JP2739713B2 - High strength bolt - Google Patents

High strength bolt

Info

Publication number
JP2739713B2
JP2739713B2 JP62207324A JP20732487A JP2739713B2 JP 2739713 B2 JP2739713 B2 JP 2739713B2 JP 62207324 A JP62207324 A JP 62207324A JP 20732487 A JP20732487 A JP 20732487A JP 2739713 B2 JP2739713 B2 JP 2739713B2
Authority
JP
Japan
Prior art keywords
strength
bolt
delayed fracture
steel
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62207324A
Other languages
Japanese (ja)
Other versions
JPS6452045A (en
Inventor
好敏 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16537875&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2739713(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP62207324A priority Critical patent/JP2739713B2/en
Publication of JPS6452045A publication Critical patent/JPS6452045A/en
Application granted granted Critical
Publication of JP2739713B2 publication Critical patent/JP2739713B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、高強度であってしかも耐遅れ破壊性に優
れた内燃機関のコネクティングロッド締結用ボルトに関
するものである。 (従来の技術) 近年、内燃機関の軽量化の要求に伴い、各種構成部品
の高強度化と小型化が図られるようになってきている。
内燃機関のコネクティングロッド締結用ボルトにおいて
も、その強度の向上が強く要望されている。しかし、か
かるコネクティングロッド締結用ボルトにおいては、特
に、その引張強さが120kgf/mm2を越えるような高強度の
ものにあっては、充分な耐遅れ破壊性を付与することが
困難であった。 ところで、上記遅れ破壊は、主として湿潤環境でボル
トが使用された場合に、該ボルトへの水素の侵入・拡散
によって生ずるボルトの水素脆化が生じ、このためボル
ト部材が静的負荷を受けることにより突然に脆性的に破
壊する現象である。特に、引張強さが120〜140kgf/mm2
であるような高強度な焼戻しマルテンサイト鋼を用いた
ボルトでは、マルテンサイト変態前のオーステナイト鋼
の結晶粒界に沿ってクラックが発生しそれが伝播するこ
とが知られている。これは、該オーステナイト状態での
結晶粒界がりん,硫黄等の不純物の偏析あるいは炭化物
の析出によって脆化し、更に、使用環境より侵入する水
素に起因した脆化が重なってマルテンサイト鋼が脆化す
る現象である。従って、従来のコネクティングロッド締
結用ボルトにあっては、高強度であると同時に優れた耐
遅れ破壊性を付与することが困難であった。 (発明が解決しようとする問題点) 上記従来の高強度コネクティングロッド締結用ボルト
に使用されている焼戻しマルテンサイト鋼は、低温焼戻
処理により得られるため、引張強さが120kgf/mm2を超え
る場合は、該強度ボルトの耐遅れ破壊性が上述の如く著
しく劣化する。一方、鋼の焼戻温度を上げると耐遅れ破
壊性は改善されるものの引張強さが低下する。 すなわち、従来の技術では引張強さが120kgfmm2以上
の高強度を有すると同時に耐遅れ破壊性にも優れた高強
度ボルトを得るのは困難であるという問題点があった。 (発明の目的) 本発明は、上記の問題点に鑑みてなされたもので、強
度クラス14.9(引張強さ140〜160kgf/mm2級)の高強度
でしかも耐遅れ破壊性に優れた高強度ボルトを提供する
ことを目的とする。 (問題点を解決するための手段) この発明は、上記の問題を解決するためになされたも
のであって、重量%で、C:0.25〜0.35%、Si:0.15%以
下、Mn:0.40%以下、P:0.015%以下、S:0.005%以下、C
r:0.50〜2.00%、V:0.05〜1.50%を含み、さらに、重量
%で、0.75%を越え上限が2.00%以下とされたMoを含有
し、及びFe及び不可避不純物:残り、からなることを特
徴とする耐遅れ破壊性に優れた引張強さ140〜160kgf/mm
2の高強度ボルトを提供するものである。 高強度ボルトの鋼材の各含有元素の添加量を上述の如
く限定することにより、低C含有量によりボルトの遅れ
破壊性による劣化が避けられると共に、ボルトの耐遅れ
破壊性に悪影響を及ぼすSi,Mn,Crによる鋼の結晶粒界の
酸化が抑制され、P及びSによる粒界への偏析が抑制さ
れ、及びMo及びVによる巨大炭化物の晶出、残留が防止
されるために、高強度ボルトの耐遅れ破壊性を大幅に向
上させることができる。 以下に、本発明に係る高強度ボルトの素材鋼の成分範
囲(重量%)の限定理由について説明する。 (a) 炭素(c) Cは素材鋼に熱処理を加えることにより所要の強度を
付与するための有効な元素であり、その効果を得るため
には0.25%以上含有させることが必要である。しかし、
0.35%を超えて含有させると、特に、高強度ボルトの耐
遅れ破壊性が劣化するので0.35%以下とした。 (b) ケイ素(Si) Siは素材鋼のオーステナイト化時の高温加熱により生
ずる結晶粒界の酸化を助長する元素であり、Siは遅れ破
壊の発生起点となりうるものであるため高強度ボルトの
耐遅れ破壊性を劣化させる。従って、Siの量は低い方が
望ましく、ここではこの上限を0.15%とした。0.05%以
下とすることがより好ましい。 (c) マンガン(Mn) Mnは素材鋼の溶製時の脱酸剤として効果があると共
に、鋼の焼入れ性の向上に寄与する元素である。しか
し、MnはSiとともに焼入れ時の鋼の粒界の酸化を助長
し、高強度ボルトの耐遅れ破壊性を劣化させるので、低
いほど好ましく、特に0.30%以下とすることがより好ま
しいが、ここでは上記の積極的効果に鑑みてその上限を
0.40%とした。 (d)りん(P) Pは、一般に鋼の焼入れ効果を高めるが、オーステナ
イト化時に鋼を高温加熱する際に、オーステナイト鋼の
効果にPの偏析を生じ、粒界を脆化させて高強度ボルト
の耐遅れ破壊性を劣化させるので、0.015%以下とし
た。 (e) 硫黄(S) Sは不可避不純物であると共に、Pと同様にオーステ
ナイト化時に鋼を高温加熱する際に該オーステナイト鋼
の効果にSの偏析を生じ、粒界を脆化させて耐遅れ破壊
性を劣化させると共に、鋼中のMnと結合してMnSを形成
して高強度ボルトの耐遅れ破壊性を一層劣化させるの
で、0.005%以下とした。 (f) クロム(Cr) Crは鋼の焼入れ性の向上に寄与する元素であるので、
高強度ボルトの寸法等に応じてそのボルトの焼入れ性の
確保に適した添加量を調整するのが良い。このような観
点から、Cr添加量が0.50%以上とした。しかし、鋼への
Crの添加は、コネクティングロッド締結用ボルトを含め
た通常の機械構造用高強度部品の寸法では、2.00%まで
のCrの添加で焼入れ性の向上は十分に得られる。しか
し、添加しすぎるとSi及びMnと同時に鋼の結晶粒界の酸
化を助長として高強度ボルトの耐遅れ破壊性を劣化させ
るので、0.50〜2.00%の範囲とした。 (g) モリブテン(Mo) Moは鋼の焼入れ性の向上に寄与すると共に、結晶粒の
微細化及びオーステナイト粒界の強度向上に寄与する元
素であり、更に、焼戻しにより十分な2次硬化を得るこ
とを可能とする元素である。引張強さ140〜160kgf/mm2
の高強度で且つ耐遅れ破壊性にも優れた高強度ボルトを
得るためには、上述したように約600℃の焼戻温度でMo
炭化物の析出させ、十分なる二次硬化を生じさせる必要
がある。しかるに、Moの添加量が少ない場合は、Cは主
としてセメンタイトFe3Cの供給源となり、Mo2C等のMo炭
化物を微細析出させるのが困難となる。また、量産性を
考慮した場合、可能な限りの短時間で焼戻処理を施し、
母箱中からMo炭化物を十分に且つ効率良く微細析出させ
る必要がある。すなわち、量産性を考慮した場合、Cが
Feと反応してセメンタイトFe3Cを生成するのを極力阻止
し、全てのCがMo炭化物生成の供給源となるようにする
のが望ましく、そのためには0.75%以上のMoを添加する
必要がある。よって、Moの添加量の下限を0.75%とし
た。しかしMoを過剰に添加しても効果は向上せず、却っ
て、巨大な1次炭化物が鋼中に晶出するようになり、焼
入れにより該炭化物が鋼中に残存して高強度ボルトの靭
性が低下するので、その上限を2.00%とした。 (h) バナジウム(V) Vは焼戻しにより十分な2次硬化を得るのに有効な元
素であり、このような効果を得るためにその添加量を0.
05%以上とした。しかし、該添加量が多すぎると巨大な
1次炭化物が鋼中に晶出し、焼入れ後に残存して靭性が
低下するので、その上限を1.50%とした。 好ましくは、上述した成分要素に加えて、更にNb,Ti,
Zrを添加すると鋼中に微細な炭化物を形成し、且つ、結
晶粒を微細化させる効果があることが認められた。従っ
て、これらNb,Ti,Zrは高強度ボルトの耐遅れ破壊性の向
上に寄与する元素であるので、必要に応じてこれらの少
なくとも1種を添加するのもよい。しかし、各元素につ
いて0.20%を超えて添加してもその効果はほとんど向上
しないので、添加する場合には、各々0.20%以下とする
のがよい。 特に、上述したような組成の鋼からボルトをつくる場
合に、通常の例えば冷間加工→転造(ネジ部)→焼入れ
・焼戻し、の工程に代えて、冷間加工→焼入れ・焼戻し
→転造(ネジ部)の工程を採用することによって、転造
後にネジ部分を加工硬化させると共に残留応力を付与
し、疲労強度の大幅な向上をもたらすことができる。 (実施例) 次に、この発明の高強度ボルトを実施例により具体的
に説明する。 まず、第1表に示す化学組成から成る本発明の高強度
ボルトの鋼材A〜F及び比較列の鋼材G(SGr440H)を
それぞれ溶製し、各々直径8mmの線材に圧延した。次い
で、各線材に焼鈍を施した後、所定形状の引張試験片及
び遅れ破壊試験片に加工した。引張特性測定のための引
張試験片は、縮少JIS4号試験片の規格に従った。また、
遅れ破壊特性の測定のための遅れ破壊試験片としては、
第2図に示す曲げ型促進試験片(l1=20mm,d1=6mm,d2
=4mm,R=0.1mm)を作成した。 次に、上記の如くして得られた引張特性及び遅れ破壊
特性の試験用の各試験片について、それぞれの引張強さ
が140〜160kgf/mm2となるように所 定の熱処理を施した。すなわち、焼入温度925℃で60分
間焼入処理を施した後油冷し、次いで焼戻温度600℃で9
0分間の焼戻処理を施し、その後空冷して二次硬化させ
た。このようにして、上記出発鋼材A〜Gより得られ
た、それぞれの引張試験片について引張強さ等を、及び
それぞれの遅れ破壊試験片について遅れ破壊強度比を測
定した。その結果を第2表に示した。 上記の遅れ破壊強度比の測定に際しては第1図に示す
ように、試験片2の一端をホルダ1に取付け他端をモー
メントアーム3を介して片持曲げ荷重4を負荷として加
え、また、試験環境としては、0.1N−HClを試験片の切
欠部に滴下しながら曲げ応力を加えた。各試験片の遅れ
破壊特性は、静曲げ強度(σSB)に対する荷重付加30時
間後における強度(σ30hr)との比、すなわち遅れ破壊
強度比σ30hr/σSBで表した。 第2表に示される結果から、本発明による高強度ボル
ト用鋼材A〜Fの試験片は、高い引張強さを有している
にも拘らず、比較例G(SCr440H)と比較して、いずれ
も遅れ破壊強度比(σ30hr/σSB)において、大幅に優
れた値を示している。 次に、本発明の高強度ボルトの製造方法について説明する。はじめに、上記した化学組成の鋼を素材と
し、ボルトの粗形状に冷間加工等により予成形した後、
焼入れ・焼戻しを施し、次いで転造等の冷間塑性加工を
行って所定の、第3図に示すような寸法の、ボルト形状
に成形した。尚、上記焼入れ・焼戻しの熱処理に際して
はボルトの表面の硬さを内部よりやや軟らかくすること
が好ましい。このほんの僅かなボルト表面の硬さの低下
により耐遅れ破壊性を一層優れたものにすることができ
る。更に、熱処理後の転造加工による加工硬化及び残留
応力の付与により、疲労強さも一層向上し、ボルトの表
面硬さの低下によるネジ部の疲れ強さの低下を補うこと
が可能である。 前記鋼材A〜F及びGからコネクティングロッド締結
用ボルトを製造する方法としては、通常の工程による場
合は、ネジの転造加工を焼入れ・焼戻し等の熱処理前に
行っている。しかし、ボルトの表面の硬さをその内部硬
さよりもビッカース硬さでHv30〜70低下させる焼入れを
行ってから焼戻しを施し、その後にボルトネジ部に転造
を行う工程を採用することにより、高強度ボルトの上記
耐遅れ破壊性及び疲労特性が一層改善される。前者と後
者の場合における高強度ボルトの遅れ破壊性及び疲労特
性への影響の相違について試験を行った。ボルト試験片
としては、上記出発鋼材A,C,E,及びGに対応して、熱処
理前に転造を行ったもの(A0,C0,E0,及びG0)及び焼入
れ時にボルト表面をわずかに脱炭させ、ボルト表面の硬
さをその内部硬さよりHv30〜70低下させ、且つ熱処理後
に転造を行ったもの(A1,C1,E1,及びG1)をそれぞれ用
いた。このような測定により得られた各ボルト試験片ご
との遅れ破壊特性、疲労特性等の試験結果を第3表に示
した。 第3表に示される結果から明らかなように、本発明に
よる高強度ボルトA0,A1,C0,C1,E0,及びE1はいずれも高
い引張強さを有しながら、比較例G0,G1(SCr440H)と比
較して大幅に優れた遅れ破壊強度比(σ30hr/σSB)を
有している。 更に、第3表によれば、熱処理前に転造を行なったも
の(A0,C0,E0,及びG0)に比較して、 ボルト表面の硬さをその内部硬さより僅かに低下させ、
且つ該熱処理後に転造を行なったもの(A1,C1,E0,及びG
1)はその耐遅れ破壊性及び疲労特性が一層向上してい
ることが分かる。 尚、第4図は上記試験に基づいて、ボルトの硬さに対
する遅れ破壊強度比の関係を示したグラフである。同図
によれば、本発明の高強度ボルトA0,A1,C0,C1,E0,E1
いずれも従来ボルト(SCr400H)G0,G1よりも優れた遅れ
破壊強度比を有していることが分かる。更に、ボルトの
表面をその内部よりも僅かに低下させることにより、遅
れ破壊強度を一層向上させることができる(A1,C1,E1,G
1)。 (発明の効果) 以上詳述したように本発明によれば、重量%で、C:0.
25〜0.35%、Si:0.15%以下、Mn:0.40%以下、P:0.015
%以下、S:0.005%以下、Cr:0.50〜2.00%、V:0.05〜1.
50%を含み、さらに、重量%で、0.75%を越え上限が2.
00%以下とされたMoを含有し、及びFe及び不可避不純
物:残り、からなることを特徴とする耐遅れ破壊性に優
れた引張強さ140〜160kgf/mm2の高強度ボルトが提供さ
れる。従って、強度14.9(140〜160kgf/mm2)クラスの
高強度でありながら、しかも靭延性が良好であるうえ、
耐遅れ破壊性に優れた高強度ボルトを得ることを可能と
する効果をもたらすものである。 また、ボルトの製造に際して、ボルトの粗形状に予成
型した後、焼入れ・焼戻し等の熱処理を施し、その後に
冷間塑性加工成形を施すことにより、一層高強度で疲労
強さの向上した耐遅れ破壊性に優れた高強度ボルトを得
ることが可能となる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a connecting rod fastening bolt for an internal combustion engine having high strength and excellent delayed fracture resistance. (Prior Art) In recent years, with the demand for weight reduction of internal combustion engines, various components have been increased in strength and reduced in size.
Improvements in the strength of connecting bolt fastening bolts for internal combustion engines are also strongly desired. However, in such connecting bolt fastening bolts, it is difficult to impart sufficient delayed fracture resistance, especially in high-strength bolts having a tensile strength exceeding 120 kgf / mm 2 . . By the way, the delayed fracture is mainly caused when a bolt is used in a humid environment, hydrogen embrittlement of the bolt occurs due to penetration and diffusion of hydrogen into the bolt, and thus the bolt member receives a static load. It is a phenomenon of sudden brittle fracture. In particular, the tensile strength is 120~140kgf / mm 2
It is known that in a bolt using a high-strength tempered martensitic steel such as that described above, cracks occur along the grain boundaries of the austenitic steel before martensitic transformation and propagate. This is because the grain boundaries in the austenitic state are embrittled by segregation of impurities such as phosphorus and sulfur or the precipitation of carbides, and further, the embrittlement caused by hydrogen invading from the use environment overlaps, and the martensitic steel becomes embrittled. It is a phenomenon that does. Therefore, it has been difficult for conventional connecting rod fastening bolts to have both high strength and excellent delayed fracture resistance. (Problems to be Solved by the Invention) Since the tempered martensitic steel used in the conventional high-strength connecting rod fastening bolt is obtained by low-temperature tempering, the tensile strength exceeds 120 kgf / mm 2 . In this case, the delayed fracture resistance of the strength bolt is significantly deteriorated as described above. On the other hand, when the tempering temperature of the steel is increased, the delayed fracture resistance is improved, but the tensile strength is decreased. That is, the conventional technique has a problem that it is difficult to obtain a high-strength bolt having high tensile strength of 120 kgfmm 2 or more and also excellent in delayed fracture resistance. (Object of the Invention) The present invention has been made in view of the above problems, and has a high strength of a strength class of 14.9 (tensile strength of 140 to 160 kgf / mm class 2 ) and an excellent delayed fracture resistance. It is intended to provide bolts. (Means for Solving the Problems) The present invention has been made to solve the above-mentioned problems, and is, by weight%, C: 0.25 to 0.35%, Si: 0.15% or less, Mn: 0.40% Below, P: 0.015% or less, S: 0.005% or less, C
r: contains 0.50 to 2.00%, V: 0.05 to 1.50%, and further contains, by weight%, Mo exceeding 0.75% and having an upper limit of 2.00% or less, and Fe and unavoidable impurities: remaining. 140-160kgf / mm tensile strength with excellent delayed fracture resistance
2 provides high strength bolts. By limiting the amount of each element contained in the steel material of the high-strength bolt as described above, deterioration due to the delayed fracture of the bolt can be avoided due to the low C content, and Si, which adversely affects the delayed fracture resistance of the bolt, Oxidation of the grain boundaries of steel by Mn and Cr is suppressed, segregation at the grain boundaries by P and S is suppressed, and crystallization and retention of giant carbide by Mo and V are prevented. Can greatly improve delayed fracture resistance. Hereinafter, the reasons for limiting the component range (% by weight) of the base steel of the high-strength bolt according to the present invention will be described. (A) Carbon (c) C is an effective element for imparting a required strength by subjecting the raw steel to heat treatment, and it is necessary to contain 0.25% or more in order to obtain the effect. But,
If the content exceeds 0.35%, the delayed fracture resistance of high-strength bolts is particularly deteriorated. (B) Silicon (Si) Si is an element that promotes the oxidation of crystal grain boundaries generated by high-temperature heating during austenitization of the base steel. Since Si can be a starting point of delayed fracture, it is resistant to high-strength bolts. Deterioration of delayed fracture. Therefore, it is desirable that the amount of Si is low. Here, the upper limit is set to 0.15%. More preferably, it is set to 0.05% or less. (C) Manganese (Mn) Mn is an element that is effective as a deoxidizing agent when smelting the raw steel and contributes to the improvement of the hardenability of the steel. However, Mn, together with Si, promotes oxidation of the grain boundaries of the steel during quenching and deteriorates the delayed fracture resistance of high-strength bolts. Therefore, Mn is preferably as low as possible, and more preferably 0.30% or less. Considering the positive effect above,
0.40%. (D) Phosphorus (P) P generally enhances the quenching effect of steel. However, when steel is heated to a high temperature during austenitization, segregation of P occurs in the effect of austenitic steel, embrittles grain boundaries and increases strength. Since the delayed fracture resistance of the bolt is deteriorated, the content is set to 0.015% or less. (E) Sulfur (S) S is an unavoidable impurity and, like P, when the steel is heated to a high temperature during austenitization, segregation of S occurs in the effect of the austenitic steel, making the grain boundary embrittle and delaying resistance. The content is set to 0.005% or less because the fracture resistance is deteriorated and the delayed fracture resistance of the high-strength bolt is further deteriorated by combining with Mn in the steel to form MnS. (F) Chromium (Cr) Cr is an element that contributes to improving the hardenability of steel,
It is preferable to adjust the amount of addition suitable for ensuring the hardenability of the high strength bolt according to the dimensions and the like. From such a viewpoint, the Cr content is set to 0.50% or more. But to steel
With the addition of Cr, in the dimensions of ordinary high-strength parts for machine structures including connecting rod fastening bolts, the addition of Cr up to 2.00% sufficiently improves the hardenability. However, excessive addition of Si and Mn simultaneously promotes oxidation of the crystal grain boundaries of the steel and deteriorates the delayed fracture resistance of the high-strength bolt, so that the range is 0.50 to 2.00%. (G) Molybdenum (Mo) Mo is an element which contributes to the improvement of the hardenability of steel, the refinement of crystal grains and the strength of austenite grain boundaries, and further provides sufficient secondary hardening by tempering. It is an element that makes it possible. Tensile strength 140-160kgf / mm 2
In order to obtain a high-strength bolt with high strength and excellent delayed fracture resistance, as described above, at a tempering temperature of about 600 ° C.,
It is necessary to precipitate carbides and to cause sufficient secondary hardening. However, when the added amount of Mo is small, C mainly serves as a supply source of cementite Fe 3 C, and it becomes difficult to finely precipitate Mo carbide such as Mo 2 C. In consideration of mass productivity, tempering is performed in the shortest time possible,
It is necessary to sufficiently and efficiently precipitate Mo carbide from the mother box. That is, considering mass productivity, C is
It is desirable to minimize the formation of cementite Fe 3 C by reacting with Fe so that all C is a source of Mo carbide formation. For this purpose, it is necessary to add 0.75% or more of Mo. is there. Therefore, the lower limit of the amount of Mo added is set to 0.75%. However, even if Mo is added excessively, the effect does not improve. Instead, a large primary carbide is crystallized in the steel, and the carbide remains in the steel due to quenching, and the toughness of the high-strength bolt is reduced. Therefore, the upper limit was set to 2.00%. (H) Vanadium (V) V is an element effective for obtaining a sufficient secondary hardening by tempering.
05% or more. However, if the amount is too large, a large primary carbide is crystallized in the steel and remains after quenching and the toughness is reduced. Therefore, the upper limit is set to 1.50%. Preferably, in addition to the component elements described above, further Nb, Ti,
It was recognized that the addition of Zr forms fine carbides in the steel and has the effect of refining the crystal grains. Therefore, since Nb, Ti, and Zr are elements that contribute to improving the delayed fracture resistance of the high-strength bolt, at least one of these elements may be added as necessary. However, the effect is hardly improved even if it exceeds 0.20% for each element, and therefore, when each is added, it is better to make each 0.20% or less. In particular, when a bolt is made from steel having the composition described above, instead of the usual process of cold working → rolling (screw portion) → hardening / tempering, for example, cold working → quenching / tempering → rolling By adopting the process of (screw portion), the thread portion is work-hardened after rolling, and a residual stress is applied, so that the fatigue strength can be significantly improved. (Example) Next, the high-strength bolt of the present invention will be specifically described with reference to examples. First, the steel materials A to F of the high-strength bolt of the present invention having the chemical compositions shown in Table 1 and the steel material G (SGr440H) of the comparative row were respectively melted and rolled into wires having a diameter of 8 mm. Next, after annealing each wire, it was processed into a tensile test specimen and a delayed fracture test specimen having a predetermined shape. The tensile test piece for measuring the tensile properties conformed to the standard of the reduced JIS No. 4 test piece. Also,
As a delayed fracture test piece for measuring delayed fracture characteristics,
The bending-type accelerated test specimen shown in FIG. 2 (l 1 = 20 mm, d 1 = 6 mm, d 2
= 4 mm, R = 0.1 mm). Next, Tokoro as each test piece for testing the tensile properties and delayed fracture properties obtained as described above, each of the tensile strength becomes 140~160kgf / mm 2 A constant heat treatment was applied. That is, after performing a quenching treatment at a quenching temperature of 925 ° C. for 60 minutes, oil-cooling is performed, and then a tempering temperature of 600 ° C.
A tempering treatment was performed for 0 minutes, and then air-cooled for secondary curing. In this way, the tensile strength and the like of each of the tensile test pieces obtained from the starting steel materials A to G, and the delayed fracture strength ratio of each of the delayed fracture test pieces were measured. The results are shown in Table 2. When measuring the above-mentioned delayed fracture strength ratio, as shown in FIG. 1, one end of a test piece 2 is attached to a holder 1 and the other end is applied with a cantilever bending load 4 via a moment arm 3 as a load. As an environment, a bending stress was applied while dropping 0.1 N-HCl into the notch of the test piece. The delayed fracture characteristic of each test piece was represented by the ratio of the static bending strength (σSB) to the strength (σ30hr) after 30 hours from the load application, that is, the delayed fracture strength ratio σ30hr / σSB. From the results shown in Table 2, the test pieces of steel materials A to F for high-strength bolts according to the present invention, despite having high tensile strength, were compared with Comparative Example G (SCr440H). All show significantly excellent values in the delayed fracture strength ratio (σ30hr / σSB). Next, a method for manufacturing a high-strength bolt of the present invention will be described. Will be explained. First, using steel of the chemical composition described above as a material, after preforming by cold working etc. to the rough shape of the bolt,
After quenching and tempering, cold plastic working such as rolling was performed to form a bolt having predetermined dimensions as shown in FIG. During the heat treatment of the quenching and tempering, it is preferable that the hardness of the surface of the bolt is made slightly softer than that of the inside. Due to this slight decrease in the hardness of the bolt surface, delayed fracture resistance can be further improved. Further, by the work hardening and the application of the residual stress by the rolling process after the heat treatment, the fatigue strength is further improved, and the decrease in the fatigue strength of the threaded portion due to the decrease in the surface hardness of the bolt can be compensated. As a method of manufacturing a connecting rod fastening bolt from the steel materials A to F and G, in the case of a normal process, thread rolling is performed before heat treatment such as quenching and tempering. However, by adopting a process of performing quenching to lower the hardness of the surface of the bolt by Hickers hardness of 30 to 70 with Vickers hardness than its internal hardness, then tempering, and then rolling to the bolt screw part, high strength The above-mentioned delayed fracture resistance and fatigue characteristics of the bolt are further improved. The difference between the former and the latter in terms of the effect on the delayed fracture and fatigue properties of high strength bolts was tested. The bolt test pieces were prepared by rolling before heat treatment (A 0 , C 0 , E 0 , and G 0 ) corresponding to the above starting steel materials A, C, E, and G, and the bolt surface during quenching Was slightly decarburized, the hardness of the bolt surface was reduced by Hv 30-70 from its internal hardness, and the rolled (A 1 , C 1 , E 1 , and G 1 ) after heat treatment were used, respectively. . Table 3 shows test results such as delayed fracture characteristics and fatigue characteristics of each bolt test piece obtained by such measurement. As is clear from the results shown in Table 3, the high-strength bolts A 0 , A 1 , C 0 , C 1 , E 0 , and E 1 according to the present invention all have high tensile strength, It has a significantly superior delayed fracture strength ratio (σ30hr / σSB) as compared with Examples G 0 and G 1 (SCr440H). Furthermore, according to Table 3, compared with the ones rolled before heat treatment (A 0 , C 0 , E 0 , and G 0 ), Reduce the hardness of the bolt surface slightly below its internal hardness,
And rolled after the heat treatment (A 1 , C 1 , E 0 , and G
1 ) shows that the delayed fracture resistance and fatigue characteristics are further improved. FIG. 4 is a graph showing the relationship between the hardness of the bolt and the delayed fracture strength ratio based on the above test. According to the figure, the high-strength bolts A 0 , A 1 , C 0 , C 1 , E 0 , and E 1 of the present invention all have a delayed fracture strength ratio superior to the conventional bolts (SCr400H) G 0 , G 1. It can be seen that this has Furthermore, the delayed fracture strength can be further improved by making the surface of the bolt slightly lower than the inside thereof (A 1 , C 1 , E 1 , G
1 ). (Effects of the Invention) As described above in detail, according to the present invention, C: 0.
25 to 0.35%, Si: 0.15% or less, Mn: 0.40% or less, P: 0.015
%, S: 0.005% or less, Cr: 0.50 to 2.00%, V: 0.05 to 1.
Including 50%, and more than 0.75% by weight, with an upper limit of 2.
Containing 00% or less have been Mo, and Fe and inevitable impurities: the remainder, to consist tensile excellent resistance to delayed fracture, characterized in strength 140~160kgf / mm 2 of high strength bolts are provided . Therefore, while having a high strength of 14.9 (140-160 kgf / mm 2 ) class, it has good toughness and ductility,
This has the effect of enabling a high-strength bolt having excellent delayed fracture resistance to be obtained. In addition, in the production of bolts, after preforming to the rough shape of the bolt, heat treatment such as quenching and tempering is performed, and then cold plastic forming is performed, so that higher strength and improved fatigue strength are achieved. It is possible to obtain a high-strength bolt excellent in destructibility.

【図面の簡単な説明】 第1図は遅れ破壊強度の試験方法を示す説明図、第2図
は同試験に用いる遅れ破壊試験片の外形図、第3図はボ
ルト試験片の外形図、第4図は本発明の高強度ボルトと
従来のボルト(SCr440H)についての硬さに対する遅れ
破壊強度比の関係を示すグラフである。 1……ホルダ、2……遅れ破壊試験片、3……モーメン
トアーム、4……重錘。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view showing a test method of delayed fracture strength, FIG. 2 is an external view of a delayed fracture test piece used in the test, FIG. 3 is an external view of a bolt test piece, FIG. FIG. 4 is a graph showing the relationship between the hardness and the delayed fracture strength ratio of the high-strength bolt of the present invention and the conventional bolt (SCr440H). 1 ... Holder, 2 ... Delayed fracture test piece, 3 ... Moment arm, 4 ... Weight.

Claims (1)

(57)【特許請求の範囲】 1.重量%で、C:0.25〜0.35%、Si:0.15%以下、Mn:0.
40%以下、P:0.015%以下、S:0.005%以下、Cr:0.50〜
2.00%、V:0.05〜1.50%を含み、 さらに、重量%で、0.75%を越え上限が2.00%以下とさ
れたMoを含有し、及びFe及び不可避不純物:残り、から
なることを特徴とする耐遅れ破壊性に優れた引張強さ14
0〜160kgf/mm2の高強度ボルト。
(57) [Claims] By weight%, C: 0.25-0.35%, Si: 0.15% or less, Mn: 0.
40% or less, P: 0.015% or less, S: 0.005% or less, Cr: 0.50 ~
2.00%, V: 0.05-1.50%, and by weight, more than 0.75%, containing Mo whose upper limit is 2.00% or less, and Fe and unavoidable impurities: remaining. Tensile strength 14 with excellent delayed fracture resistance
High-strength bolts of 0~160kgf / mm 2.
JP62207324A 1987-08-19 1987-08-19 High strength bolt Expired - Lifetime JP2739713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62207324A JP2739713B2 (en) 1987-08-19 1987-08-19 High strength bolt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62207324A JP2739713B2 (en) 1987-08-19 1987-08-19 High strength bolt

Publications (2)

Publication Number Publication Date
JPS6452045A JPS6452045A (en) 1989-02-28
JP2739713B2 true JP2739713B2 (en) 1998-04-15

Family

ID=16537875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62207324A Expired - Lifetime JP2739713B2 (en) 1987-08-19 1987-08-19 High strength bolt

Country Status (1)

Country Link
JP (1) JP2739713B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1746176A1 (en) 2005-07-22 2007-01-24 Nippon Steel Corporation Steel with excellent delayed fracture resistance and tensile strength of 1600 MPa class or more, its shaped articles, and methods of production of the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4142853B2 (en) * 2001-03-22 2008-09-03 新日本製鐵株式会社 High strength bolt with excellent delayed fracture resistance
JP4787295B2 (en) * 2008-07-14 2011-10-05 株式会社トープラ Screw fastening structure with high-strength self-forming screws
JP2010031916A (en) * 2008-07-25 2010-02-12 Toyota Motor Corp Fastening structure of a plurality of members of using fastening bolt
JP5630367B2 (en) * 2011-05-09 2014-11-26 新日鐵住金株式会社 Steel bolt and manufacturing method thereof
JP6185002B2 (en) * 2014-03-28 2017-08-23 Jfeスチール株式会社 Manufacturing method of high fatigue strength bolts
JP7134411B2 (en) * 2018-01-30 2022-09-12 日産自動車株式会社 bolt

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114551A (en) * 1983-11-25 1985-06-21 Daido Steel Co Ltd High strength bolt steel
JPS61130456A (en) * 1984-11-29 1986-06-18 Honda Motor Co Ltd High-strength bolt and its production
JPS6286149A (en) * 1985-09-02 1987-04-20 Kobe Steel Ltd Tough and hard bolt steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1746176A1 (en) 2005-07-22 2007-01-24 Nippon Steel Corporation Steel with excellent delayed fracture resistance and tensile strength of 1600 MPa class or more, its shaped articles, and methods of production of the same

Also Published As

Publication number Publication date
JPS6452045A (en) 1989-02-28

Similar Documents

Publication Publication Date Title
US7597768B2 (en) Steel wire for hard drawn spring excellent in fatigue strength and resistance to settling, and hard drawn spring and method of making thereof
JP5195009B2 (en) Steel wire rod excellent in cold forgeability after annealing and manufacturing method thereof
JP5034803B2 (en) Steel sheet for soft nitriding treatment and method for producing the same
JPH08311607A (en) Low strain carburized gear excellent in deddendum bending strength and its production
JP4415219B2 (en) Age hardened steel
JP4321974B2 (en) Steel for high strength screws and high strength screws
JP6569845B1 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
JP2739713B2 (en) High strength bolt
JPH09324219A (en) Production of high strength spring excellent in hydrogen embrittlement resistance
JP4328924B2 (en) Manufacturing method of high-strength shaft parts
JP3550886B2 (en) Manufacturing method of gear steel for induction hardening excellent in machinability and fatigue strength
JP4752800B2 (en) Non-tempered steel
JP2000160287A (en) Nitriding non-heat treated forged parts and manufacture thereof
JP2003301238A (en) Steel for machine structural use showing excellent machinability and fracture splittability using fine sulfide
JP4488228B2 (en) Induction hardening steel
JP3900690B2 (en) Age-hardening high-strength bainitic steel and method for producing the same
JPS62177152A (en) Spring steel
JPH1162943A (en) Soft nitrided as rolled or normalized crankshaft and manufacture thereof
JP3211627B2 (en) Steel for nitriding and method for producing the same
JP2002146480A (en) Wire rod/steel bar having excellent cold workability, and manufacturing method
JP4178490B2 (en) Maraging steel with high fatigue strength and maraging steel strip using it
JP3623313B2 (en) Carburized gear parts
JP2002348637A (en) Steel for screw with high strength, screw with high strength and manufacturing method therefor
JPH0570890A (en) Steel for high strength bolt excellent in delayed fracture resistance