WO2017110883A1 - Steel - Google Patents

Steel Download PDF

Info

Publication number
WO2017110883A1
WO2017110883A1 PCT/JP2016/088123 JP2016088123W WO2017110883A1 WO 2017110883 A1 WO2017110883 A1 WO 2017110883A1 JP 2016088123 W JP2016088123 W JP 2016088123W WO 2017110883 A1 WO2017110883 A1 WO 2017110883A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
fracture
content
separation
amount
Prior art date
Application number
PCT/JP2016/088123
Other languages
French (fr)
Japanese (ja)
Inventor
真也 寺本
聡 志賀
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to EP16878770.3A priority Critical patent/EP3395975A4/en
Priority to US16/062,247 priority patent/US20180371593A1/en
Priority to JP2017558195A priority patent/JP6620822B2/en
Priority to CN201680075087.6A priority patent/CN108474068A/en
Priority to KR1020187018228A priority patent/KR102101233B1/en
Publication of WO2017110883A1 publication Critical patent/WO2017110883A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium

Definitions

  • the present invention relates to steel, and more particularly, to a non-heat treated steel for hot forging excellent in fracture separation.
  • Car engine parts and undercarriage parts are formed by hot forging, followed by heat treatment such as quenching and tempering (hereinafter, heat-treated parts are referred to as tempered parts), or without applying heat treatment.
  • heat-treated parts are referred to as quenching and tempering
  • non-heat treated parts parts that are not heat-treated are referred to as non-heat treated parts
  • connecting rods hereinafter referred to as connecting rods.
  • This component is a component that transmits power when the reciprocating motion of the piston is converted into the rotational motion by the crankshaft in the engine.
  • the connecting rod clamps an eccentric portion called a pin portion of the crankshaft sandwiched between the cap portion and the rod portion of the connecting rod, and transmits power by a mechanism in which the pin portion and the connecting portion of the connecting rod rotate and slide.
  • a break-separated connecting rod has been often used in recent years.
  • the fracture separation type connecting rod is a steel material formed into a shape in which the cap part and the rod part are integrated by hot forging etc., and then a notch is made in the part corresponding to the boundary between the cap part and the rod part, A method of breaking and separating this part is adopted.
  • the fracture surfaces separated by breakage at the mating surfaces of the cap portion and the rod portion are fitted to each other, so that machining of the mating surfaces is unnecessary and processing for alignment can be omitted as necessary. .
  • the fracture separation type connecting rod manufactured by such a method has a brittle fracture surface, a small deformation near the fracture surface due to fracture separation, and a small amount of chipping during fracture separation. That is, it is required that the break separation property is good.
  • the DIN standard C70S6 is widely used in Europe and the United States. This is a high-carbon non-tempered steel containing 0.7% by mass of C, and its metal structure is a pearlite structure having low ductility and toughness in order to suppress dimensional change during fracture separation.
  • C70S6 is excellent in fracture separability due to its small plastic deformation in the vicinity of the fractured surface at the time of fracture, while it has a coarser structure than the ferrite-pearlite structure of medium carbon non-tempered steel that is the current steel for connecting rods.
  • Patent Document 1 and Patent Document 2 include a technique for improving the fracture separability of a steel material by adding a large amount of an embrittlement element such as Si or P to the steel material and reducing the ductility and toughness of the steel material itself.
  • Patent Document 3 and Patent Document 4 describe a technique for improving the fracture separability of a steel material by reducing precipitation ductility and toughness of ferrite by utilizing precipitation strengthening of second phase particles.
  • Patent Documents 5 to 7 describe techniques for improving the fracture separability of steel materials by controlling the form of Mn sulfide.
  • Patent Document 8 describes a technique for improving the fracture separation property of steel by cooling the steel to ⁇ 60 ° C. or lower and then performing fracture separation. However, the situation is that none of the techniques is sufficiently satisfactory with respect to break separation.
  • Patent Document 1 Patent Document 2, and Patent Document 6, it is required to contain a large amount of C in order to increase the strength of the steel.
  • the amount of chipping at the fracture surface increases and the fracture separation property is insufficient.
  • Patent Document 1, Patent Document 2, and Patent Document 6 do not discuss any means for suppressing the amount of chipping.
  • Patent Document 3 it is required to limit the Mn content to less than a predetermined value in order to reduce the ductility of steel.
  • Mn is an element that is effective for forming irregularities on the fracture surface caused by fracture separation and enhancing the fitting property of the fracture surface.
  • a sufficient size and number of irregularities are not formed on the fracture surface, so that fracture separation is insufficient.
  • no consideration is given to the fitting property of the fracture surface.
  • Patent Document 5 and Patent Document 7 it is required to contain V and / or Ti in order to embrittle ferrite in steel and improve fracture separation.
  • V or Ti is added to steel to such an extent that ferrite is embrittled, segregation of these elements occurs and chipping occurs in a region where the concentration of V or Ti is high.
  • Patent Document 5 and Patent Document 7 are subjected to fracture separation, since the amount of chipping cannot be suppressed, the fracture separability is insufficient.
  • Patent Document 4, Patent Document 5 and Patent Document 7 do not discuss any segregation of ferrite embrittlement elements such as V and Ti.
  • the fracture separability is evaluated by, for example, the deformation amount at the fracture surface, the brittle fracture surface ratio at the fracture surface, the size and number of irregularities at the fracture surface, and the amount of chipping at the fracture surface.
  • Suppression of the deformation amount and improvement of the brittle fracture surface ratio are achieved by lowering the toughness of the steel.
  • a steel having a low Charpy impact value which is an index of toughness
  • it is normal that suppression of deformation and improvement of the brittle fracture surface ratio are achieved.
  • V and Ti or the like to steel to cause precipitation strengthening in ferrite, the toughness of the steel is reduced, and the suppression of deformation and the improvement of the brittle fracture surface ratio have been achieved.
  • a high yield ratio is required for steel used as a material for machine parts such as high-strength connecting rods that require high buckling strength.
  • an object of the present invention is to provide a non-heat treated steel for hot forging excellent in fracture separability and yield ratio. Specifically, an object is to provide a steel that can achieve both a reduction in toughness and a reduction in the amount of chipping, and also has an excellent yield ratio.
  • the present inventor has earnestly studied a method for realizing a non-heat treated steel for hot forging excellent in fracture separability, and as a result, obtained the following knowledge (a) and (b). It was.
  • the steel material having a low carbon composition also has sufficient fracture separability by containing a trace amount Bi without containing a conventionally known ferrite embrittlement element such as V. It has been found that it can be improved, and the present invention has been made.
  • the gist of the invention is as follows.
  • the steel according to one embodiment of the present invention is unit mass%, C: 0.10 to 0.25%, Si: 0.60 to 1.20%, Mn: 0.60 to 1.00% , P: 0.040 to 0.060%, S: 0.060 to 0.100%, Cr: 0.05 to 0.20%, Bi: 0.0001 to 0.0050%, N: 0.0020 ⁇ 0.0150%, V: 0 ⁇ 0.010%, Al: 0 ⁇ 0.0050%, Ti: 0 ⁇ 0.020%, Ca: 0 ⁇ 0.0050%, Zr: 0 ⁇ 0.0050% And Mg: 0 to 0.0050%, with the balance being Fe and impurities.
  • the steel described in (1) is unit mass%, Ca: 0.0005 to 0.0050%, Zr: 0.0005 to 0.0050%, and Mg: 0.0005 to 0.0050. % May be contained.
  • the steel described in (1) or (2) above may contain N: 0.0020 to 0.0090% in unit mass%.
  • the steel according to any one of (1) to (3) may contain Al: 0 to 0.0008% in unit mass%.
  • the steel according to any one of the above (1) to (4) may contain V: 0 to 0.004% in unit mass%.
  • a non-tempered steel for hot forging that achieves both a reduction in toughness and a reduction in the amount of chipping, and is excellent in fracture separation and yield ratio.
  • C 0.10 to 0.25%
  • C has an effect of securing the tensile strength of steel.
  • the lower limit of the C content needs to be 0.10%.
  • the upper limit of the C content is 0.25%.
  • the lower limit of the C content may be 0.12%, 0.15%, or 0.19%.
  • the upper limit of the C content may be 0.23%, 0.22%, or 0.21%.
  • Si 0.60 to 1.20% Since Si strengthens ferrite by solid solution strengthening and decreases the ductility and toughness of the steel, it improves the fracture separability of the steel. In order to obtain this effect, the lower limit of the Si content needs to be 0.60%. On the other hand, if Si is contained excessively, the frequency of occurrence of chipping of the fracture surface increases, so the upper limit of the Si content is 1.20%.
  • the lower limit value of the Si content may be 0.70%, 0.75%, or 0.80%.
  • the upper limit of the Si content may be 1.00%, 0.90%, or 0.85%.
  • Mn 0.60 to 1.00% Since Mn strengthens ferrite by solid solution strengthening and lowers the ductility and toughness of the steel, it improves the fracture separability of the steel. Mn combines with S to form Mn sulfide. When cracking and separating steel parts made of steel of this embodiment, cracks propagate along the Mn sulfide elongated in the rolling direction, so that the Mn sulfide has a larger unevenness on the fracture surface and fits the fracture surface. This has the effect of preventing displacement. On the other hand, when Mn is excessively contained, the frequency of occurrence of chipping of the fracture surface increases because the ferrite becomes too hard. In view of these, the range of Mn content is 0.60 to 1.00%. The lower limit value of the Mn content may be 0.70%, 0.80%, or 0.82%. The upper limit value of the Mn content may be 0.90%, 0.87%, or 0.85%.
  • P 0.040 to 0.060%
  • P decreases the ductility and toughness of ferrite and pearlite, and embrittles the steel.
  • P is regarded as an impurity element which is not preferably contained.
  • the P content is usually about 0.020% or less in order to prevent embrittlement of the part.
  • P is beneficial because it has the effect of improving the break separation property. Therefore, in the steel according to the present embodiment, it is necessary that the P content be 0.040% or more, which greatly exceeds the range included in ordinary steel as impurities.
  • the range of P content is 0.040 to 0.060%.
  • the lower limit value of the P content may be 0.042%, 0.045%, or 0.048%.
  • the upper limit of the P content may be 0.058%, 0.055%, or 0.050%.
  • S 0.060 to 0.100% S combines with Mn to form Mn sulfide.
  • S increases the irregularities of the fracture surface and fits the fracture surface. This has the effect of preventing displacement.
  • the lower limit of the S content needs to be 0.060%.
  • S when S is contained excessively, the amount of plastic deformation in the vicinity of the fracture surface at the time of fracture separation increases, and the fracture separability may decrease. In addition to this, when S is excessively contained, chipping of the fracture surface may be promoted. For these reasons, the S content range is 0.060 to 0.100%.
  • the lower limit value of the S content may be 0.070%, 0.075%, or 0.080%.
  • the upper limit value of the S content may be 0.090%, 0.088%, or 0.085%.
  • Cr 0.05-0.20% Cr, like Mn, strengthens ferrite by solid solution strengthening and reduces the ductility and toughness of the steel, and thus improves the fracture separability of the steel.
  • the Cr content range is 0.05 to 0.20%.
  • the lower limit of the Cr content may be 0.07%, 0.09%, or 0.10%.
  • the upper limit of the Cr content may be 0.17%, 0.16%, or 0.15%.
  • Bi 0.0001 to 0.0050% Bi is an important element in the steel according to the present embodiment.
  • the solid solution Bi embrittles the ferrite and lowers the ductility and toughness of the steel, so that the fracture separability of the steel is improved.
  • the ferrite embrittlement effect of Bi is expressed in a very small amount.
  • the Bi content should be 0.0001% or more. It has not been reported so far that such a small amount of Bi improves the break-separability of steel.
  • Bi was used to embrittle ferrite, an increase in the amount of chipping was not confirmed. The cause of this is unknown, but it was estimated that the amount of Bi was so fine that the effect of Bi segregation was so small that it could be ignored.
  • the Bi content is 0.0001% to 0.0050% in the steel according to the present embodiment.
  • the lower limit value of Bi content may be 0.0025%, 0.0028%, or 0.0030%.
  • the upper limit of Bi content may be 0.0045%, 0.0042%, or 0.0040%.
  • N 0.0020 to 0.0150% If N contains V or Ti in the steel, these nitrides or carbonitrides are formed, but other Ns exist in a solid solution state in the steel. Solid solution N (that is, N in a state of solid solution in steel) embrittles ferrite and lowers the ductility and toughness of the steel, so that the fracture separation of the steel is improved. In order to obtain this effect, the lower limit of the N content is set to 0.0020%. If N is contained excessively, the hot ductility is lowered and cracking or flaws are likely to occur during hot working, so the upper limit of N content is 0.0150%. The lower limit value of the N content may be 0.0050%, 0.0070%, or 0.0080%. The upper limit of the N content may be 0.0100%, 0.0095%, or 0.0090%.
  • V 0 to 0.010%
  • V has the effect of forming carbides or carbonitrides to cause precipitation strengthening in the ferrite, reducing the ductility and toughness of the ferrite, and thereby reducing the amount of deformation during fracture separation. Therefore, according to the prior art, V may be contained in steel that requires high fracture separation. However, in order to sufficiently obtain the above effect using V, the V content needs to be about 0.10% or more. When about 0.10% or more of V is contained in the steel, segregation of V occurs, and the ductility and toughness of the ferrite are excessively reduced in a region where the V concentration is high, so that chipping is likely to occur at the time of fracture separation of the steel. That is, V can reduce the amount of deformation during break separation, but increases the amount of chipping during break separation.
  • the steel according to the present embodiment contains the above-described trace amount of Bi, V is not required for improving the break separation property. Therefore, the lower limit of the V content is 0%. In order to reduce the amount of chipping, it is preferable not to contain V. However, when steel according to the present embodiment is manufactured using scrap as a material, V may be mixed. In this case, V of 0.010% or less is allowed because it does not increase the amount of chipping. The upper limit value of the V content may be 0.007%, 0.005%, 0.004%, or 0.002%. If scrap is not used as a steel material, the content of V mixed in the steel as impurities is usually 0.010% or less.
  • V of 0.010% or less is usually regarded as an impurity that does not substantially affect the properties of the steel.
  • 0.010% or less of V is considered to have a content of 0%, and the disclosure thereof may be omitted.
  • the lower limit value of the Al content is 0%. Further, 0.0050% or more of Al forms Al oxide in the steel, and this Al oxide may impair the machinability of the steel.
  • the upper limit of the Al content of the steel according to this embodiment is set to 0.0050%.
  • the upper limit value of the Al content may be 0.0040%, 0.0010%, or 0.0008%.
  • 0.0050% or less of Al is usually regarded as an impurity that does not substantially affect the properties of the steel. Accordingly, in a mill sheet or the like, 0.0050% or less of Al is considered to have a content of 0%, and the disclosure thereof may be omitted.
  • Ti 0 to 0.020%
  • V has the effect of forming nitrides and causing precipitation strengthening in ferrite, reducing the ductility and toughness of ferrite, and thereby reducing the amount of deformation during fracture separation.
  • Ti may increase the amount of chipping during fracture separation. Since the steel according to the present embodiment contains the above-described trace amount of Bi, Ti is not required for improving the break separation property. Therefore, the lower limit of the Ti content is 0%. In order to reduce the amount of chipping, it is preferable not to contain Ti. However, when the steel according to this embodiment is manufactured using scrap as a material, Ti may be mixed.
  • 0.020% or less of Ti is allowed because it does not increase the amount of chipping.
  • the upper limit value of the Ti content may be 0.010%, 0.005%, or 0.002%. If scrap is not used as a steel material, the content of Ti mixed into the steel as impurities is usually 0.020% or less. Further, in the technical field to which the steel according to the present embodiment belongs, 0.020% or less of Ti is usually regarded as an impurity that does not substantially affect the properties of the steel. In a mill sheet or the like, 0.020% or less of Ti is considered to have a content of 0%, and the disclosure thereof may be omitted.
  • Ca 0 to 0.0050%, Zr: 0 to 0.0050%, Mg: 0 to 0.0050% Since the steel according to the present embodiment can exhibit its effect without containing Ca, Zr, and Mg, the lower limit of the content of Ca, Zr, and Mg is 0%. However, Ca, Zr, and Mg all form oxides and become the crystallization nuclei of MnS and have the effect of uniformly and finely dispersing MnS. When cracking and separating a steel part made of steel according to this embodiment, cracks propagate along MnS elongated in the rolling direction, so that the larger the Mn sulfide, the larger the irregularities of the fracture surface, while the ductility and High toughness and low break separation.
  • the steel according to the present embodiment contains one or more selected from the group consisting of 0.0005% or more of Ca, 0.0005% or more of Zr, and 0.0005% or more of Mg. You may do it.
  • the content of Ca, Zr, or Mg exceeds 0.0050%, the hot workability of the steel deteriorates, and the hot rolling of the steel becomes difficult.
  • the upper limit of each of Ca, Zr, and Mg contents is set to 0.0050%.
  • the balance of the chemical components of the steel according to this embodiment includes iron and impurities.
  • Impurities are components that are mixed due to various factors of raw materials such as ore or scrap, or manufacturing process when industrially manufacturing steel materials, and a range that does not adversely affect the steel according to the present embodiment. Means what is allowed.
  • the structure of the steel according to the present embodiment is a so-called ferrite pearlite structure that is substantially composed of ferrite and pearlite and may contain slight inclusions. This structure is obtained by controlling the chemical composition of steel within the above-described range. Therefore, although it is not necessary to explicitly limit the structure of the steel according to the present embodiment, for example, the structure of the steel according to the present embodiment may be defined as a structure including a total of 99 area% or more of ferrite and pearlite. .
  • the non-tempered steel described above has improved the fracture separability by adding V to the conventional material to improve the brittleness of the ferrite.
  • the break separation property is improved.
  • the application of the steel according to the present embodiment described above is not particularly limited. However, since the steel according to the present embodiment has a good breaking separation property, it is suitable to be used as a material for machine parts (breaking separation type parts) obtained by a manufacturing method including a breaking separation process. It is particularly suitable for use as a material for the connecting rod. If it is the fracture separation type connecting rod 1 as a steel part which consists of non-heat treated steel of this embodiment, the new process of a butt surface and a positioning pin will become unnecessary, and the simplification of a manufacturing process can be achieved significantly.
  • FIG. 1 is an exploded perspective view showing an example of a fracture separation type connecting rod formed of steel according to the present invention.
  • 1 is composed of a semicircular arc-shaped upper-side half-divided body 2 and a semicircular-arc-shaped lower-side half-divided body 3 that are separated vertically.
  • Screw holes 5 having screw grooves for fixing to the lower half half 3 are respectively formed at both ends of the semicircular arc 2A of the upper side half 2.
  • the semicircular arc 3A of the lower side half 3 is formed.
  • Insertion holes 6 for fixing to the upper-side halves 2 are formed on both ends of each.
  • the semicircular arc portion 2A of the upper half halves 2 and the semicircular arc portion 3A of the lower halves 3 are aligned in an annular shape, and the coupling bolts 7 are inserted into the insertion holes 6 and the screw holes 5 on both ends.
  • An annular big end portion 8 is formed by screwing.
  • An annular small end portion 9 is formed on the upper end side of the rod portion 2 ⁇ / b> B of the upper half 2.
  • a piston of an internal combustion engine such as an automobile engine into a rotational motion
  • a small end portion 9 is connected to a piston (not shown).
  • the big end portion 8 is connected to a connecting rod journal (not shown) of the internal combustion engine.
  • the semicircular arc part 2A of the upper half half body 2 of the fracture separation type connecting rod 1 and the semicircular arc part 3A of the lower side half half body 3 are formed by brittle fracture of a part that was originally one annular part.
  • a notch is formed in a part of a hot forged product, and the notch is used as a starting point for breaking and separating in a brittle manner, so that the butted surface 2a of the semicircular arc portion 2A of the upper side half 2 and the lower side half
  • the abutting surface 3a of the three semicircular arc portions 3A is formed. Since these abutting surfaces 2a and 3a are formed by breaking and separating the steel according to the present embodiment having a good breaking separation property, the butting can be performed with a good alignment accuracy.
  • the break-separated connecting rod 1 having this structure eliminates the need for new processing of the abutting surface and positioning pins, and greatly simplifies the manufacturing process.
  • the converter molten steel having the composition shown in Table 1 below was manufactured by continuous casting, and if necessary, a rolling raw material of 162 mm square was obtained through a soaking diffusion treatment and a block rolling process. Next, the rolled material was hot-rolled to obtain a steel bar shape having a diameter of 45 mm. Values underlined in Table 1 are values outside the scope of the present invention. In addition, the symbol “-” in Table 1 indicates that the element related to the symbol was not added in the manufacturing stage and contained only an amount below a level normally regarded as an impurity.
  • a test piece corresponding to a forged connecting rod was created by hot forging the above bar steel. Specifically, a steel bar having a diameter of 45 mm was heated to 1150 to 1280 ° C., then forged perpendicularly to the length direction of the steel bar to a thickness of 20 mm, and cooled to room temperature by blast cooling with a blast cooling device. A JIS No. 4 tensile test piece and a Charpy impact test piece were processed from the forged material after cooling. The Charpy impact test piece was subjected to V-notch processing of 45 degrees with a depth of 2 mm and a tip curvature of 0.25 mm.
  • the fracture separation property is said to be good when the fracture form of the fracture surface is brittle, the amount of deformation near the fracture surface due to fracture separation is small, and the amount of chipping during fracture separation is small.
  • the present inventors adopted the Charpy impact value as an index for evaluating the fracture form of the fracture surface and the deformation near the fracture surface.
  • the Charpy impact test was repeated 5 times at room temperature based on JIS Z 2242 on the above Charpy impact test piece, and the average value of the five values obtained was taken as the Charpy impact value of the test piece.
  • the steel having a Charpy impact value of 9 J / cm 2 or less was judged to have achieved the suppression of deformation and the improvement of the brittle fracture surface ratio.
  • the method for measuring the amount of chipping was as follows. It is a plate of 80 mm x 80 mm and thickness 18 mm, and has a hole with a diameter of 50 mm at the center, and on the inner surface of this hole, a position of ⁇ 90 degrees with respect to the length direction of the steel bar that is the material before forging Test pieces for fracture separation evaluation having a V notch of 45 degrees with a depth of 1 mm and a tip curvature of 0.5 mm were prepared at two locations.
  • a through-hole having a diameter of 8 mm was formed as a bolt hole in the test piece for evaluation of fracture separability so that the center line is located at a location 8 mm from the side surface on the notch processing side.
  • the test specimen for evaluation of break separation was broken using a break separation evaluation test apparatus.
  • the test apparatus for evaluation of breaking separation is composed of a split mold and a falling weight tester.
  • the split mold is a shape in which a 46.5 mm diameter cylinder formed on a rectangular steel material is divided into two along the center line. One side is fixed and one side moves on the rail. Wedge holes are machined on the mating surfaces of the two semi-cylinders.
  • a hole with a diameter of 50 mm of the test piece is fitted into this split mold with a diameter of 46.5 mm, and a wedge is placed on the falling weight.
  • the falling weight has a mass of 200 kg and is a mechanism that falls along the guide.
  • a wedge is driven and the test piece is pulled and broken in two. Note that the periphery of the test piece is fixed so as to be pressed against the split mold so that the test piece is not released from the split mold at the time of breaking. In this test, fracture was performed at a falling weight height of 100 mm.
  • the fractured surfaces thus obtained were brought together, and the fractured steel was bolted and assembled with a torque of 20 N ⁇ m, and then the work of loosening the bolts and separating the fractured surfaces was repeated 10 times.
  • the total weight of the pieces dropped off by this operation was defined as the amount of chipping of the steel.
  • a steel having a chip generation amount of less than 1.00 mg was judged to have suppressed the chip generation amount.
  • the tensile test was performed on the above-mentioned JIS No. 4 tensile test piece at a speed of 20 mm / min at room temperature in accordance with JIS Z 2241. A sample having a yield ratio of 0.75 or more was judged as a sample having a good yield ratio.
  • Table 2 shows the test results.
  • Comparative Example a had a low C content and therefore had a low tensile strength and a high Charpy impact value.
  • Comparative Examples b to d since the content of Si, Mn or P was small, the brittle effect of ferrite was small and the Charpy impact value was high.
  • Comparative Example e since the Cr content was large, a bainite structure was partially formed in addition to the ferrite / pearlite structure, and thus the Charpy impact value was high and the yield ratio was further impaired. Since Comparative Example f did not contain Bi, there was no brittle effect of ferrite, and the Charpy impact value was high.
  • Comparative Example g contains Bi, the effect of embrittlement of ferrite was obtained and the Charpy impact value was low, but since the Bi content was large, the yield strength and yield ratio were low.
  • Comparative Example h since the V content was large, segregation of V occurred, the toughness of ferrite decreased excessively in the region where the V concentration was high, and the amount of chipping at the time of fracture separation of the steel increased.
  • the steel according to the present invention can achieve both a reduction in toughness and a reduced amount of chipping, and is also excellent in yield ratio. Therefore, when the steel according to the present invention is used as a non-heat treated steel for hot forging, which is a material of a machine part obtained by a production method including a fracture separation process, a machine part having a high buckling strength can be produced. In addition, the economic efficiency at the time of manufacturing parts can be greatly improved.
  • Breaking type connecting rod (steel part) 2 ... Upper side half 2A ... Semi arc part 2a ... Abutting surface 2B ... Rod part 3 ... Lower side half part 3A ... Semi arc part 3a ... Abutting surface 5 ... Screw hole 6 ; Insertion hole 7 ... Coupling bolt 8 ... Big end part 9 ... Small end part

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

A steel according to an aspect of the present invention contains, in mass%, 0.10-0.25% of C, 0.60-1.20% of Si, 0.60-1.00% of Mn, 0.040-0.060% of P, 0.060-0.100% of S, 0.05-0.20% of Cr, 0.0001-0.0050% of Bi, 0.0020-0.0150% of N, 0-0.010% of V, 0-0.0050% of Al, 0-0.020% of Ti, 0-0.005% of Ca, 0-0.005% of Zr, and 0-0.005% of Mg, with the remainder comprising Fe and impurities.

Description

steel
 本発明は鋼に関するものであり、特に破断分離性に優れた熱間鍛造用非調質鋼に関するものである。
 本願は、2015年12月25日に、日本に出願された特願2015-253563号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to steel, and more particularly, to a non-heat treated steel for hot forging excellent in fracture separation.
This application claims priority based on Japanese Patent Application No. 2015-253563 filed in Japan on December 25, 2015, the contents of which are incorporated herein by reference.
 自動車エンジン用部品および足廻り用部品は、熱間鍛造で成形を行い、次いで焼入れ焼戻しといった熱処理を行い(以降、熱処理が行われる部品を調質部品と称する)、又は、熱処理を適用することなく(以降、熱処理が行われない部品を非調質部品と称する)、適用する部品に必要な機械特性を確保する。最近は製造工程における経済効率性の観点から、調質を省略した部品、すなわち、非調質部品が多く普及している。 Car engine parts and undercarriage parts are formed by hot forging, followed by heat treatment such as quenching and tempering (hereinafter, heat-treated parts are referred to as tempered parts), or without applying heat treatment. (Hereinafter, parts that are not heat-treated are referred to as non-heat treated parts), and the mechanical properties necessary for the applied parts are ensured. Recently, from the viewpoint of economic efficiency in the manufacturing process, many parts that are not tempered, that is, non-tempered parts are widely used.
 自動車エンジン用部品の事例としてコネクティングロッド(以降、コンロッドと称する)が挙げられる。この部品は、エンジン内でピストンの往復運動をクランクシャフトによる回転運動に変換する際に、動力を伝達する部品である。コンロッドは、クランクシャフトのピン部と称される偏芯部位をコンロッドのキャップ部とロッド部とで挟み込んで締結し、ピン部とコンロッドの締結部とが回転摺動する機構によって動力を伝達する。このキャップ部とロッド部との締結の効率化のために、近年、破断分離型コンロッドが多く採用されている。 Examples of automotive engine parts include connecting rods (hereinafter referred to as connecting rods). This component is a component that transmits power when the reciprocating motion of the piston is converted into the rotational motion by the crankshaft in the engine. The connecting rod clamps an eccentric portion called a pin portion of the crankshaft sandwiched between the cap portion and the rod portion of the connecting rod, and transmits power by a mechanism in which the pin portion and the connecting portion of the connecting rod rotate and slide. In order to increase the efficiency of fastening between the cap part and the rod part, a break-separated connecting rod has been often used in recent years.
 破断分離型コンロッドとは、熱間鍛造等でキャップ部とロッド部とが一体となった形状に鋼材を成形した後、キャップ部とロッド部との境界に相当する部分に切欠きを入れて、この部分を破断分離する工法を採用したものである。この工法では、キャップ部及びロッド部の合わせ面において破断分離した破面同士を嵌合させるので、合わせ面の機械加工が不要な上に、位置合わせのために施す加工も必要に応じて省略できる。これらから、部品の加工工程を大幅に削減でき、部品製造時の経済効率性は大幅に向上する。このような工法で製造される破断分離型コンロッドには、破断面の破壊形態が脆性的であり、破断分離による破面近傍の変形量が小さく、且つ破断分離の際の欠け発生量が少ないこと、すなわち破断分離性が良好であることが求められる。 The fracture separation type connecting rod is a steel material formed into a shape in which the cap part and the rod part are integrated by hot forging etc., and then a notch is made in the part corresponding to the boundary between the cap part and the rod part, A method of breaking and separating this part is adopted. In this construction method, the fracture surfaces separated by breakage at the mating surfaces of the cap portion and the rod portion are fitted to each other, so that machining of the mating surfaces is unnecessary and processing for alignment can be omitted as necessary. . As a result, the machining process for the parts can be greatly reduced, and the economic efficiency during the production of the parts can be greatly improved. The fracture separation type connecting rod manufactured by such a method has a brittle fracture surface, a small deformation near the fracture surface due to fracture separation, and a small amount of chipping during fracture separation. That is, it is required that the break separation property is good.
 破断分離型コンロッドに供する鋼材として、欧米で普及しているのは、DIN規格のC70S6である。これは、0.7質量%のCを含む高炭素非調質鋼であり、破断分離時の寸法変化を抑えるために、その金属組織を延性及び靭性が低いパーライト組織としたものである。C70S6は、破断時の破断面近傍の塑性変形量が小さいので破断分離性に優れる一方、現行のコンロッド用鋼である中炭素非調質鋼のフェライト・パーライト組織に比べて組織が粗大であるので、降伏比(=降伏強さ/引張強さ)が低く、高い座屈強度が要求される高強度コンロッドには適用できないという問題がある。 As a steel material to be used for the fracture separation type connecting rod, the DIN standard C70S6 is widely used in Europe and the United States. This is a high-carbon non-tempered steel containing 0.7% by mass of C, and its metal structure is a pearlite structure having low ductility and toughness in order to suppress dimensional change during fracture separation. C70S6 is excellent in fracture separability due to its small plastic deformation in the vicinity of the fractured surface at the time of fracture, while it has a coarser structure than the ferrite-pearlite structure of medium carbon non-tempered steel that is the current steel for connecting rods. The yield ratio (= yield strength / tensile strength) is low, and there is a problem that it cannot be applied to a high-strength connecting rod that requires high buckling strength.
 鋼材の降伏比を高めるためには、炭素量を低減し、フェライト分率を増加させることが必要である。しかしながら、フェライト分率を増加させると鋼材の延性が向上して、破断分離時に塑性変形量が大きくなり、クランクシャフトのピン部に締結されるコンロッド摺動部の形状変形が増大し、真円度が低下するといった部品性能上の問題が発生する。 In order to increase the yield ratio of steel, it is necessary to reduce the carbon content and increase the ferrite fraction. However, increasing the ferrite fraction increases the ductility of the steel material, increases the amount of plastic deformation at the time of fracture separation, increases the shape deformation of the connecting rod sliding part fastened to the pin part of the crankshaft, and roundness This causes a problem in the performance of the parts such as a decrease in the number of parts.
 高強度の破断分離型コンロッドに好適な鋼材としていくつかの非調質鋼が提案されている。例えば、特許文献1および特許文献2には、鋼材にSiまたはPのような脆化元素を多量に添加し、鋼材自体の延性および靭性を低下させることによって鋼材の破断分離性を改善する技術が記載されている。特許文献3および特許文献4には、第二相粒子の析出強化を利用してフェライトの延性および靭性を低下させることによって鋼材の破断分離性を改善する技術が記載されている。さらに、特許文献5~7には、Mn硫化物の形態を制御することによって鋼材の破断分離性を改善する技術が記載されている。特許文献8には、鋼を-60℃以下に冷却してから破断分離させることにより、鋼の破断分離性を改善する技術が記載されている。
 しかしながら、いずれの技術も破断分離性について十分満足しているとは言えないのが実情である。
Several non-tempered steels have been proposed as steel materials suitable for high-strength fracture-separated connecting rods. For example, Patent Document 1 and Patent Document 2 include a technique for improving the fracture separability of a steel material by adding a large amount of an embrittlement element such as Si or P to the steel material and reducing the ductility and toughness of the steel material itself. Are listed. Patent Document 3 and Patent Document 4 describe a technique for improving the fracture separability of a steel material by reducing precipitation ductility and toughness of ferrite by utilizing precipitation strengthening of second phase particles. Further, Patent Documents 5 to 7 describe techniques for improving the fracture separability of steel materials by controlling the form of Mn sulfide. Patent Document 8 describes a technique for improving the fracture separation property of steel by cooling the steel to −60 ° C. or lower and then performing fracture separation.
However, the situation is that none of the techniques is sufficiently satisfactory with respect to break separation.
 特許文献1、特許文献2、及び特許文献6に記載の技術では、鋼の強度を高めるために、多量のCを含有させることが求められる。このような特徴を有する鋼は、破断分離に供した場合、破断面での欠け発生量が増大して破断分離性が不足する。しかし特許文献1、特許文献2、及び特許文献6では、欠け発生量を抑制する手段について何ら検討されていない。 In the techniques described in Patent Document 1, Patent Document 2, and Patent Document 6, it is required to contain a large amount of C in order to increase the strength of the steel. When steel having such characteristics is subjected to fracture separation, the amount of chipping at the fracture surface increases and the fracture separation property is insufficient. However, Patent Document 1, Patent Document 2, and Patent Document 6 do not discuss any means for suppressing the amount of chipping.
 特許文献3の技術では、鋼の延性を低下させるために、Mn含有量を所定値未満に制限することが求められる。しかしながら、Mnは、破断分離によって生じる破断面に凹凸を形成し、破断面の嵌合性を高めるために有効な元素である。特許文献3に記載の鋼は、破断分離に供した場合、破断面に十分な大きさ及び数の凹凸が形成されないので、破断分離性が不足する。しかし特許文献3では、破断面の嵌合性について何ら検討されていない。 In the technique of Patent Document 3, it is required to limit the Mn content to less than a predetermined value in order to reduce the ductility of steel. However, Mn is an element that is effective for forming irregularities on the fracture surface caused by fracture separation and enhancing the fitting property of the fracture surface. When the steel described in Patent Document 3 is subjected to fracture separation, a sufficient size and number of irregularities are not formed on the fracture surface, so that fracture separation is insufficient. However, in Patent Document 3, no consideration is given to the fitting property of the fracture surface.
 特許文献4、特許文献5及び特許文献7の技術では、鋼中のフェライトを脆化させて破断分離性を高めるためにV及び/又はTiを含有することが求められる。しかしながら本発明者らは、フェライトを脆化させる程度にV又はTiを鋼に添加した場合、これら元素の偏析が生じ、V又はTiの濃度が高い領域において欠けが発生することを知見した。特許文献4、特許文献5及び特許文献7に記載の鋼は、破断分離に供した場合、欠け発生量を抑制できないので、破断分離性が不足する。しかし特許文献4、特許文献5及び特許文献7では、V及びTiのようなフェライト脆化元素の偏析について何ら検討されていない。 In the techniques of Patent Document 4, Patent Document 5 and Patent Document 7, it is required to contain V and / or Ti in order to embrittle ferrite in steel and improve fracture separation. However, the present inventors have found that when V or Ti is added to steel to such an extent that ferrite is embrittled, segregation of these elements occurs and chipping occurs in a region where the concentration of V or Ti is high. When the steels described in Patent Document 4, Patent Document 5 and Patent Document 7 are subjected to fracture separation, since the amount of chipping cannot be suppressed, the fracture separability is insufficient. However, Patent Document 4, Patent Document 5 and Patent Document 7 do not discuss any segregation of ferrite embrittlement elements such as V and Ti.
 特許文献8に記載の技術では、鋼の機械特性を高めるために、鋼の鍛造後硬さを示す指標Ceqを所定値以上にすることが求められる。このような特徴を有する鋼は、破断分離の際の欠け発生量が多く破断分離性が損なわれる。特許文献8で提示されている-60℃以下の低温での破断分離は、部品製造時の経済効率性を低下させる。 In the technique described in Patent Document 8, in order to enhance the mechanical properties of steel, it is required to set an index Ceq indicating the post-forging hardness of steel to a predetermined value or more. Steel having such characteristics has a large amount of chipping at the time of break separation, and the break separation property is impaired. Breaking separation at a low temperature of −60 ° C. or less, which is proposed in Patent Document 8, lowers the economic efficiency at the time of manufacturing parts.
日本国特許第3637375号公報Japanese Patent No. 3637375 日本国特許第3756307号公報Japanese Patent No. 3756307 日本国特許第3355132号公報Japanese Patent No. 3355132 日本国特許第3988661号公報Japanese Patent No. 3988661 日本国特許第4314851号公報Japanese Patent No. 4314851 日本国特許第3671688号公報Japanese Patent No. 3671688 日本国特許第4268194号公報Japanese Patent No. 4268194 日本国特開2004-183094号公報Japanese Unexamined Patent Publication No. 2004-183094
 上述のように、破断分離性は例えば、破断面における変形量、破断面における脆性破面率、破断面における凹凸の大きさ及び個数、並びに破断面における欠け発生量等によって評価される。変形量の抑制及び脆性破面率の向上は、鋼の靱性を低下させることにより達成される。例えば、靱性の指標であるシャルピー衝撃値が低い鋼では、変形量の抑制及び脆性破面率の向上が達成されていることが通常である。従来技術によれば、V及びTi等を鋼に添加して、フェライトに析出強化を生じさせることにより、鋼の靱性を低下させて変形量の抑制及び脆性破面率の向上が達成されてきた。しかしながら、これら元素、特にVは偏析しやすい元素である。破断分離性を向上させるために必要な量のこれら脆化元素を鋼に添加した場合、これら元素の偏析部(これら元素の濃度が周囲より高い部分)において脆化が過剰に生じ、破断分離の際に欠けが発生する。これにより、破断分離の際の欠け発生量が増大し、破断分離性が損なわれる。従って、V等のような欠け発生量を増大させる元素を用いることなく破断分離性を確保することが必要とされる。 As described above, the fracture separability is evaluated by, for example, the deformation amount at the fracture surface, the brittle fracture surface ratio at the fracture surface, the size and number of irregularities at the fracture surface, and the amount of chipping at the fracture surface. Suppression of the deformation amount and improvement of the brittle fracture surface ratio are achieved by lowering the toughness of the steel. For example, in a steel having a low Charpy impact value, which is an index of toughness, it is normal that suppression of deformation and improvement of the brittle fracture surface ratio are achieved. According to the prior art, by adding V and Ti or the like to steel to cause precipitation strengthening in ferrite, the toughness of the steel is reduced, and the suppression of deformation and the improvement of the brittle fracture surface ratio have been achieved. . However, these elements, particularly V, are easily segregated. When the amount of these embrittlement elements required to improve the fracture separation is added to the steel, excessive embrittlement occurs in the segregation part of these elements (the part where the concentration of these elements is higher than the surrounding area). Chipping occurs. Thereby, the amount of chipping at the time of break separation increases, and break separation properties are impaired. Therefore, it is necessary to ensure break separation without using an element that increases the amount of chipping such as V.
 また、高い座屈強度が要求される高強度コンロッドのような機械部品の材料として用いられる鋼には、高い降伏比も求められる。 Also, a high yield ratio is required for steel used as a material for machine parts such as high-strength connecting rods that require high buckling strength.
 本発明は上記の実情に鑑み、破断分離性及び降伏比に優れた熱間鍛造用非調質鋼を提供することを目的とする。具体的には、靱性の低下と、欠け発生量の抑制との両方を達成でき、さらに降伏比にも優れる鋼の提供を目的とする。 In view of the above circumstances, an object of the present invention is to provide a non-heat treated steel for hot forging excellent in fracture separability and yield ratio. Specifically, an object is to provide a steel that can achieve both a reduction in toughness and a reduction in the amount of chipping, and also has an excellent yield ratio.
 上述の課題を解決するために、本発明者は破断分離性に優れた熱間鍛造用非調質鋼を実現する方策について鋭意検討した結果、以下の(a)、(b)の知見を得た。 In order to solve the above-mentioned problems, the present inventor has earnestly studied a method for realizing a non-heat treated steel for hot forging excellent in fracture separability, and as a result, obtained the following knowledge (a) and (b). It was.
 (a)鋼中に微量Biを含有させることにより、著しく靭性を低下することを見出した。これは鋼中に固溶したBiがフェライトを顕著に脆化させたためである。この効果により破断分離性が劣る低炭素組成の鋼材も破断分離用非調質鋼として使用可能となる。 (A) It has been found that the toughness is remarkably lowered by containing a small amount of Bi in the steel. This is because Bi dissolved in steel significantly embrittles ferrite. Due to this effect, a steel material having a low carbon composition that is inferior in break separation can be used as a non-heat treated steel for break separation.
 (b)鋼中に微量Biを含有させることにより、偏析しやすいVを含有させなくても靭性を低下させられることを見出した。これは、フェライトを脆化させる効果はVCによる析出強化よりも、固溶Biの方が著しく大きいためである。 (B) It was found that the toughness can be reduced by containing a small amount of Bi in the steel without containing V which is easily segregated. This is because the effect of embrittlement of ferrite is significantly larger in the case of solid solution Bi than the precipitation strengthening by VC.
 以上のような(a)、(b)の知見に基づき、V等の従来知られるフェライト脆化元素を含有させることなく微量Biを含有させることにより低炭素組成の鋼材も破断分離性を十分に向上させ得ることを見出し、本発明をなすに至った。 Based on the knowledge of (a) and (b) as described above, the steel material having a low carbon composition also has sufficient fracture separability by containing a trace amount Bi without containing a conventionally known ferrite embrittlement element such as V. It has been found that it can be improved, and the present invention has been made.
 その発明の要旨とするところは、次の通りである。
(1)本発明の一態様に係る鋼は、単位質量%で、C:0.10~0.25%、Si:0.60~1.20%、Mn:0.60~1.00%、P:0.040~0.060%、S:0.060~0.100%、Cr:0.05~0.20%、Bi:0.0001~0.0050%、N:0.0020~0.0150%、V:0~0.010%、Al:0~0.0050%、Ti:0~0.020%、Ca:0~0.0050%、Zr:0~0.0050%、及びMg:0~0.0050%を含有し、残部がFe及び不純物からなる。
(2)上記(1)に記載の鋼は、単位質量%で、Ca:0.0005~0.0050%、Zr:0.0005~0.0050%、及びMg:0.0005~0.0050%のうちの1種以上を含有してもよい。
(3)上記(1)または(2)に記載の鋼は、単位質量%で、N:0.0020~0.0090%を含有してもよい。
(4)上記(1)~(3)のいずれか一項に記載の鋼は、単位質量%で、Al:0~0.0008%を含有してもよい。
(5)上記(1)~(4)のいずれか一項に記載の鋼は、単位質量%で、V:0~0.004%を含有してもよい。
The gist of the invention is as follows.
(1) The steel according to one embodiment of the present invention is unit mass%, C: 0.10 to 0.25%, Si: 0.60 to 1.20%, Mn: 0.60 to 1.00% , P: 0.040 to 0.060%, S: 0.060 to 0.100%, Cr: 0.05 to 0.20%, Bi: 0.0001 to 0.0050%, N: 0.0020 ~ 0.0150%, V: 0 ~ 0.010%, Al: 0 ~ 0.0050%, Ti: 0 ~ 0.020%, Ca: 0 ~ 0.0050%, Zr: 0 ~ 0.0050% And Mg: 0 to 0.0050%, with the balance being Fe and impurities.
(2) The steel described in (1) is unit mass%, Ca: 0.0005 to 0.0050%, Zr: 0.0005 to 0.0050%, and Mg: 0.0005 to 0.0050. % May be contained.
(3) The steel described in (1) or (2) above may contain N: 0.0020 to 0.0090% in unit mass%.
(4) The steel according to any one of (1) to (3) may contain Al: 0 to 0.0008% in unit mass%.
(5) The steel according to any one of the above (1) to (4) may contain V: 0 to 0.004% in unit mass%.
 本発明によれば、靱性の低下と欠け発生量の抑制との両方が達成され、破断分離性及び降伏比に優れた熱間鍛造用非調質鋼を提供できる。 According to the present invention, it is possible to provide a non-tempered steel for hot forging that achieves both a reduction in toughness and a reduction in the amount of chipping, and is excellent in fracture separation and yield ratio.
本発明の一態様に係る鋼の用途の一例であるコンロッドを示す分解斜視図である。It is a disassembled perspective view which shows the connecting rod which is an example of the use of the steel which concerns on 1 aspect of this invention.
<鋼成分>
 先ず本実施形態に係る鋼の成分組成の限定理由について説明する。以下、鋼の合金元素の含有量の単位「%」は、特に断りが無い限り「質量%」を意味する。
<Steel component>
First, the reasons for limiting the component composition of steel according to this embodiment will be described. Hereinafter, the unit “%” of the alloying element content of steel means “mass%” unless otherwise specified.
 C:0.10~0.25%
 Cは鋼の引張強さを確保する効果を有する。必要な強度を得るためには、C含有量の下限を0.10%にする必要がある。一方、Cを過剰に含有すると破断面の欠けが発生する頻度が上昇するので、C含有量の上限は0.25%とする。C含有量の下限を0.12%、0.15%、又は0.19%としてもよい。C含有量の上限を0.23%、0.22%、又は0.21%としてもよい。
C: 0.10 to 0.25%
C has an effect of securing the tensile strength of steel. In order to obtain the required strength, the lower limit of the C content needs to be 0.10%. On the other hand, when C is contained excessively, the frequency of occurrence of chipping of the fracture surface increases, so the upper limit of the C content is 0.25%. The lower limit of the C content may be 0.12%, 0.15%, or 0.19%. The upper limit of the C content may be 0.23%, 0.22%, or 0.21%.
 Si:0.60~1.20%
 Siは固溶強化によってフェライトを強化させ、鋼の延性及び靭性を低下させるので、鋼の破断分離性を向上させる。この効果を得るためには、Si含有量の下限を0.60%にする必要がある。一方、Siを過剰に含有すると破断面の欠けが発生する頻度が上昇するので、Si含有量の上限は1.20%とする。Si含有量の下限値を0.70%、0.75%、又は0.80%としてもよい。Si含有量の上限値を1.00%、0.90%、又は0.85%としてもよい。
Si: 0.60 to 1.20%
Since Si strengthens ferrite by solid solution strengthening and decreases the ductility and toughness of the steel, it improves the fracture separability of the steel. In order to obtain this effect, the lower limit of the Si content needs to be 0.60%. On the other hand, if Si is contained excessively, the frequency of occurrence of chipping of the fracture surface increases, so the upper limit of the Si content is 1.20%. The lower limit value of the Si content may be 0.70%, 0.75%, or 0.80%. The upper limit of the Si content may be 1.00%, 0.90%, or 0.85%.
 Mn:0.60~1.00%
 Mnは固溶強化によってフェライトを強化させ、鋼の延性及び靭性を低下させるので、鋼の破断分離性を向上させる。また、MnはSと結合してMn硫化物を形成する。本実施形態の鋼からなる鋼部品を破断分離させる際に、圧延方向に伸長したMn硫化物に沿ってき裂が伝播するので、Mn硫化物は破断面の凹凸を大きくして破断面を嵌合する際に位置ずれを防止する効果がある。一方、Mnを過剰に含有する場合、フェライトが硬くなりすぎて破断面の欠けが発生する頻度が増加する。これらを鑑み、Mn含有量の範囲は0.60~1.00%である。Mn含有量の下限値を0.70%、0.80%、又は0.82%としてもよい。Mn含有量の上限値を0.90%、0.87%、又は0.85%としてもよい。
Mn: 0.60 to 1.00%
Since Mn strengthens ferrite by solid solution strengthening and lowers the ductility and toughness of the steel, it improves the fracture separability of the steel. Mn combines with S to form Mn sulfide. When cracking and separating steel parts made of steel of this embodiment, cracks propagate along the Mn sulfide elongated in the rolling direction, so that the Mn sulfide has a larger unevenness on the fracture surface and fits the fracture surface. This has the effect of preventing displacement. On the other hand, when Mn is excessively contained, the frequency of occurrence of chipping of the fracture surface increases because the ferrite becomes too hard. In view of these, the range of Mn content is 0.60 to 1.00%. The lower limit value of the Mn content may be 0.70%, 0.80%, or 0.82%. The upper limit value of the Mn content may be 0.90%, 0.87%, or 0.85%.
 P:0.040~0.060%
 Pはフェライト及びパーライトの延性及び靭性を低下させ、鋼を脆化させる。通常は、Pは含有されることが好ましくない不純物元素とみなされる。破断分離を含まない製造方法によって製造される部品の材料となる鋼においては、部品の脆化を防止するために、Pの含有量を約0.020%以下とすることが通常である。しかし、破断分離性の向上を目的とする本実施形態に係る鋼において、Pは破断分離性を向上させる効果を有するので有益である。従って、本実施形態に係る鋼では、P含有量を、不純物として通常の鋼に含まれる範囲を大幅に上回る0.040%以上とする必要がある。ただし、過剰量のPは結晶粒界の脆化を引き起こし、破断面の欠けを発生しやすくする。以上を考慮すれば、P含有量の範囲は0.040~0.060%である。P含有量の下限値を0.042%、0.045%、又は0.048%としてもよい。P含有量の上限値を0.058%、0.055%、又は0.050%としてもよい。
P: 0.040 to 0.060%
P decreases the ductility and toughness of ferrite and pearlite, and embrittles the steel. Usually, P is regarded as an impurity element which is not preferably contained. In steel that is a material of a part manufactured by a manufacturing method that does not include fracture separation, the P content is usually about 0.020% or less in order to prevent embrittlement of the part. However, in the steel according to the present embodiment for the purpose of improving the break separation property, P is beneficial because it has the effect of improving the break separation property. Therefore, in the steel according to the present embodiment, it is necessary that the P content be 0.040% or more, which greatly exceeds the range included in ordinary steel as impurities. However, an excessive amount of P causes embrittlement of the crystal grain boundary and easily causes chipping of the fracture surface. Considering the above, the range of P content is 0.040 to 0.060%. The lower limit value of the P content may be 0.042%, 0.045%, or 0.048%. The upper limit of the P content may be 0.058%, 0.055%, or 0.050%.
 S:0.060~0.100%
 SはMnと結合してMn硫化物を形成する。本実施形態に係る鋼からなる鋼部品を破断分離させる際に、圧延方向に伸長したMn硫化物に沿ってき裂が伝播するので、Sは破断面の凹凸を大きくし破断面を嵌合する際に位置ずれを防止する効果がある。その効果を得るためにはS含有量の下限を0.060%にする必要がある。他方、Sを過剰に含有すると破断分離時の破断面近傍の塑性変形量が増大し、破断分離性が低下する場合がある。これに加えて、Sを過剰に含有する場合、破断面の欠けを助長することがある。以上の理由から、S含有量の範囲を0.060~0.100%とする。S含有量の下限値を0.070%、0.075%、又は0.080%としてもよい。S含有量の上限値を0.090%、0.088%、又は0.085%としてもよい。
S: 0.060 to 0.100%
S combines with Mn to form Mn sulfide. When cracking and separating a steel part made of steel according to this embodiment, cracks propagate along the Mn sulfide elongated in the rolling direction, so S increases the irregularities of the fracture surface and fits the fracture surface. This has the effect of preventing displacement. In order to obtain the effect, the lower limit of the S content needs to be 0.060%. On the other hand, when S is contained excessively, the amount of plastic deformation in the vicinity of the fracture surface at the time of fracture separation increases, and the fracture separability may decrease. In addition to this, when S is excessively contained, chipping of the fracture surface may be promoted. For these reasons, the S content range is 0.060 to 0.100%. The lower limit value of the S content may be 0.070%, 0.075%, or 0.080%. The upper limit value of the S content may be 0.090%, 0.088%, or 0.085%.
 Cr:0.05~0.20%
 Crは、Mnと同様に固溶強化によってフェライトを強化し、鋼の延性及び靭性を低下させるので、鋼の破断分離性を向上させる。しかし、Crを過剰に含有すると、パーライトのラメラー間隔が小さくなり、かえってパーライトの延性及び靭性が高くなるため、鋼の破断分離性が低下する。さらに、Crを過剰に含有するとベイナイト組織が生成しやすくなり、降伏比の低下による降伏強さの低下や、破断分離性の顕著な低下が生じる。従って、Cr含有量の範囲を0.05~0.20%とする。Cr含有量の下限値を0.07%、0.09%、又は0.10%としてもよい。Cr含有量の上限値を0.17%、0.16%、又は0.15%としてもよい。
Cr: 0.05-0.20%
Cr, like Mn, strengthens ferrite by solid solution strengthening and reduces the ductility and toughness of the steel, and thus improves the fracture separability of the steel. However, when Cr is excessively contained, the lamellar spacing of pearlite is reduced, and on the contrary, the ductility and toughness of pearlite are increased, so that the fracture separation property of steel is lowered. Further, when Cr is excessively contained, a bainite structure is likely to be generated, resulting in a decrease in yield strength due to a decrease in yield ratio and a significant decrease in fracture separability. Therefore, the Cr content range is 0.05 to 0.20%. The lower limit of the Cr content may be 0.07%, 0.09%, or 0.10%. The upper limit of the Cr content may be 0.17%, 0.16%, or 0.15%.
 Bi:0.0001~0.0050%
 Biは本実施形態に係る鋼において重要な元素である。鋼が微量のBiを含有する場合、固溶Biがフェライトを脆化させ、鋼の延性及び靭性を低下させるので、鋼の破断分離性が向上する。ここで着目すべきは、Biのフェライト脆化効果が極めて微量で発現する点にある。本発明者らが知見したところでは、上述の効果を得るためには、Biの含有量を0.0001%以上にすればよい。このような微量のBiが鋼の破断分離性を向上させる旨は、これまで報告されていなかった。また、Biを用いてフェライトを脆化させた場合、欠け発生量の増大は確認されなかった。この原因は不明であるが、Bi量が非常に微細であるので、Bi偏析の影響が無視できる程度に小さいからであると推定された。
Bi: 0.0001 to 0.0050%
Bi is an important element in the steel according to the present embodiment. When the steel contains a small amount of Bi, the solid solution Bi embrittles the ferrite and lowers the ductility and toughness of the steel, so that the fracture separability of the steel is improved. What should be noted here is that the ferrite embrittlement effect of Bi is expressed in a very small amount. As the inventors have found out, in order to obtain the above-described effect, the Bi content should be 0.0001% or more. It has not been reported so far that such a small amount of Bi improves the break-separability of steel. In addition, when Bi was used to embrittle ferrite, an increase in the amount of chipping was not confirmed. The cause of this is unknown, but it was estimated that the amount of Bi was so fine that the effect of Bi segregation was so small that it could be ignored.
 しかし、Biの含有量が0.0050%を超えると、Biによるフェライトの脆化効果が飽和し、かつ降伏強さの低下が生じる。これらの理由から、本実施形態に係る鋼では、Bi含有量は0.0001%~0.0050%とする。Bi含有量の下限値を0.0025%、0.0028%、又は0.0030%としてもよい。Bi含有量の上限値を0.0045%、0.0042%、又は0.0040%としてもよい。 However, if the Bi content exceeds 0.0050%, the embrittlement effect of ferrite by Bi is saturated and the yield strength is reduced. For these reasons, the Bi content is 0.0001% to 0.0050% in the steel according to the present embodiment. The lower limit value of Bi content may be 0.0025%, 0.0028%, or 0.0030%. The upper limit of Bi content may be 0.0045%, 0.0042%, or 0.0040%.
 N:0.0020~0.0150%
 Nは鋼中にVやTiが含有すると、これらの窒化物または炭窒化物を形成するが、それ以外のNは鋼中に固溶した状態で存在する。固溶N(即ち鋼に固溶した状態のN)はフェライトを脆化させ、鋼の延性及び靭性を低下させるので、鋼の破断分離性を向上させる。この効果を得るにはN含有量の下限を0.0020%とする。Nを過剰に含有すると熱間延性が低下し熱間加工時に割れ又は疵が発生しやすくなる場合があるため、N含有量の上限を0.0150%とする。N含有量の下限値を0.0050%、0.0070%、又は0.0080%としてもよい。N含有量の上限値を0.0100%、0.0095%、又は0.0090%としてもよい。
N: 0.0020 to 0.0150%
If N contains V or Ti in the steel, these nitrides or carbonitrides are formed, but other Ns exist in a solid solution state in the steel. Solid solution N (that is, N in a state of solid solution in steel) embrittles ferrite and lowers the ductility and toughness of the steel, so that the fracture separation of the steel is improved. In order to obtain this effect, the lower limit of the N content is set to 0.0020%. If N is contained excessively, the hot ductility is lowered and cracking or flaws are likely to occur during hot working, so the upper limit of N content is 0.0150%. The lower limit value of the N content may be 0.0050%, 0.0070%, or 0.0080%. The upper limit of the N content may be 0.0100%, 0.0095%, or 0.0090%.
 V:0~0.010%
 Vは、炭化物又は炭窒化物を形成してフェライトに析出強化を生じさせ、フェライトの延性及び靱性を低下させて、これにより破断分離の際の変形量を小さくする効果を有する。従ってVは、従来技術によれば、高い破断分離性が必要な鋼に含有される場合がある。しかしながら、Vを用いて上述の効果を十分に得るためには、V含有量を約0.10%以上とする必要がある。約0.10%以上のVを鋼に含有させた場合、Vの偏析が生じ、V濃度が高い領域においてフェライトの延性及び靱性が過剰に低下し、鋼の破断分離時に欠けが生じやすくなる。即ち、Vは破断分離の際の変形量を小さくすることができるが、破断分離の際の欠け量を増大させる。
V: 0 to 0.010%
V has the effect of forming carbides or carbonitrides to cause precipitation strengthening in the ferrite, reducing the ductility and toughness of the ferrite, and thereby reducing the amount of deformation during fracture separation. Therefore, according to the prior art, V may be contained in steel that requires high fracture separation. However, in order to sufficiently obtain the above effect using V, the V content needs to be about 0.10% or more. When about 0.10% or more of V is contained in the steel, segregation of V occurs, and the ductility and toughness of the ferrite are excessively reduced in a region where the V concentration is high, so that chipping is likely to occur at the time of fracture separation of the steel. That is, V can reduce the amount of deformation during break separation, but increases the amount of chipping during break separation.
 本実施形態に係る鋼は、上述の微量のBiを含有するので、破断分離性の向上のためにVを必要としない。従ってV含有量の下限値は0%である。欠け発生量を低減させるためには、Vを含有させないことが好ましい。しかしながら、スクラップを材料として本実施形態に係る鋼を製造した場合、Vが混入するおそれがある。この場合、0.010%以下のVは、欠け発生量を増大させないので許容される。V含有量の上限値を0.007%、0.005%、0.004%、又は0.002%としてもよい。スクラップを鋼の材料として使用しないのであれば、不純物として鋼に混入するVの含有量は0.010%以下になることが通常である。また、本実施形態に係る鋼が属する技術分野において、0.010%以下のVは、鋼の特性に実質的な影響を及ぼさない不純物と見なされることが通常である。ミルシート等では0.010%以下のVは、含有量が0%と見なされ、その開示が省略される場合がある。 Since the steel according to the present embodiment contains the above-described trace amount of Bi, V is not required for improving the break separation property. Therefore, the lower limit of the V content is 0%. In order to reduce the amount of chipping, it is preferable not to contain V. However, when steel according to the present embodiment is manufactured using scrap as a material, V may be mixed. In this case, V of 0.010% or less is allowed because it does not increase the amount of chipping. The upper limit value of the V content may be 0.007%, 0.005%, 0.004%, or 0.002%. If scrap is not used as a steel material, the content of V mixed in the steel as impurities is usually 0.010% or less. Moreover, in the technical field to which the steel according to the present embodiment belongs, V of 0.010% or less is usually regarded as an impurity that does not substantially affect the properties of the steel. In a mill sheet or the like, 0.010% or less of V is considered to have a content of 0%, and the disclosure thereof may be omitted.
 Al:0~0.0050%
 本実施形態に係る鋼はAlを含むことなくその効果を発揮することができるので、Alの含有量の下限値は0%である。また、0.0050%以上のAlは、鋼中でAl酸化物を形成し、このAl酸化物が鋼の被削性を損なう場合がある。以上の理由により、本実施形態に係る鋼のAl含有量の上限値は0.0050%とされる。Al含有量の上限値を0.0040%、0.0010%、又は0.0008%としてもよい。なお、本実施形態に係る鋼が属する技術分野において、0.0050%以下のAlは、鋼の特性に実質的な影響を及ぼさない不純物と見なされることが通常である。従って、ミルシート等では0.0050%以下のAlは、含有量が0%と見なされ、その開示が省略される場合がある。
Al: 0 to 0.0050%
Since the steel according to the present embodiment can exhibit its effect without containing Al, the lower limit value of the Al content is 0%. Further, 0.0050% or more of Al forms Al oxide in the steel, and this Al oxide may impair the machinability of the steel. For the above reasons, the upper limit of the Al content of the steel according to this embodiment is set to 0.0050%. The upper limit value of the Al content may be 0.0040%, 0.0010%, or 0.0008%. In the technical field to which the steel according to this embodiment belongs, 0.0050% or less of Al is usually regarded as an impurity that does not substantially affect the properties of the steel. Accordingly, in a mill sheet or the like, 0.0050% or less of Al is considered to have a content of 0%, and the disclosure thereof may be omitted.
 Ti:0~0.020%
 Tiは、上述のVと同様に、窒化物を形成してフェライトに析出強化を生じさせ、フェライトの延性及び靱性を低下させて、これにより破断分離の際の変形量を小さくする効果を有する。しかしながら、上述のVと同様に、Tiは破断分離の際の欠け量を増大させるおそれがある。
 本実施形態に係る鋼は、上述の微量のBiを含有するので、破断分離性の向上のためにTiを必要としない。従って、Ti含有量の下限値は0%である。欠け発生量を低減させるためには、Tiを含有させないことが好ましい。しかしながら、スクラップを材料として本実施形態に係る鋼を製造した場合、Tiが混入するおそれがある。この場合、0.020%以下のTiは、欠け発生量を増大させないので許容される。Ti含有量の上限値を0.010%、0.005%、又は0.002%としてもよい。スクラップを鋼の材料として使用しないのであれば、不純物として鋼に混入するTiの含有量は0.020%以下になることが通常である。また、本実施形態に係る鋼が属する技術分野において、0.020%以下のTiは、鋼の特性に実質的な影響を及ぼさない不純物と見なされることが通常である。ミルシート等では0.020%以下のTiは、含有量が0%と見なされ、その開示が省略される場合がある。
Ti: 0 to 0.020%
Ti, like V described above, has the effect of forming nitrides and causing precipitation strengthening in ferrite, reducing the ductility and toughness of ferrite, and thereby reducing the amount of deformation during fracture separation. However, like V described above, Ti may increase the amount of chipping during fracture separation.
Since the steel according to the present embodiment contains the above-described trace amount of Bi, Ti is not required for improving the break separation property. Therefore, the lower limit of the Ti content is 0%. In order to reduce the amount of chipping, it is preferable not to contain Ti. However, when the steel according to this embodiment is manufactured using scrap as a material, Ti may be mixed. In this case, 0.020% or less of Ti is allowed because it does not increase the amount of chipping. The upper limit value of the Ti content may be 0.010%, 0.005%, or 0.002%. If scrap is not used as a steel material, the content of Ti mixed into the steel as impurities is usually 0.020% or less. Further, in the technical field to which the steel according to the present embodiment belongs, 0.020% or less of Ti is usually regarded as an impurity that does not substantially affect the properties of the steel. In a mill sheet or the like, 0.020% or less of Ti is considered to have a content of 0%, and the disclosure thereof may be omitted.
 Ca:0~0.0050%、Zr:0~0.0050%、Mg:0~0.0050%
 本実施形態に係る鋼はCa、Zr、及びMgを含むことなくその効果を発揮することができるので、Ca、Zr、及びMgの含有量の下限値は0%である。しかしながら、Ca、Zr、及びMgはいずれも酸化物を形成し、MnSの晶出核となりMnSを均一微細分散させる効果がある。本実施形態に係る鋼からなる鋼部品を破断分離させる際に、圧延方向に伸長したMnSに沿ってき裂が伝播するので、Mn硫化物が大きいほど破断面の凹凸を大きくなる一方で、延性及び靭性が高く破断分離性が低くなる。MnSを微細分散することによりき裂進展方向に伝播しやすくなり破断分離性は向上する効果が得られる。この効果を得るために、本実施形態に係る鋼は、0.0005%以上のCa、0.0005%以上のZr、及び0.0005%以上のMgからなる群から選択される一種以上を含有しても良い。一方、Ca、Zr、又はMgの含有量が0.0050%を超えると、鋼の熱間加工性が劣化し、鋼の熱間圧延が困難となる。これらのことから、Ca、Zr、及びMgの含有量それぞれの上限は0.0050%とする。
Ca: 0 to 0.0050%, Zr: 0 to 0.0050%, Mg: 0 to 0.0050%
Since the steel according to the present embodiment can exhibit its effect without containing Ca, Zr, and Mg, the lower limit of the content of Ca, Zr, and Mg is 0%. However, Ca, Zr, and Mg all form oxides and become the crystallization nuclei of MnS and have the effect of uniformly and finely dispersing MnS. When cracking and separating a steel part made of steel according to this embodiment, cracks propagate along MnS elongated in the rolling direction, so that the larger the Mn sulfide, the larger the irregularities of the fracture surface, while the ductility and High toughness and low break separation. By finely dispersing MnS, it is easy to propagate in the crack propagation direction, and the effect of improving break separation is obtained. In order to obtain this effect, the steel according to the present embodiment contains one or more selected from the group consisting of 0.0005% or more of Ca, 0.0005% or more of Zr, and 0.0005% or more of Mg. You may do it. On the other hand, when the content of Ca, Zr, or Mg exceeds 0.0050%, the hot workability of the steel deteriorates, and the hot rolling of the steel becomes difficult. For these reasons, the upper limit of each of Ca, Zr, and Mg contents is set to 0.0050%.
 本実施形態に係る鋼の化学成分の残部は鉄及び不純物を含む。不純物とは、鋼材を工業的に製造する際に、鉱石若しくはスクラップ等のような原料、又は製造工程の種々の要因によって混入する成分であって、本実施形態に係る鋼に悪影響を与えない範囲で許容されるものを意味する。 The balance of the chemical components of the steel according to this embodiment includes iron and impurities. Impurities are components that are mixed due to various factors of raw materials such as ore or scrap, or manufacturing process when industrially manufacturing steel materials, and a range that does not adversely affect the steel according to the present embodiment. Means what is allowed.
 本実施形態に係る鋼の組織は、実質的にフェライト及びパーライトからなり、わずかに介在物などを含む場合がある、いわゆるフェライト・パーライト組織である。この組織は、鋼の化学成分を上述した範囲内に制御することにより得られる。従って、本実施形態に係る鋼の組織を明示的に限定する必要は無いが、例えば、本実施形態に係る鋼の組織を合計99面積%以上のフェライト及びパーライトを含む組織と規定しても良い。 The structure of the steel according to the present embodiment is a so-called ferrite pearlite structure that is substantially composed of ferrite and pearlite and may contain slight inclusions. This structure is obtained by controlling the chemical composition of steel within the above-described range. Therefore, although it is not necessary to explicitly limit the structure of the steel according to the present embodiment, for example, the structure of the steel according to the present embodiment may be defined as a structure including a total of 99 area% or more of ferrite and pearlite. .
 以上説明の非調質鋼は、従来材料がVを添加することでフェライトの脆化を図って破断分離性を良好としていたのに対し、Vを添加することなく微量Bi添加効果によるフェライトの脆化をなしえて破断分離性を良好としている。 The non-tempered steel described above has improved the fracture separability by adding V to the conventional material to improve the brittleness of the ferrite. On the other hand, the ferritic brittleness due to the effect of adding a small amount of Bi without adding V. The break separation property is improved.
 以上説明された本実施形態に係る鋼の用途は特に限定されない。しかしながら、本実施形態に係る鋼は良好な破断分離性を有するので、破断分離する工程を含む製造方法によって得られる機械部品(破断分離型部品)の材料として用いることが好適であり、自動車エンジンのコンロッドの材料として用いることが特に好適である。本実施形態の非調質鋼からなる鋼部品としての破断分離型コンロッド1であれば、突き合わせ面の新たな加工や位置決めピンが不要となり、大幅な製造工程の簡略化をなし得る。 The application of the steel according to the present embodiment described above is not particularly limited. However, since the steel according to the present embodiment has a good breaking separation property, it is suitable to be used as a material for machine parts (breaking separation type parts) obtained by a manufacturing method including a breaking separation process. It is particularly suitable for use as a material for the connecting rod. If it is the fracture separation type connecting rod 1 as a steel part which consists of non-heat treated steel of this embodiment, the new process of a butt surface and a positioning pin will become unnecessary, and the simplification of a manufacturing process can be achieved significantly.
 図1は、本発明に係る鋼により形成される破断分離型コンロッドの一例を示す分解斜視図である。 FIG. 1 is an exploded perspective view showing an example of a fracture separation type connecting rod formed of steel according to the present invention.
 図1に示される破断分離型コンロッド1は、上下に分離されたロッド付半円弧状のアッパ側半割体2と、半円弧状のロア側半割体3とから構成されている。アッパ側半割体2の半円弧部2Aの両端側にはそれぞれロア側半割体3に固定するためのねじ溝を有するねじ孔5が形成され、ロア側半割体3の半円弧部3Aの両端側にはそれぞれアッパ側半割体2に固定するための挿通孔6が形成されている。 1 is composed of a semicircular arc-shaped upper-side half-divided body 2 and a semicircular-arc-shaped lower-side half-divided body 3 that are separated vertically. Screw holes 5 having screw grooves for fixing to the lower half half 3 are respectively formed at both ends of the semicircular arc 2A of the upper side half 2. The semicircular arc 3A of the lower side half 3 is formed. Insertion holes 6 for fixing to the upper-side halves 2 are formed on both ends of each.
 アッパ側半割体2の半円弧部2Aとロア側半割体3の半円弧部3Aとを円環状に合わせて相互の両端側の挿通孔6とねじ孔5に結合ボルト7を挿通し、螺合することで円環状のビッグエンド部8が構成されている。アッパ側半割体2のロッド部2Bの上端側には円環状のスモールエンド部9が形成されている。 The semicircular arc portion 2A of the upper half halves 2 and the semicircular arc portion 3A of the lower halves 3 are aligned in an annular shape, and the coupling bolts 7 are inserted into the insertion holes 6 and the screw holes 5 on both ends. An annular big end portion 8 is formed by screwing. An annular small end portion 9 is formed on the upper end side of the rod portion 2 </ b> B of the upper half 2.
 図1に示す構造の破断分離型コンロッド1は、自動車エンジン等の内燃機関のピストンの往復運動を回転運動に変換するために内燃機関に組み込まれ、スモールエンド部9が図示略のピストンに接続され、ビッグエンド部8が内燃機関のコネクティングロッドジャーナル(図示略)に接続される。 1 is incorporated in an internal combustion engine to convert a reciprocating motion of a piston of an internal combustion engine such as an automobile engine into a rotational motion, and a small end portion 9 is connected to a piston (not shown). The big end portion 8 is connected to a connecting rod journal (not shown) of the internal combustion engine.
 破断分離型コンロッド1のアッパ側半割体2の半円弧部2Aとロア側半割体3の半円弧部3Aは、元々1つの円環状部品であった部分を脆性破断して形成される。一例として、熱間鍛造品の一部に切欠きを設けてその切欠きを起点として脆性的に破断分離してアッパ側半割体2の半円弧部2Aの突き合わせ面2aとロア側半割体3の半円弧部3Aの突き合わせ面3aを形成する。これらの突き合わせ面2a、3aは、良好な破断分離性を有する本実施形態に係る鋼を破断分離して形成しているので、良好な位置合わせ精度で突合せが可能となる。 The semicircular arc part 2A of the upper half half body 2 of the fracture separation type connecting rod 1 and the semicircular arc part 3A of the lower side half half body 3 are formed by brittle fracture of a part that was originally one annular part. As an example, a notch is formed in a part of a hot forged product, and the notch is used as a starting point for breaking and separating in a brittle manner, so that the butted surface 2a of the semicircular arc portion 2A of the upper side half 2 and the lower side half The abutting surface 3a of the three semicircular arc portions 3A is formed. Since these abutting surfaces 2a and 3a are formed by breaking and separating the steel according to the present embodiment having a good breaking separation property, the butting can be performed with a good alignment accuracy.
 この構造の破断分離型コンロッド1は突き合わせ面の新たな加工や位置決めピンが不要となり、大幅な製造工程の簡略化がなされる。 The break-separated connecting rod 1 having this structure eliminates the need for new processing of the abutting surface and positioning pins, and greatly simplifies the manufacturing process.
 以下、本発明を実施例によって以下に詳述する。なお、これら実施例は本発明の技術的意義、効果を説明するためのものであり、本発明の範囲を限定するものではない。 Hereinafter, the present invention will be described in detail below by examples. These examples are for explaining the technical significance and effects of the present invention, and do not limit the scope of the present invention.
 以下の表1に示す組成を有する転炉溶製鋼を連続鋳造により製造し、必要に応じて、均熱拡散処理、分塊圧延工程を経て162mm角の圧延素材とした。次に圧延素材を熱間圧延することによって、直径が45mmの棒鋼形状とした。表1の下線が付された値は、本発明の範囲外の値である。また、表1の記号「-」は、その記号に係る元素が製造段階で添加されず、且つ通常は不純物と見なされる水準以下の量しか含まれなかったことを示す。なお、実施例1~23及び比較例a~hのV、Al、及びTiの含有量は、本発明が属する技術分野における技術常識によれば不純物と見なされる程度に微量であったが、本発明の作用効果を確認するために特に詳細に測定を行って、その値を表1に記載した。 The converter molten steel having the composition shown in Table 1 below was manufactured by continuous casting, and if necessary, a rolling raw material of 162 mm square was obtained through a soaking diffusion treatment and a block rolling process. Next, the rolled material was hot-rolled to obtain a steel bar shape having a diameter of 45 mm. Values underlined in Table 1 are values outside the scope of the present invention. In addition, the symbol “-” in Table 1 indicates that the element related to the symbol was not added in the manufacturing stage and contained only an amount below a level normally regarded as an impurity. Note that the contents of V, Al, and Ti in Examples 1 to 23 and Comparative Examples a to h were very small to the extent that they were regarded as impurities according to the technical common sense in the technical field to which the present invention belongs. In order to confirm the action and effect of the invention, measurements were carried out in particular detail, and the values are shown in Table 1.
 次に、破断分離性、機械的性質、及び組織を調べるため、鍛造コンロッド相当の試験片を、上記棒鋼を熱間鍛造することで作成した。具体的には、直径45mmの素材棒鋼を、1150~1280℃に加熱後、棒鋼の長さ方向と垂直に鍛造して厚さ20mmとし、衝風冷却装置による衝風冷によって室温まで冷却した。冷却後の鍛造材から、JIS4号引張試験片、及びシャルピー衝撃試験片を加工した。シャルピー衝撃試験片には、深さ2mm、先端曲率0.25mmの45度のVノッチ加工を施した。 Next, in order to examine the fracture separability, mechanical properties, and structure, a test piece corresponding to a forged connecting rod was created by hot forging the above bar steel. Specifically, a steel bar having a diameter of 45 mm was heated to 1150 to 1280 ° C., then forged perpendicularly to the length direction of the steel bar to a thickness of 20 mm, and cooled to room temperature by blast cooling with a blast cooling device. A JIS No. 4 tensile test piece and a Charpy impact test piece were processed from the forged material after cooling. The Charpy impact test piece was subjected to V-notch processing of 45 degrees with a depth of 2 mm and a tip curvature of 0.25 mm.
 破断分離性は、破断面の破壊形態が脆性的であり、破断分離による破面近傍の変形量が小さく、且つ破断分離の際の欠け発生量が少ない場合に良好であるとされる。シャルピー衝撃値が低い鋼では、変形量の抑制及び脆性破面率の向上が達成されていることが通常である。従って破断面の破壊形態、及び破断面近傍の変形量を評価する指標として、本発明者らはシャルピー衝撃値を採用した。シャルピー衝撃試験は、上述のシャルピー衝撃試験片に対してJIS Z 2242に基づいて室温で繰り返し5回実施し、得られた5つの値の平均値を、試験片のシャルピー衝撃値とした。シャルピー衝撃値が9J/cm以下である鋼を、変形量の抑制及び脆性破面率の向上が達成されているものと判断した。
 また、欠け発生量の測定方法は以下の通りとした。80mm×80mm且つ厚さ18mmの板であって、その中央部に直径50mmの穴を有し、この穴の内面に、鍛造前の素材である棒鋼の長さ方向に対して±90度の位置2ヶ所に、深さ1mm且つ先端曲率0.5mmの45度のVノッチを有する破断分離性評価用試験片を作成した。更に、ボルト穴として直径8mmの貫通穴を、その中心線がノッチ加工側の側面から8mmの箇所に位置するように、破断分離性評価用試験片に形成した。この破断分離性評価用試験片を、破断分離性評価試験装置を用いて破断させた。破断分離性評価の試験装置は、割型と落錘試験機とから構成されている。割型は長方形の鋼材上に成型した直径46.5mmの円柱を中心線に沿って2分割した形状で、片方が固定され、片方がレール上を移動する。2つの半円柱の合わせ面にはくさび穴が加工されている。破断試験時には、試験片の直径50mmの穴をこの割型の直径46.5mmの円柱にはめ込み、くさびを入れて落錘の上に設置する。落錘は質量200kgであり、ガイドに沿って落下する仕組みである。落錘を落とすと、くさびが打ち込まれ、試験片は2つに引張破断される。なお、破断時に試験片が割型から遊離しないように、試験片は割型に押し付けられるように周囲を固定されている。本試験では、落錘高さ100mmで破断を行った。これにより得られた破断面をつき合わせて、破断された鋼を20N・mのトルクでボルト締めして組み付け、次にボルトを緩めて破断面同士を離す作業を10回繰り返した。この作業により脱落した破片の総重量を、その鋼の欠け発生量と定義した。欠け発生量が1.00mg未満の鋼を、欠け発生量が抑制されたものと判断した。
The fracture separation property is said to be good when the fracture form of the fracture surface is brittle, the amount of deformation near the fracture surface due to fracture separation is small, and the amount of chipping during fracture separation is small. In steels with low Charpy impact values, it is normal that suppression of deformation and improvement of brittle fracture surface ratio are achieved. Therefore, the present inventors adopted the Charpy impact value as an index for evaluating the fracture form of the fracture surface and the deformation near the fracture surface. The Charpy impact test was repeated 5 times at room temperature based on JIS Z 2242 on the above Charpy impact test piece, and the average value of the five values obtained was taken as the Charpy impact value of the test piece. The steel having a Charpy impact value of 9 J / cm 2 or less was judged to have achieved the suppression of deformation and the improvement of the brittle fracture surface ratio.
The method for measuring the amount of chipping was as follows. It is a plate of 80 mm x 80 mm and thickness 18 mm, and has a hole with a diameter of 50 mm at the center, and on the inner surface of this hole, a position of ± 90 degrees with respect to the length direction of the steel bar that is the material before forging Test pieces for fracture separation evaluation having a V notch of 45 degrees with a depth of 1 mm and a tip curvature of 0.5 mm were prepared at two locations. Furthermore, a through-hole having a diameter of 8 mm was formed as a bolt hole in the test piece for evaluation of fracture separability so that the center line is located at a location 8 mm from the side surface on the notch processing side. The test specimen for evaluation of break separation was broken using a break separation evaluation test apparatus. The test apparatus for evaluation of breaking separation is composed of a split mold and a falling weight tester. The split mold is a shape in which a 46.5 mm diameter cylinder formed on a rectangular steel material is divided into two along the center line. One side is fixed and one side moves on the rail. Wedge holes are machined on the mating surfaces of the two semi-cylinders. At the time of the break test, a hole with a diameter of 50 mm of the test piece is fitted into this split mold with a diameter of 46.5 mm, and a wedge is placed on the falling weight. The falling weight has a mass of 200 kg and is a mechanism that falls along the guide. When the falling weight is dropped, a wedge is driven and the test piece is pulled and broken in two. Note that the periphery of the test piece is fixed so as to be pressed against the split mold so that the test piece is not released from the split mold at the time of breaking. In this test, fracture was performed at a falling weight height of 100 mm. The fractured surfaces thus obtained were brought together, and the fractured steel was bolted and assembled with a torque of 20 N · m, and then the work of loosening the bolts and separating the fractured surfaces was repeated 10 times. The total weight of the pieces dropped off by this operation was defined as the amount of chipping of the steel. A steel having a chip generation amount of less than 1.00 mg was judged to have suppressed the chip generation amount.
 引張試験は、上述のJIS4号引張試験片に対してJIS Z 2241に準拠して常温で20mm/minの速度にて実施した。降伏比が0.75以上となるものを、降伏比が良好な試料と判断した。 The tensile test was performed on the above-mentioned JIS No. 4 tensile test piece at a speed of 20 mm / min at room temperature in accordance with JIS Z 2241. A sample having a yield ratio of 0.75 or more was judged as a sample having a good yield ratio.
 さらに、上記シャルピー衝撃試験片や引張試験片と同一部位から10mm角サンプルを切り出し、ナイタール腐食を施し、組織観察を行った。 Further, a 10 mm square sample was cut out from the same site as the Charpy impact test piece and the tensile test piece, subjected to nital corrosion, and the structure was observed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表2に、試験結果を示す。鋼No.1~23の本発明例は、いずれも鋼化学成分が本発明の規定範囲内であったので、シャルピー衝撃値を9J/cm以下にすることができ、さらに欠け発生量も抑制された。即ち鋼No.1~23は良好な破断分離性を有した。さらに、鋼No.1~23は高い降伏比を有したので、高い座屈強度が要求される機械部品の材料として使用可能なものであった。 Table 2 shows the test results. Steel No. In all of the inventive examples 1 to 23, the steel chemical composition was within the specified range of the present invention, so the Charpy impact value could be 9 J / cm 2 or less, and the amount of chipping was further suppressed. That is, Steel No. 1 to 23 had good breaking separation. Furthermore, steel no. Since 1 to 23 had a high yield ratio, they could be used as materials for machine parts that required high buckling strength.
 これに対して、比較例aはCの含有量が少ないため、引張強さが低く、シャルピー衝撃値が高かった。
 比較例b~dはSi、MnまたはPの含有量が少ないため、フェライトの脆化効果が小さく、シャルピー衝撃値が高かった。
 比較例eはCrの含有量が多いため、フェライト・パーライト組織に加えて一部でベイナイト組織が生成したため、シャルピー衝撃値が高く、さらに降伏比が損なわれた。
 比較例fはBiを含有していないため、フェライトの脆化効果がなく、シャルピー衝撃値が高かった。
 比較例gはBiを含有しているため、フェライトの脆化効果が得られ、シャルピー衝撃値は低いが、Biの含有量が多いため、降伏強さ及び降伏比が低かった。
 比較例hはVの含有量が多いため、Vの偏析が生じ、V濃度が高い領域でフェライトの靭性が過剰に低下し、鋼の破断分離時の欠け発生量が多くなった。
On the other hand, Comparative Example a had a low C content and therefore had a low tensile strength and a high Charpy impact value.
In Comparative Examples b to d, since the content of Si, Mn or P was small, the brittle effect of ferrite was small and the Charpy impact value was high.
In Comparative Example e, since the Cr content was large, a bainite structure was partially formed in addition to the ferrite / pearlite structure, and thus the Charpy impact value was high and the yield ratio was further impaired.
Since Comparative Example f did not contain Bi, there was no brittle effect of ferrite, and the Charpy impact value was high.
Since Comparative Example g contains Bi, the effect of embrittlement of ferrite was obtained and the Charpy impact value was low, but since the Bi content was large, the yield strength and yield ratio were low.
In Comparative Example h, since the V content was large, segregation of V occurred, the toughness of ferrite decreased excessively in the region where the V concentration was high, and the amount of chipping at the time of fracture separation of the steel increased.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明に係る鋼は、靱性の低下と、欠け発生量の抑制との両方を達成でき、さらに降伏比にも優れる。従って、本発明に係る鋼は、破断分離工程を含む製造方法によって得られる機械部品の材料である熱間鍛造用非調質鋼として用いられた場合、高い座屈強度を有する機械部品を製造可能であり、且つ部品製造時の経済効率性を大幅に向上させることができる。 The steel according to the present invention can achieve both a reduction in toughness and a reduced amount of chipping, and is also excellent in yield ratio. Therefore, when the steel according to the present invention is used as a non-heat treated steel for hot forging, which is a material of a machine part obtained by a production method including a fracture separation process, a machine part having a high buckling strength can be produced. In addition, the economic efficiency at the time of manufacturing parts can be greatly improved.
 1…破断分離型コンロッド(鋼部品)
 2…アッパ側半割体
 2A…半円弧部
 2a…突き合わせ面
 2B…ロッド部
 3…ロア側半割体
 3A…半円弧部
 3a…突き合わせ面
 5…ねじ孔
 6…挿通孔
 7…結合ボルト
 8…ビッグエンド部
 9…スモールエンド部
1 ... Breaking type connecting rod (steel part)
2 ... Upper side half 2A ... Semi arc part 2a ... Abutting surface 2B ... Rod part 3 ... Lower side half part 3A ... Semi arc part 3a ... Abutting surface 5 ... Screw hole 6 ... Insertion hole 7 ... Coupling bolt 8 ... Big end part 9 ... Small end part

Claims (5)

  1.  単位質量%で、
    C:0.10~0.25%、
    Si:0.60~1.20%、
    Mn:0.60~1.00%、
    P:0.040~0.060%、
    S:0.060~0.100%、
    Cr:0.05~0.20%、
    Bi:0.0001~0.0050%、
    N:0.0020~0.0150%、
    V:0~0.010%、
    Al:0~0.0050%、
    Ti:0~0.020%、
    Ca:0~0.0050%、
    Zr:0~0.0050%、及び
    Mg:0~0.0050%
    を含有し、残部がFe及び不純物からなることを特徴とする鋼。
    In unit mass%
    C: 0.10 to 0.25%,
    Si: 0.60 to 1.20%,
    Mn: 0.60 to 1.00%
    P: 0.040 to 0.060%,
    S: 0.060 to 0.100%,
    Cr: 0.05-0.20%,
    Bi: 0.0001 to 0.0050%,
    N: 0.0020 to 0.0150%,
    V: 0 to 0.010%,
    Al: 0 to 0.0050%,
    Ti: 0 to 0.020%,
    Ca: 0 to 0.0050%,
    Zr: 0 to 0.0050% and Mg: 0 to 0.0050%
    A steel characterized in that the balance is made of Fe and impurities.
  2.  単位質量%で、
    Ca:0.0005~0.0050%、
    Zr:0.0005~0.0050%、及び
    Mg:0.0005~0.0050%
    のうちの1種以上を含有することを特徴とする請求項1に記載の鋼。
    In unit mass%
    Ca: 0.0005 to 0.0050%,
    Zr: 0.0005 to 0.0050%, and Mg: 0.0005 to 0.0050%
    The steel according to claim 1, comprising at least one of the above.
  3.  単位質量%で、
    N:0.0020~0.0090%
    を含有することを特徴とする請求項1または2に記載の鋼。
    In unit mass%
    N: 0.0020 to 0.0090%
    The steel according to claim 1, comprising:
  4.  単位質量%で、
    Al:0~0.0008%
    を含有することを特徴とする請求項1~3のいずれか一項に記載の鋼。
    In unit mass%
    Al: 0 to 0.0008%
    The steel according to any one of claims 1 to 3, characterized by comprising:
  5.  単位質量%で、
    V:0~0.004%
    を含有することを特徴とする請求項1~4のいずれか一項に記載の鋼。
    In unit mass%
    V: 0 to 0.004%
    The steel according to any one of claims 1 to 4, characterized by comprising:
PCT/JP2016/088123 2015-12-25 2016-12-21 Steel WO2017110883A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16878770.3A EP3395975A4 (en) 2015-12-25 2016-12-21 Steel
US16/062,247 US20180371593A1 (en) 2015-12-25 2016-12-21 Steel
JP2017558195A JP6620822B2 (en) 2015-12-25 2016-12-21 steel
CN201680075087.6A CN108474068A (en) 2015-12-25 2016-12-21 Steel
KR1020187018228A KR102101233B1 (en) 2015-12-25 2016-12-21 River

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-253563 2015-12-25
JP2015253563 2015-12-25

Publications (1)

Publication Number Publication Date
WO2017110883A1 true WO2017110883A1 (en) 2017-06-29

Family

ID=59089451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088123 WO2017110883A1 (en) 2015-12-25 2016-12-21 Steel

Country Status (6)

Country Link
US (1) US20180371593A1 (en)
EP (1) EP3395975A4 (en)
JP (1) JP6620822B2 (en)
KR (1) KR102101233B1 (en)
CN (1) CN108474068A (en)
WO (1) WO2017110883A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004183094A (en) * 2002-11-20 2004-07-02 Daido Steel Co Ltd Nonheat-treated steel easily fractured and separated at low temperature, and engaged member fractured and separated at low temperature
JP2004307930A (en) * 2003-04-07 2004-11-04 Daido Steel Co Ltd Non-heat treated steel to be hot-forged for connecting rod
JP2009221590A (en) * 2008-03-19 2009-10-01 Honda Motor Co Ltd Fracture split connecting rod, and non-heat treated steel used therefor
WO2010134583A1 (en) * 2009-05-22 2010-11-25 新日本製鐵株式会社 Steel for machine structure use attaining excellent cutting-tool life and method for cutting same
JP2012077371A (en) * 2010-10-06 2012-04-19 Sumitomo Metal Ind Ltd Rolled steel for hot forging, and method for production thereof
JP2015001018A (en) * 2013-06-17 2015-01-05 大同特殊鋼株式会社 Steel for machine component and machine component for non-heat treated steel

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637375A (en) 1986-06-27 1988-01-13 Canon Inc Method and apparatus for forming functional deposited film by microwave plasma cvd method
JPH1129842A (en) * 1997-07-15 1999-02-02 Sumitomo Metal Ind Ltd Ferrite-pearlite type non-heat treated steel
JP3756307B2 (en) 1998-01-21 2006-03-15 Jfe条鋼株式会社 Manufacturing method of non-tempered steel parts with high strength and low ductility
JP3355132B2 (en) 1998-05-01 2002-12-09 新日本製鐵株式会社 Machine structural steel with excellent fracture separation and durability
JP2000008141A (en) 1998-06-23 2000-01-11 Sumitomo Metal Ind Ltd Non-heat treated soft-nitrided steel forged parts and production thereof
JP3671688B2 (en) * 1998-08-28 2005-07-13 株式会社神戸製鋼所 Non-heat treated steel for hot forging for fracture split type connecting rods with excellent fracture splitting
JP4556334B2 (en) 2001-02-01 2010-10-06 大同特殊鋼株式会社 Non-tempered steel hot forged parts for soft nitriding
JP4314851B2 (en) 2003-03-14 2009-08-19 大同特殊鋼株式会社 High strength non-tempered steel suitable for fracture separation
JP3988661B2 (en) 2003-03-18 2007-10-10 住友金属工業株式会社 Non-tempered steel
CN101405418B (en) * 2006-03-15 2012-07-11 株式会社神户制钢所 Rolled material for fracture split connecting rod excelling in fracture splittability, hot forged part for fracture split connecting rod excelling in fracture splittability, and fracture split connect
JP4268194B2 (en) 2006-03-15 2009-05-27 株式会社神戸製鋼所 Rolled material for fracture separation type connecting rod excellent in fracture separation, hot forged parts for fracture separation type connecting rod excellent in fracture separation, and fracture separation type connecting rod
JP5092578B2 (en) * 2007-06-26 2012-12-05 住友金属工業株式会社 Low carbon sulfur free cutting steel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004183094A (en) * 2002-11-20 2004-07-02 Daido Steel Co Ltd Nonheat-treated steel easily fractured and separated at low temperature, and engaged member fractured and separated at low temperature
JP2004307930A (en) * 2003-04-07 2004-11-04 Daido Steel Co Ltd Non-heat treated steel to be hot-forged for connecting rod
JP2009221590A (en) * 2008-03-19 2009-10-01 Honda Motor Co Ltd Fracture split connecting rod, and non-heat treated steel used therefor
WO2010134583A1 (en) * 2009-05-22 2010-11-25 新日本製鐵株式会社 Steel for machine structure use attaining excellent cutting-tool life and method for cutting same
JP2012077371A (en) * 2010-10-06 2012-04-19 Sumitomo Metal Ind Ltd Rolled steel for hot forging, and method for production thereof
JP2015001018A (en) * 2013-06-17 2015-01-05 大同特殊鋼株式会社 Steel for machine component and machine component for non-heat treated steel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3395975A4 *

Also Published As

Publication number Publication date
CN108474068A (en) 2018-08-31
JP6620822B2 (en) 2019-12-18
KR20180087371A (en) 2018-08-01
KR102101233B1 (en) 2020-04-17
EP3395975A4 (en) 2019-06-12
EP3395975A1 (en) 2018-10-31
US20180371593A1 (en) 2018-12-27
JPWO2017110883A1 (en) 2018-10-11

Similar Documents

Publication Publication Date Title
JP4593510B2 (en) High strength bearing joint parts excellent in delayed fracture resistance, manufacturing method thereof, and steel for high strength bearing joint parts
WO2011111872A1 (en) High-strength steel and high-strength bolt with excellent resistance to delayed fracture, and manufacturing method therefor
JP6479527B2 (en) Bolt wire with excellent pickling property and delayed fracture resistance after quenching and tempering, and bolt
WO2012035884A1 (en) Bearing steel
WO2015129403A1 (en) Rolled material for high strength spring, and wire for high strength spring
JPWO2009107282A1 (en) Non-tempered steel for hot forging and hot rolled steel excellent in fracture separation and machinability, and hot forged non-tempered steel parts
WO2017110910A1 (en) Steel component
JP6614393B2 (en) Non-tempered steel bar
JP5858996B2 (en) Steel bar for non-tempered connecting rod
JP6414319B2 (en) Hot rolled steel and steel parts
WO2019203343A1 (en) Steel, mechanical component, and connecting rod
JP4959471B2 (en) High strength seamless steel pipe with excellent toughness for machine structure and manufacturing method thereof
WO2018061101A1 (en) Steel
JP2000026933A (en) Hot forging steel
JP6652020B2 (en) High strength hot forged non-heat treated steel parts
JP6620822B2 (en) steel
WO2018139672A1 (en) Steel pipe for underbody components of automobiles, and underbody component of automobiles
WO2018139671A1 (en) Steel pipe for underbody components of automobiles, and underbody component of automobiles
JP6662247B2 (en) Non-heat treated steel for hot forging with excellent fracture separation
JP3489655B2 (en) High-strength, high-toughness free-cut non-heat treated steel
JP5556191B2 (en) Hot forged non-heat treated steel parts and non-heat treated steel for hot forging used therefor
JP6753227B2 (en) Hot-rolled steel and steel parts for steel parts with excellent fit and machinability between fracture surfaces after fracture separation
JP2016166384A (en) Hot rolled steel material for steel member excellent in fittability of fracture surfaces after fracture separation, and steel member
WO2017069161A1 (en) Hot-rolled steel and steel part
JP2018035422A (en) High-strength hot-forged non-heat-treated steel component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878770

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017558195

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187018228

Country of ref document: KR

Kind code of ref document: A