布、印刷、浸漬等を用いることができる。
 樹脂フィルムにヨウ素による染色処理および延伸処理を施して得られる偏光子の製造方法の詳細は、例えば、特開2012-73580号公報、特許第6470455号等に記載されている。また、樹脂フィルムに二色性染料による染色処理および延伸処理を施して得られる偏光子の製造方法の詳細は、例えば特公平06-066001号公報、特開昭60-133401号公報に記載されている。これらの公報は、その全体の記載が本明細書に参考として援用される。
 別の実施形態において、第1の吸収型偏光子は、液晶性化合物から形成される液晶塗布型偏光子であってもよい。液晶塗布型偏光子は、例えば、基材上に液晶性化合物を含む液晶組成物を塗布することで製造できる。液晶組成物を塗布する前に、基材に配向膜が形成されていてもよい。配向膜は、例えば基材上に配向膜形成組成物を塗布して形成した塗布膜に、ラビング、偏光照射等によって配向性を付与することで、形成することができる。
 上記液晶組成物は、液晶性化合物と二色性物質とを含むものであってもよく、二色性を有する液晶性化合物を含むものであってもよい(後者において、液晶性化合物が二色性物質を兼ねる)。液晶組成物はさらに、開始剤、溶剤、分散剤、レベリング剤、安定剤、界面活性剤、架橋剤、シランカップリング剤等を含むことができる。液晶組成物に含まれるいずれかの化合物が重合性官能基を有していてもよい。
 上記二色性を有する液晶性化合物としては、リオトロピック液晶性を示すアゾ色素が好ましく用いられ得る。リオトロピック液晶性を示すアゾ色素の具体例および当該アゾ色素を用いた液晶塗布型偏光子の製造方法については、特開2019-079040号公報、特開2019-079041号公報、特開2019-079042号公報および特開2019-086766号公報等に記載されており、これらの公報は、その全体の記載が本明細書に参考として援用される。また、ネマチック液晶性およびスメクチック液晶性、中でも特に、スメクチックB液晶性を有する液晶組成物を用いる優れた二色比を有する光吸収異方性膜の製造方法および液晶材料の具体例については、特許4937252号公報、特許5364304号公報等に記載されており、これらの公報は、その全体の記載が本明細書に参考として援用される。
 樹脂フィルムで構成される場合の第1の吸収型偏光子の厚みは、好ましくは40μm以下であり、より好ましくは30μm以下であり、さらに好ましくは10μm以下である。また、当該厚みの下限は、例えば2μmであり得る。
 液晶塗布型偏光子である場合の第1の吸収型偏光子の厚みは、好ましくは5μm以下であり、より好ましくは1μm以下であり、さらに好ましくは500nm以下である。また、当該厚みの下限は、例えば10nmであり得る。
 第1の吸収型偏光子は、面内の一方向に吸収軸を有し、当該吸収軸方向と直交する方向に透過軸を有する。第1の吸収型偏光子は、好ましくは、面内の無作為に抽出した任意の領域において、波長380nm~780nmのいずれかの波長で吸収二色性を示す。当該領域における単体透過率は、例えば1%~90%、好ましくは5%~80%であり、より好ましくは10%~70%である。当該領域における偏光度は、代表的には10%以上であり、例えば15%以上であり、好ましくは30%以上であり、より好ましくは40%以上、さらに好ましくは50%以上である。
B-2.第2の偏光子
 第2の偏光子としては、上記の通り、反射型偏光子または吸収型偏光子を用いることができる。
B-2-1.反射型偏光子
 反射型偏光子は、特定の偏光状態(偏光方向)の偏光を透過し、それ以外の偏光状態の光を反射する機能を有する。反射型偏光子の透過率は、好ましくは10%~80%、より好ましくは15%~70%、さらに好ましくは20%~60%である。反射型偏光子の反射率は、好ましくは20%以上、より好ましくは30%以上、さらに好ましくは40%以上である。反射型偏光子の偏光度は、例えば30%~100%、好ましくは60%~100%である。このような反射型偏光子を第2の偏光子として用いることにより、第1の偏光子の吸収軸を透過した光が反射軸で反射されるとともに、第1の偏光子の透過軸を透過した直線偏光がそのまま透過軸を透過することができる。
 反射型偏光子は、直線偏光分離型または円偏光分離型であり得るが、直線偏光分離型が好ましい。以下、直線偏光分離型の反射型偏光子について具体的に説明する。
 図5は、反射型偏光子の一例の概略斜視図である。図示例の反射型偏光子は、多層薄膜タイプの反射型偏光子であり、複屈折性を有する層Aと複屈折性を実質的に有さない層Bとが交互に積層された多層積層体である。例えば、このような多層積層体の層の総数は、50~1000であり得る。図示例では、A層のx軸方向の屈折率nxがy軸方向の屈折率nyより大きく、B層のx軸方向の屈折率nxとy軸方向の屈折率nyとは実質的に同一である。したがって、A層とB層との屈折率差は、x軸方向において大きく、y軸方向においては実質的にゼロである。その結果、x軸方向が反射軸となり、y軸方向が透過軸となる。A層とB層とのx軸方向における屈折率差は、好ましくは0.2~0.3である。なお、x軸方向は、後述する製造方法における反射型偏光子の延伸方向に対応する。
 上記A層は、好ましくは、延伸により複屈折性を発現する材料で構成される。このような材料の代表例としては、ナフタレンジカルボン酸ポリエステル(例えば、ポリエチレンナフタレート)、ポリカーボネートおよびアクリル系樹脂(例えば、ポリメチルメタクリレート)が挙げられる。ポリエチレンナフタレートが好ましい。上記B層は、好ましくは、延伸しても複屈折性を実質的に発現しない材料で構成される。このような材料の代表例としては、ナフタレンジカルボン酸とテレフタル酸とのコポリエステルが挙げられる。
 上記反射型偏光子は、A層とB層との界面において、第1の偏光方向を有する光(例えば、p波)を透過し、第1の偏光方向とは直交する第2の偏光方向を有する光(例えば、s波)を反射する。反射した光は、A層とB層との界面において、一部が第1の偏光方向を有する光として透過し、一部が第2の偏光方向を有する光として反射する。反射型偏光子の内部において、このような反射および透過が多数繰り返されることにより、光の利用効率を高めることができる。
 1つの実施形態においては、反射型偏光子は、図5に示すように、視認側と反対側の最外層として反射層Rを含んでいてもよい。反射層Rを設けることにより、最終的に利用されずに反射型偏光子の最外部に戻ってきた光をさらに利用することができるので、光の利用効率をさらに高めることができる。反射層Rは、代表的には、ポリエステル樹脂層の多層構造により反射機能を発現する。
 上記反射型偏光子の全体厚みは、目的、反射型偏光子に含まれる層の合計数等に応じて適切に設定され得る。上記反射型偏光子の全体厚みは、好ましくは10μm~150μmである。
 上記反射型偏光子は、代表的には、共押出と横延伸とを組み合わせて作製され得る。共押出は、任意の適切な方式で行われ得る。例えば、フィードブロック方式であってもよく、マルチマニホールド方式であってもよい。例えば、フィードブロック中でA層を構成する材料とB層を構成する材料とを押出し、次いで、マルチプライヤーを用いて多層化する。なお、このような多層化装置は当業者に公知である。次いで、得られた長尺状の多層積層体を代表的には搬送方向に直交する方向(TD)に延伸する。A層を構成する材料(例えば、ポリエチレンナフタレート)は、当該横延伸により延伸方向においてのみ屈折率が増大し、結果として複屈折性を発現する。B層を構成する材料(例えば、ナフタレンジカルボン酸とテレフタル酸とのコポリエステル)は、当該横延伸によってもいずれの方向にも屈折率は増大しない。結果として、延伸方向(TD)に反射軸を有し、搬送方向(MD)に透過軸を有する反射型偏光子が得られ得る(TDが図5のx軸方向に対応し、MDがy軸方向に対応する)。なお、延伸操作は、任意の適切な装置を用いて行われ得る。
 上記反射型偏光子としては、例えば、特表平9-507308号公報に記載のものが使用され得る。また、上記反射型偏光子としては、市販品をそのまま用いてもよく、市販品を2次加工(例えば、延伸)して用いてもよい。市販品としては、例えば、日東電工社製の商品名「APCF」、3M社製の商品名「DBEF」、3M社製の商品名「APF」が挙げられる。
 別方式の反射型偏光子としては、ワイヤーグリッド偏光子等の金属細線タイプの反射型偏光子が挙げられる。ワイヤーグリッド偏光子は、ストライプ状に、より具体的には、所定の間隔を空けて平行に、配列した複数のワイヤーを含み、当該ワイヤーの長手方向(延びる方向)と直交する方向に振動する直線偏光成分を透過させ、当該ワイヤーの長手方向に振動する直線偏光成分を反射することができる。
 ワイヤーは、好ましくは金属製である。ワイヤーの直径およびワイヤー間の間隔は、目的に応じて適宜設定され得る。本発明の実施形態においては、ワイヤー間の間隔は、例えば10nm~350nm、好ましくは50nm~300nmに設定され得る。ワイヤー間の間隔を上記範囲とすることにより、波長350nm~2000nmで偏光分離機能が好適に得られ得る。
B-2-2.吸収型偏光子
 第2の偏光子として用いられる吸収型偏光子(第2の吸収型偏光子と称する場合がある)は、面内の一方向に吸収軸を有し、当該吸収軸方向と直交する方向に透過軸を有する。第2の吸収型偏光子の直交色相a値は、例えば-5~5であり、好ましくは-3~3であり、より好ましくは-1~1である。また、直交色相b*値は、例えば-5~5であり、好ましくは-3~3であり、より好ましくは-1~1である。直交色相がこのような範囲内である第2の吸収型偏光子によれば、透過光への所望されない色付きが好適に防止され得る。
 第2の吸収型偏光子としては、B-1項に記載される第1の吸収型偏光子と同様のものを用いることができる。ニュートラルな色相を呈し、透過光への色付きを防止する観点からは、二色性物質としてヨウ素を含む偏光子が好ましい。
 第2の吸収型偏光子は、面内において、実質的に色差を有さず、均一な光学特性(代表的には、単体透過率および偏光度)を有することが好ましい。第2の吸収型偏光子は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。第2の吸収型偏光子の単体透過率は、好ましくは40%~50%であり、より好ましくは42%~46%である。第2の吸収型偏光子の偏光度は、好ましくは90%以上であり、より好ましくは95%以上であり、さらに好ましくは99%以上である。
 第2の吸収型偏光子の厚みは、好ましくは40μm以下であり、より好ましくは30μm以下であり、さらに好ましくは10μm以下である。また、当該厚みの下限は、例えば2μmであり得る。
B-3.半透過性光反射層
 半透過性光反射層は、入射する光の一部を反射し、残りの光を透過させる透過特性および反射特性を有する。半透過性光反射層の透過率は、例えば10%~85%、好ましくは10%~80%、より好ましくは15%~70%、さらに好ましくは20%~60%である。半透過性光反射層の反射率は、好ましくは20%以上、より好ましくは30%以上、さらに好ましくは40%以上である。半透過性光反射層としては、例えば、ハーフミラー、ルーバーフィルム、反射型偏光子等を用いることができる。
 ハーフミラーとしては、例えば、屈折率の異なる2以上の誘電体膜が積層された多層積層体を用いることができる。このようなハーフミラーは、好ましくは金属様光沢を有する。
 上記誘電体膜の形成材料としては、金属酸化物、金属窒化物、金属フッ化物、熱可塑性樹脂(例えば、ポリエチレンテレフタレート(PET))等が挙げられる。誘電体膜の多層積層体は、積層した誘電体膜の屈折率差によって、界面で入射光の一部を反射させる。誘電体膜の厚さによって、入射光と反射光との位相を変化させ、2つの光の干渉の程度を調整することにより、反射率を調整することができる。誘電体膜の多層積層体からなるハーフミラーの厚みは、例えば50μm~200μmであり得る。このようなハーフミラーとしては、例えば、東レ社製の商品名「ピカサス」等の市販品を用いることができる。
 また、ハーフミラーとしては、例えば、PET等の樹脂フィルム上にアルミニウム(Al)、インジウム(In)、亜鉛(Zn)、鉛(Pb)、銅(Cu)、銀(Ag)、またはこれらの合金等の金属を蒸着した金属蒸着フィルムを用いることができる。当該金属蒸着フィルムは、反射により金属様光沢を有するが、一部の光を透過することができ、蒸着膜厚を変化させることによって、光透過率を制御することができる。蒸着膜厚は、好ましくは1nm~50nm、より好ましくは10nm~30nmである。また、樹脂フィルムの膜厚は、好ましくは1μm~1000μm、より好ましくは20μm~100μmである。
 ルーバーフィルムは、交互にストライプ状に形成されたルーバー部と光透過部とを有するルーバー層を含み、ルーバー部は、光を反射するように構成されている。ルーバーフィルムは、必要に応じて、ルーバー層の片面または両面に基材層をさらに備え得る。
 光透過部およびルーバー部の幅は、所望の透過率または反射率に応じて適切に設定され得る。また、ルーバー部の角度は、通常、0°~45°の範囲内である。なお、ルーバー部の角度とは、ルーバーフィルムの主面に対するルーバー部の角度を意味し、当該主面と直交する場合を0°とする。
 ルーバー層の厚みは、目的に応じて任意の適切な厚みに設定され得る。ルーバー層の厚みは、例えば10μm~1000μm、好ましくは50μm~800μmであり得る。
 反射型偏光子としては、B-2-1項に記載した反射型偏光子を用いることができる。
B-4.位相差層
 位相差層は、好ましくはλ/4板として機能する。位相差層は、例えば、単一の層であってもよく、複数の位相差層を組み合せてλ/4板としての機能を発揮する積層体であってもよい。第2の偏光子の第2の主面側にλ/4板を配置することにより、受光素子と第2の偏光子との間における迷光を好適に抑制し得る。
 位相差層の面内位相差Re(550)は、例えば100nm~180nmであり、好ましくは110nm~170nmであり、さらに好ましくは120nm~160nmであり、特に好ましくは135nm~155nmである。位相差層は、代表的にはnx>ny=nzまたはnx>ny>nzの屈折率楕円体を有する。なお、本明細書において例えば「ny=nz」は、厳密に等しいのみならず、実質的に等しいものを包含する。位相差層のNz係数は、例えば0.9~2であり、好ましくは1~1.5であり、より好ましくは1~1.3である。
 位相差層の厚みは、λ/4板として最も適切に機能し得るように設定され得る。言い換えれば、厚みは、所望の面内位相差が得られるように設定され得る。具体的には、厚みは、好ましくは10μm~80μmであり、さらに好ましくは10μm~60μmであり、最も好ましくは30μm~50μmである。
 位相差層は、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示してもよく、位相差値が測定光の波長に応じて小さくなる正の波長分散特性を示してもよく、位相差値が測定光の波長によってもほとんど変化しないフラットな波長分散特性を示してもよい。1つの実施形態においては、位相差層は、逆分散波長特性を示す。この場合、位相差層のRe(450)/Re(550)は、好ましくは0.8以上1未満であり、より好ましくは0.8以上0.95以下である。
 位相差層は、好ましくは、高分子フィルムの延伸フィルムである。具体的には、ポリマーの種類、延伸処理(例えば、延伸方法、延伸温度、延伸倍率、延伸方向)を適切に選択することにより、λ/4板が得られる。
 上記高分子フィルムを形成する樹脂としては、任意の適切な樹脂が用いられる。具体例としては、ポリノルボルネン等のシクロオレフィン系樹脂、ポリカーボネート系樹脂、セルロース系樹脂、ポリビニルアルコール系樹脂、ポリスルホン系樹脂等の正の複屈折フィルムを構成する樹脂が挙げられる。中でも、ノルボルネン系樹脂、ポリカーボネート系樹脂が好ましい。なお、高分子フィルムを形成する樹脂の詳細は、例えば、特開2014-010291に記載されている。当該記載は、参考として本明細書に援用される。
 延伸方法としては、例えば、横一軸延伸、固定端二軸延伸、逐次二軸延伸が挙げられる。固定端二軸延伸の具体例としては、高分子フィルムを長手方向に走行させながら、短手方向(横方向)に延伸させる方法が挙げられる。この方法は、見かけ上は横一軸延伸であり得る。また、斜め延伸も採用することができる。斜め延伸を採用することにより、幅方向に対して所定の角度の配向軸(遅相軸)を有する長尺状の延伸フィルムを得ることができる。
C.光学デバイス
 上記B項に記載の加飾フィルムは、光学デバイスに適用され得る。したがって、本発明の別の局面によれば、上記加飾フィルムと、上記加飾フィルムを透過する光を利用する受光素子とを備える、光学デバイスが提供される。光学デバイスの代表例としては、カメラ等の撮像デバイス(イメージセンサー)、照度センサー、カラーセンサー、赤外線センサー、LiDAR、可視光通信デバイス等が挙げられる。
 上記受光素子は、代表的には、光を検出して電気信号に変換する光電効果型素子であり、目的に応じて適切に選択される。具体例としては、CCD、CMOS等の撮像素子、フォトトランジスタ、フォトレジスタ等が挙げられる。
 1つの実施形態においては、上記加飾フィルムが、受光素子の前面(より具体的には、受光素子の光入射側)に、第2の主面が受光素子側となるように配置されている。このような構成とすることにより、受光素子に光を入射させる入光部とその周辺部分の意匠を調和させて外観を向上させることができる一方で、所望でない色付きが防止された光を受光素子に入射させることができる。なお、本発明の効果が得られる限りにおいて、加飾フィルムと受光素子との間に他の部材が配置されていてもよい。
D.偏光フィルター
 上記B項に記載の加飾フィルムは、撮像デバイスの偏光フィルターとして用いられることにより、被写体に生じる反射光を制御することができる。よって、本発明の別の局面によれば、上記加飾フィルムを含む、偏光フィルターが提供される。1つの実施形態において、偏光フィルターは、上記加飾フィルムを保持するホルダーをさらに含み得る。当該実施形態の偏光フィルターにおいて、加飾フィルムは、好ましくは回転可能な状態でホルダーに保持されている。
 図6は、本発明の1つの実施形態による偏光フィルターを説明する概略斜視図である。偏光フィルター200は、加飾フィルム100と加飾フィルム100を保持するホルダー110とを備える。図示例において、ホルダー110は、撮像デバイスに偏光フィルター200を装着するための固定枠112と固定枠112の片側(より具体的には、撮像デバイスに装着される側と反対側)に設けられ、加飾フィルム100を保持する回転枠114とを有する。回転枠114は、周方向に回転可能に構成されており、第1の主面が被写体側となるように加飾フィルム100を保持している。
E.乱反射光防止システム
 本発明の別の局面によれば、撮像デバイスと、当該撮像デバイスに着脱可能に装着されるD項に記載の偏光フィルターと、を含む、被写体に生じる乱反射光防止システムが提供される。図7は、当該システムに従って偏光フィルターが着脱可能に装着された撮像デバイスの装着部分を説明する概略分解斜視図である。図示例においては、撮像デバイス(カメラ)300のレンズ前面に偏光フィルター200が装着され、第1の偏光子の吸収軸方向(図中の破線方向)が被写体に対して適切な角度となるように加飾フィルム100を回転させる(一点鎖線を中心に回転させる)ことにより、被写体に生じる乱反射を抑制することができ、結果として、より明瞭な像を取得することができる。
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。各特性の測定方法は以下の通りである。なお、特に明記しない限り、実施例および比較例における「部」および「%」は重量基準である。
(1)厚み
 デジタルゲージ((株)尾崎製作所製、製品名「PEACOCK」)を用いて測定した。
(2)偏光子の単体透過率、偏光度
 紫外可視近赤外分光光度計(日立ハイテクサイエンス社製、UH-4150)に自動偏光測定システムを設置して測定した波長380nm~780nmの単体透過率スペクトル、平行透過率スペクトル、直交透過率スペクトルからJIS Z8701の2度視野(D65光源)により視感度補正を行なったY値をそれぞれ、単体透過率Ts、平行透過率Tpおよび直交透過率Tcとした。得られたTpおよびTcから、下記式を用いて偏光度を求めた。
   偏光度(%)={(Tp-Tc)/(Tp+Tc)}1/2×100 
(3)偏光子以外のフィルム(層)の透過率
 紫外可視近赤外分光光度計(日立ハイテクサイエンス社製、UH-4150)を用いて測定した時の波長380nm~780nmの透過率スペクトルからJIS Z8701の2度視野(D65光源)により視感度補正を行なったY値を単体透過率Tsとした。
(4)色度の変化(Δxy)
 測定サンプルの第1の主面に対して法線方向から光を照射し、2D分光放射計(トプコン社製、SR-5000)を用いて第2の主面から出射した光を測定することにより、透過光の色度xyを求めた。なお、光源としては、面光源(レイマック社製、型式「IHM-150/142AW」、品番「325-036」)を用いた。2D分光放射計(トプコン社製、SR-5000)を用いて当該光源から出射される光の色度を直接測定したところ、色度値xが0.336、色度値yが0.343であった。また、米国規格協会(American National Standards Institute)が定める色度に関する規格(ANSI C78.377)に基づいて、このxy値を色温度に換算すると5500Kであった。
 入射光の色度(x:0.336、y:0.343)に対する透過光の色度の変化(Δxy)は、下式によって算出した(式中、xおよびyはそれぞれ、透過光の色度値xおよびyを表す)。
 Δxy={(x-0.336)+(y-0.343)1/2
(5)メトリック彩度
 測定サンプルの第1の主面に対して法線方向に対して5°の角度から光を照射した時の波長380nm~780nmの反射光スペクトルを紫外可視近赤外分光光度計(日立ハイテクサイエンス社製 UH-4150)を用いて測定し、JIS Z8701の2度視野(D65光源)により視感度補正を行ない、L値を算出した。得られたa値、b値から下記式を用いてメトリック彩度を求めた。
   メトリック彩度(C)=((a+(b1/2
[作製例A:ヨウ素系偏光子]
 熱可塑性樹脂基材として、長尺状で、Tg約75℃である、非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(厚み:100μm)を用い、樹脂基材の片面に、コロナ処理を施した。
 ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(日本合成化学工業社製、商品名「ゴーセファイマー」)を9:1で混合したPVA系樹脂100重量部に、ヨウ化カリウム13重量部を添加したものを水に溶かし、PVA水溶液(塗布液)を調製した。
 樹脂基材のコロナ処理面に、上記PVA水溶液を塗布して60℃で乾燥することにより、厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
 得られた積層体を、130℃のオーブン内で縦方向(長手方向)に2.4倍に一軸延伸した(空中補助延伸処理)。
 次いで、積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
 次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる偏光子の単体透過率(Ts)が所望の値となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
 次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
 その後、積層体を、液温70℃のホウ酸水溶液(ホウ酸濃度4重量%、ヨウ化カリウム濃度5重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
 その後、積層体を液温20℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
 その後、約90℃に保たれたオーブン中で乾燥しながら、表面温度が約75℃に保たれたSUS製の加熱ロールに接触させた(乾燥収縮処理)。
 このようにして、樹脂基材上に厚み約5μmの偏光子を形成し、樹脂基材/ヨウ素系偏光子の構成を有する積層体を得た。
 上記で得られた偏光子の表面(樹脂基材とは反対側の面)に、保護層としてラクトン環構造を有するアクリル系樹脂フィルム(厚み:40μm)を、紫外線硬化型接着剤を介して貼り合せた。次いで、樹脂基材を剥離し、ヨウ素系偏光子/保護層の構成を有する偏光板を得た。当該偏光板(実質的には、ヨウ素系偏光子)の単体透過率は42.2%、偏光度は99.996%であった。
[作製例B-1:赤色偏光子]
 水100重量部に対して、二色性色素として、Direct Red 81(東京化成工業社製)4部をヨウ素の代わりに染色浴に添加したこと以外は作製例Aと同様にして、赤色偏光子(実質的には、赤色偏光子/保護層の構成を有する偏光板)を得た。該偏光子の単体透過率は53.4%、偏光度は56.0%であった。
[作製例B-2:青色偏光子の作製]
 二色性色素として、Direct Blue 1(東京化成工業社製)4部を用いたこと以外は作製例B-1と同様にして、青色偏光子(実質的には、青色偏光子/保護層の構成を有する偏光板)を得た。該偏光子の単体透過率は40.6%、偏光度は79.5%であった。
[作製例B-3:黄色偏光子の作製]
 二色性色素として、Direct Yellow 4(東京化成工業社製)4部を用いたこと以外は作製例B-1と同様にして、黄色偏光子(実質的には、黄色偏光子/保護層の構成を有する偏光板)を得た。該偏光子の単体透過率は80.2%、偏光度は12.0%であった。
[作製例C-1:赤色粘着剤層の作製]
1.粘着剤組成物の調製
 2-エチルヘキシルアクリレート(2EHA)、NVP、ヒドロキシエチルアクリレート(HEA)を78/18/4の重量比で含むモノマー混合物100部を、光重合開始剤としての商品名:イルガキュア651(チバスペシャルティケミカルズ社製)0.035部および商品名:イルガキュア184(チバスペシャルティケミカルズ社製)0.035部ととともに4つ口フラスコに投入し、窒素雰囲気下で粘度(BH粘度計、No.5ローター、10rpm、測定温度30℃)が約15Pa・sになるまで紫外線を照射して光重合させることにより、上記モノマー混合物の部分重合物を含むモノマーシロップを調製した。
 このモノマーシロップ100部に、ヒドロキシエチルアクリレート(HEA)17.6部、アクリル系オリゴマー5.9部、1,6-ヘキサンジオールジアクリレート(HDDA)0.088部、シランカップリング剤として3-グリシドキシプロピルトリメトキシシラン(商品名:KBM-403、信越化学工業社製)0.35部および分散剤として味の素ファインテクノ社製アジスパーPB821、顔料として2,9-Dimethylquinolino[2,3-b]acridine-7,14(5H,12H)-dione(BLD Pharmatech Ltd.社製)を0.05質量部配合して、赤色粘着剤組成物を調製した。
 なお、上記アクリル系オリゴマーとしては、以下の方法で合成したものを使用した。
 トルエン100部、ジシクロペンタニルメタクリレート(DCPMA)(商品名:FA-513M、日立化成工業社製)60部、メチルメタクリレート(MMA)40部、および連鎖移動剤としてα-チオグリセロール3.5部を4つ口フラスコに投入した。そして、70℃にて窒素雰囲気下で1時間攪拌した後、熱重合開始剤としてAIBN0.2部を投入し、70℃で2時間反応させ、続いて80℃で2時間反応させた。その後、反応液を130℃の温度雰囲気下に投入し、トルエン、連鎖移動剤、および未反応モノマーを乾燥除去することにより、固形状のアクリル系オリゴマーを得た。このアクリル系オリゴマーのTgは144℃であり、Mwは4300であった。
2.粘着剤層の作製
 ポリエステルフィルムの片面が剥離面となっている厚み38μmの剥離フィルムR1(三菱樹脂社製、MRF#38)に、上記で得た赤色粘着剤組成物を塗布し、ポリエステルフィルムの片面が剥離面となっている厚み38μmの剥離フィルムR2(三菱樹脂社製、MRE#38)を被せて空気を遮断し、紫外線を照射して硬化させることにより、厚み50μm、単体透過率33.9%、偏光度0%の赤色粘着剤シート(赤色粘着剤層)を形成した。
[作製例C-2:青色粘着剤層の作製]
 赤色顔料の代わりに青色顔料(東京化成工業社製、製品名「Pigment Blue 15」) 0.05部を用いること以外は作製例C-1と同様にして、厚み50μm、単体透過率35.1%の青色粘着剤シート(青色粘着剤層)を得た。
[作製例C-3:黄色粘着剤層の作製]
 赤色顔料の代わりに黄色顔料(Oakwood Products, Inc社製、製品名「Dalamar Yellow」) 0.05部を用いること以外は作製例C-1と同様にして、厚み50μm、単体透過率66.2%の黄色粘着剤シート(黄色粘着剤層)を得た。
[作製例D:位相差フィルム]
 逆分散の波長依存性を示す市販の位相差フィルム(帝人社製、商品名「ピュアエースWR」、厚み50μm)を用いた。この位相差フィルムの面内位相差Re(550)は147nmであり、Re(450)/Re(550)は0.89であった。
[実施例1]
 作製例B-1で得られた赤色偏光子を第1の偏光子として用いた。当該赤色偏光子の保護層表面にアクリル系粘着剤層(厚み:23μm)を介して第2の偏光子としての反射型偏光子(日東電工社製、製品名「APCF」、単体透過率:45.7%)を積層して、赤色偏光子/反射型偏光子の構成を有する積層体を得た。このとき、反射型偏光子の透過軸方向と赤色偏光子の透過軸方向とが平行となるように積層した。得られた積層体の赤色偏光子側表面に、アクリル系粘着剤層(厚み:23μm)を介して保護層としてのトリアセチルセルロース(TAC)フィルム(富士フイルム社製、製品名「TG60UL」、厚み:60μm)を積層した。これにより、赤色偏光子と反射型偏光子とを第1の主面側からこの順に有する加飾フィルム1を得た。
[実施例2]
 赤色偏光子の代わりに作製例B-2で得られた青色偏光子を用いたこと以外は実施例1と同様にして、青色偏光子と反射型偏光子とを第1の主面側からこの順に有する加飾フィルム2を得た。
[実施例3]
 赤色偏光子の代わりに作製例B-3で得られた黄色偏光子を用いたこと以外は実施例1と同様にして、黄色偏光子と反射型偏光子とを第1の主面側からこの順に有する加飾フィルム3を得た。
[実施例4]
 第2の偏光子として反射型偏光子(旭化成社製、ワイヤーグリッド偏光フィルム、製品名「WGFTM」、厚み80μm、単体透過率45.7%)を用いたこと以外は実施例1と同様にして、赤色偏光子と反射型偏光子とを第1の主面側からこの順に有する加飾フィルム4を得た。
[実施例5]
 作製例B-1で得られた赤色偏光子を第1の偏光子として用いた。当該赤色偏光子の保護層表面にアクリル系粘着剤層(厚み:23μm)を介して半透過性光反射層としてのハーフミラー(東レ社製、製品名「ピカサス」、厚み:100μm、透過率:26.6%)を積層して、赤色偏光子/ハーフミラーの構成を有する積層体を得た。得られた積層体のハーフミラー側表面に、アクリル系粘着剤層(厚み:23μm)を介して作製例Aで得られた偏光板を第2の偏光子として積層した。このとき、赤色偏光子の透過軸とヨウ素系偏光子の透過軸とが平行となるように積層した。次いで、積層体の赤色偏光子側表面に、アクリル系粘着剤層(厚み:23μm)を介して保護層としてのトリアセチルセルロース(TAC)フィルム(富士フイルム社製、製品名「TG60UL」、厚み:60μm)を積層した。これにより、赤色偏光子とハーフミラーとヨウ素系偏光子とを第1の主面側からこの順に有する加飾フィルム5を得た。
[実施例6]
 半透過性光反射層としてハーフミラー(東レ社製、製品名「ピカサス」、厚み:100μm、透過率:53.6%)を用いたこと以外は実施例5と同様にして、赤色偏光子とハーフミラーとヨウ素系偏光子とを第1の主面側からこの順に有する加飾フィルム6を得た。
[実施例7]
 半透過性光反射層としてハーフミラー(東レ社製、製品名「ピカサス」、厚み:100μm、透過率:83.7%)を用いたこと以外は実施例5と同様にして、赤色偏光子とハーフミラーとヨウ素系偏光子とを第1の主面側からこの順に有する加飾フィルム7を得た。
[実施例8]
 半透過性光反射層としてハーフミラー(厚み50μmのPETフィルム表面に厚み25nmのアルミニウム蒸着膜を形成した金属蒸着フィルム、透過率:11.7%)を用いたこと以外は実施例5と同様にして、赤色偏光子とハーフミラーとヨウ素系偏光子とを第1の主面側からこの順に有する加飾フィルム8を得た。
[実施例9]
 半透過性光反射層として反射型偏光子(日東電工社製、製品名「APCF」、単体透過率:45.7%)を用いたこと以外は実施例5と同様にして、赤色偏光子と反射型偏光子とヨウ素系偏光子とを第1の主面側からこの順に有する加飾フィルム9を得た。なお、反射型偏光子は、その透過軸方向が赤色偏光子およびヨウ素系偏光子の透過軸方向と平行になるように積層した。
[実施例10]
 実施例9で得られた加飾フィルム9のヨウ素系偏光子側表面に、アクリル系粘着剤層(厚み:23μm)を介して位相差フィルム(帝人社製、商品名「ピュアエースWR」、厚み50μm)を積層して、赤色偏光子と反射型偏光子とヨウ素系偏光子と位相差フィルムとを第1の主面側からこの順に有する加飾フィルム10を得た。なお、位相差フィルムは、その遅相軸方向がヨウ素系偏光子の透過軸方向と45°の角度をなすように積層した。
[比較例1]
 反射型偏光子(日東電工社製、製品名「APCF」、単体透過率:45.7%)の一方の表面に、作製例C-1で得られた赤色粘着剤層を介して保護層としてのトリアセチルセルロース(TAC)フィルム(富士フイルム社製、製品名「TG60UL」、厚み:60μm)を積層した。これにより、赤色粘着剤層と反射型偏光子とを第1の主面側からこの順に有する加飾フィルムC1を得た。
[比較例2]
 赤色粘着剤層の代わりに作製例C-2で得られた青色粘着剤層を用いたこと以外は比較例1と同様にして、青色粘着剤層と反射型偏光子とを第1の主面側からこの順に有する加飾フィルムC2を得た。
[比較例3]
 赤色粘着剤層の代わりに作製例C-3で得られた黄色粘着剤層を用いたこと以外は比較例1と同様にして、黄色粘着剤層と反射型偏光子とを第1の主面側からこの順に有する加飾フィルムC3を得た。
[比較例4]
 ハーフミラー(東レ社製、製品名「ピカサス」、厚み100μm、透過率53.6%)の一方の表面に、アクリル系粘着剤層(厚み:23μm)を介して作製例Aで得られた偏光板を積層した。次いで、ハーフミラーの他方の表面に、作製例C-1で得られた赤色粘着剤層を介して保護層としてのトリアセチルセルロース(TAC)フィルム(富士フイルム社製、製品名「TG60UL」、厚み:60μm)を積層した。これにより、赤色粘着剤層とハーフミラーとヨウ素系偏光子とを第1の主面側からこの順に有する加飾フィルムC4を得た。
[比較例5]
 トリアセチルセルロース(TAC)フィルム(富士フイルム社製、製品名「TG60UL」、厚み:60μm)をそのまま加飾フィルムC5として用いた。
 上記実施例および比較例で得られた加飾フィルムの構成、反射光のメトリック彩度(C)および入射光に対する透過光の色度の変化(Δxy)を表1および表2にまとめて示す。また、各加飾フィルムに関して、2D分光放射計を用いて第2の主面から出射した透過光を測定した際に撮像した画像を図8に示す(図中、「blank」として示される画像は、面光源から出射された光を加飾フィルムを介することなく直接撮像した画像である)。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1および図8に示される通り、実施例の加飾フィルムはいずれも、反射光のメトリック彩度(C)が10を超え、かつ、入射光に対する透過光の色度の変化(Δxy)が0.07以下であることから、反射光によって所定の意匠を認識し得ると共に、透過光に過度の色付きがないことがわかる。一方、表2および図8に示される通り、比較例の加飾フィルムC1~C4はいずれも透過光の色度変化が大きく、色付きが生じていることがわかる。また、透明フィルムをそのまま用いた加飾フィルムC5では、反射光の色相が小さく、意匠を認識できなかった。
 本発明の加飾フィルムは、カメラやセンサー等の受光素子を備えた光学デバイス、あるいは、このような光学デバイスが搭載された機器に好適に用いられ得る。
10  第1の吸収型偏光子
22  反射型偏光子
24  第2の吸収型偏光子
30  半透過性光反射層
40  位相差層
100 加飾フィルム
200 偏光フィルター
300 撮像デバイス

Claims (10)

  1.  第1の主面と第2の主面とを有する加飾フィルムであって、
     該第1の主面における反射光のメトリック彩度が、2以上であり、
     該第1の主面に色温度が5500K±500Kの範囲内である光を入射させた際の、入射光の色度に対する透過光の色度の変化が、0.07以下である、加飾フィルム。
  2.  透過軸方向が実質的に平行となるように前記第1の主面側からこの順に配置された第1の偏光子と第2の偏光子とを含み、
     該第1の偏光子が、吸収型偏光子であり、
     該第2の偏光子が、反射型偏光子または吸収型偏光子であり、
     ただし、該第2の偏光子が吸収型偏光子である場合、該第1の偏光子と該第2の偏光子との間に半透過性光反射層をさらに含む、
     請求項1に記載の加飾フィルム。
  3.  前記第2の偏光子が、吸収型偏光子であり、
     前記半透過性光反射層が、反射型偏光子であり、
     該反射型偏光子の透過軸方向が、前記第1の偏光子および前記第2の偏光子の透過軸方向と実質的に平行である、
     請求項2に記載の加飾フィルム。
  4.  前記第2の偏光子の前記第2の主面側に配置された位相差層をさらに含み、
     該位相差層の面内位相差Re(550)が、100nm~180nmであり、
     該位相差層の遅相軸と前記第2の偏光子の透過軸とのなす角度が、35°~55°または125°~145°である、
     請求項2または3に記載の加飾フィルム。
  5.  前記第1の偏光子が、面内において、色差を有する、請求項2から4のいずれかに記載の加飾フィルム。
  6.  請求項1から5のいずれかに記載の加飾フィルムと、該加飾フィルムを透過する光を利用する受光素子とを備える、光学デバイス。
  7.  前記加飾フィルムが、第2の主面が前記受光素子側となるように配置されている、請求項6に記載の光学デバイス。
  8.  前記受光素子が、撮像素子である、請求項6または7に記載の光学デバイス。
  9.  請求項1から5のいずれかに記載の加飾フィルムを含む、偏光フィルター。
  10.  撮像デバイスと、該撮像デバイスに着脱可能に装着される請求項9に記載の偏光フィルターと、を含む、被写体に生じる乱反射光防止システム。
     
PCT/JP2021/034778 2020-09-29 2021-09-22 加飾フィルムおよび光学デバイス WO2022071060A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020163176A JP2022055640A (ja) 2020-09-29 2020-09-29 加飾フィルムおよび光学デバイス
JP2020-163176 2020-09-29

Publications (1)

Publication Number Publication Date
WO2022071060A1 true WO2022071060A1 (ja) 2022-04-07

Family

ID=80950242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034778 WO2022071060A1 (ja) 2020-09-29 2021-09-22 加飾フィルムおよび光学デバイス

Country Status (3)

Country Link
JP (1) JP2022055640A (ja)
TW (1) TW202224927A (ja)
WO (1) WO2022071060A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023204062A1 (ja) * 2022-04-21 2023-10-26 富士フイルム株式会社 樹脂組成物、樹脂組成物の製造方法、顔料誘導体、膜、光学フィルタ、固体撮像素子および画像表示装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7516458B2 (ja) 2022-05-10 2024-07-16 日東電工株式会社 レンズ部、積層体、表示体、表示体の製造方法および表示方法
JP7516457B2 (ja) 2022-05-10 2024-07-16 日東電工株式会社 レンズ部、積層体、表示体、表示体の製造方法および表示方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051489A1 (ja) * 2011-10-03 2013-04-11 三菱瓦斯化学株式会社 偏光ミラーめがねレンズ
JP2013200452A (ja) * 2012-03-26 2013-10-03 Seiko Instruments Inc 偏光レンズ及びこれを用いたヘッドマウントディスプレイ
WO2016125694A1 (ja) * 2015-02-02 2016-08-11 三井化学株式会社 変色光学フィルター及びこれを備えたメガネ
WO2018008497A1 (ja) * 2016-07-06 2018-01-11 シャープ株式会社 表示装置及び電子機器
WO2018212347A1 (ja) * 2017-05-19 2018-11-22 富士フイルム株式会社 加飾シート、光学デバイス、画像表示装置
WO2021106743A1 (ja) * 2019-11-28 2021-06-03 日東電工株式会社 光学積層体および画像表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051489A1 (ja) * 2011-10-03 2013-04-11 三菱瓦斯化学株式会社 偏光ミラーめがねレンズ
JP2013200452A (ja) * 2012-03-26 2013-10-03 Seiko Instruments Inc 偏光レンズ及びこれを用いたヘッドマウントディスプレイ
WO2016125694A1 (ja) * 2015-02-02 2016-08-11 三井化学株式会社 変色光学フィルター及びこれを備えたメガネ
WO2018008497A1 (ja) * 2016-07-06 2018-01-11 シャープ株式会社 表示装置及び電子機器
WO2018212347A1 (ja) * 2017-05-19 2018-11-22 富士フイルム株式会社 加飾シート、光学デバイス、画像表示装置
WO2021106743A1 (ja) * 2019-11-28 2021-06-03 日東電工株式会社 光学積層体および画像表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023204062A1 (ja) * 2022-04-21 2023-10-26 富士フイルム株式会社 樹脂組成物、樹脂組成物の製造方法、顔料誘導体、膜、光学フィルタ、固体撮像素子および画像表示装置

Also Published As

Publication number Publication date
JP2022055640A (ja) 2022-04-08
TW202224927A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
WO2022071060A1 (ja) 加飾フィルムおよび光学デバイス
KR100855837B1 (ko) 편광판과 그 제조 방법, 및 상기 편광판을 이용한 액정 표시 장치
WO2022039078A1 (ja) 意匠性フィルムおよび意匠性成形体
TW578024B (en) Transflective polarizing element
US20040085660A1 (en) Optical element and surface light source device using the same, as well as liquid crystal display
WO2021106742A1 (ja) 光学積層体、光学デバイスおよび画像表示装置
KR20080074706A (ko) 광학 필름체 및 광학 필름체의 제조 방법
WO2015111472A1 (ja) 偏光機能を有する基材を設けた表示装置
WO2019058758A1 (ja) 光学システム及び表示装置
JP6840235B2 (ja) 加飾シート、光学デバイス、画像表示装置
WO2021106743A1 (ja) 光学積層体および画像表示装置
WO2020255653A1 (ja) 画像生成システム用光学フィルムのセット
WO2021106744A1 (ja) 光学積層体および画像表示装置
WO2021182133A1 (ja) 偏光子、光学積層体および画像表示装置
JP2021144207A (ja) 光学積層体および画像表示装置
JP2002022950A (ja) 偏光フィルムと偏光板及び液晶表示装置
JP2021092753A (ja) 光学積層体、光学デバイスおよび画像表示装置
WO2023176660A1 (ja) 表示システムおよび積層フィルム
CN112534315B (zh) 偏光片以及使用该偏光片的显示装置
WO2023176661A1 (ja) 表示システムおよび積層フィルム
WO2023176656A1 (ja) レンズ部および積層フィルム
TW202130164A (zh) 影像生成系統用光學薄膜之組合件
CN118805123A (zh) 显示系统及积层薄膜
JP2024031583A (ja) 偏光フィルム、並びにこれを用いた偏光板及び表示装置
TW202407425A (zh) 透鏡部及積層薄膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875362

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21875362

Country of ref document: EP

Kind code of ref document: A1