JP3713806B2 - Manufacturing method of high-strength connecting rod made of non-tempered steel and easy to break and separate - Google Patents

Manufacturing method of high-strength connecting rod made of non-tempered steel and easy to break and separate Download PDF

Info

Publication number
JP3713806B2
JP3713806B2 JP11405396A JP11405396A JP3713806B2 JP 3713806 B2 JP3713806 B2 JP 3713806B2 JP 11405396 A JP11405396 A JP 11405396A JP 11405396 A JP11405396 A JP 11405396A JP 3713806 B2 JP3713806 B2 JP 3713806B2
Authority
JP
Japan
Prior art keywords
connecting rod
less
strength connecting
amount
break
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11405396A
Other languages
Japanese (ja)
Other versions
JPH09268345A (en
Inventor
聡 武本
貞行 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP11405396A priority Critical patent/JP3713806B2/en
Publication of JPH09268345A publication Critical patent/JPH09268345A/en
Application granted granted Critical
Publication of JP3713806B2 publication Critical patent/JP3713806B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【産業上の利用分野】
【0001】
本発明は、高強度コンロッドの製造方法に関する。詳しくは、自動車エンジンのような往復動内燃機関のコネクティングロッド(この明細書では「コンロッド」と略称する)を、鍛造によって成形し、鍛造品を2個以上の部品に破断分離したのち組み合わせて使用するコンロッドの製造方法であって、切欠きを設けて衝撃荷重を加え、この切欠きを起点にして容易に破断分離をさせる手法を採用した製造方法に関する。
【0002】
【従来の技術】
従来、コンロッドは、最終形状に一体鍛造した成形品に、必要によっては仕上げの機械加工を施したのち、機械加工を行なって、ロッド本体とカップ部分との2個の部材に分離し、それらを再度組み合わせることにより製造していた。この方法は、切断部分に切り代として余分な材料を要するとともに、切断後、内面を切削または研磨して真円に仕上げる必要があるから、製造に多大な時間を要する上、コストも高いものになっていた。
【0003】
こうした問題を解決する手段の一つとして、粉末焼結鍛造が提案されているが、粉末焼結鍛造自体が複雑なプロセスであり、生産性が低いから、コストの低減にはつながらない。
【0004】
一方、破断分離には固有の問題があった。それは、一般の溶製材を熱間鍛造して得られる部品は、機械構造部品として必要とされる25〜35HRCの硬さ範囲では高い靭性を有しているため、破断による分離を行なうと、破断面の一部に、衝撃試験時に見られるシアーリップのような大きな塑性変形が生じ、破断分離ままでは破面を正確に密着させることが困難である、という問題である。
【発明の開示】
【発明が解決しようとする課題】
【0005】
本発明の目的は、製造に要する時間を短縮し、材料の歩留まりを向上させることを意図して、焼入れ−焼戻しの熱処理を加える必要がない非調質鋼を使用し、溶製材を熱間鍛造により一体の部品に成形し、機械加工による切断でなく、破断による分離で前記のロッド本体とカップ部分とに分離することができるようにした、高強度のコンロッドの製造方法を提供することにある。
【課題を解決するための手段】
【0006】
本発明の高強度コンロッドの製造方法は、質量%で、C:0.35〜0.60%、Si:0.01〜2.00%、Mn:0.10〜0.80%、P:0.05〜0.20%、Cr:0.10〜0.50%およびV:0.10〜0.50%を含有し、残部Feおよび不純物からなる合金組成の高強度コンロッド用非調質鋼を材料として使用し、熱間鍛造によりコンロッド素材を成形し、冷却後にこの素材に応力集中係数が2以上の切欠き溝を切削加工または塑性加工により設け、衝撃荷重を加えて切欠き溝を起点に素材を破断して2個の部品に分離させることを特徴とする。最後に破面を合わせてコンロッドを形成することは、いうまでもない。
