JP2004307930A - Non-heat treated steel to be hot-forged for connecting rod - Google Patents

Non-heat treated steel to be hot-forged for connecting rod Download PDF

Info

Publication number
JP2004307930A
JP2004307930A JP2003102939A JP2003102939A JP2004307930A JP 2004307930 A JP2004307930 A JP 2004307930A JP 2003102939 A JP2003102939 A JP 2003102939A JP 2003102939 A JP2003102939 A JP 2003102939A JP 2004307930 A JP2004307930 A JP 2004307930A
Authority
JP
Japan
Prior art keywords
steel
heat treated
hot
treated steel
connecting rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003102939A
Other languages
Japanese (ja)
Inventor
Koichiro Inoue
幸一郎 井上
Toyotaka Kinoshita
豊隆 木下
Masao Ishida
正雄 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Daido Steel Co Ltd
Original Assignee
Honda Motor Co Ltd
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Daido Steel Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003102939A priority Critical patent/JP2004307930A/en
Publication of JP2004307930A publication Critical patent/JP2004307930A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Forging (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively provide a non-heat treated steel to be hot-forged for a connecting rod, which reliably acquires high yield strength and fatigue strength even if thermal refining treatment is omitted after hot forging, and is constituted only by inexpensive elements without containing expensive V. <P>SOLUTION: The non-heat treated steel to be hot-forged for the connecting rod has a composition comprising, by wt.%, less than 0.15-0.35% C, more than 1.2% but 2% or less Si, 0.5-1.5% Mn, more than 0.05% but 0.2% or less P, 0.01-0.5% Cu, 0.01-0.5% Ni, 0.01-1% Cr, 0.001-0.01% s-Al, 0.005-0.035% N and the balance Fe with unavoidable impurities, while satisfying the expression 1: 0.6≤Ceq≤0.85 (wherein Ceq=C+0.07×Si+0.16×Mn+0.61×P+0.19×Cu+0.17×Ni+0.2×Cr), the expression 2: α>0.25 (wherein α=1/10×Si+3/5×P+6×N), and the expression 3: β<0.7 (wherein β=C+0.18×Si+0.52×P). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明はコンロッド(コネクティングロッド)の素材として用いられる熱間鍛造用非調質鋼に関し、詳しくは高価な元素であるVが無添加で、しかも調質処理(焼入れ・焼戻し処理)を省略しても高い耐力,疲労強度が得られ、安価に高強度のコンロッドを得ることのできるV無添加のコンロッド用の熱間鍛造用非調質鋼に関する。
【0002】
【従来の技術】
自動車のエンジン部品として用いられるコンロッドは、従来、機械構造用炭素鋼を熱間鍛造した後に調質処理(焼入れ・焼戻し処理)を施し、強度を調整して製造されてきた。
しかしながらコンロッドをこのような調質鋼で構成する場合には焼入れ・焼戻し処理のために所要の加工コストが高くなり、またリードタイムが長くなってしまう問題が生ずる。
【0003】
そこで近年では省コスト化及びリードタイムの短縮を目的として、調質処理が省略可能な熱間鍛造用非調質鋼をコンロッド用鋼として用いるようになってきている。
即ち非調質鋼を用いて、熱間鍛造ままでコンロッドを構成することが一般的に行われるようになってきている。
【0004】
そのような熱間鍛造用非調質鋼として、従来、機械構造用炭素鋼又は機械構造用マンガン鋼に0.1%程度のVを含有させたV添加鋼が代表的なものとして用いられている。
このV添加の熱間鍛造用非調質鋼は、熱間鍛造後の冷却時にVの炭窒化物を微細に析出させ、その析出硬化によって目的とする強度を発現させるものである。
このV添加の非調質鋼の主目的は、調質処理の省略による省コスト化であるが、そのために添加するVは高価な元素であり、かかるVを添加することによって材料のコストアップを招き、調質処理の省略によるコストメリットを十分に活かせない問題があった。
【0005】
一方において単純に機械構造用炭素鋼や機械構造用マンガン鋼を熱間鍛造ままで使用しコンロッドを構成した場合、強度特に疲労強度がV添加の非調質鋼に比べて低くなってしまう。
【0006】
この問題を解決するための熱間鍛造用非調質鋼が、下記特許文献1に開示されている。
この特許文献1に開示の熱間鍛造用非調質鋼は、Vを添加する代りに安価なPやSiを添加し、疲労強度を高めるようにしたものである。
【0007】
【特許文献1】
特開平9−310152号公報
【0008】
【発明が解決しようとする課題】
しかしながらこの特許文献1に開示の熱間鍛造用非調質鋼は、自動車のエンジン部品のみならず足廻り部品等をも含む、広範な機械構造用部品を適用対象として、即ち広範な目的に向けて開発されたものであって、そのために靭性をできるだけ低下させないことを発明の主眼の1つとしている。
そのためこの特許文献1に開示の熱間鍛造用非調質鋼では、その実施例に示されているように靭性(衝撃値)の低下や熱間加工性の低下を防止するため、P含有量を0.05%以下、Si含有量を1.2%以下にそれぞれ抑えている。
【0009】
一方本発明が対象とするエンジン部品としてのコンロッドは、足廻り部品に要求されるような高い靭性(衝撃値)は特に要求されず、それよりはより高い耐力,疲労強度の要求される部品であり、特許文献1に開示の熱間鍛造用非調質鋼では、その要求を十分に満たすことができない。
【0010】
ここにおいて本発明は高価な元素であるVを添加することなく、熱間鍛造ままでV添加の高強度非調質鋼並みの疲労強度が得られる、コンロッド用の熱間鍛造用非調質鋼を安価に提供することを目的としてなされたものである。
【0011】
【課題を解決するための手段】
而して請求項1の熱間鍛造用非調質鋼は、重量%で、C:0.15〜0.35%未満,Si:1.2超〜2%,Mn:0.5〜1.5%,P:0.05超〜0.2%,Cu:0.01〜0.5%,Ni:0.01〜0.5%,Cr:0.01〜1%,s−Al:0.001〜0.01%,N:0.005〜0.035%残部Fe及び不可避不純物から成り且つ下記式1,式2及び式3を満たす。
式1・・・0.6≦Ceq≦0.85
但しCeq=C+0.07×Si+0.16×Mn+0.61×P+0.19×Cu+0.17×Ni+0.2×Cr
式2・・・α>0.25
但しα=1/10×Si+3/5×P+6×N
式3・・・β<0.7
但しβ=C+0.18×Si+0.52×P
【0012】
請求項2のものは、請求項1において、S:≦0.15%,Pb:≦0.3%,Bi:≦0.3%,Ti:≦0.02%,Zr:≦0.02%,Ca:0.0001〜0.01%,O:0.001〜0.01%の1種又は2種以上を更に含有する。
【0013】
【作用及び発明の効果】
本発明の熱間鍛造用非調質鋼はコンロッド用に向けて構成されたものであり、フェライトを固溶強化する元素としてのSi,P,Nを多量に含有させて、疲労破壊の起点となるフェライトの高強度化を図るとともに、それらの添加にも拘わらず所望の熱間加工性を確保すべくSi,P,Nの含有量の上限を見出し、定めるとともに、併せて必要な硬さを確保すべく、Cを含めた各合金成分の添加量を適正添加量範囲に設定したことを骨子とする。
【0014】
一般にPは多量に含有させると靭性(衝撃値)を低下させる。従って特に靭性の要求される足廻り部品を対象とした熱間鍛造用非調質鋼ではPを多量に含有させることは困難である。
然るにエンジン部品としてのコンロッドは、上記のようにそれ程高い靭性は要求されず、Pを多量に含有させることが可能である。
【0015】
図1に合金元素含有量変化と耐久比(疲れ限度/引張強さ)変化量の関係を示す。
この耐久比は疲れ限度を引張強さで除した値で、この値が高いほど同じ静的強度においての疲労強度が高いことを意味する。
この図よりも明らかなようにP,SiはVと同様に耐久比を向上させる元素であることが分る。
一方Pb,Cは耐久比を低下させる。
本発明は、この点に着眼してC含有量を低減するとともにPとSiを多く含有させて高い疲労強度を得ようとしたものである。
【0016】
PとSiは、Cとともに融点を大きく下げる元素であり、これらPやSiが多量に含有されていると、熱間鍛造時の凝固時にそれら成分が偏析して部分的に濃化した部分を生じる。
その濃化した部分は融点が低いことから、分塊圧延等の際に同部分が溶融し割れを発生させる原因となる。
【0017】
そこで本発明ではSi,Pを多く含有させる一方で、Cの含有量を調整し、詳しくはCの含有量を一定以下に低く規制することで熱間加工性の低下を防ぎ、他方でCの含有量を一定以下に規制しつつ他の成分の添加及び成分バランスを図って、所要の硬さを実現するようになしたものである。
更にCの含有量低下は耐久比の向上にも有効である。
そして本発明の熱間鍛造用非調質鋼によって、エンジン部品としてのコンロッドを調質処理することなく安価に製造できるようになり、加えてそのコンロッドに必要な耐力,疲労強度を付与することが可能となる。
【0018】
本発明においては、必要に応じてS,Pb,Bi,Ti,Zr,Ca,O等の快削成分を1種若しくは2種以上、所定の含有量で含有させておくことができる(請求項2)。
【0019】
次に本発明における各化学成分の添加及び限定理由を以下に詳述する。
C:0.15〜0.35%未満
Cは強度を確保するために必要な元素であり、0.15%以上の添加が必要である。
一方でCは耐久比を低下させるとともに鋼の融点を低下させる。通常の機械構造用鋼では0.35%以上Cを添加しても、鋼の融点が低下して熱間加工性を阻害することはないが、多量のPやSiを含有する鋼では、これらが造塊時に凝固偏析した部位で濃化し、部分的に融点の非常に低い領域を生成させる。
更にこの部位で融点を低下させるCも濃化するため、このような凝固偏析部が分塊圧延時に溶融し割れの発生原因となる。
通常の鋼でも凝固偏析は生じるがP,Siが多量に添加されていなければ前述したような現象は生じない。
またそのC含有量を低減することにより、耐久比の向上が図れる。
このようなP,Si含有量が高い鋼特有の熱間加工性低下を抑制するため、またV無添加による耐久比低下を防止するため、本発明ではC含有量の上限を0.35%とする。
【0020】
Si:1.2超〜2%
Siは鋼溶製時において脱酸作用を有しているとともに、Vの代替元素としてフェライト中に固溶し、固溶強化により軟質相であるフェライトの強度を向上させて疲労強度を向上させる。
このためV無添加鋼ではできるだけ多量のSiを添加することが好ましいが、あまり多量に添加すると被削性や熱間加工性を低下させるため、その範囲を1.2超〜2%とする。
【0021】
Mn:0.5〜1.5%,Cr:0.01〜1%
Mn,Crは鍛造材の強度を高めるとともに、パーライトのラメラを微細化して耐力や疲労強度を向上させる元素である。
しかしながら多量に添加すると鍛造後にベイナイトが生成し、硬さが著しく増加して被削性を低下させるため、それぞれの範囲をMn:0.5〜1.5%,Cr:0.01〜1%とする。
【0022】
P:0.05超〜0.2%
Pは不可避的に含有される成分で、従来粒界への偏析により靭性を低下させる不純物元素として、できるだけ低く抑えられるのが一般的である。
しかしながらPはSiと同様にフェライトを固溶強化し、疲労強度を大きく向上させる有効な元素である。
自動車の足廻り部品のように高い靭性が要求される部品では、Pを多量に添加して高強度化を図ることは難しいが、コンロッドのようにあまり高い靭性は要求されず、より高い疲労強度が要求される部品には積極的に添加しても問題がない。
【0023】
しかしながらPは鋼の融点を大きく低下させ、熱間加工性を劣化させる元素であり、多量に添加すると分塊圧延時に凝固偏析部で局部溶融を生じて割れが発生する。
このためP含有量の範囲は0.05超〜0.2%とする必要がある。
【0024】
Cu:0.01〜0.5%,Ni:0.01〜0.5%
Cu,Niは、Mn,Crと同様に鍛造後の強度を高めるとともにパーライトのラメラを微細化し、耐力と疲労強度を向上させる元素である。
但しCu,NiはMn,Crに比べて高価な元素であるため、積極的に多量添加することはコスト的に不利である。
このためその添加量をCu:0.01〜0.5%,Ni:0.01〜0.5%とする。
【0025】
s−Al:0.001〜0.01%
s−Alは鋼溶解時に脱酸作用を有するとともに微細な窒化物を生成し、熱間鍛造時の結晶粒粗大化を抑制することにより強度を向上させる。
しかし多量に添加してもその効果が飽和するため、0.01%以下とする。
【0026】
N:0.005〜0.035%
NはSi,Pと同様にフェライトを固溶強化する元素であり、疲労強度の向上に有効である。
また含有するNの一部はAlと微細な窒化物を形成して鋼中に分散することにより、熱間鍛造時の結晶粒粗大化を抑制する。
但しN含有量を0.005%未満とすることは経済的に不利であり、また多量に添加すると鋳造欠陥の原因になるため、その範囲を0.005〜0.035%とした。
【0027】
Pb:≦0.3%,Bi≦0.3%
Pb,Biは何れも被削性を向上させるのに有効な元素であるので、鍛造品において被削性が更に良好であることが要求される場合には、必要に応じてこれらのうちから選ばれる1種又は2種を適量添加するのも良い。
しかしながら添加量が多過ぎると、強度や熱間加工性を低下させるので、添加するとしてもそれぞれPb:≦0.3%,Bi:≦0.3%とする。
【0028】
S :≦0.15%
SはMnSを形成し、被削性を向上させるのに有効な元素であり、被削性の向上が要求される場合には、必要に応じて適量添加するのも良い。
しかしながら多量に添加すると、疲労強度や熱間加工性を低下させるので0.15%以下とする。
【0029】
Ca:0.0001〜0.01%
CaはMnS中のMnと一部置換してCaを含むMnSを形成する。
このようなCaを固溶したMnSは切削加工時に工具に付着し、工具摩耗を抑制して被削性を改善する。
このような効果を得るためにもCaは0.0001%以上の添加が必要である。
しかしながら多量に添加してもその効果が飽和するため0.01%以下とする。
【0030】
Ti:≦0.02%,Zr≦0.02%
Ti,ZrはMnSの分布状態を微細化する効果を有する。微細化したMnSは機械加工時の切屑破砕性を向上させる。
但し過剰に添加してもその効果が飽和するとともに経済的に不利となるため、それぞれTi:≦0.02%,Zr≦0.02%とした。
また何れも0.0005%以上添加することが好ましい。
【0031】
O:0.001〜0.01%
Caが固溶したMnSを得るためには、そのMnSに隣接してCaの酸化物が存在することが必要である。
このような効果を得るために0.001〜0.01%のOが必要である。
【0032】
0.6≦Ceq≦0.85
但しCeq=C+0.07×Si+0.16×Mn+0.61×P+0.19×Cu+0.17×Ni+0.2×Cr
Ceqは非調質鋼の鍛造後硬さを代表する値であり、この値を調整することにより、鍛造後硬さを管理することができる。
また硬さは耐力,疲労強度,被削性に影響を及ぼす因子であり、硬さが低過ぎると目的の疲労強度を得ることができず、逆に硬さが高過ぎると被削性の劣化を招き好ましくない。
このようなことが生じないようにするためにも適切な硬さ範囲に調整することが必要である。
このためCeqの範囲を0.6〜0.85とした。
【0033】
α>0.25
但しα=1/10×Si+3/5×P+6×N
αはフェライトの強化度を表す指数であり、この値が大きいほど疲労強度が向上する。
V添加型の高強度非調質鋼と同様の耐力,疲労強度を得るためにはαを0.25より大きくする必要がある。
【0034】
β<0.7
但しβ=C+0.18×Si+0.52×P
βは熱間加工性を示す指数である。
前述したように造塊時に生じる凝固偏析部にはC,Si,Pが濃化し凝固偏析部の融点を大幅に低下させる。
このため凝固偏析部が分塊圧延時に局部溶融し、熱間加工性を著しく低下させることがある。
このような現象を抑制するためにはC,Si,P含有量から計算されるβが0.7未満であることが必要で、これにより凝固偏析部へのC,Si,Pの濃化量を少なくして熱間加工性を良好に保持することができる。
【0035】
【実施例】
表1に示す本発明鋼及び比較鋼を溶製した後に造塊し、熱間鍛造を行って50mm角の鍛造素材とし、これを1200℃で60分加熱保持した後、直径22mmの丸棒に熱間鍛造を行い、重ね合わせないように適当な間隔をおいて床に放置し、室温まで放冷した。
この丸棒より平行部径8mmの小野式回転曲げ疲労試験片及びJIS4号引張試験片(平行部径φ8mm,縮小サイズ)を切り出し、試験に供した。
ここで硬さは、鍛造した直径22mm丸棒の1/2R部の硬さをロックウェル硬度計で測定した。
【0036】
また疲労試験及び引張試験は室温で実施した。その結果が表2に示してある。
表2では耐久比を併せて示している。
また比較のために従来鋼として国内で一般的に用いられている機械構造用炭素鋼S45C及びコンロッド用非調質鋼S35VCの試験結果も併せて表1,表2に示した。
【0037】
【表1】

Figure 2004307930
【0038】
【表2】
Figure 2004307930
【0039】
表1,表2において、比較鋼Aは、Cの含有量が本発明の下限値である0.15%よりも低い0.13%であり、これに伴ってCeqが本発明の下限値である0.6よりも低い0.479となっており、その結果として鋼の硬さが低く十分な強度が得られていない。
【0040】
比較鋼Bは逆にCの含有量が本発明の上限値である0.35%よりも多い0.38%であり、これに伴って熱間加工性を表す指数であるβの値が本発明の範囲よりも高い0.70となっており、このため鍛造時に部分的に割れが発生している。
【0041】
次に比較鋼Cは、Siの含有量が本発明の下限値である1.2%よりも低い1.01%であり、このためフェライトの強化度を表す指数としてのαの値が本発明の下限値である0.25よりも低い0.21となっており、耐久比が低くなっている。
【0042】
比較鋼Dは、逆にSiの含有量が本発明の上限値である2%よりも多い2.50%となっており、このためβの値が本発明の上限である0.7よりも大きい0.81となっており、結果として鍛造時に部分的な割れを発生させている。
【0043】
比較鋼Eは、Mnの含有量が本発明の上限値である1.5%よりも多い1.80%であり、このため鍛造後の冷却でベイナイトが発生している。
【0044】
比較鋼Fは、Pの含有量が本発明の下限値である0.05%よりも低い0.040%であり、このためα値が0.25と低く耐久比が低くなっている。
【0045】
次に比較鋼Gは、Pの含有量が逆に本発明の上限値である0.2%よりも多い0.210%であり、これに伴ってβ値が0.70と高く、鍛造時に部分的に割れが発生している。
【0046】
比較鋼Hは、Crの含有量が本発明の上限値である1%よりも多い1.01%であり、鍛造後の冷却でベイナイトが発生している。
【0047】
比較鋼Iは、Alの含有量が本発明の下限値である0.001%よりも低い0.0005%であり、そのため鍛造後結晶粒が粗大化し耐久比が低くなっている。
【0048】
比較鋼Jは、Nの含有量が本発明の下限値である0.005%よりも低い0.001%であり、このためα値が0.22と低く、耐久比が低くなっている。
【0049】
比較鋼Kは、C〜Nの各合金成分のそれぞれの含有量は本発明の範囲内になっているものの、β値について見るとその値が本発明の上限値である0.7よりも大きい0.74となっており、そのため鍛造時に部分的に割れを発生している。
【0050】
比較鋼Lも同じく各合金成分の含有量はそれぞれ単独で規定している本発明の含有範囲内にあるものの、α値が本発明の下限値である0.25よりも小さい0.22であり、耐久比が低くなっている。
【0051】
尚表1,表2中S45Cの欄は一般的な機械構造用炭素鋼であるS45Cを調質処理(焼入れ・焼戻し処理)をせずに、発明鋼1〜発明鋼9及び比較鋼A〜比較鋼Lと同様に鍛造ままで使用したもので、この場合α値が0.09と大幅に低く、耐久比の値も低いものとなっている。
【0052】
これに対し本発明例の発明鋼1〜発明鋼9は硬さ,引張強さ,疲れ限度,耐久比等の諸特性が、V添加鋼であるS35VCと比較しても同等以上のものとなっている。
このことからも本発明によれば高性能なコンロッド用の熱間鍛造用非調質鋼を安価に提供できることが理解できる。
【0053】
以上本発明の実施例を詳述したがこれはあくまで一例示であり、本発明はその趣旨を逸脱しない範囲において種々変更を加えた形態で構成可能である。
【図面の簡単な説明】
【図1】各合金元素の含有量変化と耐久比変化の関係を表す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a non-heat treated steel for hot forging used as a material for a connecting rod (connecting rod), specifically, without adding an expensive element V, and omitting a tempering treatment (quenching / tempering treatment). Also, the present invention relates to a non-heat treated steel for hot forging for a V-free connecting rod, which can provide a high strength and fatigue strength and can obtain a high-strength connecting rod at low cost.
[0002]
[Prior art]
Conventionally, connecting rods used as engine parts of automobiles have been manufactured by subjecting carbon steel for machine structure to hot forging and then tempering (quenching / tempering) to adjust the strength.
However, when the connecting rod is made of such a tempered steel, there is a problem that the required processing cost is increased due to the quenching / tempering process and the lead time is lengthened.
[0003]
Therefore, in recent years, for the purpose of cost reduction and shortening of the lead time, non-heat treated steel for hot forging, which can omit the tempering treatment, has been used as connecting rod steel.
That is, it is becoming common to form a connecting rod by using non-heat treated steel while hot forging.
[0004]
Conventionally, as such a non-heat treated steel for hot forging, V-added steel containing about 0.1% of V in carbon steel for machine structure or manganese steel for machine structure has been used as a typical one. I have.
This V-added non-heat treated steel for hot forging causes V carbonitride to be finely precipitated during cooling after hot forging, and develops the desired strength by precipitation hardening.
The main purpose of the V-added non-heat treated steel is to save cost by omitting the tempering treatment. However, V to be added is an expensive element, and the addition of such V increases the material cost. There was a problem that the cost merit due to the omission of the tempering treatment could not be fully utilized.
[0005]
On the other hand, when a connecting rod is formed by simply using carbon steel for machine structure or manganese steel for machine structure as hot forged, the strength, particularly the fatigue strength, is lower than that of the non-heat treated steel to which V is added.
[0006]
A non-heat treated steel for hot forging for solving this problem is disclosed in Patent Document 1 below.
The non-heat treated steel for hot forging disclosed in Patent Literature 1 is such that inexpensive P or Si is added instead of V to increase the fatigue strength.
[0007]
[Patent Document 1]
JP-A-9-310152 [0008]
[Problems to be solved by the invention]
However, the non-heat treated steel for hot forging disclosed in Patent Document 1 is applicable to a wide range of machine structural parts including not only engine parts of automobiles but also undercarriage parts, that is, for a wide range of purposes. One of the main objectives of the present invention is to minimize the toughness as much as possible.
Therefore, in the non-heat treated steel for hot forging disclosed in Patent Document 1, the P content is reduced in order to prevent a decrease in toughness (impact value) and a decrease in hot workability as shown in the examples. Is suppressed to 0.05% or less, and the Si content is suppressed to 1.2% or less.
[0009]
On the other hand, a connecting rod as an engine component to which the present invention is applied is not particularly required to have high toughness (impact value) required for a suspension component, and is a component requiring higher proof stress and fatigue strength. In addition, the non-heat-treated steel for hot forging disclosed in Patent Document 1 cannot sufficiently satisfy the demand.
[0010]
Here, the present invention provides a hot-forged hot-forged non-heat treated steel for connecting rods that can obtain a fatigue strength equivalent to that of a high-strength non-heat treated steel to which V is added without hot forging without adding V, which is an expensive element. The purpose of this is to provide at low cost.
[0011]
[Means for Solving the Problems]
The non-heat treated steel for hot forging according to claim 1 is, by weight%, C: 0.15 to less than 0.35%, Si: more than 1.2 to 2%, Mn: 0.5 to 1%. 0.5%, P: more than 0.05 to 0.2%, Cu: 0.01 to 0.5%, Ni: 0.01 to 0.5%, Cr: 0.01 to 1%, s-Al : 0.001 to 0.01%, N: 0.005 to 0.035% The balance consists of Fe and inevitable impurities and satisfies the following formulas 1, 2 and 3.
Formula 1 ... 0.6 ≦ Ceq ≦ 0.85
However, Ceq = C + 0.07 × Si + 0.16 × Mn + 0.61 × P + 0.19 × Cu + 0.17 × Ni + 0.2 × Cr
Expression 2 ... α> 0.25
Where α = 1/10 × Si + 3/5 × P + 6 × N
Equation 3 ... β <0.7
Where β = C + 0.18 × Si + 0.52 × P
[0012]
According to claim 2, in claim 1, S: ≤ 0.15%, Pb: ≤ 0.3%, Bi: ≤ 0.3%, Ti: ≤ 0.02%, Zr: ≤ 0.02. %, Ca: 0.0001 to 0.01%, and O: 0.001 to 0.01%.
[0013]
[Action and effect of the invention]
The non-heat-treated steel for hot forging according to the present invention is designed for connecting rods, and contains a large amount of Si, P, and N as elements for solid solution strengthening of ferrite, so that the starting point of fatigue fracture and In order to increase the strength of ferrites and to secure desired hot workability in spite of their addition, the upper limits of the contents of Si, P, and N were found and determined, and the required hardness was also adjusted. The main point is that the addition amounts of the respective alloy components including C are set within the appropriate addition amount ranges in order to ensure the above.
[0014]
Generally, when P is contained in a large amount, toughness (impact value) is reduced. Therefore, it is difficult to contain a large amount of P in a non-heat treated steel for hot forging, particularly for undercarriage parts requiring toughness.
However, the connecting rod as an engine component does not require such high toughness as described above, and can contain a large amount of P.
[0015]
FIG. 1 shows the relationship between the change in the alloy element content and the change in the durability ratio (fatigue limit / tensile strength).
This durability ratio is a value obtained by dividing the fatigue limit by the tensile strength, and a higher value means a higher fatigue strength at the same static strength.
As is clear from this figure, P and Si are elements that improve the durability ratio like V.
On the other hand, Pb and C lower the durability ratio.
The present invention is intended to reduce the C content and to obtain a high fatigue strength by containing a large amount of P and Si by focusing on this point.
[0016]
P and Si are elements that greatly lower the melting point together with C. If a large amount of P or Si is contained, these components are segregated during solidification during hot forging, resulting in a partially concentrated portion. .
Since the concentrated portion has a low melting point, the portion is melted during slab rolling or the like and causes cracking.
[0017]
Therefore, in the present invention, while increasing the content of Si and P, the content of C is adjusted, and more specifically, the content of C is regulated to a certain level or less to prevent a decrease in hot workability, and on the other hand, to reduce the C content. The required hardness is realized by adding other components and balancing the components while controlling the content to a certain level or less.
Further, a decrease in the content of C is also effective in improving the durability ratio.
The non-heat treated steel for hot forging according to the present invention makes it possible to manufacture a connecting rod as an engine component at a low cost without performing a tempering treatment. In addition, the connecting rod can be provided with necessary proof stress and fatigue strength. It becomes possible.
[0018]
In the present invention, one or two or more free-cutting components such as S, Pb, Bi, Ti, Zr, Ca, and O can be contained at a predetermined content as needed. 2).
[0019]
Next, the reason for adding and limiting each chemical component in the present invention will be described in detail below.
C: 0.15 to less than 0.35% C is an element necessary for securing the strength, and it is necessary to add 0.15% or more.
On the other hand, C lowers the durability ratio and the melting point of steel. In ordinary steel for machine structural use, even if C is added in an amount of 0.35% or more, the melting point of the steel is not lowered and the hot workability is not impaired. Is concentrated at the site where solidification and segregation occur during ingot formation, and a region having a very low melting point is partially generated.
Further, since C that lowers the melting point is also concentrated at this portion, such a solidified segregated portion is melted at the time of slab rolling to cause cracking.
Solidification segregation occurs even in ordinary steel, but the above-mentioned phenomenon does not occur unless P and Si are added in large amounts.
In addition, the durability ratio can be improved by reducing the C content.
In the present invention, the upper limit of the C content is set to 0.35% in order to suppress such a decrease in hot workability peculiar to steel having a high P and Si content and to prevent a decrease in the durability ratio due to the absence of V. I do.
[0020]
Si: more than 1.2 to 2%
Si has a deoxidizing effect at the time of smelting steel, and forms a solid solution in ferrite as an alternative element to V, and improves the strength of ferrite which is a soft phase by solid solution strengthening, thereby improving fatigue strength.
For this reason, it is preferable to add as much Si as possible in V-free steel. However, if too much Si is added, machinability and hot workability are reduced, so the range is set to more than 1.2% to 2%.
[0021]
Mn: 0.5-1.5%, Cr: 0.01-1%
Mn and Cr are elements that increase the strength of the forged material and also refine the pearlite lamella to improve proof stress and fatigue strength.
However, when a large amount is added, bainite is formed after forging, and the hardness is remarkably increased to reduce the machinability. Therefore, the respective ranges are Mn: 0.5 to 1.5% and Cr: 0.01 to 1%. And
[0022]
P: more than 0.05 to 0.2%
P is a component unavoidably contained, and generally can be suppressed as low as possible as an impurity element which lowers toughness due to segregation at grain boundaries.
However, P is an effective element that, like Si, strengthens ferrite by solid solution and greatly improves fatigue strength.
For parts that require high toughness, such as undercarriage parts for automobiles, it is difficult to increase the strength by adding a large amount of P, but not so high toughness like connecting rods, and higher fatigue strength. There is no problem even if it is positively added to parts that require.
[0023]
However, P is an element that significantly lowers the melting point of steel and degrades hot workability. When added in a large amount, P causes local melting at a solidification segregation portion during slab rolling to cause cracking.
Therefore, the range of the P content needs to be more than 0.05 to 0.2%.
[0024]
Cu: 0.01 to 0.5%, Ni: 0.01 to 0.5%
Cu and Ni are elements that increase the strength after forging, as well as Mn and Cr, refine the pearlite lamella, and improve proof stress and fatigue strength.
However, since Cu and Ni are more expensive elements than Mn and Cr, it is disadvantageous in cost to positively add a large amount.
Therefore, the added amount is set to Cu: 0.01 to 0.5% and Ni: 0.01 to 0.5%.
[0025]
s-Al: 0.001 to 0.01%
s-Al has a deoxidizing action when melting steel, generates fine nitrides, and improves strength by suppressing crystal grain coarsening during hot forging.
However, even if it is added in a large amount, its effect is saturated.
[0026]
N: 0.005 to 0.035%
N, like Si and P, is an element for solid solution strengthening of ferrite, and is effective in improving fatigue strength.
Further, a part of N contained therein forms fine nitrides with Al and is dispersed in the steel, thereby suppressing coarsening of crystal grains during hot forging.
However, if the N content is less than 0.005%, it is economically disadvantageous, and if a large amount is added, it causes casting defects. Therefore, the range is made 0.005 to 0.035%.
[0027]
Pb: ≦ 0.3%, Bi ≦ 0.3%
Since both Pb and Bi are effective elements for improving the machinability, when it is required that the machinability is further improved in the forged product, select from these as necessary. It is also possible to add an appropriate amount of one or two of these.
However, if the addition amount is too large, the strength and the hot workability are reduced. Therefore, even if they are added, Pb: ≦ 0.3% and Bi: ≦ 0.3%, respectively.
[0028]
S: ≦ 0.15%
S is an element effective for forming MnS and improving machinability. When improvement in machinability is required, S may be added in an appropriate amount as necessary.
However, if added in a large amount, the fatigue strength and hot workability are reduced, so the content is made 0.15% or less.
[0029]
Ca: 0.0001 to 0.01%
Ca partially substitutes for Mn in MnS to form MnS containing Ca.
Such MnS in which Ca is dissolved as a solid solution adheres to the tool during cutting, and suppresses tool wear and improves machinability.
To obtain such an effect, Ca must be added in an amount of 0.0001% or more.
However, even if it is added in a large amount, its effect is saturated, so that the content is made 0.01% or less.
[0030]
Ti: ≦ 0.02%, Zr ≦ 0.02%
Ti and Zr have an effect of miniaturizing the distribution state of MnS. The miniaturized MnS improves chip crushability during machining.
However, even if it is added excessively, the effect is saturated and it is economically disadvantageous. Therefore, Ti: ≦ 0.02% and Zr ≦ 0.02%, respectively.
It is preferable to add 0.0005% or more of each.
[0031]
O: 0.001 to 0.01%
In order to obtain MnS in which Ca is dissolved, it is necessary that an oxide of Ca exists adjacent to the MnS.
To obtain such effects, 0.001 to 0.01% of O is required.
[0032]
0.6 ≦ Ceq ≦ 0.85
However, Ceq = C + 0.07 × Si + 0.16 × Mn + 0.61 × P + 0.19 × Cu + 0.17 × Ni + 0.2 × Cr
Ceq is a value representing the hardness after forging of the non-heat treated steel, and by adjusting this value, the hardness after forging can be managed.
Hardness is a factor that affects proof stress, fatigue strength, and machinability. If the hardness is too low, the desired fatigue strength cannot be obtained. Conversely, if the hardness is too high, the machinability deteriorates. Is not preferred.
In order to prevent this from occurring, it is necessary to adjust the hardness to an appropriate range.
Therefore, the range of Ceq is set to 0.6 to 0.85.
[0033]
α> 0.25
Where α = 1/10 × Si + 3/5 × P + 6 × N
α is an index indicating the degree of strengthening of the ferrite, and the larger this value is, the more the fatigue strength is improved.
To obtain the same proof stress and fatigue strength as the V-added high-strength non-heat treated steel, α needs to be larger than 0.25.
[0034]
β <0.7
Where β = C + 0.18 × Si + 0.52 × P
β is an index indicating hot workability.
As described above, C, Si, and P are enriched in the solidified segregated portion generated during the ingot formation, and the melting point of the solidified segregated portion is significantly reduced.
For this reason, the solidified segregation portion may be locally melted at the time of slab rolling, and the hot workability may be significantly reduced.
In order to suppress such a phenomenon, it is necessary that β calculated from the C, Si, and P contents is less than 0.7, thereby increasing the amount of C, Si, and P enriched in the solidification segregation portion. And the hot workability can be maintained favorably.
[0035]
【Example】
After ingoting the steels of the present invention and the comparative steels shown in Table 1, the ingots were ingot, hot forged to form a 50 mm square forged material, which was heated and held at 1200 ° C. for 60 minutes, and then turned into a round bar having a diameter of 22 mm. Hot forging was carried out, left on the floor at appropriate intervals so as not to overlap, and allowed to cool to room temperature.
An Ono-type rotary bending fatigue test piece having a parallel part diameter of 8 mm and a JIS No. 4 tensile test piece (parallel part diameter φ8 mm, reduced size) were cut out from the round bar and subjected to a test.
Here, the hardness was determined by measuring the hardness of a 1 / 2R part of a forged 22 mm diameter round bar with a Rockwell hardness tester.
[0036]
The fatigue test and the tensile test were performed at room temperature. The results are shown in Table 2.
Table 2 also shows the durability ratio.
For comparison, Tables 1 and 2 also show test results of carbon steel S45C for mechanical structures and non-heat treated steel S35VC for connecting rods, which are generally used in Japan as conventional steels.
[0037]
[Table 1]
Figure 2004307930
[0038]
[Table 2]
Figure 2004307930
[0039]
In Tables 1 and 2, Comparative Steel A has a C content of 0.13%, which is lower than the lower limit of 0.15% of the present invention, and Ceq is accordingly lower than the lower limit of the present invention. The value is 0.479, which is lower than a certain 0.6, and as a result, the hardness of the steel is low and sufficient strength is not obtained.
[0040]
Conversely, the comparative steel B has a C content of 0.38%, which is more than the upper limit of 0.35% of the present invention, and accordingly, the value of β, which is an index representing hot workability, is reduced by the value of β. It is 0.70, which is higher than the range of the invention, and therefore, cracks are partially generated during forging.
[0041]
Next, in Comparative Steel C, the content of Si is 1.01%, which is lower than the lower limit of 1.2% of the present invention, that is, the value of α as an index indicating the degree of strengthening of ferrite is different from that of the present invention. Is 0.21 which is lower than the lower limit value of 0.25, that is, the durability ratio is low.
[0042]
On the contrary, the comparative steel D has a Si content of 2.50%, which is more than the upper limit of 2% of the present invention, and thus the value of β is larger than 0.7, which is the upper limit of the present invention. The value is as large as 0.81, and as a result, a partial crack is generated during forging.
[0043]
Comparative steel E has a Mn content of 1.80%, which is more than the upper limit of 1.5% of the present invention, and therefore, bainite is generated by cooling after forging.
[0044]
Comparative steel F has a P content of 0.040%, which is lower than the lower limit of 0.05% of the present invention, that is, 0.05%. Therefore, the α value is as low as 0.25, and the durability ratio is low.
[0045]
Next, the comparative steel G has a P content of 0.210%, which is higher than the upper limit of 0.2% of the present invention, and the β value is as high as 0.70. Cracks have occurred partially.
[0046]
The comparative steel H has a Cr content of 1.01%, which is more than the upper limit of 1% of the present invention, and bainite is generated by cooling after forging.
[0047]
In Comparative Steel I, the Al content was 0.0005%, which is lower than the lower limit of 0.001% of the present invention, and thus the crystal grains after forging became coarse and the durability ratio was low.
[0048]
Comparative steel J has an N content of 0.001%, which is lower than the lower limit of 0.005% of the present invention, and therefore has a low α value of 0.22 and a low durability ratio.
[0049]
In Comparative Steel K, although the content of each of the alloy components C to N is within the range of the present invention, the value of β is larger than the upper limit of 0.7 of the present invention in terms of β value. 0.74, so that cracks were partially generated during forging.
[0050]
In Comparative Steel L, the content of each alloy component is also within the content range of the present invention stipulated independently, but the α value is 0.22 which is smaller than the lower limit value of 0.25 of the present invention. , The durability ratio is low.
[0051]
In addition, the column of S45C in Tables 1 and 2 shows that invention steel 1 to invention steel 9 and comparison steel A to comparison steel S45C, which is a general carbon steel for machine structure, were not subjected to a tempering treatment (quenching / tempering treatment). It was used as forged, like steel L. In this case, the α value was significantly low at 0.09, and the value of the durability ratio was also low.
[0052]
On the other hand, invention steel 1 to invention steel 9 of the present invention have various properties such as hardness, tensile strength, fatigue limit, durability ratio and the like as compared with S35VC which is a V-added steel. ing.
From this, it can be understood that according to the present invention, a high-performance non-heat treated steel for hot forging for a connecting rod can be provided at low cost.
[0053]
Although the embodiment of the present invention has been described in detail, this is merely an example, and the present invention can be configured in variously modified forms without departing from the spirit thereof.
[Brief description of the drawings]
FIG. 1 is a diagram showing a relationship between a change in the content of each alloy element and a change in durability ratio.

Claims (2)

重量%で、
C :0.15〜0.35%未満
Si:1.2超〜2%
Mn:0.5〜1.5%
P :0.05超〜0.2%
Cu:0.01〜0.5%
Ni:0.01〜0.5%
Cr:0.01〜1%
s−Al:0.001〜0.01%
N :0.005〜0.035%
残部Fe及び不可避不純物から成り且つ下記式1,式2及び式3を満たすコンロッド用の熱間鍛造用非調質鋼。
式1・・・0.6≦Ceq≦0.85
但しCeq=C+0.07×Si+0.16×Mn+0.61×P+0.19×Cu+0.17×Ni+0.2×Cr
式2・・・α>0.25
但しα=1/10×Si+3/5×P+6×N
式3・・・β<0.7
但しβ=C+0.18×Si+0.52×P
In weight percent,
C: 0.15 to less than 0.35% Si: more than 1.2 to 2%
Mn: 0.5-1.5%
P: more than 0.05 to 0.2%
Cu: 0.01-0.5%
Ni: 0.01 to 0.5%
Cr: 0.01-1%
s-Al: 0.001 to 0.01%
N: 0.005 to 0.035%
A non-heat treated steel for hot forging for connecting rods, the balance being Fe and the unavoidable impurities and satisfying the following formulas (1), (2) and (3).
Formula 1 ... 0.6 ≦ Ceq ≦ 0.85
However, Ceq = C + 0.07 × Si + 0.16 × Mn + 0.61 × P + 0.19 × Cu + 0.17 × Ni + 0.2 × Cr
Expression 2 ... α> 0.25
Where α = 1/10 × Si + 3/5 × P + 6 × N
Equation 3 ... β <0.7
Where β = C + 0.18 × Si + 0.52 × P
請求項1において、
S :≦0.15%
Pb:≦0.3%
Bi:≦0.3%
Ti:≦0.02%
Zr:≦0.02%
Ca:0.0001〜0.01%
O :0.001〜0.01%
の1種又は2種以上を更に含有するコンロッド用の熱間鍛造用非調質鋼。
In claim 1,
S: ≦ 0.15%
Pb: ≦ 0.3%
Bi: ≦ 0.3%
Ti: ≦ 0.02%
Zr: ≦ 0.02%
Ca: 0.0001 to 0.01%
O: 0.001 to 0.01%
Non-heat treated steel for hot forging for connecting rods, further comprising one or more of the following.
JP2003102939A 2003-04-07 2003-04-07 Non-heat treated steel to be hot-forged for connecting rod Pending JP2004307930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003102939A JP2004307930A (en) 2003-04-07 2003-04-07 Non-heat treated steel to be hot-forged for connecting rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003102939A JP2004307930A (en) 2003-04-07 2003-04-07 Non-heat treated steel to be hot-forged for connecting rod

Publications (1)

Publication Number Publication Date
JP2004307930A true JP2004307930A (en) 2004-11-04

Family

ID=33466231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003102939A Pending JP2004307930A (en) 2003-04-07 2003-04-07 Non-heat treated steel to be hot-forged for connecting rod

Country Status (1)

Country Link
JP (1) JP2004307930A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110883A1 (en) * 2015-12-25 2017-06-29 新日鐵住金株式会社 Steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110883A1 (en) * 2015-12-25 2017-06-29 新日鐵住金株式会社 Steel
EP3395975A4 (en) * 2015-12-25 2019-06-12 Nippon Steel & Sumitomo Metal Corporation Steel

Similar Documents

Publication Publication Date Title
JP2001240940A (en) Bar wire rod for cold forging and its production method
JP6680142B2 (en) High-strength seamless oil country tubular good and method for manufacturing the same
JP6794012B2 (en) Mechanical structural steel with excellent grain coarsening resistance, bending fatigue resistance, and impact resistance
JP4415219B2 (en) Age hardened steel
JP4983099B2 (en) Steel shaft parts with excellent impact and fatigue properties and manufacturing method thereof
CN109790602B (en) Steel
JP3932995B2 (en) Induction tempering steel and method for producing the same
JP5080708B2 (en) Non-tempered steel forged product, method for producing the same, and connecting rod component for internal combustion engine using the same
JPH10152746A (en) Boron steel gear excellent in fatigue resistance and its production
JP4299744B2 (en) Hot rolled wire rod for cold forging and method for producing the same
JP2009197314A (en) Component for machine structure
JP3842888B2 (en) Method of manufacturing steel for induction hardening that combines cold workability and high strength properties
JP4344126B2 (en) Induction tempered steel with excellent torsional properties
JP4213855B2 (en) Case-hardening steel and case-hardening parts with excellent torsional fatigue properties
JPH09111401A (en) Steel for machine structural use, excellent in machinability and quenching crack resistance, and its production
JP2002146480A (en) Wire rod/steel bar having excellent cold workability, and manufacturing method
JPH1129836A (en) Steel for machine structural use for induction hardening
JP2004307930A (en) Non-heat treated steel to be hot-forged for connecting rod
JP2007204798A (en) Method for manufacturing parts excellent in hardening crack resistance
JPH06256897A (en) Steel for hot forging die
JPH11106866A (en) Case hardening steel excellent in preventability of coarse grain and its production
JP2003055743A (en) Steel for cold die having excellent machinability
JPH0797659A (en) Steel for machine structural use excellent in machinability, cold forgeability, fatigue strength characteristic after quench-and-temper, member of the same, and their production
JP2003342677A (en) Steel for mechanical structure excellent in machinability and method for producing part for mechanical structure comprising the steel
JP3903996B2 (en) Steel bar and machine structural member for cold forging with excellent machinability, cold forgeability and fatigue strength characteristics after quenching and tempering