JP2015001018A - Steel for machine component and machine component for non-heat treated steel - Google Patents

Steel for machine component and machine component for non-heat treated steel Download PDF

Info

Publication number
JP2015001018A
JP2015001018A JP2013126997A JP2013126997A JP2015001018A JP 2015001018 A JP2015001018 A JP 2015001018A JP 2013126997 A JP2013126997 A JP 2013126997A JP 2013126997 A JP2013126997 A JP 2013126997A JP 2015001018 A JP2015001018 A JP 2015001018A
Authority
JP
Japan
Prior art keywords
steel
aging treatment
heat treated
strain aging
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013126997A
Other languages
Japanese (ja)
Inventor
優樹 田中
Masaki Tanaka
優樹 田中
宮▲崎▼ 貴大
Takahiro Miyazaki
貴大 宮▲崎▼
進一郎 加藤
Shinichiro Kato
進一郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2013126997A priority Critical patent/JP2015001018A/en
Publication of JP2015001018A publication Critical patent/JP2015001018A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steel which has excellent machinability and can enhance mechanical strength in a required part and a machine component using the same.SOLUTION: A steel for a machine component for a non-heat treated steel which is composed of ferrite and pearlite non-heat treated steel and has a reinforcement part by strain aging treatment comprises, by mass%, C:0.20 to 0.60%, Si:≤1.5%, Mn:0.30 to 1.50%, P:0.01 to 0.20%, S:0.01 to 0.20%, Cu:≤1.0%, Ni:≤1.0%, Cr:≤1.0%, V:≤0.10%, Ti:≤0.20% and N:0.005 to 0.030%. A predetermined relationship regarding mass% of each of the elements of C, Si, Mn, P, Cu, Ni, Cr, V, Ti, N and S is satisfied.

Description

本発明は、機械部品用鋼及びこれを用いた非調質鋼機械部品に関し、ひずみ時効処理を与えられて機械部品に供される機械部品用鋼及びこれを用いた非調質鋼機械部品に関する。   TECHNICAL FIELD The present invention relates to steel for machine parts and non-heat treated steel machine parts using the same, and relates to steel for machine parts subjected to strain aging treatment and used for machine parts, and non-heat treated steel machine parts using the same. .

フェライト・パーライト型非調質鋼が自動車等のエンジン用のコンロッドやハブ等の機械部品に使用されている。かかる機械部品では、鋼の降伏強度を高めて耐久性などを向上させることが図られる一方、機械加工を施そうとする部分では硬さを低く抑えて加工性を確保することが望まれる。この相反する要求を単一の機械部品において満たすべく、強度の必要な部位にひずみ時効処理を施して、部分的な機械強度を高める製造方法が提案されている。   Ferrite / pearlite type non-heat treated steel is used for mechanical parts such as connecting rods and hubs for engines of automobiles. In such machine parts, it is desired to increase the yield strength of the steel and improve the durability and the like, while it is desirable to secure the workability by suppressing the hardness at a part to be machined. In order to satisfy these conflicting requirements in a single machine component, a manufacturing method has been proposed in which a part requiring strength is subjected to strain aging treatment to increase partial mechanical strength.

例えば、特許文献1では、特定の成分組成を有するフェライト・パーライト型非調質鋼に対して、200〜700℃の温間領域で加工率3〜40%のコイニング加工によるひずみ時効処理を行うことで、部分的な機械強度を大きく高め得ることが開示されている。かかる鋼は、質量%で、C:0.2〜0.6%、Si:0.05〜2%、Mn:0.3〜1.5%、P:0.01〜0.2%、Cr:0.05〜1%、V:0.02〜0.5%、N:0.009〜0.03%を含む成分組成を有する。NによるV炭窒化物の析出による硬化と、コイニングにより導入された可動転位を浸入形固溶元素のN、Cで固着させることで部分的な機械強度(耐力)を大きく高め得るとしている。   For example, in Patent Document 1, strain aging treatment is performed on a ferrite / pearlite non-heat treated steel having a specific composition by a coining process at a processing rate of 3 to 40% in a warm region of 200 to 700 ° C. It is disclosed that the partial mechanical strength can be greatly increased. Such steel is in mass%, C: 0.2-0.6%, Si: 0.05-2%, Mn: 0.3-1.5%, P: 0.01-0.2%, It has a component composition including Cr: 0.05 to 1%, V: 0.02 to 0.5%, and N: 0.009 to 0.03%. It is said that the partial mechanical strength (proof strength) can be greatly increased by hardening by precipitation of V carbonitride by N and fixing dislocations introduced by coining with N and C of the intrusion-type solid solution elements.

また、特許文献2では、特許文献1と同じ成分組成の鋼について、冷間コイニング加工後に該加工部に対して400〜650℃で時効処理を行うことを開示している。やはり、NによるV炭窒化物の析出による硬化と、可動転位のN、Cでの固着とで部分的な機械強度を大きく高め得るとしている。ここでは加熱手段としては高周波誘導加熱を用いて、冷間コイニング加工部だけに時効処理を行っている。   Patent Document 2 discloses that steel having the same composition as that of Patent Document 1 is subjected to aging treatment at 400 to 650 ° C. after cold coining. After all, it is said that the partial mechanical strength can be greatly increased by hardening by precipitation of V carbonitride by N and fixing by movable dislocations N and C. Here, high-frequency induction heating is used as the heating means, and only the cold coining portion is subjected to aging treatment.

また、比較的高価なVの添加量を抑えるべく、NによるV炭窒化物の析出を利用することなく、部分的な機械強度を向上させる方法も提案されている。   In order to suppress the amount of V, which is relatively expensive, a method for improving the partial mechanical strength without using the precipitation of V carbonitride by N has also been proposed.

例えば、特許文献3では、質量%で、C:0.15〜0.6%、Si:2.5%以下、Mn:0.3〜2.0%を含み、フェライト・パーライト組織である非調質鋼材に対して、3〜30%の冷間加工後に、100〜450℃で時効処理を行って、冷間加工部の部分的な機械強度を高め得ることが開示されている。時効処理を比較的低い温度で行うことによって、冷間加工部以外に熱影響を与えないようにできるとしている。   For example, Patent Document 3 includes, in mass%, C: 0.15 to 0.6%, Si: 2.5% or less, Mn: 0.3 to 2.0%, and a ferrite / pearlite structure. It is disclosed that the tempered steel material can be subjected to an aging treatment at 100 to 450 ° C. after 3 to 30% of cold working to increase the partial mechanical strength of the cold worked portion. By performing the aging treatment at a relatively low temperature, it is possible to prevent thermal influence other than the cold-worked portion.

更に、特許文献4では、質量%で、C:0.20〜0.60%、Si:0.05〜1.50%、Mn:0.30〜2.0%、Cr:1.5%以下、Al:0.001〜0.06%、N:0.0030〜0.0300%を含み、また、任意に、V:0.010〜0.50%、B:0.0005〜0.0050%、S:0.10%以下、Pb:0.30%以下、Bi:0.30%以下、Ca:0.01%以下から選択される1種以上の元素を含む鋼を鍛造してフェライト・パーライト組織を有する中間鍛造加工品を得た後に、冷却過程におけるAr1点以下〜200℃の温度域で、更なる鍛造加工を施して部分的な機械強度を高め得ることが開示されている。温間鍛造で結晶粒を微細化させるとともに、更なる加工付与により転位密度を増大させ、時効強化効果をも相乗させて、温間鍛造部位の耐力(耐力比)及び疲労強度を集中的に高め得ると述べている。   Furthermore, in patent document 4, C: 0.20-0.60%, Si: 0.05-1.50%, Mn: 0.30-2.0%, Cr: 1.5% by mass% Hereinafter, Al: 0.001 to 0.06%, N: 0.0030 to 0.0300% are included, and optionally, V: 0.010 to 0.50%, B: 0.0005 to 0. Forging a steel containing one or more elements selected from 0050%, S: 0.10% or less, Pb: 0.30% or less, Bi: 0.30% or less, Ca: 0.01% or less It has been disclosed that after obtaining an intermediate forged product having a ferrite-pearlite structure, further forging can be applied to increase the partial mechanical strength in the temperature range of Ar1 point or lower to 200 ° C in the cooling process. . Warm forging refines crystal grains, increases dislocation density by further processing, and synergizes aging strengthening effects to intensively increase the yield strength (yield ratio) and fatigue strength of warm forging sites. States that you get.

特開2006−52432号公報JP 2006-52432 A 特開2005−59013号公報JP 2005-59013 A 特開平11−131134号公報JP-A-11-131134 特開2003−55714号公報JP 2003-55714 A

上記したように、強度の必要な部位にひずみ時効処理を施して部分的な機械強度を高める機械部品の製造方法において、機械加工性に優れるとともに必要な箇所の機械強度をより高め得るためには、ひずみ時効処理前後の機械的強度差のより大きいことが好ましいことになる。   As described above, in the method of manufacturing a mechanical part that increases the partial mechanical strength by applying strain aging treatment to a portion requiring strength, in order to be able to further improve the mechanical strength of the necessary portion while being excellent in machinability. It is preferable that the difference in mechanical strength before and after the strain aging treatment is larger.

本発明は、上記したような状況に鑑みてなされたものであって、その目的とするところは、強度の必要な部位にひずみ時効処理を施して部分的な機械強度を高める製造方法において、機械加工性に優れるとともに必要な箇所の機械強度をより高め得る機械部品用鋼及びこれを用いた非調質鋼機械部品を提供することにある。   The present invention has been made in view of the above situation, and the object of the present invention is to provide a mechanical method for increasing the partial mechanical strength by applying strain aging treatment to a portion requiring strength. An object of the present invention is to provide a steel for machine parts that is excellent in workability and can further increase the mechanical strength of a necessary portion, and a non-heat treated steel machine part using the same.

本発明による機械部品用鋼は、フェライト・パーライト非調質鋼からなりひずみ時効処理により強化部分を与えた非調質鋼機械部品のための鋼であって、質量%で、C:0.20〜0.60%、Si:≦1.5%、Mn:0.30〜1.50%、P:0.01〜0.20%、S:0.01〜0.20%、Cu:≦1.0%、Ni:≦1.0%、Cr:≦1.0%、V:≦0.10%、Ti:≦0.20%、N:0.005〜0.030%を含有し、残部はFe及び不純物からなり、元素Mの質量%を[M]で表し、Ceq=[C]+0.03×[Si]+0.55×[Mn]+0.26×[P]+0.08×[Cu]+0.07×[Ni]+0.09×[Cr]+1.2×[V]+0.51×([Ti]−3.43×[N])−0.7×[S]、Eq1=−0.18×[C]+0.061×[Mn]−0.178×[S]+0.502×[V]+0.354×[Ti]+0.629、Eq2=260.6+85×[C]−49.3×[Si]+27×[Mn]−288.8×[V]−100.7×[Ti]とすると、(806.6×Ceq+135.0)×Eq1+Eq2≧700であることを特徴とする。   The steel for machine parts according to the present invention is a steel for non-heat treated steel machine parts made of ferritic / pearlite non-heat treated steel and provided with a strengthened part by strain aging treatment, and in mass%, C: 0.20 -0.60%, Si: ≤1.5%, Mn: 0.30-1.50%, P: 0.01-0.20%, S: 0.01-0.20%, Cu: ≤ 1.0%, Ni: ≦ 1.0%, Cr: ≦ 1.0%, V: ≦ 0.10%, Ti: ≦ 0.20%, N: 0.005 to 0.030% The balance consists of Fe and impurities, and the mass% of the element M is represented by [M], and Ceq = [C] + 0.03 × [Si] + 0.55 × [Mn] + 0.26 × [P] +0.08 × [Cu] + 0.07 × [Ni] + 0.09 × [Cr] + 1.2 × [V] + 0.51 × ([Ti] −3.43 × [N]) − 0.7 × [S] , E 1 = −0.18 × [C] + 0.061 × [Mn] −0.178 × [S] + 0.502 × [V] + 0.354 × [Ti] +0.629, Eq2 = 260.6 + 85 × [ C] −49.3 × [Si] + 27 × [Mn] −288.8 × [V] −100.7 × [Ti], (806.6 × Ceq + 135.0) × Eq1 + Eq2 ≧ 700 It is characterized by.

かかる発明によれば、機械加工性に優れるとともに、必要な箇所においてひずみ時効処理を施すことで、機械強度をより一層高めた機械部品を得ることができる。   According to this invention, while being excellent in machinability, the mechanical component which further improved mechanical strength can be obtained by performing a strain aging process in a required location.

また、本発明による非調質鋼機械部品は、フェライト・パーライト非調質鋼からなりひずみ時効処理により強化部分を与えた非調質鋼機械部品であって、質量%で、C:0.20〜0.60%、Si:≦1.5%、Mn:0.30〜1.50%、P:0.01〜0.20%、S:0.01〜0.20%、Cu:≦1.0%、Ni:≦1.0%、Cr:≦1.0%、V:≦0.10%、Ti:≦0.20%、N:0.005〜0.030%を含有し、残部はFe及び不純物からなり、元素Mの質量%を[M]で表し、Ceq=[C]+0.03×[Si]+0.55×[Mn]+0.26×[P]+0.08×[Cu]+0.07×[Ni]+0.09×[Cr]+1.2×[V]+0.51×([Ti]−3.43×[N])−0.7×[S]、Eq1=−0.18×[C]+0.061×[Mn]−0.178×[S]+0.502×[V]+0.354×[Ti]+0.629、Eq2=260.6+85×[C]−49.3×[Si]+27×[Mn]−288.8×[V]−100.7×[Ti]とすると、(806.6×Ceq+135.0)×Eq1+Eq2≧700であって、前記強化部分において、0.2%耐力で200MPa以上の降伏強度上昇を与えたことを特徴とする。   The non-heat treated steel machine part according to the present invention is a non-heat treated steel machine part made of ferritic / pearlite non-heat treated steel and provided with a strengthened part by strain aging treatment, and in mass%, C: 0.20 -0.60%, Si: ≤1.5%, Mn: 0.30-1.50%, P: 0.01-0.20%, S: 0.01-0.20%, Cu: ≤ 1.0%, Ni: ≦ 1.0%, Cr: ≦ 1.0%, V: ≦ 0.10%, Ti: ≦ 0.20%, N: 0.005 to 0.030% The balance consists of Fe and impurities, and the mass% of the element M is represented by [M], and Ceq = [C] + 0.03 × [Si] + 0.55 × [Mn] + 0.26 × [P] +0.08 × [Cu] + 0.07 × [Ni] + 0.09 × [Cr] + 1.2 × [V] + 0.51 × ([Ti] −3.43 × [N]) − 0.7 × [S] , E 1 = −0.18 × [C] + 0.061 × [Mn] −0.178 × [S] + 0.502 × [V] + 0.354 × [Ti] +0.629, Eq2 = 260.6 + 85 × [ C] −49.3 × [Si] + 27 × [Mn] −288.8 × [V] −100.7 × [Ti], (806.6 × Ceq + 135.0) × Eq1 + Eq2 ≧ 700 The strengthened portion is characterized by giving a yield strength increase of 200 MPa or more with 0.2% proof stress.

かかる発明によれば、機械加工性に優れるとともに、機械強度をより一層高め得るのである。   According to this invention, it is excellent in machinability and can further increase the mechanical strength.

上記した発明において、前記強化部分以外において、硬さが25HRC以下であることを特徴としてもよい。かかる発明によれば、機械加工性をより一層高め得るのである。   In the above-described invention, the hardness may be 25 HRC or less except for the reinforced portion. According to this invention, machinability can be further improved.

上記した発明において、前記強化部分において、0.2%耐力で700MPa以上の降伏強度であることを特徴としてもよい。かかる発明によれば、機械強度をより一層高め得るのである。   In the above-described invention, the strengthened portion may have a yield strength of 700 MPa or more with a 0.2% proof stress. According to this invention, the mechanical strength can be further increased.

本発明による非調質鋼機械部品の製造工程を示すフロー図である。It is a flowchart which shows the manufacturing process of the non-heat-treated steel machine part by this invention. 実施例及び比較例の鋼の成分組成の図表である。It is a chart of a component composition of steel of an example and a comparative example. 試験片の製造工程の一部における外観を示す斜視図である。It is a perspective view which shows the external appearance in a part of manufacturing process of a test piece. 試験片の製造工程の一部の熱処理線図である。It is a one part heat processing diagram of the manufacturing process of a test piece. (a)加工温度、及び、(b)加工率を変えたときのひずみ時効処理後の0.2%耐力を示す図である。It is a figure which shows 0.2% yield strength after a strain aging process when (a) processing temperature and (b) processing rate are changed. 図5のグラフである。It is a graph of FIG. 実施例及び比較例の試験結果の一覧図である。It is a list figure of the test result of an Example and a comparative example.

[非調質鋼機械部品の製造方法]
まず、本願で対象とする典型的な非調質鋼機械部品の製造方法について図1を参照しつつ説明する。
[Method of manufacturing non-heat treated steel machine parts]
First, a typical method for manufacturing a non-heat treated steel machine part targeted in the present application will be described with reference to FIG.

図1に示すように、所定の成分組成を有する機械部品用鋼による鋼材を加熱し(S1)、熱間鍛造により非調質鋼機械部品の荒形状を得る(S2)。かかる荒形状は、後述するひずみ時効処理において付与するひずみ量を加味して定められる。   As shown in FIG. 1, a steel material for a machine part steel having a predetermined composition is heated (S1), and a rough shape of a non-tempered steel machine part is obtained by hot forging (S2). Such a rough shape is determined in consideration of a strain amount to be applied in a strain aging process described later.

次いで、これを冷却しながら所定の温度範囲の中で機械的強度を高めようとする強化部位に変形加工を与える(ひずみ時効処理、S3)。冷却後、更に、必要に応じて機械加工を施し(S4)、フェライト・パーライト組織からなる非調質鋼機械部品が得られる。なお、ひずみ時効処理により加工(加工ひずみ)を与えられていない非強化部位においては、その硬さは25HRC以下であることが機械加工性の観点から好ましい。なお、ひずみ時効処理S3は、熱間鍛造後に一旦冷却した材料に対して行っても良い。この場合において、再加熱後、所定温度範囲の中で変形加工を与えて冷却する、若しくは、室温で変形加工を与えて時効処理を施す。   Next, deformation processing is applied to the strengthened portion that is intended to increase the mechanical strength within a predetermined temperature range while cooling it (strain aging treatment, S3). After cooling, it is further machined as necessary (S4) to obtain a non-tempered steel machine part having a ferrite / pearlite structure. In addition, in the non-strengthened part where processing (working strain) is not given by the strain aging treatment, the hardness is preferably 25 HRC or less from the viewpoint of machinability. The strain aging treatment S3 may be performed on the material once cooled after hot forging. In this case, after reheating, a deformation process is applied and cooled in a predetermined temperature range, or an aging process is performed by applying a deformation process at room temperature.

[ひずみ時効処理の確認試験]
次に、上記した製造方法を模して引張試験片を作成し、ひずみ時効処理における加工条件の影響を確認した。かかる試験について説明する。なお、ここでは図2に示す実施例1及び2の成分組成を有する2種類の鋼を用いた。
[Confirmation test of strain aging treatment]
Next, a tensile test piece was prepared by imitating the above-described manufacturing method, and the influence of the processing conditions in the strain aging treatment was confirmed. Such a test will be described. Here, two types of steel having the component compositions of Examples 1 and 2 shown in FIG. 2 were used.

まず、試験片の作成方法について図3に沿って、また試験方法についても簡単に説明する。   First, a method for creating a test piece will be briefly described with reference to FIG. 3 and a test method.

図2の実施例1及び2に示す成分組成を有する鋼を熔解して造塊し、圧延及び鍛造により32〜36Dの丸棒形状の鋼材をいくつか得た。かかる鋼材は、それぞれ32D×90Lの丸棒形状に機械加工した(図3(a)参照)。   Steel having the component composition shown in Examples 1 and 2 in FIG. 2 was melted and ingot-formed, and some steel materials having a round bar shape of 32 to 36D were obtained by rolling and forging. Each steel material was machined into a round bar shape of 32D × 90L (see FIG. 3A).

併せて、図4を参照すると、機械加工した鋼材を1240℃で30分間加熱保持し、これを1150℃で18T×40W×96Lの板状体に熱間鍛造した(図3(b)参照)。かかる熱間鍛造における加工率は40%である。ここで、鋼材の1つについては、そのまま室温まで空冷し、板状の熱間鍛造体を得て引張試験片を切り出した(参照試験片)。   In addition, referring to FIG. 4, the machined steel was heated and held at 1240 ° C. for 30 minutes, and hot forged into a plate-like body of 18T × 40W × 96L at 1150 ° C. (see FIG. 3 (b)). . The processing rate in such hot forging is 40%. Here, about one steel material, it air-cooled to room temperature as it was, the plate-shaped hot forging body was obtained, and the tensile test piece was cut out (reference test piece).

鋼材の残りについては、空冷途中の200〜600℃の温度範囲の中でそれぞれ3〜30%の加工率で鍛造を施し、12.6〜17.5T×40W×96Lの板状体としてから室温まで空冷した(特に、図3(c)参照)。かかるひずみ時効処理後の板状体からそれぞれ引張試験片を切り出した(ひずみ時効処理後試験片)。   The rest of the steel material is forged at a processing rate of 3 to 30% in a temperature range of 200 to 600 ° C. in the middle of air-cooling to obtain a plate-like body of 12.6 to 17.5 T × 40 W × 96 L, and then room temperature. (See FIG. 3C in particular). Tensile test pieces were cut out from the plate-like bodies after the strain aging treatment (test pieces after the strain aging treatment).

引張試験片については、一軸引張り試験により0.2%耐力を測定した。測定結果は、図5に示した。ここで、図5(a)には、ひずみ時効処理における加工率を15%で一定としてその加工温度を200〜600℃の範囲で変化させたときの0.2%耐力の測定結果を示した。図5(b)には、加工温度を500℃で一定としてその加工率を0〜30%の範囲で変化させたときの0.2%耐力の測定結果を示した。なお、「加工率0%」とは、参照試験片におけるものである。また、No.1及び2は、それぞれ図2の実施例1及び2の成分組成を有する鋼材を用いたことを示す符号である。   About the tensile test piece, 0.2% yield strength was measured by the uniaxial tension test. The measurement results are shown in FIG. Here, FIG. 5A shows the measurement result of 0.2% proof stress when the processing rate in the strain aging treatment is constant at 15% and the processing temperature is changed in the range of 200 to 600 ° C. . FIG. 5B shows a measurement result of 0.2% proof stress when the processing temperature is constant at 500 ° C. and the processing rate is changed in the range of 0 to 30%. “Processing rate 0%” refers to the reference test piece. No. Reference numerals 1 and 2 are signs indicating that steel materials having the component compositions of Examples 1 and 2 in FIG. 2 were used, respectively.

試験結果について説明する。ここで、図6は図5に示す試験結果をグラフにしたものである。図6(a)に示すように、No.1、No.2ともに加工温度300℃付近をピークとして、これより高温側において0.2%耐力が低下している。参照試験片(図5(b)、加工率0%参照)の461MPa及び508MPaに比べると、最も0.2%耐力の低い加工温度600℃のひずみ時効処理後試験片では150MPa程度の0.2%耐力の上昇が得られている。これに対し、次に0.2%耐力の低い加工温度500℃のひずみ時効処理後試験片では250MPa以上の0.2%耐力の上昇を得られた。かかる結果に基づくと、加工温度は200〜500℃が好ましい。また、ひずみ時効処理における0.2%耐力を上昇させつつ、一方で、変形抵抗の上昇に伴う作業性の低下を考慮すると、その標準の加工条件として400℃の加工温度がより好ましい。   The test results will be described. Here, FIG. 6 is a graph of the test results shown in FIG. As shown in FIG. 1, no. In both cases, the processing temperature peaked around 300 ° C., and 0.2% proof stress was lowered on the higher temperature side. Compared to 461 MPa and 508 MPa of the reference test piece (see FIG. 5B, processing rate 0%), the 0.2% yield strength is the lowest 0.2%, which is about 150 MPa for the test piece after strain aging treatment at a processing temperature of 600 ° C. % Yield strength has been increased. On the other hand, the 0.2% yield strength increase of 250 MPa or more was obtained in the test piece after strain aging treatment at a processing temperature of 500 ° C. having the next lowest 0.2% yield strength. Based on such results, the processing temperature is preferably 200 to 500 ° C. In addition, while increasing the 0.2% proof stress in the strain aging treatment, on the other hand, considering the decrease in workability accompanying an increase in deformation resistance, a processing temperature of 400 ° C. is more preferable as the standard processing condition.

また、図6(b)に示すように、No.1、No.2ともに加工率を上昇させるほど0.2%耐力を上昇させ得る。また、加工率3%では0.2%耐力の上昇幅が137MPa及び110MPaであったのに対し、加工率7%では0.2%耐力の上昇幅が239MPa及び192MPaと、大きな差があった。かかる結果に基づくと、加工率は7〜30%が好ましい。但し、加工率15%を超えると加工率の上昇に対して0.2%耐力の上昇幅は小さくなる。また、ひずみ時効処理における0.2%耐力を上昇させつつ、一方で、加工率の上昇に伴う作業性の低下を考慮すると、その標準の加工条件として15%の加工率がより好ましい。   In addition, as shown in FIG. 1, no. In both cases, the 0.2% yield strength can be increased as the processing rate is increased. In addition, the increase rate of 0.2% yield strength was 137 MPa and 110 MPa at a processing rate of 3%, whereas the increase rate of 0.2% yield strength was 239 MPa and 192 MPa at a processing rate of 7%. . Based on such results, the processing rate is preferably 7 to 30%. However, if the processing rate exceeds 15%, the increase in 0.2% proof stress becomes small with respect to the increase in the processing rate. In addition, while increasing the 0.2% proof stress in the strain aging treatment, on the other hand, considering the workability reduction accompanying the increase in the processing rate, a processing rate of 15% is more preferable as the standard processing condition.

[非調質鋼機械部品の機械試験]
続いて、図2に示す実施例1乃至13及び比較例1乃至5の成分組成を有する鋼について、非調質鋼機械部品の試験として、硬さ試験及び引張試験を行った。試験片の作成方法及び試験方法について説明する。
[Mechanical testing of non-tempered steel machine parts]
Subsequently, a hardness test and a tensile test were performed on the steels having the composition of Examples 1 to 13 and Comparative Examples 1 to 5 shown in FIG. A method for preparing a test piece and a test method will be described.

上記した確認試験と同様に、図2に示す成分組成の参照試験片及びひずみ時効処理後試験片を作成した。但し、ひずみ時効処理は加工温度500℃、加工率15%の加工条件で行った。   Similar to the confirmation test described above, a reference test piece having a component composition shown in FIG. 2 and a test piece after strain aging treatment were prepared. However, the strain aging treatment was performed under the processing conditions of a processing temperature of 500 ° C. and a processing rate of 15%.

引張試験では、一軸引張り試験により0.2%耐力を測定した。図7には、参照試験片に対するひずみ時効処理後試験片の0.2%耐力の上昇幅をまとめた。硬さ試験では、参照試験片の肩部においてロックウェル硬さを測定した。図7には、その結果を示した。   In the tensile test, 0.2% proof stress was measured by a uniaxial tensile test. FIG. 7 summarizes the 0.2% yield strength increase of the test piece after strain aging treatment with respect to the reference test piece. In the hardness test, Rockwell hardness was measured at the shoulder of the reference specimen. FIG. 7 shows the result.

試験結果について、説明する。図7に示すように、実施例1乃至13の参照試験片の硬さは、16.4〜25.0HRCであり、いずれも非調質鋼機械部品の非強化部位として良好な機械加工性を有する。また、ひずみ時効処理後試験片の0.2%耐力は725〜900MPa、0.2%耐力の上昇幅は235〜317MPaであり、いずれも非調質鋼機械部品の強化部位として良好な機械強度を得られた。すなわち、実施例1乃至13の成分組成を有する機械部品用鋼であれば、少なくとも加工温度500℃、加工率15%の加工条件によるひずみ時効処理を施すことで、非強化部位において機械加工性に優れるとともに強化部位において機械強度をより高めた非調質鋼機械部品を得ることができる。   The test results will be described. As shown in FIG. 7, the hardness of the reference test pieces of Examples 1 to 13 is 16.4 to 25.0 HRC, and all have good machinability as a non-strengthened part of the non-heat treated steel machine part. Have. In addition, the 0.2% proof stress of the test piece after strain aging treatment is 725 to 900 MPa, and the increase range of the 0.2% proof stress is 235 to 317 MPa. Was obtained. That is, if it is steel for machine parts which has a component composition of Example 1 thru | or 13, it will be machinability in a non-strengthened part by giving the strain aging treatment by processing conditions with a processing temperature of at least 500 ° C and a processing rate of 15%. It is possible to obtain a non-heat treated steel machine part which is excellent and has a higher mechanical strength at the strengthened portion.

ところで、本願発明者は、実施例1乃至13を含む一連の鋼について、C、Si、Mn、P、Cu、Ni、Cr、V、Ti、N、Sの含有量に対するひずみ時効処理後試験片の0.2%耐力について回帰計算を行って、ひずみ時効処理後試験片又は非調質鋼機械部品の強化部位における0.2%耐力を推定するYcalを求めた。すなわち、
Ycal=(806.6×Ceq+135.0)×Eq1+Eq2
である。このとき、元素Mの質量%を[M]とすると、Ceq、Eq1及びEq2は、それぞれ以下の式で与えられる。
Ceq=[C]+0.03×[Si]+0.55×[Mn]+0.26×[P]+0.08×[Cu]+0.07×[Ni]+0.09×[Cr]+1.2×[V]+0.51×([Ti]−3.43×[N])−0.7×[S]
Eq1=−0.18×[C]+0.061×[Mn]−0.178×[S]+0.502×[V]+0.354×[Ti]+0.629
Eq2=260.6+85×[C]−49.3×[Si]+27×[Mn]−288.8×[V]−100.7×[Ti]
By the way, this inventor is the test piece after a strain aging treatment with respect to content of C, Si, Mn, P, Cu, Ni, Cr, V, Ti, N, and S about a series of steel containing Examples 1-13. Regression calculation was performed for 0.2% proof stress of Ycal to estimate 0.2% proof stress in the strengthened part of the specimen after strain aging treatment or the non-heat treated steel machine part. That is,
Ycal = (806.6 × Ceq + 135.0) × Eq1 + Eq2
It is. At this time, when the mass% of the element M is [M], Ceq, Eq1 and Eq2 are respectively given by the following equations.
Ceq = [C] + 0.03 × [Si] + 0.55 × [Mn] + 0.26 × [P] + 0.08 × [Cu] + 0.07 × [Ni] + 0.09 × [Cr] +1.2 * [V] +0.51 * ([Ti] -3.43 * [N])-0.7 * [S]
Eq1 = −0.18 × [C] + 0.061 × [Mn] −0.178 × [S] + 0.502 × [V] + 0.354 × [Ti] +0.629
Eq2 = 260.6 + 85 × [C] −49.3 × [Si] + 27 × [Mn] −288.8 × [V] −100.7 × [Ti]

なお、Ceqは炭素等量である。また、Ycalの式のうち、(806.6×Ceq+135.0)×Eq1は、参照試験片の0.2%耐力、すなわち非調質鋼機械部品の非強化部位の0.2%耐力を推定する項である。さらに、Eq2は、加工温度500℃、加工率15%の加工条件によるひずみ時効処理を与えたひずみ時効処理後試験片の0.2%耐力の上昇幅、すなわち同様のひずみ時効処理を施された非調質鋼機械部品の強化部位についての0.2%耐力の上昇幅を推定する項である。   Ceq is the carbon equivalent. In the Ycal equation, (806.6 × Ceq + 135.0) × Eq1 is an estimate of the 0.2% proof stress of the reference specimen, that is, the 0.2% proof stress of the non-strengthened part of the non-heat treated steel machine part. It is a term to do. Furthermore, Eq2 was subjected to the same strain aging treatment, that is, the 0.2% proof stress increase range of the specimen after strain aging treatment given the strain aging treatment under the working condition of the processing temperature of 500 ° C. and the processing rate of 15%. This is a term for estimating an increase in 0.2% proof stress for a strengthened part of a non-heat treated steel machine part.

ここで、Ycalを上記した実施例1乃至13に当てはめると、0.2%耐力の上昇幅及びひずみ時効処理後試験片の0.2%耐力を精度良く推定し得る。かかる実施例1乃至13のEq2及びYcalは、ともに1つの目標値、例えば、200MPa以上及び700Mpa以上を満たす。すなわち、C、Si、Mn、P、Cu、Ni、Cr、V、Ti、N、Sの含有量を調整することで、参照試験片の0.2%耐力、ひずみ時効処理後試験片の0.2%耐力の上昇幅、ひずみ時効処理後試験片の0.2%耐力を調整し得て、ひずみ時効処理後試験片の0.2%耐力の1つの目標値である700Mpa以上を満たすことができる。すなわち、以下の式1を満たす場合である。
Ycal=(806.6×Ceq+135.0)×Eq1+Eq2≧700 (式1)
Here, when Ycal is applied to the above-described Examples 1 to 13, it is possible to accurately estimate the 0.2% proof stress increase range and the 0.2% proof stress of the test piece after strain aging treatment. Both Eq2 and Ycal of Examples 1 to 13 satisfy one target value, for example, 200 MPa or more and 700 MPa or more. That is, by adjusting the content of C, Si, Mn, P, Cu, Ni, Cr, V, Ti, N, and S, the 0.2% proof stress of the reference test piece, 0 of the test piece after strain aging treatment .2% proof stress increase range, 0.2% proof stress of strain-aged specimens can be adjusted and meet one target value of 700Mpa or more for 0.2% proof stress of specimens after strain aging treatment Can do. That is, it is a case where the following formula 1 is satisfied.
Ycal = (806.6 × Ceq + 135.0) × Eq1 + Eq2 ≧ 700 (Formula 1)

続いて、比較例1乃至5における試験結果について説明する。   Subsequently, test results in Comparative Examples 1 to 5 will be described.

比較例1は、実施例1乃至13と同様の成分組成を有するが、Ycalが695となって式1を満足せず、ひずみ時効処理後試験片の0.2%耐力も695MPaとなり上記した1つの目標値以下であった。   Comparative Example 1 has the same component composition as Examples 1 to 13, but Ycal was 695, which did not satisfy Formula 1, and the 0.2% proof stress of the test piece after strain aging treatment was 695 MPa, which was described above. Was below one target value.

比較例2は、実施例1乃至13に比べてSの含有量が多く、Ycalが694となり式1を満足せず、ひずみ時効処理後試験片の0.2%耐力も698MPaとなった。つまり上記した1つの目標値以下であった。   In Comparative Example 2, the S content was higher than in Examples 1 to 13, Ycal was 694, which did not satisfy Formula 1, and the 0.2% proof stress of the test piece after strain aging treatment was 698 MPa. That is, it was below the above one target value.

比較例3は、実施例1乃至13に比べてSiの含有量が多く、Ycalが696となり式1を満足せず、ひずみ時効処理後試験片の0.2%耐力も696MPaとなった。つまり上記した1つの目標値以下であった。   In Comparative Example 3, the Si content was higher than in Examples 1 to 13, Ycal was 696, which did not satisfy Formula 1, and the 0.2% proof stress of the test piece after strain aging treatment was 696 MPa. That is, it was below the above one target value.

比較例4は、実施例1乃至13に比べてCの含有量が多く、Ycalが697となり式1を満足せず、ひずみ時効処理後試験片の0.2%耐力も697MPaとなった。つまり上記した1つの目標値以下であった。   In Comparative Example 4, the content of C was larger than in Examples 1 to 13, Ycal was 697, which did not satisfy Formula 1, and the 0.2% proof stress of the test piece after strain aging treatment was 697 MPa. That is, it was below the above one target value.

比較例5は、実施例1乃至13に比べてCrの含有量が多いが、Ycalが793となり式1を満足したものの、ひずみ時効処理後試験片の0.2%耐力は693MPaとなった。つまり上記した1つの目標値以下であった。これは、Crによってフェライト・パーライト組織からベイナイトを多量に含む組織になったためである。   In Comparative Example 5, the Cr content was higher than in Examples 1 to 13, but Ycal was 793, which satisfied Equation 1, but the 0.2% proof stress of the strain-aged test piece was 693 MPa. That is, it was below the above one target value. This is because Cr has changed the structure from ferrite and pearlite to a structure containing a large amount of bainite.

以上、述べてきたように、本実施例によれば、機械加工性に優れるとともに、必要な箇所においてひずみ時効処理を施すことで機械強度をより高め得る機械部品用鋼を得ることができる。また、かかる機械部品用鋼においてひずみ時効処理を施して機械強度をより高めた強化部位を有する非調質鋼機械部品を得ることができる。なお、熱間鍛造後に一旦冷却しひずみ時効処理を施す上記した工程を経た場合であっても、上記した本実施例と同等の0.2%耐力の向上を得られることが確認された。   As described above, according to the present embodiment, it is possible to obtain steel for machine parts that is excellent in machinability and can further increase the mechanical strength by performing strain aging treatment at a necessary location. Moreover, the non-tempered steel machine part which has the reinforcement | strengthening part which performed the strain aging process in this steel for machine parts, and raised the mechanical strength more can be obtained. In addition, even when it passed through the above-mentioned process of cooling once after hot forging and performing a strain aging treatment, it was confirmed that the 0.2% yield strength improvement equivalent to the above-mentioned Example can be obtained.

なお、比較例1や比較例3のように、Eq2の値が小さいとひずみ時効処理における0.2%耐力の上昇幅も小さくなる。また、Eq2が大きくなり過ぎると耐力比が低く硬さが高くなり、結果として被削性に劣る。そこで、少なくとも上記した加工条件においては、Eq2の値は、250〜350の範囲内とすることが好ましい。   Note that, as in Comparative Example 1 and Comparative Example 3, when the value of Eq2 is small, the 0.2% yield strength increase in the strain aging treatment is also small. Moreover, when Eq2 becomes too large, the yield strength ratio becomes low and the hardness becomes high, resulting in inferior machinability. Therefore, at least under the above processing conditions, the value of Eq2 is preferably in the range of 250 to 350.

ところで、ここまで述べてきた機械部品用鋼及び非調質鋼機械部品として考慮される成分組成の範囲は、以下のような指針で定められる。   By the way, the range of the component composition considered as the steel for machine parts and the non-heat treated steel machine parts described so far is determined by the following guidelines.

Cは、非調質鋼機械部品としての機械強度、特に、強化部位の耐力を確保するために必要である。一方、過剰に含まれると、硬さを過度に高めて、機械部品用鋼としての機械加工性又は非調質鋼機械部品の非強化部位における機械加工性を低下させる。そこで、Cの含有量は、質量%で、0.20〜0.60%の範囲内である。   C is necessary to ensure the mechanical strength as a non-heat treated steel machine part, particularly the proof strength of the strengthened part. On the other hand, if contained excessively, the hardness is excessively increased, and the machinability as the steel for machine parts or the machinability at the non-strengthened part of the non-tempered steel machine part is lowered. Therefore, the content of C is mass% and is in the range of 0.20 to 0.60%.

Siは、ひずみ時効処理による0.2%耐力の上昇幅を小さくし、過剰に含まれると、熱間及び温間での変形抵抗を過度に高めて、熱間鍛造及びひずみ時効処理における金型の寿命を低下させてしまう。そこで、Siの含有量は、質量%で、1.5%以下の範囲内である。   Si reduces the 0.2% proof stress increase range due to strain aging treatment, and excessively increases the deformation resistance in hot and warm conditions when it is excessively contained, so that the die in hot forging and strain aging treatment Will reduce the lifespan. Therefore, the Si content is in mass% and is in the range of 1.5% or less.

Mnは、非調質鋼機械部品としての耐力を確保するために必要である。一方、過剰に含まれると、ベイナイトの生成を促進させて耐力を低下させ、機械部品用鋼としての機械加工性又は非調質鋼機械部品の非強化部位としての機械加工性を低下させる。そこで、Mnの含有量は、質量%で、0.30〜1.50%の範囲内である。   Mn is necessary to ensure the proof stress as a non-tempered steel machine part. On the other hand, if contained excessively, the production of bainite is promoted to reduce the yield strength, and the machinability as the steel for machine parts or the machinability as the non-strengthened part of the non-tempered steel machine parts is lowered. Therefore, the content of Mn is mass% and is in the range of 0.30 to 1.50%.

Pは、非調質鋼機械部品として必要とされる耐力を確保するために添加される。一方、過剰に含まれると鋳造性を低下させる。そこで、Pの含有量は、質量%で、0.01〜0.20%の範囲内である。   P is added in order to ensure the proof stress required as a non-heat treated steel machine part. On the other hand, if it is excessively contained, castability is lowered. Therefore, the content of P is in mass% and is in the range of 0.01 to 0.20%.

Sは、硫化物を形成し、機械部品用鋼としての、又は非調質鋼機械部品の非強化部位としての機械加工性を高める。一方、過剰に含まれると、製造性を低下させる。そこで、Sの含有量は質量%で0.01〜0.20%の範囲内である。   S forms sulfides and enhances machinability as steel for machine parts or as a non-strengthened part of non-tempered steel machine parts. On the other hand, if it is excessively contained, the productivity is lowered. Therefore, the S content is in the range of 0.01 to 0.20% by mass%.

Cu、Ni及びCrは、不純物として機械部品用鋼に含まれ得る。これらの元素は過剰に含まれると、ベイナイトの生成を促進させて耐力を低下させ、機械部品用鋼としての機械加工性又は非調質鋼機械部品の非強化部位としての機械加工性を低下させてしまう。そこで、Cu、Ni及びCrの含有量は、各々、質量%で1.0%以下の範囲内である。   Cu, Ni and Cr can be contained in the steel for machine parts as impurities. When these elements are contained excessively, the formation of bainite is promoted and the yield strength is lowered, and the machinability as a steel for machine parts or the machinability as a non-strengthened part of non-tempered steel machine parts is lowered. End up. Therefore, the contents of Cu, Ni and Cr are each in the range of 1.0% or less by mass%.

Vは、V炭窒化物の析出による析出強化によって、非調質鋼機械部品の耐力を向上させ得る。一方、過度に添加するとコストを増大させ得る。そこで、Vの含有量は、質量%で、0.10%以下の範囲内である。   V can improve the yield strength of non-tempered steel machine parts by precipitation strengthening by precipitation of V carbonitride. On the other hand, when it adds excessively, cost can be increased. Therefore, the content of V is in mass% and is in the range of 0.10% or less.

Tiは、Ti炭窒化物の析出による析出強化によって、非調質鋼機械部品の耐力を向上させ得る。一方、過度に添加するとコストを増大させ得る。そこで、Tiの含有量は、質量%で、0.20%以下の範囲内である。   Ti can improve the yield strength of non-tempered steel machine parts by precipitation strengthening by precipitation of Ti carbonitride. On the other hand, when it adds excessively, cost can be increased. Therefore, the Ti content is in mass% and is in the range of 0.20% or less.

Nは、一定の範囲で鋼に含まれ得る。一方、一定の範囲を越えて過度に低減又は増大させることは精錬コストを増大させ得る。そこで、Nの含有量は、質量%で、0.005〜0.030%の範囲内である。   N can be included in the steel to a certain extent. On the other hand, excessively reducing or increasing beyond a certain range can increase refining costs. Therefore, the N content is in mass% and is in the range of 0.005 to 0.030%.

ここまで本発明による代表的実施例及びこれに基づく改変例について説明したが、本発明は必ずしもこれらに限定されるものではない。当業者であれば、添付した特許請求の範囲を逸脱することなく、種々の代替実施例を見出すことができるだろう。   So far, representative examples and modified examples based on the examples have been described, but the present invention is not necessarily limited thereto. Those skilled in the art will recognize a variety of alternative embodiments without departing from the scope of the appended claims.

Claims (4)

フェライト・パーライト非調質鋼からなりひずみ時効処理により強化部分を与えた非調質鋼機械部品のための鋼であって、
質量%で、C:0.20〜0.60%、Si:≦1.5%、Mn:0.30〜1.50%、P:0.01〜0.20%、S:0.01〜0.20%、Cu:≦1.0%、Ni:≦1.0%、Cr:≦1.0%、V:≦0.10%、Ti:≦0.20%、N:0.005〜0.030%を含有し、残部はFe及び不純物からなり、
元素Mの質量%を[M]で表し、
Ceq=[C]+0.03×[Si]+0.55×[Mn]+0.26×[P]+0.08×[Cu]+0.07×[Ni]+0.09×[Cr]+1.2×[V]+0.51×([Ti]−3.43×[N])−0.7×[S]
Eq1=−0.18×[C]+0.061×[Mn]−0.178×[S]+0.502×[V]+0.354×[Ti]+0.629
Eq2=260.6+85×[C]−49.3×[Si]+27×[Mn]−288.8×[V]−100.7×[Ti]
とすると、
(806.6×Ceq+135.0)×Eq1+Eq2≧700
であることを特徴とする機械部品用鋼。
A steel for non-tempered steel machine parts made of ferritic pearlite non-tempered steel and given a strengthened part by strain aging treatment,
In mass%, C: 0.20 to 0.60%, Si: ≦ 1.5%, Mn: 0.30 to 1.50%, P: 0.01 to 0.20%, S: 0.01 ˜0.20%, Cu: ≦ 1.0%, Ni: ≦ 1.0%, Cr: ≦ 1.0%, V: ≦ 0.10%, Ti: ≦ 0.20%, N: 0.0. 005 to 0.030%, with the balance being Fe and impurities,
The mass% of the element M is represented by [M].
Ceq = [C] + 0.03 × [Si] + 0.55 × [Mn] + 0.26 × [P] + 0.08 × [Cu] + 0.07 × [Ni] + 0.09 × [Cr] +1.2 * [V] +0.51 * ([Ti] -3.43 * [N])-0.7 * [S]
Eq1 = −0.18 × [C] + 0.061 × [Mn] −0.178 × [S] + 0.502 × [V] + 0.354 × [Ti] +0.629
Eq2 = 260.6 + 85 × [C] −49.3 × [Si] + 27 × [Mn] −288.8 × [V] −100.7 × [Ti]
Then,
(806.6 × Ceq + 135.0) × Eq1 + Eq2 ≧ 700
Steel for machine parts, characterized by
フェライト・パーライト非調質鋼からなりひずみ時効処理により強化部分を与えた非調質鋼機械部品であって、
質量%で、C:0.20〜0.60%、Si:≦1.5%、Mn:0.30〜1.50%、P:0.01〜0.20%、S:0.01〜0.20%、Cu:≦1.0%、Ni:≦1.0%、Cr:≦1.0%、V:≦0.10%、Ti:≦0.20%、N:0.005〜0.030%を含有し、残部はFe及び不純物からなり、
元素Mの質量%を[M]で表し、
Ceq=[C]+0.03×[Si]+0.55×[Mn]+0.26×[P]+0.08×[Cu]+0.07×[Ni]+0.09×[Cr]+1.2×[V]+0.51×([Ti]−3.43×[N])−0.7×[S]
Eq1=−0.18×[C]+0.061×[Mn]−0.178×[S]+0.502×[V]+0.354×[Ti]+0.629
Eq2=260.6+85×[C]−49.3×[Si]+27×[Mn]−288.8×[V]−100.7×[Ti]
とすると、
(806.6×Ceq+135.0)×Eq1+Eq2≧700
であって、
前記強化部分において、0.2%耐力で200MPa以上の降伏強度上昇を与えたことを特徴とする非調質鋼機械部品。
Non-heat treated steel machine parts made of ferritic pearlite non-heat treated steel and given a strengthened part by strain aging treatment,
In mass%, C: 0.20 to 0.60%, Si: ≦ 1.5%, Mn: 0.30 to 1.50%, P: 0.01 to 0.20%, S: 0.01 ˜0.20%, Cu: ≦ 1.0%, Ni: ≦ 1.0%, Cr: ≦ 1.0%, V: ≦ 0.10%, Ti: ≦ 0.20%, N: 0.0. 005 to 0.030%, with the balance being Fe and impurities,
The mass% of the element M is represented by [M].
Ceq = [C] + 0.03 × [Si] + 0.55 × [Mn] + 0.26 × [P] + 0.08 × [Cu] + 0.07 × [Ni] + 0.09 × [Cr] +1.2 * [V] +0.51 * ([Ti] -3.43 * [N])-0.7 * [S]
Eq1 = −0.18 × [C] + 0.061 × [Mn] −0.178 × [S] + 0.502 × [V] + 0.354 × [Ti] +0.629
Eq2 = 260.6 + 85 × [C] −49.3 × [Si] + 27 × [Mn] −288.8 × [V] −100.7 × [Ti]
Then,
(806.6 × Ceq + 135.0) × Eq1 + Eq2 ≧ 700
Because
A non-tempered steel machine part characterized by giving a yield strength increase of 200 MPa or more at 0.2% proof stress in the strengthened portion.
前記強化部分以外において、硬さが25HRC以下であることを特徴とする請求項2記載の非調質鋼機械部品。   The non-heat treated steel machine part according to claim 2, wherein the hardness is 25HRC or less except for the strengthened portion. 前記強化部分において、0.2%耐力で700MPa以上の降伏強度であることを特徴とする請求項3記載の非調質鋼機械部品。   The non-heat treated steel machine part according to claim 3, wherein the reinforced portion has a yield strength of 700 MPa or more with a 0.2% proof stress.
JP2013126997A 2013-06-17 2013-06-17 Steel for machine component and machine component for non-heat treated steel Pending JP2015001018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013126997A JP2015001018A (en) 2013-06-17 2013-06-17 Steel for machine component and machine component for non-heat treated steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013126997A JP2015001018A (en) 2013-06-17 2013-06-17 Steel for machine component and machine component for non-heat treated steel

Publications (1)

Publication Number Publication Date
JP2015001018A true JP2015001018A (en) 2015-01-05

Family

ID=52295718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013126997A Pending JP2015001018A (en) 2013-06-17 2013-06-17 Steel for machine component and machine component for non-heat treated steel

Country Status (1)

Country Link
JP (1) JP2015001018A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110883A1 (en) * 2015-12-25 2017-06-29 新日鐵住金株式会社 Steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110883A1 (en) * 2015-12-25 2017-06-29 新日鐵住金株式会社 Steel

Similar Documents

Publication Publication Date Title
JP6616501B2 (en) Industrial steel materials having a bainite structure, forged parts produced from the steel materials, and methods for producing forged parts
EP2423344B1 (en) High strength, high toughness steel wire rod, and method for manufacturing same
US10066281B2 (en) Age-hardenable steel
CA2979511A1 (en) A method of producing a tube of a duplex stainless steel
JP2015025162A (en) Ferrite pearlite type non-heat treated steel
JP6695570B2 (en) Method for manufacturing parts using age hardening type bainite non-heat treated steel
JP6223124B2 (en) High-strength duplex stainless steel sheet and its manufacturing method
JP5206056B2 (en) Manufacturing method of non-tempered steel
JP6625657B2 (en) Component having bainite structure having high strength characteristics and manufacturing method
CN105940135A (en) Turbine rotor material for geothermal power generation and method for manufacturing same
CN103210106B (en) High-toughness cold-drawn non-heat-treated wire rod, and method for manufacturing same
JP5413350B2 (en) Rolled steel for hot forging and method for producing the same
US20180245172A1 (en) Age-hardenable steel, and method for manufacturing components using age-hardenable steel
KR101301617B1 (en) Material having high strength and toughness and method for forming tower flange using the same
JP2015001018A (en) Steel for machine component and machine component for non-heat treated steel
CN105177425A (en) Strengthening low-alloy steel containing copper nanophase and preparation method thereof
JP2016027204A (en) Age-hardening bainite untempered steel
JP5282501B2 (en) Manufacturing method of high strength non-tempered forged parts
KR102351770B1 (en) Manufacturing method of Ni-containing steel sheet
JP6153747B2 (en) Structural high-strength cast steel
JP2016050322A (en) Non-refining steel
KR20150004640A (en) Wire rod having excellent cold forging characteristics and method for manufacturing the same
KR101676111B1 (en) Wire having high strength and method for manufacturing thereof
US11261511B2 (en) Hot forged steel material
KR101691970B1 (en) Forged part, method for producing same, and connecting rod