【0007】
本発明の高強度コンロッドの製造方法に使用する鋼は、被削性をより高くするために必要であれば、上記の合金成分に加え、重量%で、Pb:0.30%以下、S:0.20%以下、Te:0.30%以下、Ca:0.01%以下およびBi:0.30%以下の1種または2種以上を含んでいてもよい。
【発明の効果】
【0008】
本発明の高強度コンロッドの製造方法によるときは、衝撃荷重を加えたときに、切欠きを起点とする破断が好適に進行し、鍛造品を容易に2個の部品に分離させることができる。破断分離した破面の塑性変形量は小さく、したがって破面の密着性もよい。
【0009】
本発明の高強度コンロッド製造の材料とする、破断分離が容易な非調質鋼における、各合金成分のはたらきと、組成範囲(重量%)の限定理由について説明する。
【0010】
C:0.35〜0.60%
Cは鍛造品の強度を確保するのに有効な元素であり、十分な効果を得るためには0.35%以上のCを含有させることが必要である。しかし、多すぎると硬さが高くなりすぎて被削性が低下するので、0.60%以下にする必要がある。
【0011】
Si:0.01〜2.00%
Siは鋼の溶製時に脱酸作用および脱硫作用をするとともに、フェライト中に固溶して、破断分離時に塑性変形を引き起こす主因である、軟質なフェライト相の強度を向上させることによって塑性変形量を低減させ、破断面の密着性を向上させるのに役立つ。含有量が多すぎると、熱間加工性および硬さが高くなりすぎて被削性を低くするので、2.00%以下とすることが必要である。好ましい範囲は、0.5〜1.5%である。
【0012】
Mn:0.10〜0.80%、Cr:0.10〜0.50%
MnおよびCrは、パーライト部分の靭性を高める働きをもつ元素である。しかし、破断分離を行なう場合には、パーライトの靭性は低いほうが破断面の塑性変形が少なく、密着性が高くて好ましいため、上限をそれぞれ0.10〜0.80%、0.10〜0.50%とした。
【0013】
P:0.05〜0.20%
Pは粒界への偏析により靭性を低下させる元素であるとして、その含有量は低く抑えられるのが一般であるが、破断分離を行なう本発明においては、塑性変形量を抑え、破断面の密着性を向上させる元素として非常に有効に作用するため、積極的な添加を行っている。添加量があまり多くない場合は疲れ強さを向上させる作用もあるが、多量に添加すると疲れ限度を低下させる。そこで、0.05〜0.20%の範囲から添加量を選択する。
【0014】
V:0.10〜0.50%
VはSiと同様にフェライトを強化する元素であり、破断面の密着性を向上させる。Vはまた、疲労強度を大きく向上させる元素でもあり、これらの効果を得るためには0.10%以上を添加する必要がある。しかし、多量の添加は経済的に不利となるため、0.50%を上限として設けた。
【0015】
Pb:0.30%以下、S:0.20%以下、Te:0.30%以下、Ca:0.01%以下、Bi:0.30%以下から選ばれる1種または2種以上
これらはいずれも被削性を向上させる元素である。鍛造品に対してさらに良好な被削性が要求される場合には、必要に応じてこれらのうちから選ばれる1種または2種以上を適量添加するとよい。しかし、これらの被削性改善元素は、添加量が多すぎると熱間加工性や疲れ限度を低下させるので、添加量は、Pbは0.30%以下、Sは0.20%以下、Teは0.30%以下、Caは0.01%以下、Biは0.30%以下とする必要がある。
【0016】
切欠き溝の応力集中係数2以上:
本発明の高強度コンロッドの製造方法に使用する非調質鋼は、破断分離が容易であって、従来の高強度コンロッド用の非調質鋼に比べて靭性は低下しており、塑性変形量は小さく、破断面の密着性は高い。しかし、破断分離に先だって切欠き溝を設ける必要があり、それがないと、破断分雌による塑性変形量は大きくなり、破断面の密着性はよくない。そこで、切欠き溝を施し、これを起点として、衝撃荷重による破断分離の進行をさせることが必要となる。切欠き溝は、破断を好適に進行させるために、大きな応力集中係数をもつ形状であることが必要であり、応力集中係数が小さいと、破断分離性および破断面の密着性の向上は望めない。後記する実施例のデータが示すように、適切な応力集中係数の値には臨界性があり、2以上でなければならないことがわかった。
【実施例】
【0017】
表1に示す合金組成をもつ、本発明に従う鋼および比較のため用いた本発明の範囲外の鋼を溶製し、インゴットに鋳造したのち熱間鍛造を行なって、50mm角の棒状の鍛造素材とした。これを1200℃で60分間加熱保持してから熱間鍛造し、コンロッドの素材形状にした。
【0018】
【表1】

Figure 0003713806
【0019】
つぎの測定および試験を行なった。結果を表2に示す。
[硬さ]
コンロッド素材の中心部の硬さをロックウェル硬度計で測定した。
[破断分離性]
室温まで放冷したコンロッド素材から厚さ15mm×幅110mmの板材を得、そこから、図1に示す形状・寸法の試験片を切り出した。すべての鋼について、切欠き溝の応力集中係数を3.5と一定にしたものを用意したほか、No.1,3,4の鋼については、2.2および1.8のものも用意した。図の矢印の方向に衝撃的に引っ張って切欠き溝を起点に破断分離させ、試験片の引張方向の塑性変形量を測定した。
[疲れ限度]
上記した50mm角の鍛造素材を、1200℃で60分間加熱保持してから熱間鍛造し、直径22mmの丸棒にしたものから平行部直径8mmの平滑回転曲げ疲労試験片を製作し、試験に供した。
[被削性]
下記の条件でドリル試験を行なって測定し、No.1を100とした場合の相対的な値をドリル加工能率とした。
工具:SKH51 送り:0.1mm/rev.
穴深さ:10mm 工具寿命判定:切削不能
【0020】
【表2】
Figure 0003713806
【0021】
表2の試験結果から、以下のことがわかる。まず、比較例のNo.Aは実施例のNo.1および2に比べてC含有量が低いため、塑性変形量が大きく疲れ強さが低い。逆に比較例のNo.Bでは、C含有量が高すぎるために硬さが高く、ドリル加工能率が低い。比較例のNo.CはSi量が高すぎるために硬さが高く、やはりドリル加工能率が低下している。
【0022】
比較例のNo.Dは実施例No.1よりもP量が少ないため、塑性変形量が大きい。比較例のNo.EはP量が多すぎるため、疲労強度が低下している。
【0023】
比較例No.FはMnを多量に含むため、また比較例No.GはCrを多量に含むため、どちらも硬さが高くなりすぎて、ドリル加工能率が低い。また、MnおよびCr、とくに後者を大量に含有していてパーライトの靭性が高いため、硬さが高いにもかかわらず、塑性変形量が大きい。比較例No.HはV含有量が少ないため、No.2と比べて塑性変形量が大きく、また疲れ限度が低下している。
【0024】
Pbを過剰に添加した比較例No.1は、他の合金元素をほぼ同一のレベルで含有する実施例No.1に比べて疲れ限度が著しく低い。このことから、Pb,S,Te,Ca,Biなどの被削性改善元素の過剰な添加は好ましくないことがわかる。
【0025】
切欠き溝の応力集中係数を変動させた例についてみると、実施例のNo.1および3において、切欠き溝の応力集中係数を2.2および3.5とした場合の塑性変形量は小さい(0.2mm以内)が、1.8とした場合は、塑性変形量が大きくなる(5mm内外)。この傾向は、実施例のNo.1に対してCおよびPの含有量を増加させて破断分離性を向上させた実施例No.4においても同様であり、いっそう顕著であるとさえいえる。こうした事実は、切欠き溝の応力集中係数が1.8から2.2に高まる領域において、破断分離性の臨界的な変化があることを物語っており、これが、応力集中係数を2以上と定めた理由である。
【0026】
実施例のNo.1〜No.7においては、実用的な硬さ範囲、つまり25HRC〜35HRCで、疲れ限度、塑性変形量ともに、比較例のNo. A〜No. Iよりもすぐれた結果が得られている。実施例No.5〜No.7をみれば、Pb,S,Caの適度な添加が、疲れ限度を大きく低下させることなく、被削性を改善していることが分かる。
【図面の簡単な説明】
【0027】
【図1】破断分離性を試験するための試験片の形状・寸法を示す斜視図。[Industrial application fields]
[0001]
The present invention relates to a method for manufacturing a high-strength connecting rod. Specifically, a connecting rod of a reciprocating internal combustion engine such as an automobile engine (abbreviated as “connecting rod” in this specification) is formed by forging, and the forged product is separated into two or more parts and used in combination. The present invention relates to a manufacturing method of a connecting rod that employs a technique in which a notch is provided, an impact load is applied, and a fracture separation is easily performed with the notch as a starting point.
[0002]
[Prior art]
Conventionally, the connecting rod is formed by integrally forging the final shape, and if necessary, finishing machining is performed, and then machining is performed to separate the rod body and the cup portion into two members. It was manufactured by combining again. This method requires extra material as a cutting allowance for the cut portion, and after cutting, it is necessary to cut or polish the inner surface to finish it into a perfect circle. It was.
[0003]
As one of means for solving these problems, powder sintering forging has been proposed, but since powder sintering forging itself is a complicated process and productivity is low, it does not lead to cost reduction.
[0004]
On the other hand, there is a problem inherent to break separation. This is because parts obtained by hot forging a general melted material have high toughness in the hardness range of 25 to 35 HRC required as mechanical structural parts. A large plastic deformation such as a shear lip observed during an impact test occurs in a part of the cross section, and it is difficult to accurately bring the fracture surface into close contact with fracture separation.
DISCLOSURE OF THE INVENTION
[Problems to be solved by the invention]
[0005]
The object of the present invention is to use a non-heat treated steel that does not need to be subjected to a quenching-tempering heat treatment, with the aim of shortening the time required for production and improving the yield of the material. An object of the present invention is to provide a manufacturing method of a high-strength connecting rod that can be formed into an integral part and can be separated into the rod body and the cup portion by separation by breaking instead of cutting by machining. .
[Means for Solving the Problems]
[0006]
The manufacturing method of the high-strength connecting rod of the present invention is, in mass%, C: 0.35 to 0.60%, Si: 0.01 to 2.00%, Mn: 0.10 to 0.80%, P: Non-refining for high-strength connecting rods having an alloy composition containing 0.05 to 0.20%, Cr: 0.10 to 0.50% and V: 0.10 to 0.50%, the balance being Fe and impurities Using steel as a material, a connecting rod material is formed by hot forging. After cooling, this material is provided with a notch groove with a stress concentration factor of 2 or more by cutting or plastic working, and an impact load is applied to form the notch groove. It is characterized in that the material is broken at the starting point and separated into two parts. It goes without saying that the connecting rod is formed by combining the fracture surfaces.
[0007]
If necessary to increase the machinability, the steel used in the method for producing a high-strength connecting rod according to the present invention, in addition to the above alloy components, in weight percent, Pb: 0.30% or less, S: One or two or more of 0.20% or less, Te: 0.30% or less, Ca: 0.01% or less, and Bi: 0.30% or less may be included.
【The invention's effect】
[0008]
According to the manufacturing method of the high strength connecting rod of the present invention, when an impact load is applied, the fracture starting from the notch suitably proceeds and the forged product can be easily separated into two parts. The amount of plastic deformation of the fracture surface separated by fracture is small, and therefore the adhesion of the fracture surface is good.
[0009]
The function of each alloy component and the reason for the limitation of the composition range (% by weight) in the non-heat treated steel that is easily ruptured and separated as the material for producing the high-strength connecting rod of the present invention will be described.
[0010]
C: 0.35-0.60%
C is an element effective for ensuring the strength of the forged product. In order to obtain a sufficient effect, it is necessary to contain 0.35% or more of C. However, if it is too much, the hardness becomes too high and the machinability deteriorates, so it is necessary to make it 0.60% or less.
[0011]
Si: 0.01 to 2.00%
Si undergoes deoxidation and desulfurization when steel is melted, and dissolves in ferrite to increase the strength of the soft ferrite phase, which is the main cause of plastic deformation during fracture separation. It helps to improve the adhesion of the fracture surface. If the content is too large, the hot workability and hardness become too high and the machinability is lowered, so it is necessary to set the content to 2.00% or less. A preferable range is 0.5 to 1.5%.
[0012]
Mn: 0.10 to 0.80%, Cr: 0.10 to 0.50%
Mn and Cr are elements having a function of increasing the toughness of the pearlite portion. However, when fracture separation is performed, the lower the toughness of pearlite, the less the plastic deformation of the fracture surface and the higher the adhesion, which is preferable, so the upper limits are 0.10 to 0.80% and 0.10 to 0.0, respectively. 50%.
[0013]
P: 0.05-0.20%
P is an element that lowers toughness due to segregation at grain boundaries, and its content is generally kept low. However, in the present invention in which fracture separation is performed, the amount of plastic deformation is suppressed and adhesion of fractured surfaces is suppressed. Since it acts very effectively as an element for improving the properties, it is actively added. When the addition amount is not too large, there is an effect of improving fatigue strength, but when added in a large amount, the fatigue limit is lowered. Therefore, the addition amount is selected from the range of 0.05 to 0.20%.
[0014]
V: 0.10 to 0.50%
V, like Si, is an element that strengthens ferrite and improves the adhesion of the fracture surface. V is also an element that greatly improves fatigue strength, and in order to obtain these effects, it is necessary to add 0.10% or more. However, since a large amount of addition is economically disadvantageous, the upper limit is set to 0.50%.
[0015]
One or more selected from Pb: 0.30% or less, S: 0.20% or less, Te: 0.30% or less, Ca: 0.01% or less, Bi: 0.30% or less. Both are elements that improve machinability. When better machinability is required for a forged product, an appropriate amount of one or more selected from these may be added as necessary. However, since these machinability improving elements reduce the hot workability and fatigue limit when the addition amount is too large, the addition amount is 0.30% or less for Pb, 0.20% or less for S, Te Is 0.30% or less, Ca is 0.01% or less, and Bi is 0.30% or less.
[0016]
Notch groove stress concentration factor of 2 or more:
The non-heat treated steel used in the method for producing a high-strength connecting rod of the present invention is easy to break and separate, and the toughness is lower than the conventional non-heat treated steel for high-strength connecting rod, and the amount of plastic deformation Is small and the adhesion of the fracture surface is high. However, it is necessary to provide a notch groove prior to break separation, and without it, the amount of plastic deformation by the broken female increases, and the adhesion of the fracture surface is not good. Therefore, it is necessary to provide a notch groove and to start breakage separation by impact load from this point. The notch groove needs to have a shape with a large stress concentration factor in order to allow the breakage to proceed appropriately. If the stress concentration factor is small, improvement in fracture separation and fracture surface adhesion cannot be expected. . As shown in the data of Examples described later, it has been found that an appropriate stress concentration factor value is critical and must be 2 or more.
【Example】
[0017]
The steel composition according to the present invention having the alloy composition shown in Table 1 and the steel outside the scope of the present invention used for comparison were melted, cast into an ingot, and then hot forged to form a 50 mm square rod-shaped forging material. It was. This was heated and held at 1200 ° C. for 60 minutes, and then hot forged to form a connecting rod material.
[0018]
[Table 1]
Figure 0003713806
[0019]
The following measurements and tests were performed. The results are shown in Table 2.
[Hardness]
The hardness of the central portion of the connecting rod material was measured with a Rockwell hardness meter.
[Separation at break]
A plate material having a thickness of 15 mm and a width of 110 mm was obtained from a connecting rod material that was allowed to cool to room temperature, and a test piece having the shape and dimensions shown in FIG. 1 was cut out therefrom. For all the steels, we prepared ones with a constant stress concentration factor of notch grooves of 3.5, and for No.1, 3, 4 steels, we prepared 2.2 and 1.8 steels. . By pulling it in the direction of the arrow in the figure, it was broken and separated from the notch groove as a starting point, and the amount of plastic deformation in the tensile direction of the test piece was measured.
[Fatigue limit]
The above 50 mm square forging material was heated and held at 1200 ° C. for 60 minutes and then hot forged to produce a smooth rotating bending fatigue test piece having a parallel part diameter of 8 mm from a round bar having a diameter of 22 mm. Provided.
[Machinability]
A drill test was conducted under the following conditions, and the drilling efficiency was defined as a relative value when No. 1 was set to 100.
Tool: SKH51 Feed: 0.1 mm / rev.
Hole depth: 10mm Tool life judgment: Inability to cut [0020]
[Table 2]
Figure 0003713806
[0021]
From the test results in Table 2, the following can be understood. First, since No. A of the comparative example has a lower C content than No. 1 and No. 2 of the examples, the amount of plastic deformation is large and the fatigue strength is low. On the contrary, in No. B of the comparative example, since the C content is too high, the hardness is high and the drilling efficiency is low. No. C of the comparative example has a high hardness because the amount of Si is too high, and the drilling efficiency is also lowered.
[0022]
Since No. D of the comparative example has a smaller amount of P than Example No. 1, the amount of plastic deformation is large. Since No. E of the comparative example has too much P amount, the fatigue strength is lowered.
[0023]
Since Comparative Example No. F contains a large amount of Mn and Comparative Example No. G contains a large amount of Cr, both of them are too hard and drilling efficiency is low. In addition, since Mn and Cr, particularly the latter, are contained in large amounts and the toughness of pearlite is high, the amount of plastic deformation is large despite its high hardness. Since Comparative Example No. H has a small V content, the amount of plastic deformation is larger than that of No. 2, and the fatigue limit is lowered.
[0024]
Comparative Example No. 1 in which Pb is added excessively has a significantly lower fatigue limit than Example No. 1 containing other alloy elements at almost the same level. This shows that excessive addition of machinability improving elements such as Pb, S, Te, Ca and Bi is not preferable.
[0025]
Looking at an example in which the stress concentration coefficient of the notch groove was varied, in No. 1 and 3 of the example, the amount of plastic deformation when the stress concentration coefficient of the notch groove was 2.2 and 3.5 was small. When (1.8 mm or less) is 1.8, the amount of plastic deformation increases (5 mm inside or outside). This tendency is the same in Example No. 4 in which the content of C and P is increased with respect to No. 1 in the example to improve the break separation property, and it can be said that it is even more remarkable. These facts show that there is a critical change in fracture separability in the region where the stress concentration factor of the notch groove increases from 1.8 to 2.2, which defines the stress concentration factor as 2 or more. This is why.
[0026]
In No. 1 to No. 7 of the examples, the practical hardness range, that is, 25 HRC to 35 HRC, both the fatigue limit and the amount of plastic deformation were superior to those of Comparative Examples No. A to No. I. Has been obtained. It can be seen from Examples No. 5 to No. 7 that moderate addition of Pb, S, and Ca improves machinability without greatly reducing the fatigue limit.
[Brief description of the drawings]
[0027]
FIG. 1 is a perspective view showing the shape and dimensions of a test piece for testing fracture separability.

Claims (2)

質量%で、C:0.35〜0.60%、Si:0.01〜2.00%、Mn:0.10〜0.80%、P:0.05〜0.20%、Cr:0.10〜0.50%およびV:0.10〜0.50%を含有し、残部Feおよび不純物からなる合金組成の高強度コンロッド用非調質鋼を材料として使用し、熱間鍛造によりコンロッド素材を成形し、冷却後にこの素材に応力集中係数が2以上の切欠き溝を切削加工または塑性加工により設け、衝撃荷重を加えて切欠き溝を起点に素材を破断して2個の部品に分離させることを特徴とする高強度コンロッドの製造方法。In mass%, C: 0.35 to 0.60%, Si: 0.01 to 2.00%, Mn: 0.10 to 0.80%, P: 0.05 to 0.20%, Cr: Non-refined steel for high-strength connecting rods with an alloy composition containing 0.10 to 0.50% and V: 0.10 to 0.50%, the balance being Fe and impurities, is used as a material, and by hot forging After forming a connecting rod material, after cooling, this material is provided with a notch groove with a stress concentration factor of 2 or more by cutting or plastic working, and impact material is applied to break the material starting from the notch groove to make two parts The manufacturing method of the high intensity | strength connecting rod characterized by making it isolate | separate. 請求項1に記載の合金成分に加えて、さらにPb:0.30%以下、S:0.20%以下、Te:0.30%以下、Ca:0.01%以下およびBi:0.30%以下から選ばれる1種または2種以上を含有する合金組成の高強度コンロッド用非調質鋼を材料として使用する請求項1の高強度コンロッドの製造方法。In addition to the alloy components according to claim 1, Pb: 0.30% or less, S: 0.20% or less, Te: 0.30% or less, Ca: 0.01% or less, and Bi: 0.30 The method for producing a high-strength connecting rod according to claim 1, wherein the non-refined steel for high-strength connecting rods having an alloy composition containing one or more selected from% or less is used as a material.
JP11405396A 1996-04-02 1996-04-02 Manufacturing method of high-strength connecting rod made of non-tempered steel and easy to break and separate Expired - Fee Related JP3713806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11405396A JP3713806B2 (en) 1996-04-02 1996-04-02 Manufacturing method of high-strength connecting rod made of non-tempered steel and easy to break and separate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11405396A JP3713806B2 (en) 1996-04-02 1996-04-02 Manufacturing method of high-strength connecting rod made of non-tempered steel and easy to break and separate

Publications (2)

Publication Number Publication Date
JPH09268345A JPH09268345A (en) 1997-10-14
JP3713806B2 true JP3713806B2 (en) 2005-11-09

Family

ID=14627864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11405396A Expired - Fee Related JP3713806B2 (en) 1996-04-02 1996-04-02 Manufacturing method of high-strength connecting rod made of non-tempered steel and easy to break and separate

Country Status (1)

Country Link
JP (1) JP3713806B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3893889B2 (en) * 2001-03-21 2007-03-14 大同特殊鋼株式会社 Non-tempered steel for hot forging that can be easily separated by fracture
JP2007119819A (en) * 2005-10-26 2007-05-17 Nissan Motor Co Ltd Non-heat treated steel for connecting rod, and connecting rod
CN112296247B (en) * 2020-10-10 2022-05-06 中国重汽集团济南动力有限公司 Cooling process for manufacturing expansion-breaking connecting rod blank by using 38MnVS6 medium carbon non-quenched and tempered steel

Also Published As

Publication number Publication date
JPH09268345A (en) 1997-10-14

Similar Documents

Publication Publication Date Title
WO2004083475A1 (en) Non-quenched/tempered connecting rod and method of producing the same
EP3190199A1 (en) Non-tempered soft-nitrided component
JP5023410B2 (en) Non-tempered steel for hot forging with easy fracture separation
JP2002501985A (en) Steel and method for producing divisible engineering parts
JP3713806B2 (en) Manufacturing method of high-strength connecting rod made of non-tempered steel and easy to break and separate
EP3272896B1 (en) Age-hardenable steel, and method for manufacturing components using age-hardenable steel
JP2009221590A (en) Fracture split connecting rod, and non-heat treated steel used therefor
JP3988661B2 (en) Non-tempered steel
JP2567630B2 (en) High-fatigue strength free-cutting steel and manufacturing method thereof
JP3637375B2 (en) Manufacturing method of connecting rod
JP2003193184A (en) Broken-split type connecting rod and steel therefor
JP3720750B2 (en) Connecting rod manufacturing method and connecting rod
JP2003301238A (en) Steel for machine structural use showing excellent machinability and fracture splittability using fine sulfide
JP2739713B2 (en) High strength bolt
JPS59126718A (en) Manufacture of stel material with superior cold workability
JP4255861B2 (en) Non-tempered connecting rod and method for manufacturing the same
JP3988662B2 (en) Non-tempered steel
JPH09176785A (en) Non-heat treated steel with high strength and low ductility
CA2324605C (en) Non-heat treated, soft-nitrided steel parts
JP3456375B2 (en) High strength, low ductility non-heat treated steel
JP3887271B2 (en) High-strength non-tempered steel that can be separated by breakage and intermediate products
JP4346404B2 (en) Non-heat treated steel for fracture separation at low temperature and fitting member made of this non-heat treated steel
JPS5945752B2 (en) Strong precipitation hardening austenitic heat resistant steel
JP3623313B2 (en) Carburized gear parts
JP3988663B2 (en) Non-tempered steel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050815

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees