JP3756307B2 - Manufacturing method of non-tempered steel parts with high strength and low ductility - Google Patents

Manufacturing method of non-tempered steel parts with high strength and low ductility Download PDF

Info

Publication number
JP3756307B2
JP3756307B2 JP00967598A JP967598A JP3756307B2 JP 3756307 B2 JP3756307 B2 JP 3756307B2 JP 00967598 A JP00967598 A JP 00967598A JP 967598 A JP967598 A JP 967598A JP 3756307 B2 JP3756307 B2 JP 3756307B2
Authority
JP
Japan
Prior art keywords
connecting rod
steel
less
ferrite
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00967598A
Other languages
Japanese (ja)
Other versions
JPH11199924A (en
Inventor
豊明 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Bars and Shapes Corp
Original Assignee
JFE Bars and Shapes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Bars and Shapes Corp filed Critical JFE Bars and Shapes Corp
Priority to JP00967598A priority Critical patent/JP3756307B2/en
Publication of JPH11199924A publication Critical patent/JPH11199924A/en
Application granted granted Critical
Publication of JP3756307B2 publication Critical patent/JP3756307B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、高強度且つ低延性であって、熱間鍛造による非調質鋼を用いた部品を製造する方法に関するものである。
【0002】
【従来の技術】
自動車のエンジン部品であるコネクティングロッドは、ピストンの往復運動を回転運動に変えてクランクシャフトに伝える媒体機能をもつ重要な部品でる。
【0003】
図1に、コネクティングロッドの組み立て状況を説明する概略斜視図を示す。同図に示すように、コネクティングロッド(以下、コンロッドという)は、コンロッド本体1とコンロッドキャップ2とに分けられる。コンロッドは従来、S45C等の機械構造用鋼を用いて、コンロッド本体1とコンロッドキャップ2との二つの部品を別々に鍛造した後、コンロッドの大端部4を構成するこれら両部品の接合面1a、2aを切削加工により仕上げて、一体の物(部品)に構成するという製造方法がとられてきた。このように、本来一体となる部品を二つの部品に分けて鍛造し、後で一体の部品に構成する方法では、加工工程を煩雑にするのみならず、コンロッドボルト5を通すボルト穴7の切削加工に極めて高い精度が要求されることもあり、コスト高となる。
【0004】
そこで、本発明者等は、コンロッド本体1とコンロッドキャップ2とを一体物として鍛造加工する方法を検討した。
図2に、コンロッド本体部分とコンロッドキャップ部分とが一体物で鍛造されたものの概略斜視図を示す。この方法は、同図において、大端部4の両側のそれぞれに上下方向に貫通するボルト穴7を切削加工により開けた後、適切な治具等を用いて大端部4の中央部で上下に引張破断させて、コンロッド本体部分1’とコンロッドキャップ部分2’とに分割するというものである。重要な点は、破断された面が平らで変形が極めて小さいことである。このようにすれば、鍛造加工工程が簡素化されるのみならず、コンロッド本体部分1’とコンロッドキャップ部分2’とのボルト穴7のずれもなく、従来のようにコンロッドボルト5を通すボルト穴7を極めて高い精度で切削加工する手間も省ける。従って、低コストでコンロッドを製造することが可能となる。
【0005】
従来、コンロッドの製造技術においては、高強度高延性のコンロッドを提供することに研究開発が向けられてきた。これに対して上記方法によるコンロッドの製造は、高強度で且つ適切な程度に低延性化したコンロッドを開発することにより達成し得るものであり、全く新しい着想によるものである。
【0006】
このように、素材を一体物で鍛造した後、2分割してコンロッドを製造する(以下、分割型コンロッドの製造という)との観点から従来技術を概観する。
コンロッドの素材としてS45C等の機械構造用鋼を用いた場合には、材料の機械的性質の特性確保のため、鍛造した後に焼入れ及び焼戻しを施さなければならない。この熱処理コストを低減するために、近年、材料を熱間鍛造後の冷却ままで使用する非調質鋼が広く採用されてきた。
【0007】
このような非調質鋼として、VやNbを添加したフェライト+パーライト組織の非調質鋼が広く採用されてきている。一般にフェライト+パーライト系の非調質鋼は、従来の焼入れ及び焼戻し鋼に比べて、絞り値や衝撃値等の延性や靱性が低いのが特徴であるにもかかわらず、上記V、Nb添加のフェライト+パーライト系非調質鋼においても一般のフェライト+パーライト系の非調質鋼と同様、その引張破断による破面は、ディンプルを伴う延性破面を呈する。このように破断面が、変形の大きい延性破面を呈する材料を用いて、本発明者等の着想による分割型コンロッドでコンロッドを製造しようとする場合には、一体物で熱間鍛造された材料をコンロッド本体とコンロッドキャップとに引張破断で分割された破面同士の噛み合わせがうまくいかない。この噛み合わせをうまく行なわせるためには、上記破断面を壁界破壊のような平らな脆性破面を呈する材料を用いる必要がある。従って、従来コンロッド用に使用されてきた非調質鋼を、本発明者等の着想によるコンロッド製造方法に用いるのは不可である。
【0008】
一方、鉄系粉末を用いた場合には、これを焼結後、一体物でコンロッドに熱間鍛造した後、上記と同様に引張破断させて、コンロッド本体とコンロッドキャップとに分割すると、平らな脆性破面が得られる。これは、鉄系粉末の焼結材が極めて靱性が低いことを利用したものである。従って、両者の接合面をうまく噛み合わせることができるという点においては、鉄系粉末をコンロッド素材として用いるのは、分割型コンロッドの製造方法に適している。しかしながら、粉末の焼結・鍛造工程では製造コストが高くなるという問題がある。
【0009】
以上のような問題に対して、特開平9−3589号公報には、重量%で、C:0.30〜0.90%、Si:1.%以下、Mn:0.30〜2.0%、P:0.10%以下、S:0.10%以下、Cr:0.02〜2.00%、Mo:0.01〜0.50%、Al:0.05%以下、Ti:0.08%以下、Nb:0.17%以下、V:0.08%以下、N:0.005〜0.030%、及びB:0.001%以下を含む非調質鋼をコンロッド素材として用いることが開示されている。しかし、本発明者等は、Si含有率が1.0%以下ではフェライトの硬度が低く、フェライトが伸びや易いこと、Mnが0.30%を超えると鋼の延性が向上して延性破壊を起こし易いこと、また更に、Al、Ti、Nbの添加は結晶粒を微細化して鋼の靱性を向上させることにより、脆性破面が得られ難いことを突き止めた。
【0010】
【発明が解決しようとする課題】
上述した通り、コンロッドの製造に当たり、従来法のS45C等の機械構造用鋼を素材として用いた場合には、コンロッドの本体とキャップとを別々に鍛造すること、及び熱間鍛造後の焼入れ・焼戻しを必要とすることによる製造コストの上昇が避けられない。また、熱間鍛造後の冷却ままで材料を供するための非調質鋼は、熱処理費用の削減による効果はあるが、コンロッドの本体とキャップとの接合技術上に問題があり、鍛造工程の簡略化を図るための分割型コンロッドの製造方法を採用するには不適当である。そして、鉄系粉末の焼結材の適用では製造コストがかさむ。一方、特開平9−3589号公報に開示された非調質鋼を使用する方法においても、脆性破面が得られず延性破面を呈するので、分割型コンロッドの製造方法に適用するには問題がある。
【0011】
従って、この発明が解決すべき課題は、コンロッドの製造に当たり、材料の延性を適切に低延性化させると共に、その素材を一体物で熱間鍛造し、得られた材料を常温で引張破断させた場合に平らな脆性破面が得られ、こうして破断分割されたもの同士を再度一体化させるときにその噛み合わせを容易に行なうことができる、熱間鍛造の非調質鋼部品の製造方法を開発することにある。かくして、この発明の目的は、上述した課題を解決して、コンロッド等に適した高強度且つ比較的低延性を有する熱間鍛造の非調質鋼部品を製造する方法を提供することにある。
【0012】
【課題を解決するための手段】
本発明者等は、上述した観点から、高強度且つ低延性の非調質鋼部品の製造方法を開発すべく鋭意研究を重ねた。その結果、C、Si、Mn及びV等の化学成分を最適な含有率に調整することにより、コンロッドの本体部分とキャップ部分とが一体となった素材を熱間鍛造し、得られた鍛造材を冷却し、そして冷却されたままの非調質鋼部材を引張破断させたとき、平らな脆性破面が得られることを知見した。この発明は、上述した知見に基づきなされたものであり、次の通りである。
【0013】
請求項1記載の高強度低延性の非調質鋼部品の製造方法は、C:0.40〜0.70wt.%、Si:1.0超え〜2.0wt.%、Mn:0.10〜0.30wt.%未満、P:0.010〜0.100wt.%、S:0.010〜0.100wt.%、Cr:0.05 〜1.0wt.%、V:0.05 〜0.30wt.%、Al:0.006〜0.010wt.%未満、及び、N:0.0020〜0.0200wt.%を含み、残部Fe及び不可避不純物からなり、C+Si/7+Mn/5+Cr/9+1.5Vで表わされる炭素当量Ceqが、0.80〜1.10wt.%の範囲内にある鋼材を、熱間鍛造し、そして前記熱間鍛造の後で空冷し、こうして得られた鋼材に、前記鋼材のミクロ組織が面積率で10%以下のフェライトと残部がパーライト又はパーライト及びベイナイトとからなり、前記鋼材の降伏応力が600N/mm2 以上である各特性を付与することに特徴を有するものである。
【0014】
請求項2記載の高強度低延性の非調質鋼部品の製造方法は、C:0.40〜0.70wt.%、Si:1.0超え〜2.0wt.%、Mn:0.10〜0.30wt.%未満、P:0.010〜0.100wt.%、S:0.010〜0.100wt.%、Cr:0.05 〜1.0wt.%、V:0.05 〜0.30wt.%、Al:0.006〜0.010wt.%未満、及び、N:0.0020〜0.0200wt.%を含み、更に、Sb、As及びSnからなる群から1種以上を合計で0.010〜0.100wt.%含み、残部Fe及び不可避不純物からなり、C+Si/7+Mn/5+Cr/9+1.5Vで表わされる炭素当量Ceqが、0.80〜1.10wt.%の範囲内にある鋼材を、熱間鍛造し、そして前記熱間鍛造の後で空冷し、こうして得られた鋼材に、前記鋼材のミクロ組織が面積率で10%以下のフェライトと残部がパーライト又はパーライト及びベイナイトとからなり、前記鋼材の降伏応力が600N/mm2 以上である各特性を付与することに特徴を有するものである。
【0015】
【発明の実施の形態】
この発明の製造方法において、使用する鋼材の化学成分組成、並びに、熱間鍛造後空冷された鋼材のミクロ組織、破面形態及び降伏応力を上述したように限定した理由を説明する。
【0016】
・C:0.40〜0.70wt.%
C含有率が0.40wt.%未満では、結晶粒界にフェライトの面積率が多くなって、当該鋼材に脆性破面が得られ難くなる。また、所望の強度を得るのが困難になる。しかしながら、C含有率が0.70wt.%を超えると、結晶粒界のフェライト量が少なくなって、引張破断において、軟質なフェライト相に応力が集中し難く、応力が分散される結果、平らな脆性破面が得られ難い。従って、C含有率は0.40〜0.70wt.%の範囲内に限定する。
【0017】
・Si:1.0超え〜2.0wt.%
Siはフェライトに固溶して硬度を高め、フェライトの延性を低下させる。Si含有率が1.0wt.%以下では、脆性破面を得るのに十分な低延性なフェライトが得られないので、Si含有率は1.0wt.%超えとする。しかしながら、Si含有率が2.0wt.%を超えると、鋼材の鍛造加熱時の脱炭が多くなって、疲労強度が低下する。また、熱間の延性が低下し過ぎて鍛造時の割れ発生の原因になる。従って、Si含有率は1.0超え〜2.0wt.%の範囲内に限定する。
【0018】
・Mn:0.10〜0.30wt.%未満
Mnは鋼中のSと結合してMnSを形成し、鋼材の延性を高める。引張破断において脆性破面を得るためには、Mn含有率を0.30wt.%未満にする必要がある。しかしながら、連続鋳造時や棒鋼圧延時の表面疵発生を防止するためには、Mn含有率は0.10wt.%以上を確保する必要がある。従って、Mn含有率は、0.10〜0.30wt.%未満の範囲内に限定する。
【0019】
・P:0.010〜0.100wt.%
Pは結晶粒界に偏析して鋼材を脆化するのに効果のある元素であり、その効果を発揮するためには、0.010wt.%以上添加する必要がある。しかしながら、P含有率が0.100wt.%を超えると、熱間鍛造時の割れ発生が多くなる。従って、P含有率は0.010〜0.100wt.%の範囲内に限定する。
【0020】
・S:0.010〜0.100wt.%
Sは鋼中のMnと結合してMnSを形成し、鋼材の靱性を低下させると共に、被削性を向上させる。この効果を発揮させるためにはS含有率を0.010wt.%以上添加する必要がある。しかしながら、S含有率が0.100wt.%を超えると、熱間鍛造時の割れ発生の原因となる。従って、S含有率は0.010〜0.100wt.%の範囲内に限定する。
【0021】
・Cr:0.05〜1.0wt.%
Crは鋼材の焼入れ性を高めて鋼材を強化する。この効果を発揮させるためには、0.05wt.%以上添加する必要がある。しかしながら、Cr含有率が1.0wt.%を超えると、フェライトの析出が抑えられ、ベイナイト主体のミクロ組織となって平らな脆性破面が得られ難くなる。従って、Cr含有率は0.05〜1.0wt.%の範囲内に限定する。
【0022】
・V:0.05〜0.30wt.%
Vは鍛造中の冷却途中に微細な炭化物や窒化物を析出して、降伏応力を高め、鋼材を塑性変形しにくくする。所望の強度及び降伏応力を得るためには、0.05wt.%以上の添加を必要とし、その効果を一層発揮させるためには、0.10wt.%以上の添加をすることが望ましい。
【0023】
しかしながら、Vは高価な元素であり、また、0.30wt.%を超えて添加しても上記効果は飽和してくる。従って、V含有率は0.05 〜0.30wt.%の範囲内に、望ましくは、0.10 〜0.30wt.%の範囲内に限定する。
【0024】
・Al:0.006〜0.010wt.%未満
Alは結晶粒を微細化する作用が強い。鋼材の熱間鍛造後の結晶粒を粗くして、鋼材の延性を低下させて脆性破面を得るためには、含有率を0.010wt.%未満に限定しなければならない。また、Alは脱酸元素でもある。溶鋼中の酸素をなるべくAl酸化物として排除して、凝固後の鋼材になるべく酸化物系介在物を残さないようにし、これによって、被削性および耐久性を低下させないためには、Alを0.006 wt.% 以上含有させる必要がある。以上のことから、この発明においてAl含有量は、0.006〜0.010 wt.% 未満の範囲内に限定した。
【0025】
・N:0.0020〜0.0200wt.%
Nは結晶粒界に偏析して粒界の強度を弱め、延性を低下させる作用を有する。上記作用による脆性破面を得るための効果を発揮させるためには、N含有率は0.0020wt.%以上必要とする。しかしながら、N含有率が0.0200wt.%を超えると、鋳片等においてブローホールとして残存し、その後の熱間加工工程で鋼材の表面疵や鍛造時の割れ発生の原因となる。従って、N含有率は0.0020〜0.0200wt.%の範囲内に限定する。
【0026】
・Sb、As及びSnの内1種以上:0.010〜0.100wt.%
Sb、As及びSnはいずれも、鋼中に溶解して鋼材を脆化させる。また、鍛造加熱時に鋼材表面に濃化して表面反応を抑制して脱炭を防止し、疲労強度を高める。上記作用・効果を発揮させるためにはこれらの元素は少なくとも合計で0.010wt.%以上添加する必要がある。しかしながら、0.100wt.%を超えて添加すると鋼材の熱間延性の低下及び表面疵の発生を招く。従って、上記元素は合計で、0.010〜0.100wt.%の範囲内添加することが望ましい。
【0027】
上述した元素の他に、Ni、Cu、及びMo等は鋼材に不可避的に混入するが、これら元素はその含有率の範囲内で含んでもよい。また、切削性を向上させる元素であるPb、Bi、Se、Te及びCaを適宜添加しても差し支えない。
【0028】
・炭素当量Ceq:0.80〜1.10wt.%
炭素当量が0.80wt.%未満では、所望の強度を得ることができない。一方、これが1.10wt.%を超えると硬度が高くなり過ぎて切削性が劣化する。従って、炭素当量Ceqを0.80〜1.10wt.%の範囲内に限定する。炭素当量C eq は、C eq =C+Si/7+Mn/5+Cr/9+1.5Vで表わされる。
【0029】
・ミクロ組織:面積率で10%以下のフェライトと残部がパーライト又はパーライト及びベイナイト
フェライトの面積率が10%を超えると粒内のフェライト量が増大し、鋼材の延性が大きくなって、脆性破面を得ることができなくなるので、フェライトの面積率を10%以下にする。残部は、強度を確保するためにパーライトにする。ベイナイトが一部混じっても強度の変化は小さく、却って延性を低下させることができるので差し支えない。
【0030】
・降伏応力:600N/mm2 以上
降伏応力が600N/mm2 未満では、ガソリン爆発時にコンロッドにかかる衝撃的な力に対抗できず、コンロッドに座屈が発生する。また、クランクシャフトの回転に伴い、コンロッドにかかる引張−圧縮疲労に対する疲労強度が低くなるため、降伏応力は600N/mm2 以上であることが必要である。
【0031】
【実施例】
次に、この発明を実施例によって更に詳細に説明する。
各種化学成分組成を有する直径55mmの棒鋼を調製し、当該棒鋼を熱間鍛造後空冷してコンロッドを製造した。以下、その製造方法を説明する。
【0032】
表1に、各棒鋼の化学成分組成を示す。鋼種No.1、3、6、9、10は本発明方法で用いる素材(鋼材)の化学成分組成の範囲内のものであり、鋼種No.11〜20及びNo.22は、その範囲外のものである。
【0033】
本発明方法の範囲内の試験として実施例1、3、6、9、10を行ない、そして本発明方法の範囲外の試験として比較例11〜20、22を行なった。表2に、実施例1、3、6、9、10、及び比較例11〜20、22におけるコンロッドの製造条件を示す。実施例と比較例の製造条件の違いは成分系のみで、熱間鍛造時の加熱条件および熱間鍛造後の冷却条件は、実施例および比較例共に同じである。すなわち、熱間鍛造時の加熱条件は、1200〜1300℃、冷却条件は、扇風機による空冷である。こうして、図2に示したようなコンロッド本体部分1'とコンロッドキャップ部分2'とが一体物となった形態の鍛造品を調製した。次いで、大端部4の両側部のそれぞれに、縦のボルト穴7をドリル加工であけた。次いで、大端部4に治具を挟み、大端部4を中央で引張破断させて、コンロッドのキャップ部と本体部とに分割した。
【0034】
上記試験において、熱間鍛造時の割れ発生の有無の観察、鍛造品の穴明け加工性試験、鍛造品の引張−圧縮疲労特性試験、及び分割後の大端部の噛み合わせの試験を行なった。これらの試験結果を、表2に併記した。
【0035】
【表1】

Figure 0003756307
【0036】
【表2】
Figure 0003756307
試験結果は、次の通りであった。本発明方法の範囲内にある実施例1、3、6、9、10によれば、そのいずれにおいても、鍛造時の割れの発生はなく、ミクロ組織がフェライト10%以下のフェライト+パーライト組織であったので分割破面は平らな脆性破面であった。また、降伏応力が600N/mm2 以上であったので引張−圧縮疲労試験において良好な結果が得られた。また、ドリルによる穴明け加工においても切粉の粉砕性及び工具寿命に問題はなく、良好な加工性が得られた。
【0037】
これに対して、本発明方法の範囲外にある比較例11〜20、22においてはいずれも下記の問題があった。
比較例11は、C及びSi含有率が本発明の範囲より低く、炭素当量も低いためにフェライト面積率が10%より高く、分割破面は伸びた延性破面であった。このため大端部の噛み合わせ状況は不良であった。また、降伏応力が低く、そのため疲労試験結果も不良であった。
【0038】
比較例12は、本発明の範囲よりもC含有率が高く、Mn含有率は低く、炭素当量は高い。このため鍛造時に割れが発生した。また、フェライト面積率が0で、粒界にフェライトが存在せず、破面が延性になった。このため大端部の噛み合わせ状況は不良であった。また、硬くなり過ぎたので穴明け加工性が不良であった。
【0039】
比較例13は、Si及びP含有率が本発明の範囲より高く、熱間延性が不足して鍛造割れが発生した。
比較例14は、Mn及びCr含有率が本発明の範囲よりも高い。このため組織がベイナイト単相になって脆性破面が得られなかった。そのため大端部の噛み合わせ状況は不良であった。また、硬くなり過ぎたので穴明け加工性が不良であった。
【0040】
比較例15は、V含有率が本発明の範囲より高く、またSb+As含有率も本発明の範囲より高い。このため、熱間延性が不足して鍛造割れが発生した。
比較例16は、N含有率が本発明の範囲より高い。このため、ブローホールに起因した鍛造割れが発生した。
【0041】
比較例17は、V含有率が本発明の範囲より低い。このため、降伏応力が600N/mm2 未満と低く、そのため疲労特性が不良であった。
比較例18は、Al含有率が本発明の範囲より高い。このため結晶粒が微細になり、鋼材の延性が十分に低下しなかったため、破面が延性破面になったり、大端部の噛み合わせ状況が不良となった。
【0042】
比較例19は、S含有率が本発明の範囲より高い。このため、延性が不足し過ぎて、鍛造時に割れが発生した。
比較例20は、Cr含有率が本発明の範囲より低く、このため焼入れ性が不足して、フェライト面積率が10%を超え、脆性破面が得られなかった。
【0044】
比較例22は、従来の非調質鋼材を用いてコンロッド材を鍛造した例(従来例)である。フェライトの量が多く脆性破面が得られなかった。そのため、大端部の噛み合わせ状況が不良となった。
【0045】
【発明の効果】
以上述べたように、この発明によれば、コンロッド本体部分とコンロッドキャップ部分とを一体ものの状態で鍛造し、しかる後に両者に分割してコンロッドを製造することが可能となる。このような高強度低延性の非調質鋼部品の製造方法を提供することができ、工業上有用な効果がもたらされる。
【図面の簡単な説明】
【図1】コンロッドの組み立て状況を説明する概略斜視図である。
【図2】コンロッド本体部分とコンロッドキャップ部分とが一体物で鍛造されたものの概略斜視図である。
【符号の説明】
1 コンロッド本体
1’ コンロッド本体部分
2 コンロッドキャップ
2’ コンロッドキャップ部分
3 小端部
4 大端部
5 コンロッドボルト
6 コンロッドナット
7 ボルト穴[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a part using non-heat treated steel having high strength and low ductility by hot forging.
[0002]
[Prior art]
The connecting rod, which is an automobile engine part, is an important part having a medium function that changes the reciprocating motion of the piston into a rotational motion and transmits it to the crankshaft.
[0003]
In FIG. 1, the schematic perspective view explaining the assembly condition of a connecting rod is shown. As shown in the figure, a connecting rod (hereinafter referred to as a connecting rod) is divided into a connecting rod body 1 and a connecting rod cap 2. Conventionally, the connecting rod is made by forging two parts of the connecting rod body 1 and the connecting rod cap 2 separately using steel for mechanical structure such as S45C, and then the joint surface 1a of these two parts constituting the large end 4 of the connecting rod. A manufacturing method has been adopted in which 2a is finished by cutting to form an integrated object (part). In this way, the method of forging the parts that are originally integrated into two parts and forging them into an integrated part later not only complicates the machining process but also cuts the bolt hole 7 through which the connecting rod bolt 5 is passed. In some cases, extremely high accuracy is required for processing, resulting in high costs.
[0004]
Therefore, the present inventors examined a method for forging the connecting rod body 1 and the connecting rod cap 2 as an integrated object.
FIG. 2 is a schematic perspective view of the connecting rod main body portion and the connecting rod cap portion that are forged as a single body. In this method, in the same figure, after bolt holes 7 penetrating in the vertical direction are formed on both sides of the large end portion 4 by cutting, the upper and lower portions are vertically moved at the center portion of the large end portion 4 using an appropriate jig or the like. And is divided into a connecting rod body portion 1 ′ and a connecting rod cap portion 2 ′. The important point is that the fractured surface is flat and the deformation is very small. In this way, not only the forging process is simplified, but there is no displacement of the bolt hole 7 between the connecting rod body portion 1 ′ and the connecting rod cap portion 2 ′, and the bolt hole through which the connecting rod bolt 5 is passed as in the prior art. The trouble of cutting 7 with extremely high accuracy can be saved. Therefore, the connecting rod can be manufactured at a low cost.
[0005]
Conventionally, in connecting rod manufacturing technology, research and development has been directed to providing high-strength and highly ductile connecting rods. On the other hand, the production of the connecting rod by the above method can be achieved by developing a connecting rod having high strength and low ductility to an appropriate degree, and is based on a completely new idea.
[0006]
Thus, after forging a raw material with an integrated object, it divides into 2 parts and manufactures a connecting rod (henceforth manufacturing of a split type connecting rod), and gives an overview of the prior art.
When steel for mechanical structures such as S45C is used as the material for the connecting rod, it must be quenched and tempered after forging in order to ensure the mechanical properties of the material. In order to reduce this heat treatment cost, in recent years, non-heat treated steel that uses the material as it is cooled after hot forging has been widely adopted.
[0007]
As such non-heat treated steel, non-heat treated steel having a ferrite + pearlite structure to which V or Nb is added has been widely adopted. In general, ferritic + pearlite non-tempered steel is characterized by low ductility and toughness, such as drawing value and impact value, compared to conventional quenched and tempered steel. In the ferrite + pearlite non-heat treated steel, the fracture surface due to the tensile fracture exhibits a ductile fracture surface accompanied by dimples as in the case of a general ferrite + pearlite non-heat treated steel. When a connecting rod is to be manufactured with a split connecting rod based on the idea of the present inventors using a material having a ductile fracture surface with a large deformation surface as described above, the material is hot forged with an integral object. The fracture surfaces divided by the tensile fracture between the connecting rod body and the connecting rod cap do not mesh well. In order to perform this meshing well, it is necessary to use a material that exhibits a flat brittle fracture surface such as a wall boundary fracture on the fracture surface. Therefore, it is impossible to use non-heat treated steel that has been used for conventional connecting rods in a connecting rod manufacturing method based on the idea of the present inventors.
[0008]
On the other hand, when iron-based powder is used, it is sintered and then hot forged into a connecting rod as a single piece, and then tensile-ruptured in the same manner as described above, and divided into a connecting rod body and a connecting rod cap. A brittle fracture surface is obtained. This utilizes the fact that the sintered material of iron-based powder has extremely low toughness. Therefore, the use of iron-based powder as the connecting rod material is suitable for the manufacturing method of the split connecting rod in that the joint surfaces of both can be well meshed. However, there is a problem that the manufacturing cost becomes high in the powder sintering / forging process.
[0009]
In order to solve the above problems, Japanese Patent Application Laid-Open No. 9-3589 discloses, in weight percent, C: 0.30-0.90%, Si: 1. %: Mn: 0.30-2.0%, P: 0.10% or less, S: 0.10% or less, Cr: 0.02-2.00%, Mo: 0.01-0.50 %, Al: 0.05% or less, Ti: 0.08% or less, Nb: 0.17% or less, V: 0.08% or less, N: 0.005 to 0.030%, and B: 0.0. It is disclosed that non-tempered steel containing 001% or less is used as a connecting rod material. However, the present inventors have found that when the Si content is 1.0% or less, the hardness of the ferrite is low, the ferrite is easily stretched, and when Mn exceeds 0.30%, the ductility of the steel is improved and ductile fracture is caused. It has been found that addition of Al, Ti, and Nb is easy to occur, and that it is difficult to obtain a brittle fracture surface by refining crystal grains and improving the toughness of steel.
[0010]
[Problems to be solved by the invention]
As described above, in the production of connecting rods, when steel for mechanical structures such as S45C of the conventional method is used as the raw material, the connecting rod body and cap are separately forged, and quenched and tempered after hot forging. The increase in manufacturing cost due to the need for In addition, non-tempered steel for providing materials while being cooled after hot forging has the effect of reducing heat treatment costs, but there are problems in the joining technology between the connecting rod body and cap, simplifying the forging process. It is unsuitable for adopting a method of manufacturing a split connecting rod for realizing the structure. In addition, the application of the sintered material of iron-based powder increases the manufacturing cost. On the other hand, even in the method using the non-heat treated steel disclosed in JP-A-9-3589, a brittle fracture surface is not obtained and a ductile fracture surface is exhibited. There is.
[0011]
Accordingly, the problem to be solved by the present invention is that, in the production of the connecting rod, the ductility of the material is appropriately reduced and the material is hot forged with a single body, and the resulting material is tensile-ruptured at room temperature. Developed a method for producing hot-forged non-tempered steel parts that can be easily engaged when re-integrating parts that have been fractured and divided into flat brittle fracture surfaces. There is to do. Thus, an object of the present invention is to solve the above-described problems and to provide a method for producing a hot forged non-tempered steel part having high strength and relatively low ductility suitable for a connecting rod or the like.
[0012]
[Means for Solving the Problems]
From the above-mentioned viewpoints, the present inventors have intensively studied to develop a method for producing a high strength and low ductility non-heat treated steel part. As a result, by adjusting the chemical components such as C, Si, Mn and V to the optimum content rate, the forged material obtained by hot forging the material in which the main body portion and the cap portion of the connecting rod are integrated is obtained. It was found that a flat brittle fracture surface was obtained when the non-tempered steel member as it was cooled was subjected to tensile fracture. The present invention has been made based on the above-described knowledge and is as follows.
[0013]
The method for producing a high-strength, low-ductility, non-tempered steel part according to claim 1 is as follows: C: 0.40 to 0.70 wt.%, Si: more than 1.0 to 2.0 wt.%, Mn: 0.10 ~ 0.30 wt.%, P: 0.010 to 0.100 wt.%, S: 0.010 to 0.100 wt.%, Cr: 0.05 to 1.0 wt.%, V: 0.05 to 0.30 wt.%, Al: 0.006 to less than 0.010 wt.%, And N: 0.0020 to 0.0200 wt.%, The balance being Fe and inevitable impurities, C + Si / 7 + Mn / 5 + Cr / 9 + 1 A steel material having a carbon equivalent C eq expressed by 0.5 V in the range of 0.80 to 1.10 wt.% Is hot forged and air-cooled after the hot forging. The microstructure of the steel material is composed of ferrite with an area ratio of 10% or less and the balance of pearlite or pearlite and bainite, The steel material is characterized by giving each property that the yield stress of the steel material is 600 N / mm 2 or more.
[0014]
The method for producing a high-strength, low-ductility, non-tempered steel part according to claim 2 is as follows: C: 0.40 to 0.70 wt.%, Si: more than 1.0 to 2.0 wt.%, Mn: 0.10 ~ 0.30 wt.%, P: 0.010 to 0.100 wt.%, S: 0.010 to 0.100 wt.%, Cr: 0.05 to 1.0 wt.%, V: 0.05 to 0.30 wt.%, Al: 0.006 to less than 0.010 wt.%, And N: 0.0020 to 0.0200 wt.%, And further, one or more selected from the group consisting of Sb, As and Sn wherein 0.010~0.100wt.% in total, the balance being Fe and inevitable impurities, the carbon equivalent C eq expressed by C + Si / 7 + Mn / 5 + Cr / 9 + 1.5V is, 0.80~1.10wt.% range The steel material inside is hot forged, and then air-cooled after the hot forging, and the microstructure of the steel material faces the steel material thus obtained. Rate at it consisted of 10% or less of ferrite and the balance pearlite or pearlite and bainite, the yield stress of the steel material is one that has a feature to impart the characteristics, which are 600N / mm 2 or more.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
In the production method of the present invention, the chemical component composition of the steel material to be used, and the reason why the microstructure, the fracture surface form, and the yield stress of the steel material air-cooled after hot forging are limited as described above will be described.
[0016]
・ C: 0.40 to 0.70 wt.%
When the C content is less than 0.40 wt.%, The area ratio of ferrite increases at the grain boundaries, and it becomes difficult to obtain a brittle fracture surface in the steel material. In addition, it becomes difficult to obtain a desired strength. However, if the C content exceeds 0.70 wt.%, The amount of ferrite at the crystal grain boundary decreases, and the stress is difficult to concentrate on the soft ferrite phase at the tensile fracture, and as a result, the stress is dispersed. It is difficult to obtain a brittle fracture surface. Therefore, the C content is limited to the range of 0.40 to 0.70 wt.
[0017]
・ Si: more than 1.0 to 2.0 wt.%
Si dissolves in the ferrite to increase the hardness and reduce the ductility of the ferrite. When the Si content is 1.0 wt.% Or less, ferrite having low ductility sufficient to obtain a brittle fracture surface cannot be obtained, so the Si content is set to exceed 1.0 wt. However, if the Si content exceeds 2.0 wt.%, Decarburization during forging heating of the steel material increases, and the fatigue strength decreases. In addition, the hot ductility is excessively reduced, causing cracks during forging. Therefore, the Si content is limited to a range of more than 1.0 to 2.0 wt.
[0018]
Mn: 0.10 to less than 0.30 wt.% Mn combines with S in steel to form MnS and enhances the ductility of the steel material. In order to obtain a brittle fracture surface in tensile fracture, the Mn content must be less than 0.30 wt.%. However, in order to prevent the occurrence of surface flaws during continuous casting or bar rolling, it is necessary to ensure that the Mn content is at least 0.10 wt.%. Therefore, the Mn content is limited to a range of 0.10 to less than 0.30 wt.
[0019]
・ P: 0.010-0.100wt.%
P is an element that segregates at the grain boundaries and is effective in embrittlement of the steel material. In order to exert the effect, it is necessary to add 0.010 wt.% Or more. However, if the P content exceeds 0.100 wt.%, Cracks occur during hot forging. Therefore, the P content is limited to a range of 0.010 to 0.100 wt.%.
[0020]
・ S: 0.010-0.100wt.%
S combines with Mn in the steel to form MnS, thereby reducing the toughness of the steel material and improving the machinability. In order to exert this effect, it is necessary to add S content of 0.010 wt.% Or more. However, if the S content exceeds 0.100 wt.%, It causes cracks during hot forging. Therefore, the S content is limited to a range of 0.010 to 0.100 wt.%.
[0021]
・ Cr: 0.05-1.0wt.%
Cr enhances the hardenability of the steel material and strengthens the steel material. In order to exert this effect, it is necessary to add 0.05 wt.% Or more. However, when the Cr content exceeds 1.0 wt.%, Ferrite precipitation is suppressed, and a flat brittle fracture surface is hardly obtained due to a microstructure mainly composed of bainite. Therefore, the Cr content is limited to a range of 0.05 to 1.0 wt.
[0022]
・ V: 0.05-0.30wt.%
V precipitates fine carbides and nitrides during cooling during forging, thereby increasing the yield stress and making the steel material difficult to plastically deform. In order to obtain desired strength and yield stress, addition of 0.05 wt.% Or more is required, and in order to further exert the effect, it is desirable to add 0.10 wt.% Or more.
[0023]
However, V is an expensive element, and the above effect is saturated even if added in excess of 0.30 wt.%. Therefore, the V content is limited to the range of 0.05 to 0.30 wt.%, And preferably within the range of 0.10 to 0.30 wt.%.
[0024]
-Al: 0.006 to less than 0.010 wt.% Al has a strong effect of refining crystal grains. In order to roughen the crystal grains after hot forging of the steel material and reduce the ductility of the steel material to obtain a brittle fracture surface, the content must be limited to less than 0.010 wt.%. Al is also a deoxidizing element. In order to eliminate oxygen in molten steel as much as possible as Al oxide so as not to leave oxide inclusions in the steel material after solidification, in order not to reduce machinability and durability, Al is reduced to 0. it is necessary to contain .006 wt.% or more. From the above, in this invention, the Al content is limited to a range of 0.006 to less than 0.010 wt.% .
[0025]
N: 0.0020 to 0.0200 wt.%
N segregates at the crystal grain boundary to weaken the grain boundary strength and lower the ductility. In order to exert the effect for obtaining the brittle fracture surface by the above action, the N content is required to be 0.0020 wt.% Or more. However, if the N content exceeds 0.0200 wt.%, It remains as blowholes in slabs and the like, which causes surface flaws in steel materials and cracks during forging in subsequent hot working processes. Therefore, the N content is limited to a range of 0.0020 to 0.0200 wt.%.
[0026]
-One or more of Sb, As and Sn: 0.010 to 0.100 wt.%
All of Sb, As, and Sn are dissolved in steel and embrittle the steel material. Moreover, it concentrates on the steel material surface at the time of forge heating, suppresses surface reaction, prevents decarburization, and increases fatigue strength. In order to exert the above-mentioned actions and effects, it is necessary to add at least 0.010 wt.% Of these elements in total. However, if added over 0.100 wt.%, The hot ductility of the steel material is reduced and surface defects are caused. Therefore, it is desirable to add the above elements in the range of 0.010 to 0.100 wt.% In total.
[0027]
In addition to the elements described above, Ni, Cu, Mo and the like are inevitably mixed in the steel material, but these elements may be included within the range of the content. Moreover, Pb, Bi, Se, Te and Ca, which are elements for improving the machinability, may be added as appropriate.
[0028]
Carbon equivalent C eq : 0.80 to 1.10 wt.%
If the carbon equivalent is less than 0.80 wt.%, The desired strength cannot be obtained. On the other hand, if this exceeds 1.10 wt.%, The hardness becomes too high and the machinability deteriorates. Therefore, the carbon equivalent C eq is limited to the range of 0.80 to 1.10 wt.%. The carbon equivalent C eq is represented by C eq = C + Si / 7 + Mn / 5 + Cr / 9 + 1.5V.
[0029]
・ Microstructure: Ferrite with an area ratio of 10% or less and the balance of pearlite or pearlite and bainite ferrite when the area ratio exceeds 10%, the amount of ferrite in the grains increases, the ductility of the steel material increases, and the brittle fracture surface Therefore, the area ratio of ferrite is made 10% or less. The balance is pearlite to ensure strength. Even if a part of bainite is mixed, the change in strength is small, and on the contrary, the ductility can be lowered.
[0030]
Yield stress: If the yield stress is 600 N / mm 2 or more and less than 600 N / mm 2 , it cannot resist the impact force applied to the connecting rod during a gasoline explosion, and the connecting rod buckles. Further, since the fatigue strength against tension-compression fatigue applied to the connecting rod is lowered with the rotation of the crankshaft, the yield stress needs to be 600 N / mm 2 or more.
[0031]
【Example】
Next, the present invention will be described in further detail with reference to examples.
A steel bar having a diameter of 55 mm having various chemical composition compositions was prepared, and the steel bar was hot-forged and then air-cooled to produce a connecting rod. The manufacturing method will be described below.
[0032]
Table 1 shows the chemical composition of each steel bar. Steel types No. 1, 3, 6, 9, and 10 are within the range of the chemical composition of the material (steel material) used in the method of the present invention, and steel types No. 11 to 20 and No. 22 are outside the range. Is.
[0033]
Examples 1, 3, 6, 9, and 10 were conducted as tests within the scope of the method of the present invention, and Comparative Examples 11 to 20 and 22 were conducted as tests outside the scope of the method of the present invention. Table 2 shows the manufacturing conditions of the connecting rods in Examples 1, 3, 6, 9, 10 and Comparative Examples 11 to 20, 22. The difference in production conditions between the examples and the comparative examples is only the component system, and the heating conditions during hot forging and the cooling conditions after hot forging are the same in both the examples and comparative examples. That is, the heating conditions during hot forging are 1200 to 1300 ° C., and the cooling conditions are air cooling by a fan. Thus, a forged product in which the connecting rod main body portion 1 ′ and the connecting rod cap portion 2 ′ as shown in FIG. 2 were integrated was prepared. Next, vertical bolt holes 7 were drilled on both sides of the large end 4 by drilling. Next, a jig was sandwiched between the large end portion 4 and the large end portion 4 was pulled and broken at the center to divide the cap portion and the main body portion of the connecting rod.
[0034]
In the above test, the presence or absence of cracking during hot forging was observed, the drilling workability test of the forged product, the tensile-compression fatigue property test of the forged product, and the meshing test of the large end after the division. . These test results are also shown in Table 2.
[0035]
[Table 1]
Figure 0003756307
[0036]
[Table 2]
Figure 0003756307
The test results were as follows. According to Examples 1 , 3, 6, 9, and 10 , which are within the scope of the method of the present invention, in any of them, cracks were not generated during forging, and the microstructure was ferrite + pearlite structure with ferrite 10% or less. The split fracture surface was a flat brittle fracture surface. Moreover, since the yield stress was 600 N / mm 2 or more, good results were obtained in the tensile-compression fatigue test. Also, in drilling with a drill, there was no problem in the pulverization property and tool life of the chips, and good workability was obtained.
[0037]
On the other hand, Comparative Examples 11 to 20, 22 outside the scope of the method of the present invention had the following problems.
In Comparative Example 11, the content ratio of C and Si was lower than the range of the present invention and the carbon equivalent was also low, so the ferrite area ratio was higher than 10%, and the split fracture surface was an extended ductile fracture surface. For this reason, the meshing state of the large end portion was poor. Moreover, the yield stress was low, so the fatigue test results were also poor.
[0038]
In Comparative Example 12, the C content is higher than the range of the present invention, the Mn content is low, and the carbon equivalent is high. For this reason, cracks occurred during forging. Moreover, the ferrite area ratio was 0, there was no ferrite at the grain boundary, and the fracture surface became ductile. For this reason, the meshing state of the large end portion was poor. Moreover, since it became too hard, the drilling workability was poor.
[0039]
In Comparative Example 13, the Si and P contents were higher than the range of the present invention, the hot ductility was insufficient, and forging cracks occurred.
The comparative example 14 has Mn and Cr content rate higher than the range of this invention. For this reason, the structure became a bainite single phase and a brittle fracture surface was not obtained. Therefore, the meshing state of the large end portion was poor. Moreover, since it became too hard, the drilling workability was poor.
[0040]
In Comparative Example 15, the V content is higher than the range of the present invention, and the Sb + As content is also higher than the range of the present invention. For this reason, hot ductility was insufficient and forging cracks occurred.
In Comparative Example 16, the N content is higher than the range of the present invention. For this reason, the forge crack resulting from a blowhole generate | occur | produced.
[0041]
In Comparative Example 17, the V content is lower than the range of the present invention. Thus, the yield stress is as low as less than 600N / mm 2, Therefore fatigue property were poor.
In Comparative Example 18, the Al content is higher than the range of the present invention. For this reason, the crystal grains became fine and the ductility of the steel material was not sufficiently lowered, so that the fracture surface became a ductile fracture surface, and the meshing state of the large end portion became poor.
[0042]
In Comparative Example 19, the S content is higher than the range of the present invention. For this reason, the ductility was insufficient and cracking occurred during forging.
In Comparative Example 20, the Cr content was lower than the range of the present invention, so that the hardenability was insufficient, the ferrite area ratio exceeded 10%, and a brittle fracture surface was not obtained.
[0044]
Comparative Example 22 is an example (conventional example) in which a connecting rod material is forged using a conventional non-tempered steel material. A brittle fracture surface could not be obtained due to the large amount of ferrite. For this reason, the meshing state of the large end portion is poor.
[0045]
【The invention's effect】
As described above, according to the present invention, it is possible to forge the connecting rod main body portion and the connecting rod cap portion in an integrated state, and then divide them into both to manufacture the connecting rod. A method for producing such a high strength and low ductility non-heat treated steel part can be provided, and industrially useful effects are brought about.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view for explaining an assembly state of a connecting rod.
FIG. 2 is a schematic perspective view of a connecting rod main body portion and a connecting rod cap portion that are forged as a single body.
[Explanation of symbols]
1 Connecting rod body 1 'Connecting rod body portion 2 Connecting rod cap 2' Connecting rod cap portion 3 Small end 4 Large end 5 Connecting rod bolt 6 Connecting rod nut 7 Bolt hole

Claims (2)

C :0.40〜0.70wt.%、
Si:1.0超え〜2.0wt.%、
Mn:0.10〜0.30wt.%未満、
P :0.010〜0.100wt.%、
S :0.010〜0.100wt.%、
Cr:0.05 〜1.0wt.%、
V :0.05 〜0.30wt.%、
Al:0.006〜0.010wt.%未満、及び、
N :0.0020〜0.0200wt.%
を含み、残部Fe及び不可避不純物からなり、C+Si/7+Mn/5+Cr/9+1.5Vで表わされる炭素当量Ceqが、0.80〜1.10wt.%の範囲内にある鋼材を、熱間鍛造し、そして前記熱間鍛造の後で空冷し、こうして得られた鋼材に、前記鋼材のミクロ組織が面積率で10%以下のフェライトと残部がパーライト又はパーライト及びベイナイトとからなり、前記鋼材の降伏応力が600N/mm2 以上である各特性を付与することを特徴とする、高強度低延性の非調質鋼部品の製造方法。
C: 0.40 to 0.70 wt.%,
Si: more than 1.0 to 2.0 wt.%,
Mn: 0.10 to less than 0.30 wt.%,
P: 0.010-0.100 wt.%,
S: 0.010-0.100 wt.%,
Cr: 0.05 to 1.0 wt.%,
V: 0.05-0.30 wt.%,
Al: 0.006 to less than 0.010 wt.%, And
N: 0.0020 to 0.0200 wt.%
A steel material having a carbon equivalent C eq represented by C + Si / 7 + Mn / 5 + Cr / 9 + 1.5V, in the range of 0.80 to 1.10 wt. The steel material thus obtained is air-cooled after the hot forging, and the resulting steel material is composed of ferrite with an area ratio of 10% or less of ferrite and the balance of pearlite or pearlite and bainite, and the yield stress of the steel material. A method for producing a high-strength, low-ductility, non-tempered steel part, characterized by imparting each characteristic having a N of 600 N / mm 2 or more.
C :0.40〜0.70wt.%、
Si:1.0超え〜2.0wt.%、
Mn:0.10〜0.30wt.%未満、
P :0.010〜0.100wt.%、
S :0.010〜0.100wt.%、
Cr:0.05 〜1.0wt.%、
V :0.05 〜0.30wt.%、
Al:0.006〜0.010wt.%未満、及び、
N :0.0020〜0.0200wt.%
を含み、更に、Sb、As及びSnからなる群から1種以上を合計で0.010〜0.100wt.%含み、残部Fe及び不可避不純物からなり、C+Si/7+Mn/5+Cr/9+1.5Vで表わされる炭素当量Ceqが、0.80〜1.10wt.%の範囲内にある鋼材を、熱間鍛造し、そして前記熱間鍛造の後で空冷し、こうして得られた鋼材に、前記鋼材のミクロ組織が面積率で10%以下のフェライトと残部がパーライト又はパーライト及びベイナイトとからなり、前記鋼材の降伏応力が600N/mm2 以上である各特性を付与することを特徴とする、高強度低延性の非調質鋼部品の製造方法。
C: 0.40 to 0.70 wt.%,
Si: more than 1.0 to 2.0 wt.%,
Mn: 0.10 to less than 0.30 wt.%,
P: 0.010-0.100 wt.%,
S: 0.010-0.100 wt.%,
Cr: 0.05 to 1.0 wt.%,
V: 0.05-0.30 wt.%,
Al: 0.006 to less than 0.010 wt.%, And
N: 0.0020 to 0.0200 wt.%
And a total of 0.010 to 0.100 wt.% Of the group consisting of Sb, As and Sn, the balance being Fe and inevitable impurities , expressed by C + Si / 7 + Mn / 5 + Cr / 9 + 1.5V. A steel material having a carbon equivalent C eq in the range of 0.80 to 1.10 wt.% Is hot forged and air-cooled after the hot forging. The microstructure is composed of ferrite with an area ratio of 10% or less and the balance is pearlite or pearlite and bainite, and gives each property that the yield stress of the steel is 600 N / mm 2 or more. A method for manufacturing ductile non-tempered steel parts.
JP00967598A 1998-01-21 1998-01-21 Manufacturing method of non-tempered steel parts with high strength and low ductility Expired - Fee Related JP3756307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00967598A JP3756307B2 (en) 1998-01-21 1998-01-21 Manufacturing method of non-tempered steel parts with high strength and low ductility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00967598A JP3756307B2 (en) 1998-01-21 1998-01-21 Manufacturing method of non-tempered steel parts with high strength and low ductility

Publications (2)

Publication Number Publication Date
JPH11199924A JPH11199924A (en) 1999-07-27
JP3756307B2 true JP3756307B2 (en) 2006-03-15

Family

ID=11726798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00967598A Expired - Fee Related JP3756307B2 (en) 1998-01-21 1998-01-21 Manufacturing method of non-tempered steel parts with high strength and low ductility

Country Status (1)

Country Link
JP (1) JP3756307B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170110132A (en) 2015-03-09 2017-10-10 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel and section
WO2018061642A1 (en) 2016-09-29 2018-04-05 新日鐵住金株式会社 Hot-rolled steel and steel part
KR20180049074A (en) 2015-10-19 2018-05-10 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel and section
US10036086B2 (en) 2013-04-30 2018-07-31 Nippon Steel & Sumitomo Metal Corporation Non-heat treated steel
KR20180087371A (en) 2015-12-25 2018-08-01 신닛테츠스미킨 카부시키카이샤 River
WO2019203348A1 (en) 2018-04-20 2019-10-24 日本製鉄株式会社 Steel, machine component, and connecting rod

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5023410B2 (en) * 2001-03-02 2012-09-12 大同特殊鋼株式会社 Non-tempered steel for hot forging with easy fracture separation
JP2007119819A (en) * 2005-10-26 2007-05-17 Nissan Motor Co Ltd Non-heat treated steel for connecting rod, and connecting rod
JP6488774B2 (en) * 2015-03-09 2019-03-27 新日鐵住金株式会社 Hot rolled steel and steel parts for steel parts with excellent fit between fractured surfaces after fracture separation
CA3016296C (en) * 2016-03-02 2021-05-11 Nippon Steel & Sumitomo Metal Corporation Railway wheel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10036086B2 (en) 2013-04-30 2018-07-31 Nippon Steel & Sumitomo Metal Corporation Non-heat treated steel
KR20170110132A (en) 2015-03-09 2017-10-10 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel and section
KR20180049074A (en) 2015-10-19 2018-05-10 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel and section
US10344363B2 (en) 2015-10-19 2019-07-09 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel and steel component
KR20180087371A (en) 2015-12-25 2018-08-01 신닛테츠스미킨 카부시키카이샤 River
WO2018061642A1 (en) 2016-09-29 2018-04-05 新日鐵住金株式会社 Hot-rolled steel and steel part
KR20190042672A (en) 2016-09-29 2019-04-24 닛폰세이테츠 가부시키가이샤 Hot-rolled steel and section
WO2019203348A1 (en) 2018-04-20 2019-10-24 日本製鉄株式会社 Steel, machine component, and connecting rod

Also Published As

Publication number Publication date
JPH11199924A (en) 1999-07-27

Similar Documents

Publication Publication Date Title
JP4645593B2 (en) Machine structural component and method of manufacturing the same
WO2020040190A1 (en) Steel material, forged heat-treated article, and method for manufacturing forged heat-treated article
WO2012132786A1 (en) Case hardening steel, method for producing same, and mechanical structural part using case hardening steel
JP5563926B2 (en) Mechanical structural steel suitable for friction welding and friction welding parts with excellent impact and bending fatigue properties
JP3756307B2 (en) Manufacturing method of non-tempered steel parts with high strength and low ductility
JP6614393B2 (en) Non-tempered steel bar
JP4415219B2 (en) Age hardened steel
JP5858996B2 (en) Steel bar for non-tempered connecting rod
EP0133959B1 (en) Case hardening steel suitable for high temperature carburizing
JP3416869B2 (en) Low ductility non-heat treated steel with excellent machinability
JPH08277437A (en) Production of high strength and high toughness non-heat treated steel for hot forging and forged product thereof
JP3988661B2 (en) Non-tempered steel
JPH09310146A (en) Production of non-heat treated steel for high strength connecting rod and high strength connecting rod
JP2008223083A (en) Crankshaft and manufacturing method therefor
JP6825605B2 (en) Carburizing member
JP4255861B2 (en) Non-tempered connecting rod and method for manufacturing the same
JP5916553B2 (en) Steel for connecting rod and connecting rod
JP3883788B2 (en) Cold tool steel for molds with excellent toughness and wear resistance
JP3473500B2 (en) Low ductility non-heat treated steel
JP2002356743A (en) Non-heat treated steel having high strength, low ductility and excellent machinability
JP4020842B2 (en) Non-tempered hot forged part excellent in low ductility and machinability and method for producing the part
JP3798251B2 (en) Manufacturing method of undercarriage forgings for automobiles
JPH07102340A (en) Production of non-heattreated steel excellent in fatigue characteristic
JP4292375B2 (en) Non-heat treated steel for cracking connecting rod
JP2005002367A (en) Non-heat-treated steel for machine structural use excellent in fracture/partition property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051013

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140106

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees