JP2004183094A - Nonheat-treated steel easily fractured and separated at low temperature, and engaged member fractured and separated at low temperature - Google Patents

Nonheat-treated steel easily fractured and separated at low temperature, and engaged member fractured and separated at low temperature Download PDF

Info

Publication number
JP2004183094A
JP2004183094A JP2003356201A JP2003356201A JP2004183094A JP 2004183094 A JP2004183094 A JP 2004183094A JP 2003356201 A JP2003356201 A JP 2003356201A JP 2003356201 A JP2003356201 A JP 2003356201A JP 2004183094 A JP2004183094 A JP 2004183094A
Authority
JP
Japan
Prior art keywords
less
separated
low temperature
impact value
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003356201A
Other languages
Japanese (ja)
Other versions
JP4346404B2 (en
Inventor
Koichiro Inoue
幸一郎 井上
Toyotaka Kinoshita
豊隆 木下
Masao Ishida
正雄 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Daido Steel Co Ltd
Original Assignee
Honda Motor Co Ltd
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Daido Steel Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003356201A priority Critical patent/JP4346404B2/en
Priority to US10/716,512 priority patent/US20040131494A1/en
Publication of JP2004183094A publication Critical patent/JP2004183094A/en
Application granted granted Critical
Publication of JP4346404B2 publication Critical patent/JP4346404B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/76Making machine elements elements not mentioned in one of the preceding groups
    • B21K1/766Connecting rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonheat-treated steel which has suitable toughness within a use temperature range, and is easily fractured and separated not only in the conventional low temperature region including a cryogenic region for liquid nitrogen cooling or the like required by the object to be fractured, but also in an inexpensively reachable low temperature region, and to provide an engaged member fractured and separated at low temperatures. <P>SOLUTION: The nonheat-treated steel easily fractured and separated at low temperatures has a composition comprising, by mass, 0.15 to 0.35% C, 0.5 to 2.0% Si, 0.5 to 1.5% Mn, 0.03 to 0.15% P, 0.01 to 0.15% S, 0.01 to 0.5% Cu, 0.01 to 0.5% Ni, 0.01 to 1.0% Cr, 0.001 to 0.01% s-Al, 0.005 to 0.035% N, 0.0001 to 0.01% Ca and 0.001 to 0.01% O, and satisfying 0.6≤Ceq≤0.85 and 0≤T<SB>Tr</SB>≤1.5, and the balance Fe with inevitable impurities. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、鍛造後に二個以上の部品に破断分離して用いる勘合部材などに適した低温で破断分離が容易な非調質鋼及びこの非調質鋼からなる低温で破断分離するエンジン用コンロッドなどの勘合部材に関する。   The present invention relates to a non-heat-treated steel that is easy to break and separate at low temperature and is suitable for a joint member used for break-separation into two or more parts after forging and a connecting rod for an engine made of this non-heat-treated steel that breaks and separates at low temperature. And the like.

従来、エンジン用コンロッド(コネクティングロッド)のような鍛造後に二個の部品に分離してクランクシャフトに連接する部品等のような勘合部材では、最終形状に一体鍛造後、仕上げの機械加工を施し、その後機械加工によって二個に分割して使用していた。しかし、この製造方法は、切断部分に切り代として余分な材料を要するとともに、切断後に分離面を切削加工し、研磨などによって仕上げる必要があるため、コストの上昇の原因となっている。   Conventionally, for mating members such as parts that are separated into two parts after forging, such as connecting rods for engines (connecting rods), and are connected to the crankshaft, after forging into the final shape, finish machining is performed. After that, it was divided into two parts by machining. However, this manufacturing method requires an extra material as a cutting allowance in a cut portion, and it is necessary to cut the separation surface after cutting and finish it by polishing or the like, which causes an increase in cost.

これらの問題を解決するため、コンロッドの場合には、コンロッドを最終形状に加工した後、破断分離によって分割する方法が提案されている。この破断分離は、図1(A)に示すようにコンロッド1の大端部2に切り欠き溝4を形成した後に室温で荷重を加えることにより図1(B)に示すように大端部をキャップ部5とロッド部6に破断させて分割する方法である。この方法を実施するためには、破断分離時の変形を抑制するとともに容易に分割できるようにするため、室温で低延性の材料が要求されている。この要求を満たすためにSi、V及びPの含有量を調整して室温の靱延性を抑制させた材料(図2の室温で破断分離する鋼参照)が開発されている(例えば、特許文献1及び特許文献2参照。)。   In order to solve these problems, in the case of a connecting rod, a method has been proposed in which the connecting rod is processed into a final shape and then divided by fracture separation. This fracture separation is performed by forming a cutout groove 4 in the large end 2 of the connecting rod 1 as shown in FIG. 1 (A) and then applying a load at room temperature to form the large end as shown in FIG. 1 (B). This is a method in which the cap part 5 and the rod part 6 are broken and divided. In order to carry out this method, a material having low ductility at room temperature is required in order to suppress deformation at the time of fracture separation and to enable easy division. In order to satisfy this requirement, a material in which the contents of Si, V and P are adjusted to suppress the toughness at room temperature (see steel that breaks and separates at room temperature in FIG. 2) has been developed (for example, Patent Document 1). And Patent Document 2.).

しかし、一般にコンロッドのような部品を上記切り欠き溝を形成しただけで変形せず容易に破断できるような鋼で設計、加工する場合には、存在する僅かな切り欠などの欠陥の影響を十分考慮しなければならず、結果として重量増を招くという問題がある。また高価なVを多量に添加する必要があるため、コストを低減するメリットが減少するという問題もある。   However, in general, when a component such as a connecting rod is designed and machined with steel that can be easily broken without being deformed only by forming the above-described notch groove, the influence of existing defects such as slight notches can be sufficiently reduced. There is a problem that the weight must be taken into consideration as a result. Further, since a large amount of expensive V needs to be added, there is a problem that the merit of reducing the cost is reduced.

そこで、合金の成分組成によらず、鋼の低温脆性現象を利用して低温で破断分離する方法が提案されている(例えば、特許文献3参照。)。この方法によればコンロッドの使用温度では十分な靱性を有し、破断分離時のみコンロッドを脆化させることが可能である。 しかし、通常の鉄鋼材料では破断分離を実施するためには−130℃以下に冷却をする必要があり(図2参照)、その冷却のための冷媒として液体窒素(−196℃)を用いる必要があるので、冷却するためのコストが非常に高くなるという問題がある。
特開平9−111412号公報 特開平10−219389号公報 特開2001−3924号公報
Therefore, a method has been proposed in which fracture separation is performed at a low temperature by utilizing the low-temperature brittleness phenomenon of steel irrespective of the component composition of the alloy (for example, see Patent Document 3). According to this method, the connecting rod has sufficient toughness at the operating temperature, and the connecting rod can be embrittled only at the time of fracture separation. However, in the case of ordinary steel materials, it is necessary to cool to −130 ° C. or less in order to perform fracture separation (see FIG. 2), and it is necessary to use liquid nitrogen (−196 ° C.) as a cooling medium for the cooling. Therefore, there is a problem that the cost for cooling is very high.
JP-A-9-111412 JP-A-10-219389 JP 2001-3924 A

本発明は、使用温度範囲内では適度な靱性を有し、従来の低温で破断するものが必要とした液体窒素冷却等による極低温領域はもちろんのこと、安価に到達可能な低温領域で破断分離が容易な非調質鋼及び低温で破断分離する勘合部材を提供することを課題としている。   The present invention has an appropriate toughness within the operating temperature range, and breaks apart not only in the cryogenic region by liquid nitrogen cooling and the like that was required for conventional ones that break at low temperatures, but also in the low temperature region that can be reached at low cost. It is an object of the present invention to provide a non-heat treated steel which can be easily formed and a fitting member which breaks and separates at a low temperature.

上記課題を解決するため、本発明者らは、コンロッドなどの破断分離して使用する機械部品に必要な靱性値、変形なく容易に破断分離することができる靱性値、これらの靱性値を満たし、かつ液体窒素より高い温度の冷媒で冷却しても破断分離が容易な鋼の成分組成などについて鋭意研究したところ、─60℃以下で変形なく容易に破断分離することができれば、冷媒としてドライアイス+エタノール寒剤を用いることができるので、コストが低くかつ冷却が容易であること、コンロッドなどの破断分離して使用する機械部品に必要な靱性は、シャルピー衝撃値(2mmVノッチの試験片によるもの、以下同じ。)で10J/cm2 以上であること、変形なく容易に破断分離することができる靱性は、シャルピー衝撃値で5J/cm2 以下であること、これらの衝撃値を満たし、かつ─60℃以下で変形なく容易に破断分離をすることができる鋼の成分組成は、C,Si,P,Mn,Cr,Cu及びNi含有量を特許請求の範囲に記載したように適正にすることによって達成できること等の知見を得た。
本発明は、これらの知見に基づいて発明をされたものである。
In order to solve the above-mentioned problems, the present inventors satisfy the toughness value required for mechanical parts to be used by breaking and separating such as connecting rods, toughness values that can be easily broken and separated without deformation, and these toughness values, In addition, as a result of extensive research on the composition of steel, which easily breaks and separates even when cooled with a refrigerant at a temperature higher than that of liquid nitrogen, if it can be easily broken and separated at a temperature of 60 ° C or less without deformation, dry ice + Since ethanol cryogen can be used, the cost is low and the cooling is easy, and the toughness required for mechanical parts used by breaking and separating such as connecting rods has Charpy impact value (2 mm V notch test piece, the same.) it is 10J / cm 2 or more, toughness can be easily broken separated without deformation, der 5 J / cm 2 or less in a Charpy impact value The composition of steel that satisfies these impact values and can be easily broken and separated without deformation at ─60 ° C. or less is patented for the contents of C, Si, P, Mn, Cr, Cu and Ni. The inventor has obtained knowledge that it can be achieved by making it appropriate as described in the claims.
The present invention has been made based on these findings.

すなわち、本発明の低温で破断分離が容易な非調質鋼においては、C:0.15〜0.35%、Si:0.5〜2.0%、Mn:0.5〜1.5%、P:0.03〜0.15%、S:0.01〜0.15%、Cu:0.01〜0.5%、Ni:0.01〜0.5%、Cr:0.01〜1.0%、s−Al:0.001〜0.01%、N:0.005〜0.035%、Ca:0.0001〜0.01%及びO:0.001〜0.01%を含有し、更に必要に応じてTi:0.02%以下、Zr:0.02%以下、Pb:0.3%以下及びBi:0.3%以下のうらの1種又は2種以上を含有し、また下記式1及び式2を満たし、残部をFe及び不可避不純物からなるものとすることである。
式1・・・0.6≦Ceq≦0.85
ただし、Ceq=C+0.07×Si+0.16×Mn+0.61×P
+0.19×Cu+0.17×Ni+0.2 ×Cr
式2・・・0≦TTr≦1.5
ただし、TTr=(C+0.8 ×Si+5 ×P)−0.5×(Mn+Cr+Cu+Ni)
That is, in the non-heat treated steel according to the present invention, which can be easily fracture-separated at a low temperature, C: 0.15 to 0.35%, Si: 0.5 to 2.0%, Mn: 0.5 to 1.5%. %, P: 0.03-0.15%, S: 0.01-0.15%, Cu: 0.01-0.5%, Ni: 0.01-0.5%, Cr: 0. 01-1.0%, s-Al: 0.001-0.01%, N: 0.005-0.035%, Ca: 0.0001-0.01%, and O: 0.001-0. 01%, and if necessary, one or two of the following: Ti: 0.02% or less, Zr: 0.02% or less, Pb: 0.3% or less, and Bi: 0.3% or less. It is intended to contain the above and satisfy the following expressions 1 and 2, with the balance being Fe and unavoidable impurities.
Formula 1 ... 0.6 ≦ Ceq ≦ 0.85
However, Ceq = C + 0.07 × Si + 0.16 × Mn + 0.61 × P
+ 0.19 × Cu + 0.17 × Ni + 0.2 × Cr
Equation 2 ... 0 ≦ T Tr ≦ 1.5
However, T Tr = (C + 0.8 × Si + 5 × P) −0.5 × (Mn + Cr + Cu + Ni)

また、本発明の低温で破断分離する勘合部材においては、使用する非調質鋼をC:0.15〜0.35%、Si:0.5〜2.0%、Mn:0.5〜1.5%、P:0.03〜0.15%、S:0.01〜0.15%、Cu:0.01〜0.5%、Ni:0.01〜0.5%、Cr:0.01〜1.0%、s−Al:0.001〜0.01%、N:0.005〜0.035%、Ca:0.0001〜0.01%及びO:0.001〜0.01%を含有し、更に必要に応じてTi:0.02%以下、Zr:0.02%以下、Pb:0.3%以下及びBi:0.3%以下のうらの1種又は2種以上を含有し、また下記式1及び式2を満たし、残部をFe及び不可避不純物からなるものとすることである。
式1・・・0.6≦Ceq≦0.85
ただし、Ceq=C+0.07×Si+0.16×Mn+0.61×P
+0.19×Cu+0.17×Ni+0.2 ×Cr
式2・・・0≦TTr≦1.5
ただし、TTr=(C+0.8 ×Si+5 ×P)−0.5×(Mn+Cr+Cu+Ni)
In the joining member of the present invention which breaks and separates at a low temperature, the non-heat treated steel used is C: 0.15 to 0.35%, Si: 0.5 to 2.0%, and Mn: 0.5 to 0.5%. 1.5%, P: 0.03 to 0.15%, S: 0.01 to 0.15%, Cu: 0.01 to 0.5%, Ni: 0.01 to 0.5%, Cr : 0.01 to 1.0%, s-Al: 0.001 to 0.01%, N: 0.005 to 0.035%, Ca: 0.0001 to 0.01%, and O: 0.001 0.1% or less, Zr: 0.02% or less, Pb: 0.3% or less, and Bi: 0.3% or less. Or, two or more kinds are contained, and the following formulas 1 and 2 are satisfied, with the balance being Fe and unavoidable impurities.
Formula 1 ... 0.6 ≦ Ceq ≦ 0.85
However, Ceq = C + 0.07 × Si + 0.16 × Mn + 0.61 × P
+ 0.19 × Cu + 0.17 × Ni + 0.2 × Cr
Equation 2 ... 0 ≦ T Tr ≦ 1.5
However, T Tr = (C + 0.8 × Si + 5 × P) −0.5 × (Mn + Cr + Cu + Ni)

本発明の低温で破断分離が容易な非調質鋼及び低温で破断分離する勘合部材は、上記構成にしたことにより、次のような優れた効果を奏する。
(1)図2の本発明鋼に示すように通常の使用温度範囲内ではコンロッドなどの機械部品に必要な靱性(シャルピー衝撃値で10J/cm2 )より高くなるとともに、破断分離するために冷却する温度の−60℃以下では変形なく容易に破断分離することができる靱性(がシャルピー衝撃値で5J/cm2 )より低くなる。
(2)従来提案されているものより高い温度の−60℃以下で破断分離が変形なく容易に実施することができる。
(3)高価を元素を含有していないので、安価である。
The non-heat-treated steel of the present invention, which is easy to break and separate at low temperature, and the fitting member that breaks and separates at low temperature, have the following excellent effects by adopting the above configuration.
(1) As shown in the steel of the present invention in FIG. 2, within the normal operating temperature range, the toughness (10 J / cm 2 in Charpy impact value) required for mechanical parts such as connecting rods is increased, and cooling is performed to break and separate. If the temperature is lower than −60 ° C., the toughness (but Charpy impact value is 5 J / cm 2 ) which can be easily broken and separated without deformation becomes lower.
(2) Breaking separation can be easily performed without deformation at a temperature of -60 ° C or lower, which is higher than that conventionally proposed.
(3) It is inexpensive because it does not contain expensive elements.

次に、本発明の低温で破断分離が容易な非調質鋼及び低温で破断分離する勘合部材の成分組成、Ceq及びTTrを上記のように特定している理由を説明する。
C:0.15〜0.35%
Cは、強度を高くするとともに、最適な衝撃遷移曲線を得るために必要な元素である。C含有量が低い鋼では図3に示すように上部棚エネルギーと下部棚エネルギーの差が大きく、その遷移も急激であるが、遷移温度は低くなる。他方、C含有量が高い鋼では上部棚エネルギーと下部棚エネルギーの差が小さく、その遷移も緩やかであるが、遷移温度は上昇する。本発明のように−60℃以下に冷却して破断分離を行う場合には、上部棚エネルギーはできるだけ高く、−10〜−60℃で急激に衝撃値が低下し、−60℃以下では下部棚エネルギーとなっている必要がある。そのため、本発明ではC含有量の上限を0.35%とする。他方、C含有量を低下させ過ぎると十分な強度が得られないので、その下限を0.15%とする。
Next, the reason why the component composition, Ceq, and T Tr of the non-heat-treated steel of the present invention, which can be easily fracture-separated at low temperature, and the joining member that fracture-separates at low temperature, are specified as described above will be described.
C: 0.15 to 0.35%
C is an element necessary for increasing strength and obtaining an optimal impact transition curve. In a steel having a low C content, as shown in FIG. 3, the difference between the upper shelf energy and the lower shelf energy is large, and the transition is sharp, but the transition temperature is low. On the other hand, in steel having a high C content, the difference between the upper shelf energy and the lower shelf energy is small and the transition is gradual, but the transition temperature rises. When the fracture separation is performed by cooling to -60 ° C or lower as in the present invention, the energy of the upper shelf is as high as possible, and the impact value sharply decreases at -10 to -60 ° C, and the lower shelf energy decreases at -60 ° C or lower. It needs to be energy. Therefore, in the present invention, the upper limit of the C content is set to 0.35%. On the other hand, if the C content is too low, sufficient strength cannot be obtained, so the lower limit is made 0.15%.

Si:0.5〜2.0%
Siは、鋼溶製時において脱酸作用を有しているとともに、Vの代替元素としてフエライト中に固溶し、破断分離時の塑性変形の主な原因である軟質相であるフエライトの強度、耐力及び疲労強度を向上させて破断分離時の変形を抑制し、破断面の密着性を向上させる元素である。また遷移温度を上昇させて低温での破断分離特性を向上させる元素でもある。それらの作用効果を得るためには0.5%以上含有させる必要があるが、多くなり過ぎると硬さが著しく増加して被削性を低下させるので、その上限を2%とする。
Si: 0.5 to 2.0%
Si has a deoxidizing effect at the time of steel smelting, and forms a solid solution in ferrite as an alternative element to V, and the strength of ferrite, which is a soft phase that is a main cause of plastic deformation at the time of fracture separation, It is an element that improves proof stress and fatigue strength, suppresses deformation during fracture separation, and improves the adhesion of fracture surfaces. It is also an element that raises the transition temperature to improve the fracture separation characteristics at low temperatures. To obtain these effects, it is necessary to contain 0.5% or more. However, if the content is too large, the hardness is remarkably increased and the machinability is reduced. Therefore, the upper limit is set to 2%.

Mn:0.5〜1.5%
Mnは、基地に固溶して強度を高めるとともに、衝撃遷移温度を低下させて室温での靱性を向上させるので、そのために含有させる元素である。本発明では、Si、Pによる衝撃遷移温度の大きな上昇を抑制する働きがあるものである。これらの作用効果を得るためには0.5%以上含有させる必要があるが、多くなり過ぎると鍛造後にベイナイトが生成し、硬さが著しく増加して被削性を低下させるので、その上限を1.5%とする。
Mn: 0.5-1.5%
Mn is an element to be contained because it dissolves in the matrix to increase the strength and lowers the impact transition temperature to improve the toughness at room temperature. In the present invention, it has a function of suppressing a large rise in the impact transition temperature due to Si and P. In order to obtain these effects, it is necessary to contain 0.5% or more. However, if the content is too large, bainite is formed after forging, and the hardness is remarkably increased to reduce machinability. 1.5%.

P:0.03〜0.15%
Pは、不可避な不純物であり、粒界に偏析して靱性を低下させるので、できるだけ低く抑えるのが一般的であるが、破断分離を行う本発明では破断時の変形を抑制し、破断面の密着性を向上させるために非常に有効であるので、積極的に含有させる元素である。またPは、Siと同様にVの代替元素としてフェライト中に固溶してフェライトの強度を向上させることによって耐力及び疲労強度を向上させるのに有効であり、また衝撃遷移温度を大きく上昇させるので、それらのためにも含有させる元素でもある。それらの作用効果を得るためには0.03%以上含有させる必要があるが、多くなり過ぎると室温での衝撃値も著しく低下させるので、その上限を0.15%とする。
P: 0.03 to 0.15%
P is an unavoidable impurity and segregates at the grain boundary to lower toughness. Therefore, it is general to keep P as low as possible. However, in the present invention that performs fracture separation, deformation at fracture is suppressed, and Since it is very effective for improving the adhesion, it is an element to be positively contained. Further, P is effective as a substitute element for V as a substitute element for Si in solid solution in ferrite to improve the strength of ferrite, thereby improving proof stress and fatigue strength, and also greatly increases impact transition temperature. , Also for these elements. In order to obtain these effects, it is necessary to contain 0.03% or more. However, if the content is too large, the impact value at room temperature is significantly reduced. Therefore, the upper limit is set to 0.15%.

S:0.01〜0.15%
Sは、Mnと硫化物を生成して被削性を改善するので、そのために含有させる元素である。その作用効果を得るためには0.01%以上含有させる必要があるが、多くなり過ぎると熱間加工性を劣化せさるので、その上限を0.15%以下とする。
S: 0.01-0.15%
S is an element contained for producing sulfides with Mn to improve machinability. In order to obtain the function and effect, it is necessary to contain 0.01% or more. However, if the content is too large, the hot workability is deteriorated. Therefore, the upper limit is made 0.15% or less.

Cu:0.01〜0.5%、Ni:0.01〜0.5%
CuとNiは、Mn、Crと同様に室温の衝撃値を向上させるとともに、遷移温度を低下させるので、それらのために含有させる元素である。それらの作用効果を得るには0.01%以上含有させる必要があるが、多くなるとコストが高くなる(Mn及びCrに比較して高価であるため)ので、その上限を0.5%とする。なお、スクラップを主原料とする電気炉溶解材は、Cu及びNiが0.05〜0.2%混入しているので、この範囲で使用するのが、コスト的には有利である。
Cu: 0.01-0.5%, Ni: 0.01-0.5%
Cu and Ni, like Mn and Cr, improve the impact value at room temperature and lower the transition temperature, so that they are elements to be contained for them. In order to obtain these effects, it is necessary to contain 0.01% or more. However, if the content increases, the cost increases (because it is expensive compared to Mn and Cr), so the upper limit is made 0.5%. . In addition, since the electric furnace melting material mainly made of scrap contains 0.05 to 0.2% of Cu and Ni, it is advantageous in terms of cost to use it in this range.

Cr:0.01〜1.0%
Crは、基地に固溶し強度を高めるとともに、衝撃遷移温度を低下させて室温での靱性を高くするので、それらのために含有させる元素である。本発明では、Si、Pによる衝撃遷移温度の大きな上昇を抑制する働きがある。これらの作用効果を得るためには0.01%以上含有させる必要があるが、多くなり過ぎると鍛造後にベイナイトが生成し、硬さが著しく増加して被削性を低下させるので、その上限を1.0%とする。
Cr: 0.01 to 1.0%
Cr is an element contained for Cr because it dissolves in the matrix to increase the strength and lowers the impact transition temperature to increase the toughness at room temperature. The present invention has a function of suppressing a large increase in the impact transition temperature due to Si and P. In order to obtain these effects, it is necessary to contain 0.01% or more. However, when the content is too large, bainite is formed after forging, and the hardness is remarkably increased to reduce machinability. 1.0%.

s−Al:0.001〜0.01%
s−Al(酸可溶性Al)は、鋼溶製時において脱酸作用を有しているとともに、微細な窒化物を形成して熱間鍛造時の結晶粒の粗大化を抑制し、強度を向上させるので、それらのために含有させる元素である。それらの作用効果を得るためには0.001%以上含有させる必要があるが、多くなり過ぎるとその効果が飽和するので、その上限を0.01%とする。
s-Al: 0.001 to 0.01%
s-Al (acid-soluble Al) has a deoxidizing effect at the time of smelting steel, forms fine nitrides, suppresses coarsening of crystal grains during hot forging, and improves strength. Elements to be contained for them. In order to obtain these effects, it is necessary to contain 0.001% or more. However, if the content is too large, the effect is saturated, so the upper limit is made 0.01%.

N:0.005〜0.035%
Nは、不可避な不純物でもあるが、Alと化合して微細な窒化物を形成して鋼中に分散することにより熱間鍛造時の結晶粒の粗大化を抑制する元素である。この作用効果は0.005%以下でもあるが、0.005%以下にすることは経済でないのでその下限を0.005%とする。また、多量に含有させると鋳造欠陥の原因となるので、その上限を0.035%とする。
N: 0.005 to 0.035%
Although N is an unavoidable impurity, it is an element that suppresses coarsening of crystal grains during hot forging by combining with Al to form fine nitrides and dispersing them in steel. Although this effect can be 0.005% or less, the lower limit is made 0.005% because it is not economical to make it 0.005% or less. Further, if contained in a large amount, it causes casting defects, so the upper limit is made 0.035%.

Ca:0.0001〜0.01%
Caは、MnS中のMnの一部と置換してCaが固溶したMnSを形成し、これが切削加工時の工具に付着して被削性を改善するので、そのために含有させる元素である。その作用効果を得るためには0.0001%以上含有させる必要があるが、多量に添加しても効果が飽和するので、その上限を0.01%とする。
Ca: 0.0001 to 0.01%
Ca replaces a part of Mn in MnS to form MnS in which Ca forms a solid solution, which adheres to a tool at the time of cutting to improve machinability, and is an element to be contained for that purpose. To obtain the effect, the content must be 0.0001% or more, but the effect is saturated even if added in a large amount, so the upper limit is made 0.01%.

O:0.001〜0.01%
上記Caが固溶したMnSを得るためには隣接してCaの酸化物が存在する必要がる。Oは、不可避な不純物でもあるが、上記Caの酸化物を生成するために必要な元素である。その作用効果を得るためには0.001%以上含有させる必要があるが、多くなり過ぎると酸化物系の介在物が多くなって熱間加工時の割れを発生し易くなるので、その上限を0.01%とする。
O: 0.001 to 0.01%
In order to obtain MnS in which Ca is dissolved, Ca oxide must be present adjacently. O is also an unavoidable impurity, but is an element necessary for generating the Ca oxide. In order to obtain the function and effect, it is necessary to contain 0.001% or more. However, if the content is too large, oxide-based inclusions increase and cracks are easily generated during hot working. 0.01%.

Ti:0.02%以下、Zr:0.02%以下
TiとZrは、MnSの分布状態を微細化し、機械加工時の切り屑の破砕性を向上させるので、そのために含有させる元素である。しかし、過剰に含有させても効果が飽和するとともに経済的に不利となるので、その上限を0.02%とする。
Ti: 0.02% or less, Zr: 0.02% or less Ti and Zr are elements to be included for minimizing the distribution of MnS and improving the friability of chips during machining. However, even if it is contained excessively, the effect is saturated and it is economically disadvantageous, so the upper limit is made 0.02%.

Pb:0.3%以下、Bi:0.3%以下
PbとBiは、いずれも被削性を向上させるので、被削性をさらに向上させる場合に必要に応じて含有させる元素である。しかし、過剰に含有させると強度や熱間加工性を低下させるので、その上限を0.3%以下とする。
Pb: 0.3% or less, Bi: 0.3% or less
Since both Pb and Bi improve machinability, Pb and Bi are elements to be contained as necessary when further improving machinability. However, an excessive content lowers the strength and hot workability, so the upper limit is made 0.3% or less.

0.6≦Ceq≦0.85
ただし、Ceq=C+0.07×Si+0.16×Mn+0.61×P
+0.19×Cu+0.17×Ni+0.2 ×Cr
Ceqは、非調質鋼の鍛造後硬さを指標する値であり、この値を調節することにより鍛造後の硬さを管理することができるものである。このCeqを0.6以上にするのは、0.6未満では硬さが低過ぎるて強度が不足するとともに、衝撃遷移温度が低下して−60℃以下での破断分離特性が低下するからである。またその上限を0.85とするのは、Ceqが高過ぎると室温での靱性が低下するとともに、硬くなり過ぎて被削性も低下するからである。
0.6 ≦ Ceq ≦ 0.85
However, Ceq = C + 0.07 × Si + 0.16 × Mn + 0.61 × P
+ 0.19 × Cu + 0.17 × Ni + 0.2 × Cr
Ceq is a value indicating the hardness of the non-heat treated steel after forging, and the hardness after forging can be controlled by adjusting this value. The reason why Ceq is set to 0.6 or more is that if it is less than 0.6, the hardness is too low and the strength is insufficient, and the impact transition temperature is lowered, and the fracture separation characteristics at −60 ° C. or less are deteriorated. is there. Further, the upper limit is set to 0.85 because if Ceq is too high, the toughness at room temperature decreases, and the hardness becomes too hard, and the machinability also decreases.

0≦TTr≦1.5
ただし、TTr=(C+0.8 ×Si+5 ×P)−0.5×(Mn+Cr+Cu+Ni)
衝撃遷移温度は、上記のように硬さだけでなく合金元素の影響を受けて変化するものであり、C、Si及びPの含有量の増加によって上昇し、Mn、Cr、Cu及びNiの増加によって低下するものである。TTrを0以上にするのは、0未満では衝撃遷移温度が低下して─60℃以下で破断分離特性が低下するからである。すなわち、シャルピー衝撃値が5J/cm2 以下にならないからである。またその上限を1.5とするのは、TTrが高過ぎると衝撃遷移温度が高くなり過ぎて室温での靱性が低下するからである。すなわちシャルピー衝撃値が10J/cm2 以上にならないからである。
0 ≦ T Tr ≦ 1.5
However, T Tr = (C + 0.8 × Si + 5 × P) −0.5 × (Mn + Cr + Cu + Ni)
As described above, the impact transition temperature changes under the influence of not only the hardness but also the alloying elements, and rises due to the increase in the contents of C, Si and P, and the increase in Mn, Cr, Cu and Ni. Is reduced by The reason why T Tr is set to 0 or more is that if it is less than 0, the impact transition temperature decreases, and if it is less than or equal to 60 ° C., the fracture separation characteristics deteriorate. That is, the Charpy impact value does not become 5 J / cm 2 or less. The upper limit is set to 1.5 because if T Tr is too high, the impact transition temperature becomes too high, and the toughness at room temperature decreases. That is, the Charpy impact value does not become 10 J / cm 2 or more.

本発明の低温で破断分離が容易な非調質鋼及び低温で破断分離する勘合部材は、上記理由により上記成分組成の範囲内であり、かつ上記2つの式を満たし、残部をFe及び不可避不純物とすものである。   The non-heat treated steel which is easily fracture-separated at low temperature and the mating member which fracture-separates at low temperature according to the present invention are within the range of the above component composition for the above-mentioned reason, and satisfy the above two formulas, and the balance is Fe and inevitable impurities. That is.

次に、本発明の実施例を説明する。
実施例1
下記表1に示す成分組成の本発明例及び比較例の鋼を溶製したのち造塊し、熱間鍛造を行って50mm角の鍛造素材とし、これを1200℃で60分加熱した後直径22mmの丸棒に熱間鍛造を行い、重ね合わないように適当な間隔をおいて床に放置して室温まで冷却した。この丸棒より硬さ試験片、平行部径8mmの小野式回転曲げ疲労試験片及びJIS4号衝撃試験片を切り出し試験に供した。
Next, examples of the present invention will be described.
Example 1
After ingoting the steels of the present invention examples and comparative examples having the component compositions shown in Table 1 below, they were ingot, hot forged to form a 50 mm square forged material, which was heated at 1200 ° C. for 60 minutes and then 22 mm in diameter. Was subjected to hot forging and allowed to cool to room temperature by leaving it on the floor at appropriate intervals so as not to overlap. From this round bar, a hardness test piece, an Ono-type rotary bending fatigue test piece having a parallel part diameter of 8 mm, and a JIS No. 4 impact test piece were cut out and subjected to a test.

硬さは、鍛造した22mmの丸棒の1/2R部の硬さをロックウェル硬度計を用いて室温で測定した。その結果を表2に示す。
疲労試験は、上記試験片を用いて小野式回転曲げ疲労試験機を用いて室温で実施した。その結果を表2に示す。
衝撃試験は、上記試験片を用いてシャルピー衝撃試験機を用いて室温と−60℃で実施した。その結果を表2に示す。










The hardness was measured at room temperature using a Rockwell hardness tester by measuring the hardness of a 1 / 2R part of a forged 22 mm round bar. Table 2 shows the results.
The fatigue test was performed at room temperature using the above-mentioned test piece using an Ono-type rotary bending fatigue tester. Table 2 shows the results.
The impact test was carried out at room temperature and at -60 ° C. using a Charpy impact tester using the test pieces. Table 2 shows the results.










Figure 2004183094
Figure 2004183094

Figure 2004183094
Figure 2004183094

表2の結果によると、本発明例は、硬さが97.3〜103.3HRB、疲れ限度が411〜559MPa、またシャルピー衝撃値(以下、「衝撃値」という。)が室温で13〜20J/cm2 、−60℃で2〜5J/cm2 であった。これらは、いずれも硬さが100HRB前後であり、疲れ限度が410MPa以上であり、また衝撃値がコンロッドなどに必要な室温の衝撃値である10J/cm2 以上であり、かつ−60℃で変形なく容易に破断分離できる5J/cm2 以下であった。 According to the results in Table 2, the inventive examples have a hardness of 97.3 to 103.3 HRB, a fatigue limit of 411 to 559 MPa, and a Charpy impact value (hereinafter referred to as "impact value") of 13 to 20 J at room temperature. / Cm 2 , 2 to 5 J / cm 2 at -60 ° C. Each of them has a hardness of about 100 HRB, a fatigue limit of 410 MPa or more, an impact value of 10 J / cm 2 or more which is a room temperature impact value required for connecting rods, etc., and is deformed at -60 ° C. It was 5 J / cm 2 or less that could be easily broken and separated.

これに対して、C又はSi含有量が本発明より少ない比較例A及びCは、室温での衝撃値が本発明例より高いが、硬さ及び疲れ限度が本発明例より低く、また−60℃での衝撃値が変形なく容易に破断分離できる衝撃値(5J/cm2 )より高い8J/cm2 又は9J/cm2 であった。
C含有量が本発明より多く、Ceqが本発明より高い比較例Bは、硬さ及び疲れ限度が本発明例と同程度であり、−60℃での衝撃値が変形なく容易に破断分離できる衝撃値以下であったが、室温での衝撃値がコンロッドなどに必要な衝撃値(10J/cm2 )以下の9J/cm2 であった。
On the other hand, Comparative Examples A and C having a lower C or Si content than the present invention have a higher impact value at room temperature than the present invention, but have a lower hardness and a lower fatigue limit than the present invention, and have a -60 level. The impact value at 8 ° C. was 8 J / cm 2 or 9 J / cm 2 , which was higher than the impact value (5 J / cm 2 ) at which break-off could be easily performed without deformation.
Comparative Example B, in which the C content is higher than the present invention and the Ceq is higher than the present invention, has the same hardness and fatigue limit as those of the present invention, and the impact value at −60 ° C. can be easily separated by breaking without deformation. Although the impact value was not more than the impact value, the impact value at room temperature was 9 J / cm 2 which was less than the impact value (10 J / cm 2 ) required for connecting rods and the like.

Si又はP含有量が本発明より多く、Ceq及びTTrが本発明より高い比較例D及びGは、硬さ及び疲れ限度が本発明例より高く、−60℃での衝撃値が変形なく容易に破断分離できる衝撃値以下であったが、室温での衝撃値がコンロッドなどに必要な衝撃値以下の8J/cm2 又は9J/cm2 であった。
Mn又はCr含有量が本発明より多い比較例E及びIは、硬さが本発明例より高く、組織がベイナイトであるため、硬さが高く、また被削性も著しく低下するので、コンロッドなどの機械部品には適していなことが明らかであるので、疲れ限度及び衝撃値を測定しなかった。
Comparative Examples D and G, which have a higher Si or P content than the present invention and higher Ceq and T Tr than the present invention, have higher hardness and fatigue limit than the present invention, and the impact value at −60 ° C. is easy without deformation. The impact value at room temperature was 8 J / cm 2 or 9 J / cm 2 , which was less than the impact value required for a connecting rod or the like.
Comparative Examples E and I having a Mn or Cr content higher than that of the present invention have higher hardness than the present invention, and have a high hardness and a significantly reduced machinability because the structure is bainite. The fatigue limits and impact values were not measured because they were apparently not suitable for the mechanical parts.

P含有量が本発明より少ない比較例Fは、硬さが本発明例と同程度であり、室温での衝撃値が本発明例より高いが、疲れ限度が本発明例より低く、また−60℃での衝撃値が変形なく容易に破断分離できる衝撃値より高い12J/cm2 であった。
S含有量が本発明より多い比較例Hは、硬さが本発明例と同程であり、また室温での衝撃値がコンロッドなどに必要な衝撃値以上であり、かつ−60℃で変形なく容易に破断分離できる衝撃値以下であったが、疲れ限度が本発明例より低かった。
Comparative Example F, which has a lower P content than the present invention, has the same hardness as the present invention example, and has a higher impact value at room temperature than the present invention example, but has a lower fatigue limit than the present invention example and -60. The impact value at 12 ° C. was 12 J / cm 2 , which was higher than the impact value at which break-off could be easily performed without deformation.
Comparative Example H having an S content higher than that of the present invention has hardness similar to that of the present invention, and has an impact value at room temperature equal to or higher than the impact value required for connecting rods and the like, and has no deformation at -60 ° C. Although it was less than the impact value that can be easily broken and separated, the fatigue limit was lower than that of the examples of the present invention.

s−Al又はN含有量が本発明より少ない比較例J及びKは、硬さが本発明例と同程であり、−60℃での衝撃値が変形なく容易に破断分離できる衝撃値以下であったが、疲れ限度が本発明例より低く、また室温での衝撃値がコンロッドなどに必要な衝撃値以下の9J/cm2 又は8J/cm2 であった。
Trが本発明より高い比較例Lは、硬さ及び疲れ限度が本発明例と同程度であり、また−60℃での衝撃値が変形なく容易に破断分離できる衝撃値以下であったが、室温での衝撃値がコンロッドなどに必要な衝撃値以下の8J/cm2 であった。
Comparative Examples J and K in which the s-Al or N content is smaller than that of the present invention have hardness similar to that of the present invention, and have an impact value at −60 ° C. which is equal to or less than an impact value at which break-off can be easily performed without deformation. However, the fatigue limit was lower than that of the present invention, and the impact value at room temperature was 9 J / cm 2 or 8 J / cm 2 , which was lower than the impact value required for connecting rods and the like.
Comparative Example L, whose T Tr was higher than that of the present invention, had the same hardness and fatigue limit as those of the present invention, and the impact value at −60 ° C. was equal to or less than the impact value that could be easily broken and separated without deformation. The impact value at room temperature was 8 J / cm 2 which was less than the impact value required for connecting rods and the like.

Trが本発明より低い比較例Mは、室温での衝撃値がコンロッドなどに必要な衝撃値以上であったが、硬さ及び疲れ限度が本発明例より低く、−60℃での衝撃値も変形なく容易に破断分離できる衝撃値以上の10J/cm2 であった。
C含有量が高く、O含有量が本発明例より少なく、Caを含有しない従来鋼(JIS S45C) の比較例Nは、室温での衝撃値がコンロッドなどに必要な衝撃値以上であり、硬さが本発明例と同程度であったが、疲れ限度が本発明例より低く、また−60℃での衝撃値が変形なく容易に破断分離できる衝撃値以上の8J/cm2 であった。
Comparative Example M, in which T Tr was lower than that of the present invention, had an impact value at room temperature equal to or higher than the impact value required for a connecting rod or the like, but had a lower hardness and fatigue limit than those of the present invention, and an impact value at −60 ° C. Also, it was 10 J / cm 2 or more, which is equal to or higher than the impact value that can be easily broken and separated without deformation.
Comparative Example N, which is a conventional steel (JIS S45C) having a high C content, a low O content and less Ca than the present invention, has an impact value at room temperature higher than the impact value required for connecting rods and the like. However, the fatigue limit was lower than that of the example of the present invention, and the impact value at −60 ° C. was 8 J / cm 2 , which was equal to or more than the impact value at which the sample could be easily broken and separated without deformation.

Trが本発明より低く、Vを含有し、またCaを含有しない従来鋼(S35VC)の比較例Oは、室温での衝撃値がコンロッドなどに必要な衝撃値以上であり、また硬さも本発明例と同程度であったが、疲れ限度が本発明例より低く、また−60℃での衝撃値が変形なく容易に破断分離できる衝撃値以上の11J/cm2 であった。 The comparative example O of the conventional steel (S35VC) having a lower T Tr than the present invention, containing V, and not containing Ca has an impact value at room temperature that is higher than the impact value required for connecting rods and the like. Although it was almost the same as the invention example, the fatigue limit was lower than that of the invention example, and the impact value at −60 ° C. was 11 J / cm 2 , which was equal to or more than the impact value at which break-off could be easily performed without deformation.

実施例2
本発明例1及び比較例Oの非調質鋼を用いてコンロッドを熱間鍛造をした後、機械加工で製品に仕上げ、大端部の破断分離させる位置に深さ0.5mm、先端R0.2mm、ノッチ角度60°の切り欠きを設けて液体窒素温度、−60℃及び室温で破断分離を実施し、その前後で測定した真円度の変化を表3に示す。
Example 2
After hot-forging a connecting rod using the non-heat treated steels of Inventive Example 1 and Comparative Example O, the connecting rod is finished into a product by machining, and has a depth of 0.5 mm and a tip R0. A notch with a notch angle of 2 ° and a notch angle of 60 ° was provided to perform fracture separation at liquid nitrogen temperature, −60 ° C. and room temperature. Table 3 shows changes in roundness measured before and after the breakage.

Figure 2004183094
Figure 2004183094

本発明例11は、液体窒素温度はもちろんのこと、−60℃での破断分離でも真円度変化は非常に小さかった。さらに室温では靱性が向上しているため今回付与したようなノッチでは容易に分離することができず、真円度変化は大きかった。これに対して、比較例Pは、液体窒素温度まで冷却しても破断分離後の真円度変化が大きく、室温では破断しなかった。   In Inventive Example 11, the change in roundness was very small not only at the temperature of liquid nitrogen but also at break at -60 ° C. Furthermore, at room temperature, the notch as applied this time could not be easily separated because the toughness was improved, and the change in roundness was large. On the other hand, in Comparative Example P, even when cooled to the temperature of liquid nitrogen, the roundness change after breaking and separating was large, and it did not break at room temperature.

本発明の非調質鋼及び勘合部材は、冷媒として安価なドライアイス+エタノール寒剤を用い冷却することができる─60℃以下で冷却後破断分離することができるため、冷却のコストが大幅に低下し、産業上利用することができるようになった。   The non-heat treated steel and the mating member of the present invention can be cooled by using inexpensive dry ice + ethanol cryogen as a refrigerant. Since cooling and separation can be performed after cooling at 60 ° C or less, the cost of cooling is greatly reduced. And can be used industrially.

コンロッドの形状及び破断分離して製造する方法を説明するためのコンロッドの斜視図である。It is a perspective view of the connecting rod for explaining the shape of the connecting rod, and the manufacturing method which breaks and separates. 本発明の低温で破断分離が容易な非調質鋼、一般鋼及び上記特許文献1の発明鋼の靱性と温度の関係を示すグラフである。3 is a graph showing the relationship between toughness and temperature of a non-heat treated steel, a general steel, and a steel of the invention of Patent Document 1 which are easily broken and broken at a low temperature according to the present invention. C含有量が低い鋼と高い鋼の靱性と温度の関係を示すグラフである。It is a graph which shows the relationship of the toughness and temperature of the steel with a low C content and the steel with a high C content.

符号の説明Explanation of reference numerals

1 熱間鍛造コンロッド
2 大端部
3 小端部
4 切り欠き溝
5 キャップ部
6 ロッド部











DESCRIPTION OF SYMBOLS 1 Hot forged connecting rod 2 Large end 3 Small end 4 Notch groove 5 Cap part 6 Rod part











Claims (7)

質量%で(以下同じ)、C:0.15〜0.35%、Si:0.5〜2.0%、Mn:0.5〜1.5%、P:0.03〜0.15%、S:0.01〜0.15%、Cu:0.01〜0.5%、Ni:0.01〜0.5%、Cr:0.01〜1.0%、s−Al:0.001〜0.01%、N:0.005〜0.035%、Ca:0.0001〜0.01%及びO:0.001〜0.01%を含有し、かつ下記式1及び式2を満たし、残部がFe及び不可避不純物からなることを特徴とする低温で破断分離が容易な非調質鋼。
式1・・・0.6≦Ceq≦0.85
ただし、Ceq=C+0.07×Si+0.16×Mn+0.61×P
+0.19×Cu+0.17×Ni+0.2 ×Cr
式2・・・0≦TTr≦1.5
ただし、TTr=(C+0.8 ×Si+5 ×P)−0.5×(Mn+Cr+Cu+Ni)
In mass% (the same applies hereinafter), C: 0.15 to 0.35%, Si: 0.5 to 2.0%, Mn: 0.5 to 1.5%, P: 0.03 to 0.15 %, S: 0.01 to 0.15%, Cu: 0.01 to 0.5%, Ni: 0.01 to 0.5%, Cr: 0.01 to 1.0%, s-Al: 0.001 to 0.01%, N: 0.005 to 0.035%, Ca: 0.0001 to 0.01%, and O: 0.001 to 0.01%. A non-heat-treated steel which satisfies Equation 2 and whose balance is composed of Fe and unavoidable impurities, and which is easily fracture-separated at a low temperature.
Formula 1 ... 0.6 ≦ Ceq ≦ 0.85
However, Ceq = C + 0.07 × Si + 0.16 × Mn + 0.61 × P
+ 0.19 × Cu + 0.17 × Ni + 0.2 × Cr
Equation 2 ... 0 ≦ T Tr ≦ 1.5
However, T Tr = (C + 0.8 × Si + 5 × P) −0.5 × (Mn + Cr + Cu + Ni)
上記残部のFeの一部に代えてTi:0.02%以下及びZr:0.02%以下のうらの1種又は2種を含有することを特徴とする請求項1記載の低温で破断分離が容易な非調質鋼。   The low-temperature fracture separation according to claim 1, wherein one or two of Ti: 0.02% or less and Zr: 0.02% or less are contained instead of a part of the remaining Fe. Easy non-heat treated steel. 上記残部のFeの一部に代えてPb:0.3%以下及びBi:0.3%以下のうらの1種又は2種を含有することを特徴とする請求項1又は請求項2記載の低温で破断分離が容易な非調質鋼。   3. The method according to claim 1, wherein one or two of Pb: 0.3% or less and Bi: 0.3% or less are contained in place of a part of the remaining Fe. 4. Non-heat treated steel that can be easily broken at low temperatures. C:0.15〜0.35%、Si:0.5〜2.0%、Mn:0.5〜1.5%、P:0.03〜0.15%、S:0.01〜0.15%、Cu:0.01〜0.5%、Ni:0.01〜0.5%、Cr:0.01〜1.0%、s−Al:0.001〜0.01%、N:0.005〜0.035%、Ca:0.0001〜0.01%及びO:0.001〜0.01%を含有し、かつ下記式1及び式2を満たし、残部がFe及び不可避不純物からなることを特徴とする低温で破断分離する勘合部材。
式1・・・0.6≦Ceq≦0.85
ただし、Ceq=C+0.07×Si+0.16×Mn+0.61×P
+0.19×Cu+0.17×Ni+0.2 ×Cr
式2・・・0≦TTr≦1.5
ただし、TTr=(C+0.8 ×Si+5 ×P)−0.5×(Mn+Cr+Cu+Ni)
C: 0.15 to 0.35%, Si: 0.5 to 2.0%, Mn: 0.5 to 1.5%, P: 0.03 to 0.15%, S: 0.01 to 0.15%, Cu: 0.01 to 0.5%, Ni: 0.01 to 0.5%, Cr: 0.01 to 1.0%, s-Al: 0.001 to 0.01% , N: 0.005 to 0.035%, Ca: 0.0001 to 0.01%, and O: 0.001 to 0.01%, and satisfy the following formulas 1 and 2, with the balance being Fe And a mating member that breaks and separates at a low temperature, characterized by being made of unavoidable impurities.
Formula 1 ... 0.6 ≦ Ceq ≦ 0.85
However, Ceq = C + 0.07 × Si + 0.16 × Mn + 0.61 × P
+ 0.19 × Cu + 0.17 × Ni + 0.2 × Cr
Equation 2 ... 0 ≦ T Tr ≦ 1.5
However, T Tr = (C + 0.8 × Si + 5 × P) −0.5 × (Mn + Cr + Cu + Ni)
上記残部のFeの一部に代えてTi:0.02%以下及びZr:0.02%以下のうらの1種又は2種を含有することを特徴とする請求項1記載の低温で破断分離する勘合部材。   The low-temperature fracture separation according to claim 1, wherein one or two of Ti: 0.02% or less and Zr: 0.02% or less are contained instead of a part of the remaining Fe. Mating member to do. 上記残部のFeの一部に代えてPb:0.3%以下及びBi:0.3%以下のうらの1種又は2種を含有することを特徴とする請求項4又は請求項5記載の低温で破断分離する勘合部材。   6. The method according to claim 4, wherein one or two of Pb: 0.3% or less and Bi: 0.3% or less are contained instead of a part of the remaining Fe. A mating member that breaks and separates at low temperatures. 上記勘合部材がエンジン用コンロッドであることを特徴とする請求項4乃至請求項6のいずれか1項記載の低温で破断分離する勘合部材。





7. The mating member according to claim 4, wherein the mating member is a connecting rod for an engine.





JP2003356201A 2002-11-20 2003-10-16 Non-heat treated steel for fracture separation at low temperature and fitting member made of this non-heat treated steel Expired - Fee Related JP4346404B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003356201A JP4346404B2 (en) 2002-11-20 2003-10-16 Non-heat treated steel for fracture separation at low temperature and fitting member made of this non-heat treated steel
US10/716,512 US20040131494A1 (en) 2002-11-20 2003-11-20 Microalloyed steel easy to separate by fracture splitting at low temperature and fitting member produced through separation by fracture splitting at low temperature

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002336047 2002-11-20
JP2003356201A JP4346404B2 (en) 2002-11-20 2003-10-16 Non-heat treated steel for fracture separation at low temperature and fitting member made of this non-heat treated steel

Publications (2)

Publication Number Publication Date
JP2004183094A true JP2004183094A (en) 2004-07-02
JP4346404B2 JP4346404B2 (en) 2009-10-21

Family

ID=32684168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003356201A Expired - Fee Related JP4346404B2 (en) 2002-11-20 2003-10-16 Non-heat treated steel for fracture separation at low temperature and fitting member made of this non-heat treated steel

Country Status (2)

Country Link
US (1) US20040131494A1 (en)
JP (1) JP4346404B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104492907A (en) * 2014-12-17 2015-04-08 中国兵器科学研究院宁波分院 Efficient cryogenic expansion breaking processing method used for positioning faces of connecting rod cover and connecting rod body of high-strength high-toughness steel connecting rod
CN106223190A (en) * 2016-08-31 2016-12-14 中铁第四勘察设计院集团有限公司 A kind of bridge steel support without the resistance to sea atmosphere corrosion of application
WO2017110883A1 (en) * 2015-12-25 2017-06-29 新日鐵住金株式会社 Steel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006041146A1 (en) * 2006-09-01 2008-03-06 Georgsmarienhütte Gmbh Steel and processing methods for the manufacture of high-strength fracture-breakable machine components
KR101561008B1 (en) * 2014-12-19 2015-10-16 주식회사 포스코 Hot dip galvanized and galvannealed steel sheet having higher hole expansion ratio, and method for the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2742448B1 (en) * 1995-12-14 1998-01-16 Ascometal Sa STEEL FOR THE MANUFACTURE OF SECABLE MECHANICAL PARTS AND OBTAINED PART

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104492907A (en) * 2014-12-17 2015-04-08 中国兵器科学研究院宁波分院 Efficient cryogenic expansion breaking processing method used for positioning faces of connecting rod cover and connecting rod body of high-strength high-toughness steel connecting rod
WO2017110883A1 (en) * 2015-12-25 2017-06-29 新日鐵住金株式会社 Steel
KR20180087371A (en) 2015-12-25 2018-08-01 신닛테츠스미킨 카부시키카이샤 River
JPWO2017110883A1 (en) * 2015-12-25 2018-10-11 新日鐵住金株式会社 steel
CN106223190A (en) * 2016-08-31 2016-12-14 中铁第四勘察设计院集团有限公司 A kind of bridge steel support without the resistance to sea atmosphere corrosion of application

Also Published As

Publication number Publication date
JP4346404B2 (en) 2009-10-21
US20040131494A1 (en) 2004-07-08

Similar Documents

Publication Publication Date Title
CN112567061B (en) Steel material, forged heat-treated product, and method for producing forged heat-treated product
JP6614393B2 (en) Non-tempered steel bar
JP4415219B2 (en) Age hardened steel
JP2636816B2 (en) Alloy tool steel
JP2002501985A (en) Steel and method for producing divisible engineering parts
JP3893889B2 (en) Non-tempered steel for hot forging that can be easily separated by fracture
JP4396561B2 (en) Induction hardening steel
JPH09111412A (en) Non-heat treated steel having high strength, high yield ratio, and low ductility
JP3235442B2 (en) High strength, low ductility non-heat treated steel
JP2009221590A (en) Fracture split connecting rod, and non-heat treated steel used therefor
JP2004183094A (en) Nonheat-treated steel easily fractured and separated at low temperature, and engaged member fractured and separated at low temperature
WO2016194938A1 (en) Hot forging steel material
JPH11286746A (en) Low ductility non-heat treated steel excellent in machinability
JPH0555585B2 (en)
JPS5945752B2 (en) Strong precipitation hardening austenitic heat resistant steel
JPH09176786A (en) Non-heat treated steel with high strength and low ductility
JP2008144211A (en) V-containing non-heat treated steel
JP3368735B2 (en) High strength, low ductility non-heat treated steel
JPH08291373A (en) High strength non-heat treated steel for hot forging easily capable or breaking separation
JP2017179475A (en) Molding component for breaking separation type connecting rod, connecting rod and manufacturing method of the connecting rod
JP4302480B2 (en) High hardness steel with excellent cold workability
JP3713806B2 (en) Manufacturing method of high-strength connecting rod made of non-tempered steel and easy to break and separate
JPH09291344A (en) Low hardness martensitic stainless steel
JPH0931594A (en) Non-heat treated steel with high strength and low ductility
JPH0797656A (en) Cold forging steel

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060815

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060815

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090714

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140724

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees