WO2017110910A1 - 鋼部品 - Google Patents

鋼部品 Download PDF

Info

Publication number
WO2017110910A1
WO2017110910A1 PCT/JP2016/088183 JP2016088183W WO2017110910A1 WO 2017110910 A1 WO2017110910 A1 WO 2017110910A1 JP 2016088183 W JP2016088183 W JP 2016088183W WO 2017110910 A1 WO2017110910 A1 WO 2017110910A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferrite
sulfide
content
steel
fracture
Prior art date
Application number
PCT/JP2016/088183
Other languages
English (en)
French (fr)
Inventor
真也 寺本
聡 志賀
一 長谷川
水上 英夫
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2017558207A priority Critical patent/JP6547847B2/ja
Priority to EP16878797.6A priority patent/EP3396002A4/en
Priority to US15/769,433 priority patent/US20180305798A1/en
Publication of WO2017110910A1 publication Critical patent/WO2017110910A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C7/00Connecting-rods or like links pivoted at both ends; Construction of connecting-rod heads
    • F16C7/02Constructions of connecting-rods with constant length

Definitions

  • the present invention relates to a steel part.
  • This application claims priority based on Japanese Patent Application No. 2015-253562 filed in Japan on December 25, 2015, the contents of which are incorporated herein by reference.
  • heat treated parts are referred to as tempered parts
  • non-heat treated parts parts that are not heat-treated
  • the mechanical properties necessary for the applied parts are ensured.
  • many parts manufactured by omitting tempering, that is, non-tempered parts are widely used.
  • connecting rods hereinafter referred to as connecting rods.
  • This component is a component that transmits power when the reciprocating motion of the piston is converted into the rotational motion by the crankshaft in the engine.
  • the connecting rod clamps an eccentric portion called a pin portion of the crankshaft sandwiched between the cap portion and the rod portion of the connecting rod, and transmits power by a mechanism in which the pin portion and the connecting portion of the connecting rod rotate and slide.
  • a fracture separation type connecting rod has been widely used.
  • the fracture separation type connecting rod is a steel material formed into a shape in which the cap part and the rod part are integrated by hot forging etc., and then a notch is made in the part corresponding to the boundary between the cap part and the rod part, A method of breaking and separating is adopted.
  • the fracture surfaces separated by breakage at the mating surfaces of the cap portion and the rod portion are fitted to each other, so that machining of the mating surfaces is unnecessary and processing for alignment can be omitted as necessary. .
  • the machining process for the parts can be greatly reduced, and the economic efficiency during the production of the parts can be greatly improved.
  • the fracture separation type connecting rod manufactured by such a construction method requires that the fracture form of the fracture surface is brittle and that the deformation near the fracture surface due to fracture separation is small, that is, the fracture separation property is good. It is done.
  • the DIN standard C70S6 is widely used in Europe and the United States. This is a high carbon non-tempered steel containing 0.7% by mass of C, and its metal structure is a pearlite structure with low ductility and toughness in order to suppress dimensional change during fracture separation.
  • C70S6 is excellent in fracture separability due to its small plastic deformation in the vicinity of the fractured surface at the time of fracture, while it has a coarser structure than the ferrite-pearlite structure of medium carbon non-tempered steel that is the current steel for connecting rods.
  • Patent Document 1 and Patent Document 2 describe a technique for improving fracture separability by adding a large amount of an embrittlement element such as Si or P to a steel material and reducing the ductility and toughness of the material itself.
  • Patent Document 3 and Patent Document 4 describe a technique for improving the fracture separability of a steel material by reducing precipitation ductility and toughness of ferrite by utilizing precipitation strengthening of second phase particles.
  • Patent Documents 5 to 7 describe techniques for improving the fracture separability of steel materials by controlling the form of Mn sulfide.
  • the present situation is that a steel capable of producing a break-separable connecting rod having excellent strength capable of meeting the demand for higher strength of the connecting rod in recent years has not been obtained.
  • an object of the present invention is to provide a non-tempered steel part having all of excellent strength, excellent yield strength and yield ratio, and excellent fracture separability.
  • the present inventor has intensively studied a method for realizing a fracture separation type high-strength connecting rod.
  • the gist of the present invention obtained as a result is as follows.
  • the chemical components are unit mass%, C: 0.50 to 0.65%, Si: 0.60 to 1.20%, Mn: 0.60 To 1.00%, P: 0.040 to 0.060%, S: 0.060 to 0.100%, Cr: 0.05 to 0.20%, V: 0.25 to 0.40%, Bi: 0.00010 to 0.00500%, N: 0.0020 to 0.0080%, Ti: 0 to 0.10%, Nb: 0 to 0.05%, Ca: 0 to 0.005%, Zr : 0 to 0.005%, and Mg: 0 to 0.005%, the balance is made of Fe and impurities, and the steel structure contains a total of 98 area% or more of ferrite and pearlite, and the area ratio of
  • the chemical component may contain C: 0.55 to 0.65% in unit mass%.
  • the number density of the Mn sulfide having the equivalent circle diameter of 0.5 to 2.0 ⁇ m is 700 to 1400 pieces / mm 2. Also good.
  • the chemical component is unit mass%, Ti: 0.05 to 0.10%, and Nb: 0.01. One or two selected from the group consisting of ⁇ 0.05% may be contained.
  • the chemical component is unit mass%, Ca: 0.001 to 0.005%, Zr: 0.001 to One or more selected from the group consisting of 0.005% and Mg: 0.001 to 0.005% may be contained.
  • a hot forged non-tempered steel part such as a fracture separation type high strength connecting rod having all of excellent strength, excellent yield strength and yield ratio, and excellent fracture separation property.
  • 3 is a graph showing the relationship between the Bi content and the number density of Mn sulfide having an equivalent circle diameter of 0.5 to 2.0 ⁇ m. 3 is a graph showing the relationship between the number density of Mn sulfide having an equivalent circle diameter of 0.5 to 2.0 ⁇ m and the ferrite area ratio. It is a disassembled perspective view which shows the fracture separation type connecting rod which is an example of the steel component which concerns on this embodiment.
  • the C content needs to be 0.50% by mass or more.
  • the metal structure hardly contains ferrite.
  • C 0.50 to 0.65% C has an effect of ensuring the tensile strength of the non-heat treated steel part.
  • the lower limit of the C content needs to be 0.50%.
  • the ferrite content contained in the metal structure (steel structure) of the non-tempered steel part is usually less than 20 area%, and the yield of the non-tempered steel part is reduced. The ratio is low.
  • the non-heat treated steel part according to the present embodiment contains Mn, S, and Bi within a predetermined range as will be described later, the Mn sulfide is finely dispersed.
  • the ferrite content can be 20% by area or more while maintaining 50% or more.
  • a preferable lower limit of the C content is 0.52%, 0.55%, or 0.56%.
  • the upper limit of the C content is 0.65%.
  • the upper limit with preferable C content is 0.63%, 0.60%, or 0.59%.
  • 0.50 to 0.65% means a range of 0.50% or more and 0.65% or less.
  • Si 0.60 to 1.20% Si strengthens ferrite by solid solution strengthening, and reduces the ductility and toughness of non-tempered steel parts.
  • the decrease in ductility and toughness of non-tempered steel parts reduces the amount of plastic deformation in the vicinity of the fracture surface at the time of fracture and improves fracture separability.
  • the lower limit of the Si content needs to be 0.60%.
  • the upper limit is made 1.20%.
  • a preferable lower limit of the Si content is 0.70%, 0.80%, or 0.85%.
  • a preferable upper limit of the Si content is 1.00%, 0.95%, or 0.90%.
  • Mn 0.60 to 1.00% Mn strengthens ferrite by solid solution strengthening, and reduces the ductility and toughness of non-tempered steel parts. The decrease in ductility and toughness of non-tempered steel parts reduces the amount of plastic deformation in the vicinity of the fracture surface at the time of fracture and improves fracture separability. Mn combines with S to form Mn sulfide. This Mn sulfide becomes the nucleus of ferrite transformation in the cooling process after forming a part by hot forging, and has the effect of increasing the amount of ferrite. On the other hand, when Mn is contained excessively, the ferrite becomes too hard and the frequency of occurrence of chipping at the time of fracture increases. In view of these, the range of Mn content is 0.60 to 1.00%. The minimum with preferable Mn content is 0.70%, 0.80%, or 0.85%. The upper limit with preferable Mn content is 0.95%, 0.92%, or 0.90%.
  • P 0.040 to 0.060%
  • P reduces the ductility and toughness of ferrite and pearlite.
  • the reduction in ductility and toughness has the effect of reducing the amount of plastic deformation in the vicinity of the fracture surface at the time of fracture of a non-heat treated steel part and improving the fracture separation.
  • P causes the above-described effects and at the same time, the effect of causing embrittlement of the grain boundaries and facilitating chipping of the fracture surface.
  • the range of P content is 0.040 to 0.060%.
  • the minimum with preferable P content is 0.042%, 0.045%, or 0.048%.
  • the upper limit with preferable P content is 0.055%, 0.053%, or 0.050%.
  • S 0.060 to 0.100%
  • S combines with Mn to form Mn sulfide.
  • This Mn sulfide becomes the nucleus of ferrite transformation in the cooling process after forming a part by hot forging, and has the effect of increasing the amount of ferrite.
  • the lower limit of the S content needs to be 0.060%.
  • the S content range is 0.060 to 0.100%.
  • a preferable lower limit of the S content is 0.070%, 0.072%, or 0.075%.
  • a preferable upper limit of the S content is 0.095%, 0.090%, or 0.085%.
  • the aspect ratio of Mn sulfide is a value obtained by dividing the length of the long axis of Mn sulfide by the length of the short axis of Mn sulfide.
  • the average aspect ratio of Mn sulfide in steel is measured by polishing 10 cross-sections of the steel to a mirror surface and then taking 10 structural photographs 1000 times the polished surface with an optical microscope.
  • Mn sulfide having an aspect ratio of Mn sulfide of 1 ⁇ m or more was determined by analyzing the aspect ratio using image analysis software (for example, Luzex: product name of Nireco Co., Ltd.). This can be done by calculating the average value of the aspect ratios.
  • the average aspect ratio of Mn sulfide having an equivalent circle diameter of 0.1 ⁇ m or more is preferably in the range of about 1.1 to 1.4.
  • Cr 0.05-0.20% Cr, like Mn, strengthens ferrite by solid solution strengthening and decreases ductility and toughness.
  • the decrease in ductility and toughness reduces the amount of plastic deformation in the vicinity of the fracture surface at the time of fracture, and improves fracture separability.
  • Cr when Cr is contained excessively, the lamellar spacing of pearlite is reduced, and the ductility and toughness of pearlite are increased. Therefore, when Cr is excessively contained, the amount of plastic deformation in the vicinity of the fracture surface at the time of fracture increases, and the fracture separability decreases. Further, when Cr is excessively contained, a bainite structure is easily formed, and a decrease in yield strength due to a decrease in yield ratio and a significant decrease in fracture separation are observed.
  • the Cr content range is 0.05 to 0.20%.
  • the preferable upper limit of the Cr content is 0.17%, 0.15%, or 0.13%.
  • the minimum with preferable Cr content is 0.07%, 0.08%, or 0.10%.
  • V 0.25 to 0.40%
  • V mainly forms carbides or carbonitrides during cooling after hot forging, strengthens ferrite, and lowers the ductility and toughness of non-tempered steel parts.
  • the decrease in ductility and toughness reduces the amount of plastic deformation in the vicinity of the fracture surface at the time of fracture, and improves the fracture separability of hot forged parts.
  • V has the effect of increasing the yield ratio of hot forged parts by precipitation strengthening of carbide or carbonitride.
  • the lower limit of V content needs to be 0.25%. is there.
  • the lower limit of the V content is preferably 0.27%, 0.28%, or 0.30%.
  • the upper limit of V content is 0.40%.
  • the upper limit of V content is 0.35%, 0.33% or 0.31%.
  • Bi 0.00010 to 0.00500%
  • Bi is an especially important element in the non-heat treated steel material according to the present embodiment.
  • the Mn sulfide that increases the ferrite content by acting as a core of ferrite transformation is finely dispersed. It is essential that However, when Mn and S are contained excessively, the above-described adverse effects occur.
  • Bi is essential in order to finely disperse the Mn sulfide to such an extent that the ferrite content can be 20 area% within the range of allowable Mn and S contents.
  • the present inventors conducted an experiment described below.
  • the present inventors have C: 0.65%, Si: 0.60%, Mn: 1.00%, P: 0.041%, S: 0.060%, Cr: 0.11%, V
  • a variety of steels having a Bi content in the range of 0.00005 to 0.00850% were manufactured under the same manufacturing conditions.
  • the chemical components other than the Bi content were selected as values at which ferrite was most difficult to be obtained within the range of the chemical components of the steel according to the present embodiment.
  • the inventors measured the number density and the amount of ferrite of Mn sulfide (hereinafter abbreviated as “Mn sulfide”) having an equivalent circle diameter of 0.5 to 2.0 ⁇ m in these steels.
  • Mn sulfide Mn sulfide
  • FIG. 1 is a semilogarithmic graph in which the horizontal axis indicating the Bi content is logarithmically displayed.
  • the “Mn sulfide number density” shown in FIG. 1 indicates the number density of Mn sulfide having an equivalent circle diameter of 0.5 to 2.0 ⁇ m.
  • the present inventors set the upper limit of Bi content as 0.00500%. For these reasons, in the non-heat treated steel part according to the present embodiment, the Bi content is set to 0.00010% to 0.00500%.
  • the lower limit of Bi content may be 0.00015%, 0.00020%, 0.00030%, 0.00100%, or 0.00200%.
  • the upper limit of Bi content may be 0.00450%, 0.00420%, or 0.00400%.
  • N 0.0020 to 0.0080% N promotes ferrite transformation by forming V nitride or V carbonitride mainly during cooling after hot forging and acting as a transformation nucleus of ferrite.
  • N has an effect of suppressing the formation of a bainite structure that significantly impairs the fracture separability of the hot forged part.
  • the lower limit of the N content is set to 0.0020%. If N is contained excessively, the hot ductility is lowered and cracking or flaws are likely to occur during hot working, so the upper limit of the N content is set to 0.0080%.
  • the lower limit value of the N content may be 0.0040%, 0.0042%, or 0.0045%.
  • the upper limit of the N content may be 0.0075%, 0.0070%, or 0.0060%.
  • the non-heat treated steel part according to the present embodiment may further include one or more selected from the group consisting of Ti and Nb as chemical components.
  • the non-heat treated steel component according to the present embodiment may further include one or more selected from the group consisting of Ca, Zr, and Mg as a chemical component.
  • Ti, Nb, Ca, Zr, and Mg are not included, the non-heat treated steel part according to the present embodiment can solve the problem, so the contents of Ti, Nb, Ca, Zr, and Mg, respectively.
  • the lower limit of is 0%.
  • Ti and Nb mainly form carbides or carbonitrides during cooling after hot forging, strengthen ferrite by precipitation strengthening, and reduce ductility and toughness of non-tempered steel parts.
  • the reduction in ductility and toughness has the effect of reducing the amount of plastic deformation in the vicinity of the fracture surface at the time of fracture and improving fracture separation. Therefore, in order to obtain the above-described effect, the lower limit of the Ti content may be 0.05%, and the lower limit of the Nb content may be 0.01%. However, if these elements are contained excessively, the effect is saturated, so the upper limit of Ti content is 0.10% and the upper limit of Nb content is 0.05%.
  • Ca, Zr, and Mg all form oxides, which serve as crystallization nuclei for Mn sulfide and have the effect of uniformly and finely dispersing Mn sulfide. Therefore, the lower limit values of Ca, Zr, and Mg may be 0.001%. On the other hand, if any element exceeds 0.005%, hot workability deteriorates and hot rolling becomes difficult. Therefore, the upper limit of each of Ca, Zr, and Mg is set to 0.005%.
  • the balance of the chemical components of the non-tempered steel part according to this embodiment includes iron (Fe) and impurities.
  • Impurities are raw materials such as ore or scrap, or components mixed due to various factors in the manufacturing process when industrially manufacturing non-heat treated steel parts, and the non-heat treated according to this embodiment It means that it is allowed as long as it does not adversely affect steel parts.
  • the steel structure contains ferrite and pearlite with a total area of 98 area% or more, and the area ratio of the ferrite structure is 20% or more>
  • the structure of the non-heat treated steel part according to the present embodiment needs to be a so-called ferrite pearlite structure including 98 area% or more of ferrite and pearlite in total. Since structures (martensite, bainite, etc.) other than ferrite and pearlite may have an unexpected adverse effect on the non-heat treated steel part according to the present embodiment, it is limited to less than 2 area%.
  • the total amount of ferrite and pearlite is preferably 99 area% or more, 99.5 area% or more, or 100 area%.
  • a structure including 98% by area or more of ferrite and pearlite in total is referred to as a ferrite / pearlite structure.
  • the yield ratio decreases as the C content increases. This is because the increase in yield strength with increasing C content is smaller than the increase in tensile strength with increasing C content. This is because the yield point phenomenon (discontinuous yielding) occurs in the ferrite-pearlite structure mainly composed of ferrite with a low C content, whereas in the ferrite-pearlite structure mainly composed of C, the yield is caused by elastic deformation. This is because the continuous transition to plastic deformation is smooth.
  • the area ratio of the ferrite structure in the ferrite / pearlite structure is increased by using Mn sulfide finely dispersed by Bi.
  • the present inventors have found that the yield point phenomenon occurs even at a high carbon composition and a high yield ratio can be obtained by setting the area ratio of the ferrite structure to 20 area% or more with respect to the entire non-heat treated steel part. . Therefore, the lower limit of the area ratio of the ferrite structure with respect to the entire non-heat treated steel part is set to 20 area%.
  • the lower limit of the area ratio of the ferrite structure with respect to the entire non-heat treated steel part may be 22 area%, 23 area%, or 25 area%.
  • the remainder is a pearlite structure
  • the inclusion of structures other than ferrite and pearlite for example, bainite, martensite, austenite, etc.
  • the upper limit of the area ratio of the ferrite structure with respect to the entire non-heat treated steel part is not particularly limited, but within the range of the chemical composition of the non-heat treated steel part according to the present embodiment. Then, the upper limit of the area ratio of the ferrite structure is usually about 50 area%.
  • the upper limit of the area ratio of the ferrite structure relative to the entire non-heat treated steel part may be 35 area%, 30 area%, or 28 area%.
  • ⁇ Number density of Mn sulfide with equivalent circle diameter of 0.5 to 2.0 ⁇ m is 500 / mm 2 or more>
  • the C content needs to be 0.50% or more.
  • the metal structure of the non-heat treated steel part is substantially composed of pearlite, and the yield ratio of the non-heat treated steel part is lowered. Therefore, in order to promote ferrite transformation and to make the ferrite content 20 area% or more, it is necessary to increase the number density of Mn sulfide having an equivalent circle diameter of 0.5 to 2.0 ⁇ m that acts as a ferrite nucleus.
  • Mn sulfide means Mn sulfide having a circle-equivalent diameter of 0.5 to 2.0 ⁇ m.
  • the present inventors conducted an experiment described below. First, the present inventors made various steels having different chemical components and production conditions such as C: 0.62%, Si: 0.92%, Mn: 0.86%, P: 0.051%. Created. Next, the present inventors measured the number density of Mn sulfide and the amount of ferrite of these steels.
  • FIG. 2 shows a graph showing the relationship between the Mn sulfide number density and the ferrite content obtained in this manner.
  • the present inventors set the lower limit of the number density of Mn sulfide to 500 / mm 2 . Further, it has been clarified that the amount of ferrite is further increased when Mn sulfide of 700 pieces / mm 2 or more is contained. In this case, a further effect can be obtained by increasing the cooling rate after casting. Therefore, in order to obtain a further effect, the lower limit of the number density of Mn sulfide is preferably set to 700 / mm 2 .
  • the lower limit of the number density of Mn sulfide may be 630 / mm 2 , 650 / mm 2 , or 750 / mm 2 .
  • the practical upper limit of the number density of Mn sulfide is about 1400 pieces / mm 2 within the range of the chemical components described above. .
  • Mn sulfide having an equivalent circle diameter of less than 0.5 ⁇ m hereinafter referred to as “ultrafine Mn sulfide”.
  • ultrafine Mn sulfide number density on non-tempered steel parts has not been fully clarified, but at least as long as the Mn sulfide number density is within the above range, the ferrite content and yield value. This is because it has been confirmed that it can be within the prescribed range.
  • Mn sulfide having an equivalent circle diameter of more than 2.0 ⁇ m hereinafter referred to as “coarse Mn sulfide”.
  • Coarse Mn sulfide may adversely affect fracture separability, etc. However, as long as the Mn and S content and the number density of Mn sulfide are within the above ranges, generation of coarse Mn sulfide is suppressed. Therefore, the breaking separation does not fall below the target value.
  • the structure of the non-heat treated steel part and the method for measuring the number density of Mn sulfide according to the present embodiment are as follows. What is necessary is just to measure the area ratio of a ferrite and pearlite in accordance with a conventional method. For example, a non-tempered steel part is cut, and the cross section is mirror polished and etched with a nital etchant to reveal the structure. A magnified photograph of the cross section 200 times larger is taken with an optical microscope, and the enlarged photograph is analyzed. The area ratio of ferrite and pearlite is obtained by analyzing using software (for example, Luzex: trade name of Nireco Corporation). The shooting location of the enlarged photo is not particularly limited.
  • the above measurement is performed at at least five measurement points, and the average value of the ferrite and pearlite area ratio measurement values at each measurement point is calculated as the ferrite of the structure of the non-heat treated steel part. It is preferable to regard the area ratio of pearlite.
  • the size distribution (equivalent circle diameter, number density) of Mn sulfide in the non-heat treated steel part was determined by cutting the non-heat treated steel part in a cross section parallel to the longitudinal direction, mirror-polishing the cross section, and then using an optical microscope. This is obtained by taking a double tissue photograph and analyzing the tissue photograph using image analysis software (Luzex: trade name of Nireco Corporation).
  • the number density of Mn sulfide having an equivalent circle diameter of 0.5 to 2.0 ⁇ m in the structure photograph can be obtained.
  • the shooting location of the enlarged photo is not particularly limited. However, in order to improve the measurement accuracy, the above measurement is performed at at least 10 measurement points, and the average value of the number density of Mn sulfide having an equivalent circle diameter of 0.5 to 2.0 ⁇ m at each measurement point It is preferable to regard the number density of Mn sulfide having an equivalent circle diameter of 0.5 to 2.0 ⁇ m of the tempered steel part.
  • the break separation type connecting rod 1 as the non-heat treated steel part of the present embodiment eliminates the need for new processing of the butt surface and positioning pins, and can greatly simplify the manufacturing process.
  • the method for manufacturing a non-tempered steel part according to this embodiment includes the steps of casting, hot rolling, and hot forging the steel having the chemical components of the above-mentioned non-tempered steel part according to this embodiment.
  • Casting conditions are not particularly limited, and may be normal conditions.
  • the average cooling rate within the range of 1300 ° C. to 1500 ° C. after casting is preferably 7 ° C./min or more.
  • Mn sulfide can be further finely dispersed and the number density of Mn sulfide can be 600 pieces / mm 2 or more.
  • the hot rolling conditions are not particularly limited, and may be normal conditions.
  • the area ratio of the ferrite structure of the non-heat treated steel part according to the present embodiment changes by changing the cooling rate during cooling after forging, that is, during air cooling by standing cooling or during blast cooling by a blast cooling device. For example, by increasing the average cooling rate in the range of 1300 ° C. to 1500 ° C. to a range of 3.5 ° C./second or more, the area ratio of the ferrite structure becomes less than 20% area. Therefore, when cooling after forging, the average cooling rate in the range of 1300 ° C. to 1500 ° C. needs to be less than 3.5 ° C./second, and it is preferable that the cooling means after forging is naturally cooled.
  • the average cooling rate in the range of 1300 ° C. to 1500 ° C. is usually less than 3.5 ° C./second. It is not preferable to use so-called forced cooling such as water cooling as a cooling means after forging.
  • non-heat treated steel part according to the present embodiment is not particularly limited, but when applied to a machine part that is used after being fractured and separated, for example, a fracture-separated connecting rod, a particularly advantageous effect is achieved.
  • FIG. 3 is an exploded perspective view showing an example of a fracture separation type connecting rod (non-heat treated steel part) according to the present invention.
  • the fracture separation type connecting rod 1 of this example is composed of a semicircular arc-shaped upper side half-divided body 2 with a rod and a semicircular arc-shaped lower side half-divided body 3. Yes.
  • Screw holes 5 having screw grooves for fixing to the lower half half 3 are respectively formed at both ends of the semicircular arc 2A of the upper side half 2.
  • the semicircular arc 3A of the lower side half 3 is formed.
  • Insertion holes 6 for fixing to the upper-side halves 2 are formed on both ends of each.
  • the semicircular arc portion 2A of the upper half halves 2 and the semicircular arc portion 3A of the lower halves 3 are aligned in an annular shape, and the coupling bolts 7 are inserted into the insertion holes 6 and the screw holes 5 on both ends.
  • An annular big end portion 8 is formed by screwing.
  • An annular small end portion 9 is formed on the upper end side of the rod portion 2 ⁇ / b> B of the upper half 2.
  • the fracture separation type connecting rod 1 of the present embodiment is formed from non-heat treated steel having the above-described components, structure, and Mn sulfide dispersed state, and the semicircular arc portion 2A of the upper side half body 2 and the lower side half body
  • the 3 semicircular arc part 3A is formed by brittle fracture of a part that was originally one annular part.
  • a notch is provided in a part of a hot forged product, and the notch is used as a starting point to break and separate brittlely, so that the butted surface 2a of the semicircular arc portion 2A of the upper half 2 and the lower half
  • the abutting surface 3a of the semicircular arc portion 3A of the body 3 is formed. Since the abutting surfaces 2a and 3a are originally formed by breaking and separating one member, the abutting can be performed with good alignment accuracy.
  • the break-separated connecting rod 1 having this structure eliminates the need for new processing of the abutting surface and positioning pins, and greatly simplifies the manufacturing process.
  • the fracture separation type connecting rod 1 is C: 0.50 to 0.65%, Si: 0.60 to 1.20%, Mn: 0.60 to 1.00%, P: 0% by mass. 0.040 to 0.060%, S: 0.060 to 0.100%, Cr: 0.05 to 0.20%, V: 0.25 to 0.40%, Bi: 0.00010 to 0.00500 %, N: 0.0020 to 0.0080%, Ti: 0 to 0.10%, Nb: 0 to 0.05%, Ca: 0 to 0.005%, Zr: 0 to 0.005%, and Mg: 0 to 0.005%, the balance is Fe and impurities, and the steel structure contains a total of 98 area% or more of ferrite and pearlite, of which the area ratio of the ferrite structure is 20 area% with respect to the whole steel
  • the number density of Mn sulfide having an equivalent circle diameter of 0.5 to 2.0 ⁇ m is 500 to 1 Consisting of 00 pieces / mm 2 and is steel. A steel with this
  • the converter molten steel having the composition shown in Table 1 below was manufactured by continuous casting, and if necessary, a rolling raw material of 162 mm square was obtained through a soaking diffusion treatment and a block rolling process.
  • the average cooling rate after casting in the range of 1300 ° C. to 1500 ° C. (“cooling rate after casting”) was as shown in Table 1.
  • the steel was formed into a steel bar shape with a diameter of 45 mm by hot rolling.
  • Values underlined in Table 1 indicate values outside the scope of the present invention.
  • the symbol “-” in Table 1 indicates that the element related to the symbol is not added.
  • a test piece corresponding to a forged connecting rod was prepared by hot forging. Specifically, a steel bar having a diameter of 45 mm was heated to 1150 to 1280 ° C., and then the steel bar was forged perpendicularly to the length direction of the steel bar, so that the thickness of the steel bar was 20 mm.
  • the steel bar (forged material) after hot forging was cooled to room temperature by air cooling by natural cooling (cooling) or blast cooling by a blast cooling device.
  • the cooling method after hot forging (“cooling method after hot forging”) was as described in Table 1.
  • the average cooling rate of the forged material subjected to the blast cooling was about 3.8 ° C./second in the range of 1300 ° C. to 1500 ° C. By changing the cooling rate in this way, the area ratio of the ferrite structure in the ferrite / pearlite structure was made differently.
  • a JIS No. 4 tensile test piece was processed from the forged material after cooling.
  • the tensile test was performed at a speed of 20 mm / min at room temperature in accordance with JISZ2241.
  • a test piece having a tensile strength of less than 1130 MPa or a yield strength of less than 900 MPa was judged to be inferior in strength.
  • a 10 mm square sample was cut out from the same part as the tensile test piece, and the form of Mn sulfide and the ferrite / pearlite structure in the steel were observed from the vertical direction of the longitudinal direction.
  • Mn sulfide number density Number density of Mn sulfide with an equivalent circle diameter of 0.5 to 2.0 ⁇ m in steel
  • Mn sulfide aspect ratio The aspect ratio (“Mn sulfide aspect ratio”) was measured by the following procedure. After polishing the cross section of the steel to a mirror surface, ten structure photographs with a magnification of 1000 times of the polished surface were taken with an optical microscope, and the Mn sulfide number density and Mn sulfide aspect ratio in each structure photograph were analyzed with image analysis software (Luxex). : Luzex: Nireco product name).
  • the average values of the Mn sulfide number density and the Mn sulfide aspect ratio in each structural photograph were regarded as the Mn sulfide number density and Mn sulfide aspect ratio of the steel.
  • the minor axis length of Mn sulfide is determined by the forging ratio, and the amount of Mn sulfide is determined by the S amount.
  • the density is high.
  • the surface of the polishing is corroded with a nital corrosive solution
  • Five micrographs of 200 times the corroded surface were taken with a microscope, and the area ratio of the ferrite structure in the ferrite and pearlite structures in each structure photo was determined by analysis using image analysis software (Luzex: Nireco Corporation).
  • the area ratio of the ferrite structure in each structure photograph was averaged.
  • the X direction fracture surface deformation amount and the Y direction fracture surface deformation amount were measured.
  • the fracture surfaces after fracture separation were put together and bolted, and the amount of change in inner diameter was measured with the direction perpendicular to the fracture direction as the X direction and the fracture direction as the Y direction.
  • a sample in which at least one of the X-direction fracture surface deformation amount and the Y-direction fracture surface deformation amount was 100 ⁇ m or more was considered to have poor fracture separability.
  • Comparative Example W the area ratio of the ferrite structure in the ferrite-pearlite structure was 20% or less, so the yield ratio was low and the yield strength was low.
  • Comparative Example X the required yield strength was not obtained because the C content was insufficient.
  • Comparative Example Y since the C content was too large, the area ratio of the ferrite structure in the ferrite / pearlite structure was 20% or less. For this reason, Comparative Example Y had a low yield ratio, and the required yield strength could not be obtained.
  • Comparative Example Z since the Mn content was insufficient, the amount of Mn sulfide was insufficient and the Mn sulfide number density was insufficient.
  • Comparative Example Z the area ratio of the ferrite structure in the ferrite / pearlite structure was 20% or less, the yield ratio was low, and the required yield strength was not obtained.
  • Comparative Example AA since the S content was insufficient, the amount of Mn sulfide was insufficient and the number density of Mn sulfide was insufficient. For this reason, in Comparative Example AA, the area ratio of the ferrite structure in the ferrite-pearlite structure was 20% or less, the yield ratio was low, and the required yield strength was not obtained. Since Comparative Examples AB and AE had a high Cr content or a low N content, a bainite structure was generated.
  • Comparative Examples AB and AE have a low yield ratio, and the required yield strength cannot be obtained. Since Comparative Example AC did not contain Bi, there was no effect of finely dispersing Mn sulfide by Bi, and the area ratio of the ferrite structure in the ferrite / pearlite structure was 20% or less. For this reason, Comparative Example AC had a low yield ratio, and the required yield strength was not obtained. In Comparative Example AD, the content of Bi was large, and on the contrary, the effect of finely dispersing Mn sulfide by Bi was reduced, and the area ratio of the ferrite structure in the ferrite / pearlite structure became 20% or less. For this reason, Comparative Example AD had a low yield ratio, and the required yield strength was not obtained.
  • Breaking-type connecting rod (non-heat treated steel part) 2 ... Upper side half 2A ... Semi-arc part 2B ... Rod part 2a ... Abutting surface 3 ... Lower side half part 3A ... Semi-arc part 3a ... Abutting surface 5 ... Screw hole 6 ; Insertion hole 7 ... Coupling bolt 8 ... Big end part 9 ... Small end part

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本発明の鋼部品は、質量%で、C:0.50~0.65%、Si:0.60~1.20%、Mn:0.60~1.00%、P:0.040~0.060%、S:0.060~0.100%、Cr:0.05~0.20%、V:0.25~0.40%、Bi:0.0001~0.0050%、N:0.0020~0.0080%を含有し、残部がFe及び不純物からなり、鋼組織がフェライト・パーライトであり、そのうちフェライト組織の面積率が20%以上であることを特徴とする。

Description

鋼部品
 本発明は、鋼部品に関するものである。
 本願は、2015年12月25日に、日本に出願された特願2015-253562号に基づき優先権を主張し、その内容をここに援用する。
 自動車エンジン用部品および足廻り用部品では、熱間鍛造で成形を行い、次いで焼入れ焼戻しといった熱処理を行い(以降、熱処理が行われる部品を調質部品と称する)、または、熱処理を適用することなく(以降、熱処理が行われない部品を非調質部品と称する)、適用する部品に必要な機械特性を確保する。最近は製造工程における経済効率性の観点から、調質を省略して製造された部品、すなわち、非調質部品が多く普及している。
 自動車エンジン用部品の事例としてコネクティングロッド(以降、コンロッドと称する)が挙げられる。この部品は、エンジン内でピストンの往復運動をクランクシャフトによる回転運動に変換する際に、動力を伝達する部品である。コンロッドは、クランクシャフトのピン部と称される偏芯部位をコンロッドのキャップ部とロッド部とで挟み込んで締結し、ピン部とコンロッドの締結部とが回転摺動する機構によって動力を伝達する。このキャップ部とロッド部との締結を効率化するために、近年、破断分離型コンロッドが多く採用されている。
 破断分離型コンロッドとは、熱間鍛造等でキャップ部とロッド部とが一体となった形状に鋼材を成形した後、キャップ部とロッド部との境界に相当する部分に切欠きを入れて、破断分離する工法を採用したものである。この工法では、キャップ部及びロッド部の合わせ面において破断分離した破面同士を嵌合させるので、合わせ面の機械加工が不要な上に、位置合わせのために施す加工も必要に応じて省略できる。これらから、部品の加工工程を大幅に削減でき、部品製造時の経済効率性は大幅に向上する。このような工法で製造される破断分離型コンロッドには、破断面の破壊形態が脆性的であり、破断分離による破面近傍の変形量が小さいこと、すなわち破断分離性が良好であることが求められる。
 破断分離型コンロッドに供する鋼材として、欧米で普及しているのは、DIN規格のC70S6である。これは0.7質量%のCを含む高炭素非調質鋼であり、破断分離時の寸法変化を抑えるために、その金属組織を延性及び靭性の低いパーライト組織としたものである。C70S6は、破断時の破断面近傍の塑性変形量が小さいので破断分離性に優れる一方、現行のコンロッド用鋼である中炭素非調質鋼のフェライト・パーライト組織に比べて組織が粗大であるので、降伏比(=降伏強さ/引張強さ)が低く、高い座屈強度が要求される高強度コンロッドには適用できないという問題がある。
 鋼材の降伏比を高めるためには、炭素量を低減し、フェライト分率を増加させることが必要である。しかしながら、フェライト分率を増加させると鋼材の延性が向上して、破断分離時に塑性変形量が大きくなり、クランクシャフトのピン部に締結されるコンロッド摺動部の形状変形が増大し、コンロッド摺動部の真円度が低下するといった部品性能上の問題が発生する。
 高強度の破断分離型コンロッドに好適な鋼材としていくつかの非調質鋼が提案されている。例えば、特許文献1および特許文献2には、鋼材にSiまたはPのような脆化元素を多量に添加し、材料自体の延性および靭性を低下させることによって破断分離性を改善する技術が記載されている。特許文献3および特許文献4には、第二相粒子の析出強化を利用してフェライトの延性および靭性を低下させることによって鋼材の破断分離性を改善する技術が記載されている。さらに、特許文献5~7には、Mn硫化物の形態を制御することによって鋼材の破断分離性を改善する技術が記載されている。
 一方、近年は高出力ディーゼルエンジンあるいはターボエンジンの普及によるエンジン出力増大に伴い、コンロッドの高強度化ニーズが高まっている。この高強度化手段の一つとして、例えば特許文献1~7に記載の技術では、Vを多量添加し、微細なVCによる鋼の析出強化が利用されてきた。合金炭化物を生成する元素の中でもVは、熱間鍛造前の加熱(1250℃前後)で鋼材への固溶量が多く、析出強化量が多く得られる。しかしながら、鋼材においてVの固溶量には限界がありVCの析出強化によるより一層の高強度化は難しい。
 以上のように、近年のコンロッドの高強度化要求に対応可能な、優れた強度を有する破断分離型コンロッドを製造可能な鋼は、現状では得られていないのが実情である。
日本国特許第3637375号公報 日本国特許第3756307号公報 日本国特許第3355132号公報 日本国特許第3988661号公報 日本国特許第4314851号公報 日本国特許第3671688号公報 日本国特許第4268194号公報
 本発明は上記の実情に鑑み、優れた強度、優れた降伏強さ及び降伏比、並びに優れた破断分離性の全てを有する非調質鋼部品を提供することを目的とする。
 上述の課題を解決するために、本発明者は破断分離型高強度コンロッドを実現する方策について鋭意検討した。その結果得られた本発明の要旨とするところは、次の通りである。
(1)本発明の一態様に係る鋼部品は、化学成分が、単位質量%で、C:0.50~0.65%、Si:0.60~1.20%、Mn:0.60~1.00%、P:0.040~0.060%、S:0.060~0.100%、Cr:0.05~0.20%、V:0.25~0.40%、Bi:0.00010~0.00500%、N:0.0020~0.0080%、Ti:0~0.10%、Nb:0~0.05%、Ca:0~0.005%、Zr:0~0.005%、及びMg:0~0.005%を含有し、残部がFe及び不純物からなり、鋼組織が合計98面積%以上のフェライト及びパーライトを含み、前記フェライトの面積率が20面積%以上であり、円相当径が0.5~2.0μmのMn硫化物の個数密度が500~1400個/mmである。
(2)上記(1)に記載の鋼部品は、前記化学成分が、単位質量%で、C:0.55~0.65%を含有してもよい。
(3)上記(1)又は(2)に記載の鋼部品は、前記円相当径が0.5~2.0μmの前記Mn硫化物の前記個数密度が700~1400個/mmであってもよい。
(4)上記(1)~(3)のいずれか一項に記載の鋼部品は、前記化学成分が、単位質量%で、Ti:0.05~0.10%、及びNb:0.01~0.05%からなる群から選択される1種又は2種を含有してもよい。
(5)上記(1)~(3)のいずれか一項に記載の鋼部品は、前記化学成分が、単位質量%で、Ca:0.001~0.005%、Zr:0.001~0.005%、及びMg:0.001~0.005%からなる群から選択される1種以上を含有してもよい。
 本発明により、優れた強度、優れた降伏強さ及び降伏比、並びに優れた破断分離性の全てを有する破断分離型高強度コンロッドなどの熱間鍛造非調質鋼部品を提供できる。
Bi含有量と、円相当径が0.5~2.0μmのMn硫化物の個数密度との関係を示すグラフである。 円相当径が0.5~2.0μmのMn硫化物の個数密度と、フェライト面積率との関係を示すグラフである。 本実施形態に係る鋼部品の一例である破断分離型コンロッドを示す分解斜視図である。
 本発明者らは、優れた強度、優れた降伏強さ及び降伏比、並びに優れた破断分離性の全てを有する鋼部品を実現する方策について鋭意検討した結果、以下の(a)~(e)の知見を得た。
(a)フェライト・パーライト組織の鋼の引張強さを増大させるためにC含有量を増大させると、降伏比が低下する。何故なら、C含有量増大に伴う引張強さの増大量に対して、降伏強さの増大量は小さいからである。これは、フェライト主体のフェライト・パーライト組織を有する比較的C含有量が低い鋼は、引張破断時に降伏点現象(不連続降伏)が生じるのに対して、パーライト主体のフェライト・パーライト組織を有する比較的C含有量が高い鋼は、引張破断時の降伏の形態が、弾性変形から塑性変形への遷移がなめらかである連続降伏となるからである。本発明者らが目標とする引張強さを非調質鋼部品に付与するためには、C含有量を0.50質量%以上にすることが必要であるが、通常の手段でC含有量0.50質量%以上の鋼を製造した場合、その金属組織にはほとんどフェライトが含まれない。引張強さと降伏比との両方を高めるためには、C含有量0.50質量%以上としながらフェライト量の減少を抑制することが必要になる。
(b)本発明者らは、C含有量を増大させながらフェライト量の減少を抑制する手段について検討を重ねた。その結果、フェライト変態の核となるMn硫化物を鋼中に微細分散させることにより、鋼の製造中にフェライト変態を促進させ、フェライト・パーライト組織中のフェライト組織の量を増加させることができることを知見した。
 しかしながら、上述の検討の結果、Mn硫化物の個数密度を増大させるための手段として、Mn及びSの含有量の増大、及び熱処理条件の制御だけでは十分ではないことも明らかになった。MnおよびSの含有量を増大させると、Mn及びSの個数密度は増大する。しかし、Mn含有量が過剰である場合、フェライトが硬くなりすぎて破断時に欠けが発生する頻度が増加する。S含有量が過剰である場合、破断分離時の破断面近傍の塑性変形量が増大して破断分離性が低下し、さらに、破断時に欠けが発生する頻度が増加する。従って、破断分離して用いられる機械構造用非調質鋼部品において、Mn及びSの含有量には上限がある。Mn及びSの含有量の許容範囲内で、製造条件の最適化によってMn硫化物個数密度を増大させることも検討されたが、これによって、降伏比を必要な水準まで引き上げることは困難であった。
(c)本発明者らは、MnおよびSの含有量を所定範囲内として破断分離性を保ちながら、Mn硫化物の個数密度を高めるための別の手段について検討を重ねた。その結果、本発明者らは、Mn硫化物の個数密度を高めるために、微量のBiを鋼中に含有させることがきわめて有効であることを見出した。
(d)さらに本発明者らは、鋼に微量のBiを含有させたうえで製造条件を最適化することで、一層のMn硫化物個数密度の増大と、フェライト量の増大とが達成されることを知見した。
(e)本発明者らは、C含有量を高め、且つフェライト・パーライト組織中のフェライト組織の面積率を高めることに加えて、VCによる析出強化を組み合わせることで、降伏比が向上し、さらに降伏強さが向上することを見出した。
 以上のような(a)~(e)の知見に基づき、鋼中に微量Bi添加によりMn硫化物を微細分散させることにより、C含有量が0.50%以上の高炭素組成でありながらフェライト・パーライト組織中のフェライト組織の面積率を非調質鋼部品全体に対して20%以上とすれば鋼の降伏比が向上し、さらに降伏強さを向上させ得ることを見出し、本発明をなすに至った。
 <成分>
 先ず本実施形態に係る非調質鋼部品の成分組成の限定理由について説明する。以下の説明において、合金元素の含有量の単位「質量%」は、以下「%」と記載する。
 C:0.50~0.65%
 Cは、非調質鋼部品の引張強さを確保する効果を有する。必要な強度を得るには、C含有量の下限を0.50%にする必要がある。なお、C含有量を0.50%以上とした場合、通常であれば非調質鋼部品の金属組織(鋼組織)に含まれるフェライト量が20面積%未満となり、非調質鋼部品の降伏比が低くなる。しかし、本実施形態に係る非調質鋼部品は、後述されるように所定範囲内のMn、S、およびBiを含むことによりMn硫化物が微細分散されているので、C含有量を0.50%以上としながらフェライト量を20面積%以上とすることができる。C含有量の好ましい下限は、0.52%、0.55%、または0.56%である。
 しかし、C含有量が0.65%を超えた場合、Mn硫化物が本実施形態に係る非調質鋼部品の如く微細分散されていても、非調質鋼部品のフェライト量が不足する。フェライト量の不足は、引張強さに対する降伏強さの比(降伏比)の低下を招く。従って、C含有量の上限は0.65%とする。C含有量の好ましい上限は、0.63%、0.60%、または0.59%である。
 なお、本実施形態において、元素の含有量に関し、0.50~0.65%のように範囲を記載した場合、特に記載しない限り上限及び下限の数値を含む範囲とする。よって、0.50~0.65%は0.50%以上、0.65%以下の範囲を意味する。
 Si:0.60~1.20%
 Siは、固溶強化によってフェライトを強化し、非調質鋼部品の延性及び靭性を低下させる。非調質鋼部品の延性及び靭性の低下は破断時の破断面近傍の塑性変形量を小さくし破断分離性を向上させる。この効果を得るためにはSi含有量の下限を0.60%にする必要がある。一方、Siを過剰に含有すると破断面の欠けが発生する頻度が上昇するので、上限は1.20%とする。Si含有量の好ましい下限は、0.70%、0.80%、または0.85%である。Si含有量の好ましい上限は、1.00%、0.95%、または0.90%とする。
 Mn:0.60~1.00%
 Mnは、固溶強化によってフェライトを強化し、非調質鋼部品の延性及び靭性を低下させる。非調質鋼部品の延性及び靭性の低下は、破断時の破断面近傍の塑性変形量を小さくし、破断分離性を向上させる。また、Mnは、Sと結合してMn硫化物を形成する。このMn硫化物は、熱間鍛造による部品成形後の冷却過程においてフェライト変態の核となり、フェライト量を増大させる効果がある。一方、Mnを過剰に含有する場合、フェライトが硬くなりすぎて、破断時の欠けが発生する頻度が増加する。これらに鑑みて、Mn含有量の範囲は0.60~1.00%である。Mn含有量の好ましい下限は、0.70%、0.80%、又は0.85%である。Mn含有量の好ましい上限は、0.95%、0.92%、又は0.90%である。
 P:0.040~0.060%
 Pは、フェライト及びパーライトの延性及び靭性を低下させる。延性及び靭性の低下は、非調質鋼部品の破断時の破断面近傍の塑性変形量を小さくし、破断分離性を向上させる効果を有する。ただし、Pは上述の効果を生じさせると同時に、結晶粒界の脆化を引き起こし破断面の欠けを発生しやすくする効果も顕著に生じさせる。以上を考慮すれば、P含有量の範囲は0.040~0.060%である。P含有量の好ましい下限は0.042%、0.045%、又は0.048%である。P含有量の好ましい上限は0.055%、0.053%、又は0.050%である。
 S:0.060~0.100%
 Sは、Mnと結合してMn硫化物を形成する。このMn硫化物は、熱間鍛造による部品成形後の冷却過程においてフェライト変態の核となり、フェライト量を増大させる効果がある。その効果を得るためには、S含有量の下限を0.060%にする必要がある。他方、Sを過剰に含有させると、破断分離時の破断面近傍の塑性変形量が増大し破断分離性が低下する場合が発生することがある。これに加えて、Sを過剰に含有させると、破断面の欠けを助長することがある。以上から、S含有量の範囲を0.060~0.100%とする。S含有量の好ましい下限は、0.070%、0.072%、又は0.075%である。S含有量の好ましい上限は、0.095%、0.090%、又は0.085%とする。
 なお、微細なMn硫化物は、熱間鍛造による部品成形後の冷却過程においてフェライト変態の核となるので、微細なMn硫化物を析出させることには、フェライト組織生成に寄与する効果がある。非調質鋼部品中に析出するMn硫化物の総量は、本実施形態の非調質鋼部品の組成範囲において大きく変動はしないが、微細なMn硫化物が析出している状況は鍛造による加工により延ばされて微細化したMn硫化物の平均アスペクト比が小さいことで表現できる。
 Mn硫化物のアスペクト比とは、Mn硫化物の長軸の長さをMn硫化物の短軸の長さで割って得られる値である。鋼中にあるMn硫化物の平均アスペクト比の測定は、鋼の断面を鏡面に研磨後、光学顕微鏡にて研磨面の1000倍の組織写真を10枚撮影し、各組織写真における円相当径0.1μm以上のMn硫化物のアスペクト比を画像解析ソフトウェア(例えばLuzex:ルーゼックス:株式会社ニレコ商品名)を用いて解析することによって求め、各組織写真における円相当径0.1μm以上のMn硫化物のアスペクト比の平均値を算出することにより行うことができる。この意味から円相当径0.1μm以上のMn硫化物の平均アスペクト比は、1.1~1.4程度の範囲であることが望ましい。
 Cr:0.05~0.20%
 Crは、Mnと同様に固溶強化によってフェライトを強化し、延性及び靭性を低下させる。延性及び靭性の低下は、破断時の破断面近傍の塑性変形量を小さくし、破断分離性を向上させる。しかし、Crを過剰に含有すると、パーライトのラメラー間隔が小さくなり、かえってパーライトの延性及び靭性が高くなる。そのため、Crを過剰に含有すると、破断時の破断面近傍の塑性変形量が大きくなり破断分離性が低下する。さらに、Crを過剰に含有すると、ベイナイト組織が生成しやすくなり、降伏比の低下による降伏強さの低下や破断分離性の顕著な低下が見られる。従って、Cr含有量の範囲を0.05~0.20%とする。上述の効果に鑑みた場合、Cr含有量の好ましい上限は0.17%、0.15%、又は0.13%である。また、Cr含有量の好ましい下限は0.07%、0.08%、又は0.10%である。
 V:0.25~0.40%
 Vは、熱間鍛造後の冷却時に主に炭化物又は炭窒化物を形成してフェライトを強化し、非調質鋼部品の延性及び靭性を低下させる。延性及び靭性の低下は、破断時の破断面近傍の塑性変形量を小さくして、熱間鍛造部品の破断分離性を良好にする。また、Vは、炭化物又は炭窒化物の析出強化により熱間鍛造部品の降伏比を高めるという効果がある、これら効果を得るためには、V含有量の下限を0.25%にする必要がある。V含有量の下限は好ましくは0.27%、0.28%、又は0.30%である。一方、Vを過剰に含有してもその効果は飽和するので、V含有量の上限は0.40%である。好ましくはV含有量の上限は0.35%、0.33%、又は0.31%である。
 Bi:0.00010~0.00500%
 Biは本実施形態に係る非調質鋼材において特に重要な元素である。上述されたように、C含有量を0.50%以上とし、且つフェライト量を20面積%以上とするためには、フェライト変態の核として働くことによりフェライト量を増大させるMn硫化物を微細分散させることが必須とされる。しかし、Mn及びSを過剰に含有させた場合、上述された悪影響が生じる。許容されるMn及びSの含有量の範囲内で、フェライト量を20面積%にすることができる程度にMn硫化物を微細分散させるために、Biが必須である。
 本発明者らは、Biの効果を確認するために、以下に説明する実験を行った。まず本発明者らは、C:0.65%、Si:0.60%、Mn:1.00%、P:0.041%、S:0.060%、Cr:0.11%、V:0.26%、及びN:0.0023%であって、Bi含有量が0.00005~0.00850%の範囲内にある種々の鋼を、同一の製造条件で製造した。Bi含有量以外の化学成分は、本実施形態に係る鋼の化学成分の範囲内において、最もフェライトが得られにくい値として選択された。次に本発明者らは、これら鋼における円相当径が0.5~2.0μmのMn硫化物(以下「Mn硫化物」と略す)の個数密度及びフェライト量を測定した。これにより得られた、Bi含有量とMn硫化物個数密度及びフェライト量との関係を示すグラフを図1に示す。図1は、Bi含有量を示す横軸を対数表示した片対数グラフである。図1に記載の「Mn硫化物個数密度」とは、円相当径が0.5~2.0μmのMn硫化物の個数密度を示す。
 図1に示されるように、0.00010%以上のBiを含有することによって、鋼の凝固組織の微細化に伴い、Mn硫化物が微細分散し、フェライト量が増大する。Bi含有量以外の条件が、本実施形態に係る鋼の化学成分の範囲内において最もフェライトが得られにくい条件である上述の実験において、フェライト量を20面積%以上にするためには、0.00010%以上のBiが必要とされた。従って、本発明者らは、フェライト量を確実に20面積%以上にするために、Bi含有量の下限を0.00010%と定めた。しかし、図1に示されるように、Biの含有量が0.00500%を超えると、BiがMn硫化物上に析出し、フェライト変態の核としての効果を失うことにより、フェライト量が20面積%未満となることも明らかになった。従って、本発明者らは、Bi含有量の上限を0.00500%と定めた。これらのことから、本実施形態に係る非調質鋼部品では、Bi含有量は0.00010%~0.00500%とする。Bi含有量の下限値を、0.00015%、0.00020%、0.00030%、0.00100%、又は0.00200%としても良い。Bi含有量の上限値を、0.00450%、0.00420%、又は0.00400%としても良い。
 N:0.0020~0.0080%
 Nは、熱間鍛造後の冷却時に主にV窒化物又はV炭窒化物を形成してフェライトの変態核として働くことによって、フェライト変態を促進する。これによりNには、熱間鍛造部品の破断分離性を大幅に損なうベイナイト組織の生成を抑制する効果がある。この効果を得るには、N含有量の下限を0.0020%とする。Nを過剰に含有すると熱間延性が低下し、熱間加工時に割れ又は疵が発生しやすくなる場合があるので、N含有量の上限を0.0080%とする。N含有量の下限値を0.0040%、0.0042%、又は0.0045%としても良い。N含有量の上限値を0.0075%、0.0070%、又は0.0060%としても良い。
 本実施形態に係る非調質鋼部品はさらに、Ti及びNbからなる群から選択される1種以上を化学成分として含んでも良い。本実施形態に係る非調質鋼部品はさらに、Ca、Zr、及びMgからなる群から選択される1種以上を化学成分として含んでも良い。ただし、Ti、Nb、Ca、Zr、及びMgが含まれない場合でも本実施形態に係る非調質鋼部品はその課題を解決できるので、Ti、Nb、Ca、Zr、及びMgそれぞれの含有量の下限値は0%である。
 Ti:0~0.10%
 Nb:0~0.05%
 Ti、及びNbは、熱間鍛造後の冷却時に主に炭化物又は炭窒化物を形成して、析出強化によりフェライトを強化し、非調質鋼部品の延性及び靭性を低下させる。延性及び靭性の低下は、破断時の破断面近傍の塑性変形量を小さくし破断分離性を向上させる効果がある。従って、上述の効果を得るためにTi含有量の下限を0.05%としても良く、Nb含有量の下限を0.01%としても良い。しかし、これら元素を過剰に含有するとその効果が飽和するので、Ti含有量の上限を0.10%とし、Nb含有量の上限を0.05%とする。
 Ca:0~0.005%
 Zr:0~0.005%
 Mg:0~0.005%
 Ca、Zr、及びMgはいずれも酸化物を形成し、Mn硫化物の晶出核となりMn硫化物を均一微細分散する効果がある。従って、Ca、Zr、及びMgそれぞれの下限値を0.001%としても良い。一方、いずれの元素も0.005%を超えると、熱間加工性が劣化し、熱間圧延が困難となる。これらのことから、Ca、Zr、及びMgそれぞれの上限は0.005%とする。
 本実施形態に係る非調質鋼部品の化学成分の残部は鉄(Fe)及び不純物を含む。不純物とは、非調質鋼部品を工業的に製造する際に、鉱石若しくはスクラップ等のような原料、又は製造工程の種々の要因によって混入する成分であって、本実施形態に係る非調質鋼部品に悪影響を与えない範囲で許容されるものを意味する。
 次に上述した組織の限定理由について説明する。
<鋼組織が合計98面積%以上のフェライト及びパーライトを含み、且つフェライト組織の面積率が20%以上>
 本実施形態に係る非調質鋼部品の組織は、合計で98面積%以上のフェライト及びパーライトを含む、いわゆるフェライト・パーライト組織とする必要がある。フェライト及びパーライト以外の組織(マルテンサイト、ベイナイト等)は、本実施形態に係る非調質鋼部品に不測の悪影響を及ぼす恐れがあるので、2面積%未満に制限される。フェライト及びパーライトの合計量は、好ましくは99面積%以上、99.5面積%以上、又は100面積%である。なお本実施形態に係る非調質鋼部品では、合計で98面積%以上のフェライト及びパーライトを含む組織を、フェライト・パーライト組織と称する。
 通常のフェライト・パーライト組織の鋼は、C含有量が増すほど降伏比が低下する。C含有量増大に伴う引張強さの上昇幅に対して、C含有量増大に伴う降伏強さの上昇幅は小さいからである。これは、C含有量が少ないフェライト主体のフェライト・パーライト組織では降伏点現象(不連続降伏)が生じるのに対して、C含有量が多いパーライト主体のフェライト・パーライト組織では、降伏が弾性変形から塑性変形への遷移がなめらかである連続降伏となるためである。
 一方、本実施形態に係る非調質鋼部品では、フェライト・パーライト組織中のフェライト組織の面積率を、Biによって微細分散されたMn硫化物を用いて高めている。本発明者らは、フェライト組織の面積率を非調質鋼部品全体に対して20面積%以上にすることにより、高炭素組成でも降伏点現象が生じ、高い降伏比が得られることを知見した。したがって、非調質鋼部品全体に対するフェライト組織の面積率の下限を20面積%とする。非調質鋼部品全体に対するフェライト組織の面積率の下限を22面積%、23面積%、又は25面積%としても良い。
 なお、本実施形態の非調質鋼部品の組織は、フェライト組織を除くと残部がほぼパーライト組織であり、ベイナイト組織などの他の組織は生成していないことが好ましい。ただし、2面積%未満の範囲内であれば、フェライト及びパーライト以外の組織(例えばベイナイト、マルテンサイト、及びオーステナイト等)の含有は許容される。また、フェライト組織の量は多い方が好ましいので、非調質鋼部品全体に対するフェライト組織の面積率の上限値は特に限定されないが、本実施形態に係る非調質鋼部品の化学成分の範囲内では、フェライト組織の面積率の上限値は約50面積%となることが通常である。非調質鋼部品全体に対するフェライト組織の面積率の上限を35面積%、30面積%、又は28面積%としても良い。
<円相当径0.5~2.0μmのMn硫化物の個数密度が500個/mm以上>
 上述されたように、必要な引張強さを非調質鋼部品に付与するためには、C含有量を0.50%以上とする必要がある。しかし、C含有量を0.50%以上とした場合、通常であれば非調質鋼部品の金属組織が実質的にパーライトのみからなるものとなり、非調質鋼部品の降伏比が低くなる。従って、フェライト変態を促進し、フェライト量を20面積%以上とするために、フェライトの生成核として働く円相当径0.5~2.0μmのMn硫化物の個数密度を増大させる必要がある。以下、特に断りが無い限り、「Mn硫化物」とは円相当径0.5~2.0μmのMn硫化物を意味する。
 本発明者らは、Mn硫化物の効果を確認するために、以下に説明する実験を行った。まず本発明者らは、C:0.62%、Si:0.92%、Mn:0.86%、P:0.051%であり、その他の化学成分および製造条件が異なる種々の鋼を作成した。次に本発明者らは、これら鋼のMn硫化物の個数密度及びフェライト量を測定した。これにより得られた、Mn硫化物個数密度とフェライト量との関係を示すグラフを図2に示す。
 図2に示されるように、フェライト量を20面積%とするために500個/mm以上のMn硫化物が必要とされた。従って本発明者らは、Mn硫化物の個数密度の下限を500個/mmと定めた。また、700個/mm以上のMn硫化物が含まれる場合、フェライト量が一層増大することが明らかになった。この場合、鋳込み後の冷却速度を上げることにより一層の効果が得られる。従って、一層の効果を得るために、Mn硫化物の個数密度の下限を700個/mmとすることが好ましい。また、Mn硫化物の個数密度の下限を630個/mm、650個/mm、又は750個/mmとしてもよい。なお、Mn硫化物の個数密度の上限を定める必要はないが、上述された化学成分の範囲内では、Mn硫化物の個数密度の実質的な上限は約1400個/mmになると推定される。
 なお、円相当径0.5μm未満のMn硫化物(以下「超微細Mn硫化物」と称する)について考慮する必要は無い。超微細Mn硫化物の個数密度が非調質鋼部品に及ぼす影響は十分に明らかにはなっていないが、少なくとも、Mn硫化物の個数密度が上述の範囲内である限り、フェライト量及び降伏値を規定範囲内にすることが可能であると確認されたからである。また、円相当径2.0μm超のMn硫化物(以下「粗大Mn硫化物」と称する)について考慮する必要は無い。粗大Mn硫化物は、破断分離性などに悪影響を及ぼす可能性が有るが、Mn及びSの含有量及びMn硫化物の個数密度が上述の範囲内である限り、粗大Mn硫化物の発生が抑制され、破断分離性が目標値を下回ることはない。
 個数制御の対象となる円相当径0.5~2.0μmのMn硫化物に関し、平均粒径等を規定する必要は無い。フェライトの核となりうる円相当径0.5~2.0μmのMn硫化物の個数密度が上記範囲内である限り、Mn硫化物の個数密度が多いほどフェライトの面積率が高くなる。円相当径がこの範囲外であるMn硫化物はフェライト面積率向上に寄与しない。さらに、Mn硫化物の平均粒径とフェライトの面積率との間には相関関係がない。以上の事項に鑑みて、Mn硫化物の平均粒径を規定する必要が無い。
 本実施形態に係る非調質鋼部品の組織及びMn硫化物の個数密度の測定方法は以下の通りである。
 フェライト及びパーライトの面積率は、常法に従って測定すればよい。例えば、非調質鋼部品を切断し、断面を鏡面研磨及びナイタール腐食液でエッチングすることにより組織を現出させ、断面の200倍の組織拡大写真を光学顕微鏡で撮影し、拡大写真を画像解析ソフトウェア(例えば、Luzex:株式会社ニレコ商品名)を用いて解析することにより、フェライト及びパーライトの面積率が求められる。拡大写真の撮影箇所も特に限定されない。ただし、測定精度を向上させるために、少なくとも5つの測定箇所で上述の測定を行い、各測定箇所でのフェライト及びパーライトの面積率測定値の平均値を、非調質鋼部品の組織のフェライト及びパーライトの面積率とみなすことが好ましい。
 非調質鋼部品中のMn硫化物のサイズ分布(円相当径、個数密度)は、非調質鋼部品を長手方向に平行な断面を切断し、断面を鏡面研磨後、光学顕微鏡にて1000倍の組織写真を撮影し、画像解析ソフトウェア(Luzex:株式会社ニレコ商品名)を用いて組織写真を解析することにより求められる。この解析結果に基づけば、組織写真における円相当径0.5~2.0μmのMn硫化物の個数密度が求められる。拡大写真の撮影箇所は特に限定されない。ただし、測定精度を向上させるために、少なくとも10の測定箇所で上述の測定を行い、各測定箇所での円相当径0.5~2.0μmのMn硫化物の個数密度の平均値を、非調質鋼部品の円相当径0.5~2.0μmのMn硫化物の個数密度とみなすことが好ましい。
 本実施形態の非調質鋼部品としての破断分離型コンロッド1であれば、突き合わせ面の新たな加工や位置決めピンが不要となり、大幅な製造工程の簡略化をなし得る。
 本実施形態に係る非調質鋼部品の製造方法は、上述の本実施形態に係る非調質鋼部品の化学成分を有する鋼を、鋳造、熱間圧延、及び熱間鍛造する工程を含む。
 鋳造条件は特に限定されず、通常の条件とすればよい。しかしながら、鋳込み後の1300℃~1500℃の範囲内での平均冷却速度を7℃/分以上とすることが好ましい。これにより、Mn硫化物を一層微細分散させ、Mn硫化物の個数密度を600個/mm以上とすることができる。熱間圧延条件も特に限定されず、通常の条件とすればよい。
 熱間鍛造においては、鍛造後の冷却速度を小さくする必要がある。本実施形態に係る非調質鋼部品のフェライト組織の面積率は、鍛造後の冷却時、即ち放冷による空冷時又は衝風冷却装置による衝風冷却時に冷却速度を変えることで変化する。例えば、1300℃~1500℃の範囲内での平均冷却速度を3.5℃/秒以上の範囲まで速くすることで、フェライト組織の面積率が20%面積未満になる。従って、鍛造後の冷却時には1300℃~1500℃の範囲内での平均冷却速度を3.5℃/秒未満とする必要があり、鍛造後の冷却の手段を自然放冷とすることが好ましい。自然放冷をした場合、1300℃~1500℃の範囲内での平均冷却速度は3.5℃/秒未満となることが通常である。鍛造後の冷却の手段を水冷等のいわゆる強制冷却とすることは好ましくない。
 本実施形態に係る非調質鋼部品の用途は特に限定されないが、破断分離して用いられる機械部品、例えば破断分離型コンロッドに適用された場合、特に好適な効果を奏する。
 図3は本発明に係る破断分離型コンロッド(非調質鋼部品)の一例を示す分解斜視図である。この例の破断分離型コンロッド1は、図3に示すように上下に分割されたロッド付半円弧状のアッパ側半割体2と、半円弧状のロア側半割体3とから構成されている。アッパ側半割体2の半円弧部2Aの両端側にはそれぞれロア側半割体3に固定するためのねじ溝を有するねじ孔5が形成され、ロア側半割体3の半円弧部3Aの両端側にはそれぞれアッパ側半割体2に固定するための挿通孔6が形成されている。
 アッパ側半割体2の半円弧部2Aとロア側半割体3の半円弧部3Aとを円環状に合わせて相互の両端側の挿通孔6とねじ孔5に結合ボルト7を挿通し、螺合することで円環状のビッグエンド部8が構成されている。アッパ側半割体2のロッド部2Bの上端側には円環状のスモールエンド部9が形成されている。
 図3に示す構造の破断分離型コンロッド1は、自動車エンジン等の内燃機関のピストンの往復運動を回転運動に変換するために内燃機関に組み込まれ、スモールエンド部9が図示略のピストンに接続され、ビッグエンド部8が内燃機関のコネクティングロッドジャーナル(図示略)に接続される。
 本実施形態の破断分離型コンロッド1は上述された成分、組織、及びMn硫化物分散状態を備える非調質鋼から形成され、アッパ側半割体2の半円弧部2Aとロア側半割体3の半円弧部3Aとは、元々1つの円環状部品であった部分を脆性破断して形成される。一例として、熱間鍛造品の一部に切欠きを設けてその切欠きを起点として脆性的に破断分離して、アッパ側半割体2の半円弧部2Aの突き合わせ面2aとロア側半割体3の半円弧部3Aの突き合わせ面3aとを形成する。これらの突き合わせ面2a、3aは元々1つの部材を破断分離して形成しているので、良好な位置合わせ精度で突合せが可能となる。
 この構造の破断分離型コンロッド1は突き合わせ面の新たな加工や位置決めピンが不要となり、大幅な製造工程の簡略化がなされる。
 破断分離型コンロッド1は、一例として、質量%で、C:0.50~0.65%、Si:0.60~1.20%、Mn:0.60~1.00%、P:0.040~0.060%、S:0.060~0.100%、Cr:0.05~0.20%、V:0.25~0.40%、Bi:0.00010~0.00500%、N:0.0020~0.0080%、Ti:0~0.10%、Nb:0~0.05%、Ca:0~0.005%、Zr:0~0.005%、及びMg:0~0.005%を含有し、残部がFe及び不純物からなり、鋼組織が合計98面積%以上のフェライト及びパーライトを含み、そのうちフェライト組織の面積率が鋼全体に対して20面積%以上であり、円相当径が0.5~2.0μmのMn硫化物の個数密度が500~1200個/mmである鋼からなる。この組成の鋼を熱間鍛造して空冷し、非調質鋼とすることで、上述の目的特性の非調質鋼製品が得られる。
 本発明を実施例によって以下に詳述する。なお、これら実施例は本発明の技術的意義、効果を説明するためのものであり、本発明の範囲を限定するものではない。
 以下の表1に示す組成を有する転炉溶製鋼を連続鋳造により製造し、必要に応じて、均熱拡散処理、分塊圧延工程を経て162mm角の圧延素材とした。1300℃~1500℃の範囲内での鋳込み後の平均冷却速度(「鋳込後冷却速度」)は、表1に記載された通りとした。次に熱間圧延によって、鋼を直径が45mmの棒鋼形状とした。表1の下線が付された値は、本発明の範囲外の値であることを示す。また、表1の記号「-」は、その記号に係る元素が添加されていないことを示す。
 次に、組織、機械的性質を調べるため、鍛造コンロッド相当の試験片を熱間鍛造で作成した。具体的には、直径45mmの素材棒鋼を1150~1280℃に加熱後、棒鋼の長さ方向と垂直に棒鋼を鍛造して、棒鋼の厚さを20mmとした。熱間鍛造後の棒鋼(鍛造材)を、自然放冷(放冷)による空冷、又は衝風冷却装置による衝風冷却によって室温まで冷却した。熱間鍛造後の冷却方法(「熱鍛後冷却方法」)は、表1に記載された通りとした。衝風冷却を実施した鍛造材の平均冷却速度は1300℃~1500℃の範囲内で約3.8℃/秒であった。このように冷却速度を変えることによって、フェライト・パーライト組織中のフェライト組織の面積率を造り分けた。冷却後の鍛造材から、JIS4号引張試験片を加工した。
 引張試験はJISZ2241に準拠して常温で20mm/minの速度にて実施した。引張強さが1130MPa未満、又は降伏強さが900MPa未満となる試験片は強度が劣ると判断した。また、降伏比(=降伏強さ/引張強さ)が、小数点以下第3位で四捨五入して0.80未満となる試験片は強度が劣ると判断した。
 上記引張試験片と同一部位から10mm角サンプルを切り出し、長手方向の垂直方向から鋼中にあるMn硫化物の形態やフェライト・パーライト組織を観察した。
 鋼中にある円相当径が0.5~2.0μmのMn硫化物の個数密度(「Mn硫化物個数密度」)、及び鋼中にある円相当径0.1μm以上のMn硫化物の平均アスペクト比(「Mn硫化物アスペクト比」)を、以下の手順で測定した。鋼の断面を鏡面に研磨後、光学顕微鏡にて研磨面の倍率1000倍の組織写真を10枚撮影し、各組織写真におけるMn硫化物個数密度及びMn硫化物アスペクト比を、画像解析ソフトウェア(Luzex:ルーゼックス:株式会社ニレコ商品名)を用いて解析することによって求めた。各組織写真におけるMn硫化物個数密度及びMn硫化物アスペクト比の平均値を、鋼のMn硫化物個数密度及びMn硫化物アスペクト比とみなした。Mn硫化物の短軸長さは鍛錬成形比で決まり、またMn硫化物の量はS量で決まるため、Mn硫化物のアスペクト比が1に近い方がMn硫化物の大きさは小さく、個数密度は多い。
 また、フェライト及びパーライトの合計面積率(「フェライト+パーライト合計面積率」)、及びフェライトの面積率(「フェライト面積率」)を測定するために、ナイタール腐食液で研磨面の腐食を行い、光学顕微鏡で腐食面の200倍の組織写真を5枚撮影し、各組織写真におけるフェライト・パーライト組織中のフェライト組織の面積率を画像解析ソフトウェア(Luzex:株式会社ニレコ商品名)を用いた解析によって求め、各組織写真におけるフェライト組織の面積率を平均した。
 さらに、鋼の破断分離性を評価するために、X方向破面変形量及びY方向破面変形量の測定を行った。破断分離後の破断面をつき合わせてボルト締めし、破断方向と垂直方向をX方向、破断方向をY方向として内径の変化量を測定した。X方向破面変形量及びY方向破面変形量の少なくとも片方が100μm以上となった試料は、破断分離性が不良であると見なされた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び表2において、鋼No.A~Vの本発明例は、いずれも化学成分及びフェライト量が本発明の規定範囲内とされたものである。これら本発明例は、Mn硫化物個数密度が適切に制御されたので、降伏強さが900MPa以上となった。本発明例を非調質鋼部品とした場合、優れた強度、優れた降伏強さ及び降伏比、並びに優れた破断分離性の全てを有する非調質鋼部品が得られる。
 これに対して、比較例Wは、フェライト・パーライト組織中のフェライト組織の面積率が20%以下のため、降伏比が低く、降伏強さが低くなった。
 比較例Xは、Cの含有量が不足したので、必要な降伏強さが得られなかった。
 比較例Yは、Cの含有量が多すぎたので、フェライト・パーライト組織中のフェライト組織の面積率が20%以下となった。このため、比較例Yは降伏比が低く、必要な降伏強さが得られなかった。
 比較例Zは、Mnの含有量が不足したので、Mn硫化物の量が不足してMn硫化物個数密度が不足した。このため、比較例Zはフェライト・パーライト組織中のフェライト組織の面積率が20%以下となり、降伏比が低く、必要な降伏強さが得られなかった。
 比較例AAは、Sの含有量が不足したので、Mn硫化物の量が不足してMn硫化物個数密度が不足した。このため、比較例AAはフェライト・パーライト組織中のフェライト組織の面積率が20%以下となり、降伏比が低く、必要な降伏強さが得られなかった。
 比較例AB、AEはCrの含有量が多い、またはNの含有量が少ないためベイナイト組織が発生した。このため比較例AB、AEは降伏比が低く、必要な降伏強さが得られなかった。
 比較例ACはBiを含有していないため、BiによるMn硫化物の微細分散効果がなく、フェライト・パーライト組織中のフェライト組織の面積率が20%以下となった。このため、比較例ACは降伏比が低く、必要な降伏強さが得られなかった。
 比較例ADはBiの含有量が多く、かえってBiによるMn硫化物微細分散効果が低減しフェライト・パーライト組織中のフェライト組織の面積率が20%以下となった。このため比較例ADは降伏比が低く、必要な降伏強さが得られなかった。
 1…破断分離型コンロッド(非調質鋼部品)
 2…アッパ側半割体
 2A…半円弧部
 2B…ロッド部
 2a…突き合わせ面
 3…ロア側半割体
 3A…半円弧部
 3a…突き合わせ面
 5…ねじ孔
 6…挿通孔
 7…結合ボルト
 8…ビッグエンド部
 9…スモールエンド部

Claims (5)

  1.  化学成分が、単位質量%で、
    C:0.50~0.65%、
    Si:0.60~1.20%、
    Mn:0.60~1.00%、
    P:0.040~0.060%、
    S:0.060~0.100%、
    Cr:0.05~0.20%、
    V:0.25~0.40%、
    Bi:0.00010~0.00500%、
    N:0.0020~0.0080%、
    Ti:0~0.10%、
    Nb:0~0.05%、
    Ca:0~0.005%、
    Zr:0~0.005%、及び
    Mg:0~0.005%
    を含有し、残部がFe及び不純物からなり、
     鋼組織が合計98面積%以上のフェライト及びパーライトを含み、
     前記フェライトの面積率が20面積%以上であり、
     円相当径が0.5~2.0μmのMn硫化物の個数密度が500~1400個/mmである
    ことを特徴とする鋼部品。
  2.  前記化学成分が、単位質量%で、
    C:0.55~0.65%
    を含有することを特徴とする請求項1に記載の鋼部品。
  3.  前記円相当径が0.5~2.0μmの前記Mn硫化物の前記個数密度が700~1400個/mmである
    ことを特徴とする請求項1または2に記載の鋼部品。
  4.  前記化学成分が、単位質量%で、
    Ti:0.05~0.10%、及び
    Nb:0.01~0.05%
    からなる群から選択される1種以上を含有することを特徴とする請求項1~3のいずれか1項に記載の鋼部品。
  5.  前記化学成分が、単位質量%で、
    Ca:0.001~0.005%、
    Zr:0.001~0.005%、及び
    Mg:0.001~0.005%
    からなる群から選択される1種以上を含有することを特徴とする請求項1~4のいずれか1項に記載の鋼部品。
PCT/JP2016/088183 2015-12-25 2016-12-21 鋼部品 WO2017110910A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017558207A JP6547847B2 (ja) 2015-12-25 2016-12-21 鋼部品
EP16878797.6A EP3396002A4 (en) 2015-12-25 2016-12-21 STEEL COMPONENT
US15/769,433 US20180305798A1 (en) 2015-12-25 2016-12-21 Steel component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-253562 2015-12-25
JP2015253562 2015-12-25

Publications (1)

Publication Number Publication Date
WO2017110910A1 true WO2017110910A1 (ja) 2017-06-29

Family

ID=59089496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088183 WO2017110910A1 (ja) 2015-12-25 2016-12-21 鋼部品

Country Status (4)

Country Link
US (1) US20180305798A1 (ja)
EP (1) EP3396002A4 (ja)
JP (1) JP6547847B2 (ja)
WO (1) WO2017110910A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018035422A (ja) * 2016-09-01 2018-03-08 新日鐵住金株式会社 高強度熱間鍛造非調質鋼部品
WO2019203348A1 (ja) * 2018-04-20 2019-10-24 日本製鉄株式会社 鋼、機械部品及びコネクティングロッド
JP2020147786A (ja) * 2019-03-13 2020-09-17 株式会社神戸製鋼所 熱間鍛造非調質部品とその製造方法、および熱間鍛造非調質部品用鋼材

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021099815A1 (en) * 2019-11-18 2021-05-27 Arcelormittal Forged part of steel and a method of manufacturing thereof
CN111876682A (zh) * 2020-07-22 2020-11-03 中国重汽集团济南动力有限公司 一种高强度重型汽车用非调质钢连杆及其制作方法
CN113046631B (zh) * 2021-02-22 2022-08-19 南京钢铁股份有限公司 易切削非调质钢及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073141A (ja) * 1998-08-28 2000-03-07 Kobe Steel Ltd 破断分割性に優れた熱間鍛造用非調質鋼
WO2007108365A1 (ja) * 2006-03-15 2007-09-27 Kabushiki Kaisha Kobe Seiko Sho 破断分離性に優れた破断分離型コネクティングロッド用圧延材、破断分離性に優れた破断分離型コネクティングロッド用熱間鍛造部品、及び破断分離型コネクティングロッド
JP2008274393A (ja) * 2007-03-30 2008-11-13 Daido Steel Co Ltd 高強度及び高靭性フェライト+パーライト型非調質鋼鍛造部材の製造方法
WO2009107282A1 (ja) * 2008-02-26 2009-09-03 新日本製鐵株式会社 破断分離性及び被削性に優れた熱間鍛造用非調質鋼及び熱間圧延鋼材、並びに熱間鍛造非調質鋼部品
JP2010053391A (ja) * 2008-08-27 2010-03-11 Kobe Steel Ltd 破断分割性に優れたコネクティングロッド用熱間鍛造部品およびその製造方法
WO2014178099A1 (ja) * 2013-04-30 2014-11-06 新日鐵住金株式会社 非調質鋼材

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69813920T3 (de) * 1997-02-04 2006-08-03 Daido Tokushuko K.K., Nagoya Hochfester nicht-thermischer Frischstahl für Warmschmieden
JP2000160286A (ja) * 1998-11-30 2000-06-13 Kawasaki Steel Corp ドリル被削性に優れた高強度高靱性非調質鋼材
JP5080708B2 (ja) * 2001-08-09 2012-11-21 株式会社神戸製鋼所 非調質鋼鍛造加工品及びその製法、並びにそれを用いた内燃機関用コンロッド部品
JP4822308B2 (ja) * 2001-08-09 2011-11-24 株式会社神戸製鋼所 熱間鍛造非調質コンロッドの製造方法
JP2005002367A (ja) * 2003-06-09 2005-01-06 Sanyo Special Steel Co Ltd 破断分割性に優れる機械構造用非調質鋼
JP2006052432A (ja) * 2004-08-10 2006-02-23 Nissan Motor Co Ltd 破断分離が容易な高強度コネクティングロッド用鍛造品の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073141A (ja) * 1998-08-28 2000-03-07 Kobe Steel Ltd 破断分割性に優れた熱間鍛造用非調質鋼
WO2007108365A1 (ja) * 2006-03-15 2007-09-27 Kabushiki Kaisha Kobe Seiko Sho 破断分離性に優れた破断分離型コネクティングロッド用圧延材、破断分離性に優れた破断分離型コネクティングロッド用熱間鍛造部品、及び破断分離型コネクティングロッド
JP2008274393A (ja) * 2007-03-30 2008-11-13 Daido Steel Co Ltd 高強度及び高靭性フェライト+パーライト型非調質鋼鍛造部材の製造方法
WO2009107282A1 (ja) * 2008-02-26 2009-09-03 新日本製鐵株式会社 破断分離性及び被削性に優れた熱間鍛造用非調質鋼及び熱間圧延鋼材、並びに熱間鍛造非調質鋼部品
JP2010053391A (ja) * 2008-08-27 2010-03-11 Kobe Steel Ltd 破断分割性に優れたコネクティングロッド用熱間鍛造部品およびその製造方法
WO2014178099A1 (ja) * 2013-04-30 2014-11-06 新日鐵住金株式会社 非調質鋼材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3396002A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018035422A (ja) * 2016-09-01 2018-03-08 新日鐵住金株式会社 高強度熱間鍛造非調質鋼部品
WO2019203348A1 (ja) * 2018-04-20 2019-10-24 日本製鉄株式会社 鋼、機械部品及びコネクティングロッド
JPWO2019203348A1 (ja) * 2018-04-20 2020-04-30 日本製鉄株式会社 コネクティングロッド用鋼材、及びコネクティングロッド
JP2020147786A (ja) * 2019-03-13 2020-09-17 株式会社神戸製鋼所 熱間鍛造非調質部品とその製造方法、および熱間鍛造非調質部品用鋼材
JP7270420B2 (ja) 2019-03-13 2023-05-10 株式会社神戸製鋼所 熱間鍛造非調質部品とその製造方法、および熱間鍛造非調質部品用鋼材

Also Published As

Publication number Publication date
EP3396002A4 (en) 2019-08-14
JPWO2017110910A1 (ja) 2018-09-13
EP3396002A1 (en) 2018-10-31
US20180305798A1 (en) 2018-10-25
JP6547847B2 (ja) 2019-07-24

Similar Documents

Publication Publication Date Title
WO2017110910A1 (ja) 鋼部品
JP5344454B2 (ja) 温間加工用鋼、その鋼を用いた温間加工方法、およびそれにより得られる鋼材ならびに鋼部品
WO2012035884A1 (ja) 軸受用鋼
JP6479527B2 (ja) 酸洗性、および焼入れ焼戻し後の耐遅れ破壊性に優れたボルト用線材、並びにボルト
KR101520208B1 (ko) 기소강 및 그의 제조 방법, 및 기소강을 이용한 기계 구조 부품
JP5419820B2 (ja) 熱間鍛造用圧延棒鋼または線材
WO2008032816A1 (fr) Acier à outils pour formage à chaud présentant d'excellentes qualités de rigidité et de résistance à des températures élevées, et son procédé de production
JP4773118B2 (ja) 曲げ疲労強度に優れるクランクシャフト
JP6750745B2 (ja) コネクティングロッド用鋼材、機械部品及びコネクティングロッド
JP6461672B2 (ja) 冷間圧造性、および焼入れ焼戻し後の耐遅れ破壊性に優れたボルト用鋼線、並びにボルト
WO2016143812A1 (ja) 熱間圧延鋼材および鋼部品
JP6750744B2 (ja) コネクティングロッド
JP3954751B2 (ja) 鍛造性と被削性に優れる鋼
JP6652020B2 (ja) 高強度熱間鍛造非調質鋼部品
JP2008144211A (ja) V含有非調質鋼
JP2008240129A (ja) 非調質鋼材
JP3565428B2 (ja) 機械構造用鋼材
JP2018035422A (ja) 高強度熱間鍛造非調質鋼部品
JP6620822B2 (ja)
JP6662247B2 (ja) 破断分離性に優れた熱間鍛造用非調質鋼
JP2017179475A (ja) 破断分離型コネクティングロッド用成型部品、及びコネクティングロッド、並びに該コネクティングロッドの製造方法
JP4192885B2 (ja) 冷間鍛造用鋼及び機械構造部品
JP2005113157A (ja) 被削性並びに疲労特性に優れた鋼材およびその製造方法
JP2022130746A (ja) 非調質鍛造部品および非調質鍛造用鋼
JP2005273013A (ja) クランクシャフトおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878797

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017558207

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15769433

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE