WO2017110802A1 - (メタ)アクリル系ブロック共重合体 - Google Patents

(メタ)アクリル系ブロック共重合体 Download PDF

Info

Publication number
WO2017110802A1
WO2017110802A1 PCT/JP2016/087936 JP2016087936W WO2017110802A1 WO 2017110802 A1 WO2017110802 A1 WO 2017110802A1 JP 2016087936 W JP2016087936 W JP 2016087936W WO 2017110802 A1 WO2017110802 A1 WO 2017110802A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
group
block copolymer
acrylic
acrylate
Prior art date
Application number
PCT/JP2016/087936
Other languages
English (en)
French (fr)
Inventor
隆広 有馬
裕史 田邊
幹也 松浦
社地 賢治
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2017558153A priority Critical patent/JPWO2017110802A1/ja
Publication of WO2017110802A1 publication Critical patent/WO2017110802A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers

Definitions

  • the present invention relates to a (meth) acrylic block copolymer in which a cured product obtained by irradiating active energy rays has excellent stretchability and does not have a tacky feeling.
  • active energy ray-curable materials that are cured by irradiation with active energy rays such as ultraviolet rays and electron beams are known, such as adhesives, adhesives, paints, inks, coating materials, stereolithography materials, masking materials, Used for lining materials.
  • active energy ray-curable compositions containing (meth) acrylic block copolymers having an active energy ray-curable group are excellent in adhesiveness, moldability, weather resistance, and the like. Therefore, it can be expected to be useful for applications such as adhesives, pressure-sensitive adhesives, inks, coating materials, masking materials, lining materials, and various molding materials.
  • Active energy ray-curable composition containing a (meth) acrylic block copolymer obtained by reacting acryloyl chloride with a hydroxyl group of a block copolymer and introducing an acryloyl group that becomes an active energy ray-curable group A thing is known (refer patent document 1).
  • JP 2011-184678 A International Publication No. 2014/148251 Pamphlet Japanese Patent Laying-Open No. 2015-81294
  • the cured product obtained by irradiating active energy rays is excellent in stretchability and has no tackiness, and is useful for active energy ray curable compositions.
  • the object is to provide a polymer.
  • the object is [1] A methacrylic polymer block (A) having an active energy ray-curable group containing the partial structure (1) represented by the following general formula (1), and not having an active energy ray-curable group (meth) (Meth) acrylic block copolymer containing acrylic polymer block (B),
  • the content of the partial structure (1) with respect to all monomer units constituting the (meth) acrylic block copolymer is 0.3 mol% or more and 5.0 mol% or less
  • the content of the methacrylic polymer block (A) in the (meth) acrylic block copolymer is 30% by mass or more and 60% by mass or less
  • R 1 represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.
  • the (meth) acrylic block copolymer of the present invention is excellent in curability, and is obtained by irradiating an active energy ray-curable composition containing the (meth) acrylic block copolymer with active energy rays. Is excellent in stretchability and has no tackiness.
  • (meth) acryl means a generic name of “methacryl” and “acryl”
  • “(meth) acryloyl” described later means a generic name of “methacryloyl” and “acryloyl”.
  • the “(meth) acrylate” described later means a generic name of “methacrylate” and “acrylate”.
  • the (meth) acrylic block copolymer of the present invention contains a methacrylic polymer block (A) and a (meth) acrylic polymer block (B), and the methacrylic polymer block (A) is a part. It has structure (1).
  • Partial structure (1) exhibits polymerizability upon irradiation with active energy rays.
  • the active energy ray-curable composition containing the (meth) acrylic block copolymer of the present invention is cured by irradiation with active energy rays to become a cured product.
  • an active energy ray means a light beam, electromagnetic waves, particle beams, and a combination thereof. Examples of light rays include far ultraviolet rays, ultraviolet rays (UV), near ultraviolet rays, visible rays, and infrared rays, electromagnetic waves include X-rays and ⁇ rays, and particle beams include electron beams (EB) and proton rays ( ⁇ Line) and neutron beam.
  • ultraviolet rays and electron beams are preferable, and ultraviolet rays are more preferable, from the viewpoints of curing speed, availability of an irradiation apparatus, price, and the like.
  • Partial structure (1) is represented by the following general formula (1).
  • R 1 represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.
  • examples of the hydrocarbon group having 1 to 20 carbon atoms represented by R 1 include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec- Butyl, t-butyl, 2-methylbutyl, 3-methylbutyl, 2-ethylbutyl, 3-ethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, n-pentyl, neopentyl Group, n-hexyl group, 2-methylpentyl group, 3-methylpentyl group, n-decyl group and other alkyl groups; cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group and other cycloalkyl groups; phenyl group, naphthyl Aryl groups such as groups; aralkyl groups such as groups;
  • the partial structure (1) in the methacrylic polymer block (A) of the present invention has a partial structure represented by the following general formula (2) (hereinafter referred to as “partial structure (2)”) from the viewpoint of curing speed. It is preferable that it is a part.
  • R 1 represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms
  • R 2 and R 3 each independently represents a hydrocarbon group having 1 to 6 carbon atoms
  • X represents O , S, or N
  • R 4 represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms
  • n represents an integer of 1 to 20
  • hydrocarbon group having 1 to 20 carbon atoms represented by R 1 in the general formula (2) include the same hydrocarbon groups as R 1 in the general formula (1).
  • examples of the hydrocarbon group having 1 to 6 carbon atoms independently represented by R 2 and R 3 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and n-butyl.
  • X represents O, S or N (R 4 ) (R 4 represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms), and O is easy to control polymerization. Is preferred.
  • examples of the hydrocarbon group having 1 to 6 carbon atoms represented by R 4 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, sec-butyl group, t-butyl group, 2-methylbutyl group, 3-methylbutyl group, 2-ethylbutyl group, 3-ethylbutyl group, 2,2-dimethylbutyl group, 2,3-dimethylbutyl group, n-pentyl group And alkyl groups such as neopentyl group, n-hexyl group, 2-methylpentyl group and 3-methylpentyl group; cycl
  • an integer of 1 to 20 represented by n is preferably 2 to 5 from the viewpoint of fluidity and curing speed of the (meth) acrylic block copolymer.
  • the content of the partial structure (1) with respect to all monomer units constituting the (meth) acrylic block copolymer of the present invention is 0.3 mol% or more and 5.0 mol% or less.
  • the content of the partial structure (1) is in the above range, the obtained cured product is excellent in stretchability and does not have a tacky feeling.
  • the stretchability tends to be more excellent and the tackiness tends to be less, so the content of the partial structure (1) is 0.4 mol% or more and 4.5 mol% or less. Is preferably 0.5 mol% or more and 4.0 mol% or less, and more preferably 0.5 mol% or more and 3.5 mol% or less.
  • the partial structure (1) contained in the methacrylic polymer block (A) may be at the end of the methacrylic polymer block or at the side chain, but the partial structure (1) having a preferable content is introduced. From this point of view, it is preferably at least in the side chain.
  • the methacrylic polymer block (A) includes a monomer unit derived from a monomer containing a methacrylic acid ester. Such methacrylic acid esters are roughly classified into monofunctional methacrylic acid esters having one methacryloyl group and polyfunctional methacrylic acid esters having two or more methacryloyl groups.
  • Examples of the monofunctional methacrylate ester include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, cyclohexyl methacrylate, 2-ethylhexyl methacrylate.
  • methacrylic acid alkyl esters having an alkyl group having 1 to 5 carbon atoms such as methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, etc. Is preferred.
  • the content of the monomer unit derived from the monofunctional methacrylic acid ester is such that each of the polymer blocks when the methacrylic polymer block (A) is contained in a plurality of (meth) acrylic block copolymers. In each, it is preferably 60% by mass or more, more preferably 70% by mass or more, and further preferably 80% by mass or more.
  • methacrylate (3) a bifunctional methacrylic acid ester represented by the following general formula (3) (hereinafter referred to as “dimethacrylate (3)”) is used as the polyfunctional methacrylic acid ester, living anionic polymerization is performed under the conditions described later.
  • one methacryloyl group (a methacryloyl group to which “O (CH 2 ) n ” in the following general formula (3) is directly linked) is selectively polymerized to form a methacrylic polymer block having a partial structure (2) ( A) is preferred because it is obtained.
  • R 2 and R 3 each independently represent a hydrocarbon group having 1 to 6 carbon atoms, and n represents an integer of 1 to 20)
  • Examples of the hydrocarbon group having 1 to 6 carbon atoms represented by R 2 and R 3 in the general formula (3) include the same hydrocarbon groups as R 2 and R 3 in the general formula (2).
  • an integer of 1 to 20 represented by n is preferably 2 to 5 from the viewpoint of fluidity and curing rate of the (meth) acrylic block copolymer.
  • dimethacrylate (3) examples include, for example, 1,1-dimethylpropane-1,3-diol dimethacrylate, 1,1-dimethylbutane-1,4-diol dimethacrylate, 1,1-dimethylpentane-1 , 5-diol dimethacrylate, 1,1-dimethylhexane-1,6-diol dimethacrylate, 1,1-diethylpropane-1,3-diol dimethacrylate, 1,1-diethylbutane-1,4-diol dimethacrylate Methacrylates, 1,1-diethylpentane-1,5-diol dimethacrylate, 1,1-diethylhexane-1,6-diol dimethacrylate, and the like.
  • the monofunctional and polyfunctional methacrylates described above may be used alone or in combination of two or more.
  • the content of the monomer unit derived from the polyfunctional methacrylic acid ester with respect to all the monomer units of the methacrylic polymer block (A) is preferably 0.1% by mass or more, and preferably 1% by mass or more. More preferably, it is more preferably 2% by mass or more. Further, the content of the monomer unit derived from the polyfunctional methacrylic acid ester with respect to all the monomer units of the methacrylic polymer block (A) is preferably 0.5% by mass or more, more preferably 5% by mass. As mentioned above, it is also a desirable mode that it is 45 mass% or more.
  • polyfunctional methacrylic acid ester contains dimethacrylate (3)
  • content of the monomer unit derived from dimethacrylate (3) with respect to all monomer units of the methacrylic polymer block (A) is The range is preferably 0.1 to 40% by mass, more preferably 1 to 30% by mass, and still more preferably 2 to 20% by mass.
  • content of the monomer unit derived from dimethacrylate (3) with respect to all monomer units of the methacrylic polymer block (A) is It is also a desirable embodiment that the range is preferably 0.5 to 70% by mass, more preferably 5 to 65% by mass, and still more preferably 45 to 60% by mass.
  • the content of the monomer unit derived from the monofunctional methacrylate is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. Preferably, it may be 100% by mass.
  • the methacrylic polymer block (A) is formed from a monomer containing methyl methacrylate and dimethacrylate (3), with respect to all monomer units of the methacrylic polymer block (A),
  • the total amount of monomer units derived from methyl methacrylate and the content of monomer units derived from dimethacrylate (3) is based on the total monomer units of the methacrylic polymer block (A).
  • the range of 80 to 100% by mass is preferable, the range of 90 to 100% by mass is more preferable, the range of 95 to 100% by mass is further preferable, and the range may be 100% by mass.
  • each of the above contents is preferably in the above preferred range, desirably more preferable in each polymer block. It is a preferable aspect that it exists in a range.
  • the methacrylic polymer block (A) may have a monomer unit derived from another monomer other than the methacrylic acid ester.
  • the other monomer include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, cyclohexyl acrylate, and 2-ethylhexyl acrylate.
  • the content of the monomer unit formed by the other monomer is preferably 10% by mass or less, and preferably 5% by mass with respect to the total monomer units of the methacrylic polymer block (A). The following is more preferable.
  • the content of the monomer unit formed by the other monomer is such that, when the methacrylic polymer block (A) is contained in the (meth) acrylic block copolymer, each polymer In each of the blocks, it is an embodiment that is preferably 10% by mass or less, more preferably 5% by mass or less.
  • the number average molecular weight (Mn A ) of the methacrylic polymer block (A) is in the range of 12,000 to 120,000 from the viewpoint of handleability, fluidity, mechanical properties and the like of the resulting block copolymer. It is preferably 15,000 to 60,000, and more preferably.
  • the number average molecular weight of each polymer block is preferably in the above preferred range, desirably in a more preferred range. It is one mode.
  • the number average molecular weight and the molecular weight distribution described later are values measured by a gel permeation chromatography (GPC) method (standard polystyrene conversion).
  • the content of the methacrylic polymer block (A) in the (meth) acrylic block copolymer of the present invention is 30% by mass or more and 60% by mass or less.
  • the content of the polymer block (A) is in the above range, the obtained cured product has excellent stretchability and does not have a tacky feeling.
  • the polymer block (A) content is 32.5% by mass or more and 57.5% by mass or less because it is excellent in stretchability and tends to have less tackiness.
  • it is 35 mass% or more and 55 mass% or less.
  • the (meth) acrylic block copolymer of the present invention contains a (meth) acrylic polymer block (B) having no active energy ray-curable group.
  • the active energy ray-curable group means a functional group that exhibits polymerizability upon irradiation with the active energy ray.
  • the active energy ray-curable group include ethylenic double bonds such as (meth) acryloyl group, (meth) acryloyloxy group, vinyl group, allyl group, vinyloxy group, 1,3-dienyl group, styryl group ( In particular, a functional group having a general formula CH 2 ⁇ CR— (wherein R is an alkyl group or a hydrogen atom)); an epoxy group, an oxetanyl group, a thiol group, a maleimide group, and the like.
  • Examples of the (meth) acrylic acid ester capable of forming the (meth) acrylic polymer block (B) include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, (meth) Isopropyl acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isobornyl (meth) acrylate, (meth) acrylic acid Dodecyl, trimethoxysilylpropyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, (meth) Phenyl
  • n-butyl acrylate, 2-ethylhexyl acrylate, and 2-methoxyethyl acrylate are preferable, and n-butyl acrylate is more preferable.
  • These (meth) acrylic acid esters may be used alone or in combination of two or more.
  • the content of the monomer unit formed by the (meth) acrylic ester in the (meth) acrylic polymer block (B) is the total monomer forming the (meth) acrylic polymer block (B). It is preferable that it is 90 mass% or more with respect to a unit, It is more preferable that it is 95 mass% or more, and 100 mass% may be sufficient.
  • the content of the monomer unit formed by the (meth) acrylic acid ester is such that when a plurality of (meth) acrylic polymer blocks (B) are contained in the (meth) acrylic block copolymer In each polymer block, it is preferably 90% by mass or more, more preferably 95% by mass or more, and may be 100% by mass.
  • (Meth) acrylic polymer block (B) may have a monomer unit formed from a monomer other than (meth) acrylic acid ester.
  • the other monomers include ⁇ -alkoxy acrylates such as methyl ⁇ -methoxyacrylate and methyl ⁇ -ethoxyacrylate; crotonates such as methyl crotonate and ethyl crotonate; 3-methoxyacrylic acid 3-alkoxy acrylate esters such as esters; N-isopropyl (meth) acrylamide, Nt-butyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide and the like ( (Meth) acrylamide; methyl vinyl ketone, ethyl vinyl ketone, methyl isopropenyl ketone, ethyl isopropenyl ketone and the like.
  • These other monomers may be used alone or in combination of
  • the content of the monomer unit formed by the other monomer in the (meth) acrylic polymer block (B) is the total monomer forming the (meth) acrylic polymer block (B). It is preferably 10% by mass or less and more preferably 5% by mass or less with respect to the unit.
  • the content of the monomer unit formed by the other monomer is a plurality of (meth) acrylic polymer blocks (B) in the (meth) acrylic block copolymer, In each polymer block, it is an embodiment that is preferably 10% by mass or less, more preferably 5% by mass or less.
  • the number average molecular weight (Mn B ) of the (meth) acrylic polymer block (B) is from 16,000 to 140 from the viewpoint of the handleability, fluidity, mechanical properties, etc. of the obtained (meth) acrylic block copolymer. , Preferably in the range of 20,000, more preferably in the range of 20,000 to 70,000.
  • the number average molecular weight of each polymer block is in the above preferred range, desirably in a more preferred range. Is a preferred embodiment.
  • the content of the (meth) acrylic polymer block (B) in the (meth) acrylic block copolymer of the present invention is preferably 40% by mass to 70% by mass, and preferably 42.5% by mass to 67%. More preferably, the content is 5% by mass or less, and further preferably 45% by mass or more and 65% by mass or less.
  • the number average molecular weight (Mn) of the (meth) acrylic block copolymer of the present invention is 40,000 or more.
  • Mn is 40,000 or more, the cured product obtained from the block copolymer is excellent in stretchability.
  • the Mn is preferably 40,000 or more and 200,000 or less, and preferably 45,000 or more and 100,000 from the viewpoints of handleability, fluidity, mechanical properties and the like of the obtained (meth) acrylic block copolymer. The following is more preferable.
  • the molecular weight distribution of the (meth) acrylic block copolymer of the present invention is preferably 2.00 or less, more preferably in the range of 1.02 to 2.00, and 1.05 to 1
  • the range of .80 is more preferable, the range of 1.05 to 1.50 is most preferable, and the range of 1.10 to 1.50 may be used.
  • the (meth) acrylic block copolymer of the present invention is a block copolymer having at least one methacrylic polymer block (A) and at least one (meth) acrylic polymer block (B).
  • the number of each polymer block and the bonding order are not particularly limited, but the methacrylic polymer block (A) has at least one terminal of the (meth) acrylic block copolymer from the viewpoint of active energy ray curability.
  • a linear polymer is more preferable, and one methacrylic polymer block (A) and one The (meth) acrylic polymer block (B) of the diblock copolymer, or one (meth) acrylic polymer block (B) has methacrylic groups at both ends.
  • Triblock copolymers each one polymer block (A) is bonded, respectively are more preferred.
  • the production method of the (meth) acrylic block copolymer in the present invention is not particularly limited, but an anionic polymerization method or a radical polymerization method is preferable, and a living anion polymerization method or a living radical polymerization method is more preferable from the viewpoint of polymerization control. An anionic polymerization method is more preferable.
  • Living radical polymerization methods include a polymerization method using a chain transfer agent such as polysulfide, a polymerization method using a cobalt porphyrin complex, a polymerization method using a nitroxide (see International Publication No. 2004/014926 pamphlet), and a high cycle such as an organic tellurium compound.
  • Polymerization method using a hetero element compound see Japanese Patent No. 3839829
  • RAFT reversible addition / desorption chain transfer polymerization method
  • ATRP atom transfer radical polymerization method
  • an atom transfer radical polymerization method is preferred, and a metal complex having an organic halide or a sulfonyl halide compound as an initiator and at least one selected from Fe, Ru, Ni, and Cu as a central metal is used.
  • An atom transfer radical polymerization method using a catalyst is more preferable.
  • Living anionic polymerization methods include living polymerization using an organic rare earth metal complex as a polymerization initiator (see JP 06-93060 A), alkali metal or alkaline earth metal salts using an organic alkali metal compound as a polymerization initiator, and the like.
  • a living anion polymerization in the presence of a mineral salt see Japanese Patent Publication No. 05-507737
  • a living anion polymerization using an organic alkali metal compound as a polymerization initiator in the presence of an organoaluminum compound Japanese Patent Laid-open No. Hei 05 (1994)
  • the living anion is prepared by using an organic alkali metal compound as a polymerization initiator in the presence of an organoaluminum compound because it can directly and efficiently polymerize the (meth) acrylic block copolymer of the present invention.
  • a method of polymerization is preferred, and a method of living anion polymerization using an organolithium compound as a polymerization initiator in the presence of an organoaluminum compound and a Lewis base is more preferred.
  • organolithium compound examples include t-butyllithium, 1,1-dimethylpropyllithium, 1,1-diphenylhexyllithium, 1,1-diphenyl-3-methylpentyllithium, ethyl ⁇ -lithioisobutyrate, butyl ⁇ -lithioisobutyrate, methyl ⁇ -lithioisobutyrate, isopropyl lithium, sec-butyl lithium, 1-methylbutyl lithium, 2-ethylpropyl lithium, 1-methylpentyl lithium, cyclohexyl lithium, diphenylmethyl lithium, ⁇ - Examples thereof include methylbenzyl lithium, methyl lithium, n-propyl lithium, n-butyl lithium, n-pentyl lithium and the like.
  • organolithium compound having 3 to 40 carbon atoms and having a chemical structure having a carbon atom as an anion center is preferred, and sec-butyllithium is particularly preferred.
  • organolithium compounds may be used alone or in combination of two or more.
  • the amount of the organic lithium compound used can be determined by the ratio of the amount of the monomer used to the amount used according to the number average molecular weight of the target block copolymer.
  • organoaluminum compound examples include organoaluminum compounds represented by the following general formula (A-1) or (A-2).
  • AlR 5 (R 6 ) (R 7 ) (A-1) Wherein R 5 represents a monovalent saturated hydrocarbon group, monovalent aromatic hydrocarbon group, alkoxy group, aryloxy group or N, N-disubstituted amino group, and R 6 and R 7 are each independently And R 6 and R 7 are bonded to each other to form an arylenedioxy group.
  • examples of the aryloxy group independently represented by R 5 , R 6 , R 7 and R 8 include a phenoxy group, a 2-methylphenoxy group, 4 -Methylphenoxy group, 2,6-dimethylphenoxy group, 2,4-di-t-butylphenoxy group, 2,6-di-t-butylphenoxy group, 2,6-di-t-butyl-4-methyl Phenoxy group, 2,6-di-t-butyl-4-ethylphenoxy group, 2,6-diphenylphenoxy group, 1-naphthoxy group, 2-naphthoxy group, 9-phenanthryloxy group, 1-pyrenyloxy group, Examples include 7-methoxy-2-naphthoxy group.
  • examples of the aryleneoxy group formed by combining R 6 and R 7 with each other include 2,2′-biphenol, 2,2′-methylenebisphenol, 2,2 ′, and the like.
  • excluded the hydrogen atom of these two phenolic hydroxyl groups in the compound which has two phenolic hydroxyl groups, such as a naphthol, is mentioned.
  • one or more hydrogen atoms contained in the above aryloxy group and aryleneoxy group may be substituted with a substituent.
  • substituents include a methoxy group, an ethoxy group, an isopropoxy group, Examples thereof include alkoxy groups such as t-butoxy group; halogen atoms such as chlorine atom and bromine atom.
  • examples of the monovalent saturated hydrocarbon group that R 5 , R 9 and R 10 each independently represent include, for example, a methyl group, an ethyl group, and n-propyl Group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, t-butyl group, 2-methylbutyl group, 3-methylbutyl group, n-octyl group, 2-ethylhexyl group and other alkyl groups; cyclohexyl group, etc.
  • the monovalent aromatic hydrocarbon group includes, for example, an aryl group such as a phenyl group; the aralkyl group such as a benzyl group; and the alkoxy group includes, for example, a methoxy group and an ethoxy group. , Isopropoxy group, t-butoxy group and the like.
  • Examples of the N, N-disubstituted amino group include dimethylamino group, diethylamino group, diisopropylamino group, and the like. Dialkylamino groups such as bis (trimethylsilyl) amino group and the like.
  • One or more hydrogen atoms contained in the above-mentioned monovalent saturated hydrocarbon group, monovalent aromatic hydrocarbon group, alkoxy group and N, N-disubstituted amino group may be substituted with a substituent.
  • substituents include alkoxy groups such as methoxy group, ethoxy group, isopropoxy group and t-butoxy group; halogen atoms such as chlorine atom and bromine atom.
  • organoaluminum compound (A-1) examples include ethylbis (2,6-di-t-butyl-4-methylphenoxy) aluminum, ethylbis (2,6-di-t-butylphenoxy) aluminum, ethyl [2 , 2'-methylenebis (4-methyl-6-t-butylphenoxy)] aluminum, isobutylbis (2,6-di-t-butyl-4-methylphenoxy) aluminum, isobutylbis (2,6-di-t -Butylphenoxy) aluminum, isobutyl [2,2'-methylenebis (4-methyl-6-t-butylphenoxy)] aluminum, n-octylbis (2,6-di-t-butyl-4-methylphenoxy) aluminum, n-octylbis (2,6-di-t-butylphenoxy) aluminum, n-octyl [2,2′- Tylene bis (4-methyl-6-t-butyl
  • isobutyl bis (2,6-di-t-butyl-4-methylphenoxy) aluminum, isobutyl bis (2,6 -Di-t-butylphenoxy) aluminum, isobutyl [2,2'-methylenebis (4-methyl-6-t-butylphenoxy)] aluminum and the like are preferable.
  • organoaluminum compound (A-2) examples include diethyl (2,6-di-t-butyl-4-methylphenoxy) aluminum, diethyl (2,6-di-t-butylphenoxy) aluminum, diisobutyl (2 , 6-Di-t-butyl-4-methylphenoxy) aluminum, diisobutyl (2,6-di-t-butylphenoxy) aluminum, di-n-octyl (2,6-di-t-butyl-4-methyl) And phenoxy) aluminum and di-n-octyl (2,6-di-t-butylphenoxy) aluminum.
  • organoaluminum compounds may be used alone or in combination of two or more.
  • the amount of the organoaluminum compound used can be appropriately selected according to the type of solvent and other various polymerization conditions, but is usually 1.0 to 10 with respect to 1 mole of the organolithium compound from the viewpoint of the polymerization rate. It is preferably used in the range of 0.0 mol, more preferably in the range of 1.1 to 7.5 mol, and still more preferably in the range of 1.2 to 5.0 mol. If the amount of the organoaluminum compound used exceeds 10.0 mol with respect to 1 mol of the organolithium compound, it tends to be disadvantageous in terms of economy, and if it is less than 1.0 mol, the polymerization initiation efficiency tends to decrease.
  • Lewis base examples include compounds having an ether bond and / or a tertiary amine structure in the molecule.
  • Examples of the compound used as the Lewis base and having an ether bond in the molecule include ether.
  • the ether is a cyclic ether having two or more ether bonds in the molecule or an acyclic ether having one or more ether bonds in the molecule from the viewpoint of high polymerization initiation efficiency and living property of the polymerization terminal anion. Is preferred.
  • Examples of the cyclic ether having two or more ether bonds in the molecule include crown ethers such as 12-crown-4, 15-crown-5, and 18-crown-6.
  • acyclic ether having one or more ether bonds in the molecule examples include acyclic monoethers such as dimethyl ether, diethyl ether, diisopropyl ether, dibutyl ether, and anisole; 1,2-dimethoxyethane, 1,2-diethoxy Ethane, 1,2-diisopropoxyethane, 1,2-dibutoxyethane, 1,2-diphenoxyethane, 1,2-dimethoxypropane, 1,2-diethoxypropane, 1,2-diisopropoxypropane 1,2-dibutoxypropane, 1,2-diphenoxypropane, 1,3-dimethoxypropane, 1,3-diethoxypropane, 1,3-diisopropoxypropane, 1,3-dibutoxypropane, , 3-diphenoxypropane, 1,4-dimethoxybutane, 1,4-diethoxybutane, , 4-diisopropoxybutane, 1,4-di
  • a compound having a tertiary amine structure in the molecule includes tertiary polyamine.
  • a tertiary polyamine means a compound having two or more tertiary amine structures in the molecule. Examples of the tertiary polyamine include N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-tetraethylethylenediamine, N, N, N ′, N ′′, N ′′ -pentamethyl.
  • Linear polyamines such as diethylenetriamine, 1,1,4,7,10,10-hexamethyltriethylenetetraamine, tris [2- (dimethylamino) ethyl] amine; 1,3,5-trimethylhexahydro-1, 3,5-triazine, 1,4,7-trimethyl-1,4,7-triazacyclononane, 1,4,7,10,13,16-hexamethyl-1,4,7,10,13,16 -Non-aromatic heterocyclic compounds such as hexaazacyclooctadecane; aromatic heterocyclic compounds such as 2,2'-bipyridyl, 2,2 ': 6', 2 "-terpyridine, and the like.
  • a compound having one or more ether bonds and one or more tertiary amine structures in the molecule may be used as the Lewis base.
  • An example of such a compound is tris [2- (2-methoxyethoxy) ethyl] amine.
  • Lewis bases may be used alone or in combination of two or more.
  • the amount of Lewis base used is preferably in the range of 0.1 to 6.0 moles with respect to 1 mole of the organolithium compound from the viewpoints of polymerization initiation efficiency, stability of the polymerization terminal anion, and the like.
  • the range of 4.0 mol is more preferable, and the range of 0.3 to 2.0 mol is more preferable. If the amount of the Lewis base used exceeds 6.0 mol with respect to 1 mol of the organolithium compound, it tends to be disadvantageous in terms of economy, and if it is less than 0.1 mol, the polymerization initiation efficiency tends to decrease.
  • the amount of the Lewis base used is preferably in the range of 0.1 to 0.6 mol, more preferably in the range of 0.2 to 0.5 mol, with respect to 1 mol of the organoaluminum compound. .
  • the living anionic polymerization is preferably carried out in the presence of an organic solvent from the viewpoint of controlling the temperature and making the system uniform so that the polymerization proceeds smoothly.
  • Organic solvents include hydrocarbons such as toluene, xylene, cyclohexane, and methylcyclohexane from the viewpoints of safety, separation from water in washing of the reaction solution after polymerization, ease of recovery / reuse, etc .; chloroform, chloride Halogenated hydrocarbons such as methylene and carbon tetrachloride; esters such as dimethyl phthalate are preferred.
  • These organic solvents may be used alone or in combination of two or more.
  • additives may be present in the reaction system as necessary.
  • the other additives include inorganic salts such as lithium chloride; metal alkoxides such as lithium methoxyethoxy ethoxide and potassium t-butoxide; tetraethylammonium chloride and tetraethylphosphonium bromide.
  • the living anionic polymerization is preferably performed at ⁇ 30 to 25 ° C.
  • the temperature is lower than ⁇ 30 ° C., the polymerization rate decreases and the productivity tends to decrease.
  • the temperature is higher than 25 ° C., it tends to be difficult to polymerize the monomer containing the dimethacrylate (3) with good living property.
  • the living anionic polymerization is preferably performed in an atmosphere of an inert gas such as nitrogen, argon or helium. Furthermore, it is preferable to carry out under sufficient stirring conditions so that the reaction system becomes uniform.
  • an inert gas such as nitrogen, argon or helium.
  • the Lewis base is brought into contact with the organoaluminum compound before contacting with the organolithium compound. It is preferable to add.
  • the organoaluminum compound may be added to the reaction system before the monomer or simultaneously. When the organoaluminum compound is added to the reaction system simultaneously with the monomer, the organoaluminum compound may be added after separately mixing with the monomer.
  • the living anion polymerization can be stopped by adding a polymerization terminator such as methanol; acetic acid or hydrochloric acid in methanol; a protic compound such as aqueous solution of acetic acid or hydrochloric acid to the reaction solution.
  • a polymerization terminator such as methanol; acetic acid or hydrochloric acid in methanol; a protic compound such as aqueous solution of acetic acid or hydrochloric acid
  • the amount of the polymerization terminator used is preferably in the range of 1 to 1,000 mol with respect to 1 mol of the organic lithium compound used.
  • a known method As a method for separating and obtaining the block copolymer from the reaction liquid after the living anion polymerization is stopped, a known method can be adopted. Examples thereof include a method of pouring the reaction solution into a poor solvent of the block copolymer and precipitating, a method of distilling off the organic solvent from the reaction solution and obtaining a block copolymer.
  • the metal component derived from the organolithium compound and the organoaluminum compound remains in the block copolymer obtained by separation, the physical properties of the block copolymer may be deteriorated and the transparency may be deteriorated. Therefore, it is preferable to remove the metal component derived from the organolithium compound and the organoaluminum compound after the anionic polymerization is stopped.
  • a method for removing the metal component cleaning treatment using an acidic aqueous solution, adsorption treatment using an adsorbent such as ion exchange resin, celite, activated carbon, and the like are effective.
  • acidic aqueous solution hydrochloric acid, sulfuric acid aqueous solution, nitric acid aqueous solution, acetic acid aqueous solution, propionic acid aqueous solution, citric acid aqueous solution etc. can be used, for example.
  • a monomer containing the dimethacrylate (3) is polymerized to obtain a methacrylic polymer.
  • a polymer block including a partial structure hereinafter referred to as “precursor structure” serving as a precursor of the partial structure (1) which is an active energy ray-curable group is formed. Then, a method of converting the precursor structure into the partial structure (1) can also be mentioned.
  • a polymer block containing a precursor structure is obtained by polymerizing a monomer containing a polymerizable functional group and a compound containing a precursor structure (hereinafter referred to as “polymerizable precursor”).
  • the polymerizable functional group include a styryl group, a 1,3-dienyl group, a vinyloxy group, and a (meth) acryloyl group, and a (meth) acryloyl group is preferable.
  • the precursor structure includes a hydroxyl group protected by a hydroxyl group and a protecting group (silyloxy group, acyloxy group, alkoxy group, etc.), an amino group, an amino group protected by a protecting group, a thiol group, and a thiol group protected by a protecting group.
  • a protecting group silaneoxy group, acyloxy group, alkoxy group, etc.
  • an amino group an amino group protected by a protecting group
  • a thiol group a thiol group protected by a protecting group.
  • isocyanate groups As well as isocyanate groups.
  • a polymer block containing a hydroxyl group as a precursor structure is reacted with a compound having a partial structure (1) and a partial structure (carboxylic acid, ester, carbonyl halide, etc.) capable of reacting with a hydroxyl group, thereby allowing a methacrylic polymer block (A ) Can be formed.
  • a polymer block containing a hydroxyl group protected by a protecting group as a precursor structure can form a methacrylic polymer block (A) in the same manner after removing the protecting group to form a hydroxyl group.
  • the polymer block containing an amino group as a precursor structure has a partial structure (1) and a partial structure capable of reacting with the amino group (carboxylic acid, carboxylic anhydride, ester, carbonyl halide, aldehyde group, isocyanate group, etc.).
  • a methacrylic polymer block (A) can be formed by reacting with a compound.
  • a polymer block containing an amino group protected by a protective group as a precursor structure can form a methacrylic polymer block (A) in the same manner after removing the protective group to form an amino group.
  • a polymer block containing a thiol group as a precursor structure includes a partial structure (1) and a partial structure capable of reacting with a thiol group (carboxylic acid, carboxylic acid anhydride, ester, carbonyl halide, isocyanate group, carbon-carbon double bond) Etc.) can be reacted with a compound having a methacrylic polymer block (A).
  • a polymer block containing a thiol group protected by a protective group as a precursor structure can form a methacrylic polymer block (A) in the same manner after removing the protective group to form a thiol group.
  • a polymer block containing an isocyanate group as a precursor structure can form a methacrylic polymer block (A) by reacting with a compound having a partial structure (1) and a partial structure (such as a hydroxyl group) capable of reacting with an isocyanate group. .
  • dimethacrylate (3) is used from the viewpoint that the partial structure (1) can be easily introduced directly.
  • the (meth) acrylic block copolymer of the present invention can be used as a material for an active energy ray-curable composition.
  • the content of the (meth) acrylic block copolymer of the present invention in the active energy ray-curable composition is not particularly limited, but is preferably 5% by mass or more, and preferably 10% by mass or more. Is more preferable, and it is further more preferable that it is 20 mass% or more.
  • the active energy ray-curable composition may further contain a photopolymerization initiator.
  • a photopolymerization initiator include acetophenones (for example, 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, 2-hydroxy-2-methyl-1-phenylpropane).
  • the content thereof is preferably 0.01 to 10 parts by mass, and 0.05 to 8 parts by mass with respect to 100 parts by mass of the (meth) acrylic block copolymer of the present invention. Is more preferable.
  • the amount is 0.01 parts by mass or more, the curability of the active energy ray-curable composition becomes good, and when the amount is 10 parts by mass or less, the resulting cured product tends to have good heat resistance.
  • the active energy ray-curable composition may contain a sensitizer as necessary.
  • the sensitizer include n-butylamine, di-n-butylamine, tri-n-butylphosphine, allylthiouric acid, triethylamine, diethylaminoethyl methacrylate and the like. Among these, diethylaminoethyl methacrylate and triethylamine are preferable.
  • the mass ratio of the photopolymerization initiator and the sensitizer is preferably in the range of 10:90 to 90:10, and 20:80 to 80: A range of 20 is more preferred.
  • the active energy ray-curable composition has a reactive dilution that exhibits polymerizability by irradiation with active energy rays other than the (meth) acrylic block copolymer of the present invention, unless the effects of the present invention are impaired.
  • An agent may be included.
  • the reactive diluent is not particularly limited as long as it is a compound that exhibits polymerizability upon irradiation with active energy rays.
  • the active energy ray-curable composition has an active energy ray-curable group such as a plasticizer, a tackifier, a softener, a filler, a stabilizer, a pigment, and a dye within a range that does not significantly inhibit the curability.
  • an active energy ray-curable group such as a plasticizer, a tackifier, a softener, a filler, a stabilizer, a pigment, and a dye within a range that does not significantly inhibit the curability.
  • Various additives that do not have may be included.
  • the purpose of including the plasticizer in the active energy ray-curable composition is, for example, adjustment of the viscosity of the active energy ray-curable composition, mechanical strength of a cured product obtained by curing the active energy ray-curable composition. Adjustment.
  • the plasticizer include phthalic acid esters such as dibutyl phthalate, diheptyl phthalate, di (2-ethylhexyl) phthalate, and butyl benzyl phthalate; non-aromatics such as dioctyl adipate, dioctyl sebacate, dibutyl sebacate, and isodecyl succinate.
  • Dibasic acid esters Aliphatic esters such as butyl oleate and methyl acetylricinoleate; Esters of polyalkylene glycols such as diethylene glycol dibenzoate, triethylene glycol dibenzoate, and pentaerythritol esters; Tricresyl phosphate, tributyl phosphate, and the like Phosphoric acid esters; Trimellitic acid esters; Polyene, butadiene-acrylonitrile copolymers, diene (co) polymers such as polychloroprene; Polyisobutylene; chlorinated paraffins; hydrocarbon oils such as alkyldiphenyls and partially hydrogenated terphenyls; process oils; polyether polyols such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and the hydroxyl groups of these polyether polyols Polyethers such as derivatives converted to groups, ether groups, etc .; 2 basic
  • the molecular weight or number average molecular weight of these plasticizers is preferably 400 to 15,000, more preferably 800 to 10,000, and even more preferably 1,000 to 8,000.
  • a plasticizer may or may not have a functional group other than the active energy ray-curable group (for example, a hydroxyl group, a carboxyl group, a halogen group, etc.).
  • the molecular weight or number average molecular weight of the plasticizer is 400 or more, the plasticizer does not flow out from the cured product of the active energy ray-curable composition over time, and the initial physical properties can be maintained for a long time.
  • the molecular weight or number average molecular weight of the plasticizer is 15,000 or less, the handleability of the active energy ray-curable composition tends to be improved.
  • the content is preferably 5 to 150 parts by mass with respect to 100 parts by mass of the (meth) acrylic block copolymer of the present invention. Part by mass is more preferable, and 20 to 100 parts by mass is even more preferable.
  • the amount to 5 parts by mass or more effects such as physical property adjustment and property adjustment become remarkable, and by setting the amount to 150 parts by mass or less, a cured product obtained by curing the active energy ray-curable composition tends to have excellent mechanical strength. .
  • the additive having no active energy ray curable group may be an organic compound or an inorganic compound.
  • the active energy ray used when curing the (meth) acrylic block copolymer of the present invention or the active energy ray-curable composition containing the (meth) acrylic block copolymer is a known apparatus.
  • the acceleration voltage is suitably 0.1 to 10 MeV
  • the irradiation dose is suitably 1 to 500 kGy.
  • a high-pressure mercury lamp for ultraviolet irradiation, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, a chemical lamp, an LED, or the like that emits light in a wavelength range of 150 to 450 nm can be used.
  • Integrated light quantity of the active energy ray is usually in the range of 10 ⁇ 20000mJ / cm 2, preferably in the range of 30 ⁇ 5000mJ / cm 2.
  • the curability of the (meth) acrylic block copolymer tends to be insufficient, and if it exceeds 20,000 mJ / cm 2 , the (meth) acrylic block copolymer may be deteriorated. There is.
  • the relative humidity is ( From the viewpoint of suppressing the decomposition of the (meth) acrylic block copolymer, it is preferably 30% or less, and more preferably 10% or less.
  • heating can be performed to accelerate curing.
  • a heating temperature is preferably in the range of 40 to 130 ° C, more preferably in the range of 50 to 100 ° C.
  • the usage of the active energy ray-curable composition is not particularly limited, but the cured product that has been applied to the substrate and cured can be used as an ink, a paint, a coating material, a masking material, or a lining material.
  • the effects expected here include information provision, surface protection, corrosion prevention, insulation, wear resistance, and the like.
  • the base material examples include polyolefin (polyethylene, polypropylene, etc.), polyester (polyethylene naphthalate, polyethylene terephthalate, etc.), polyamide (nylon-6, nylon-66, etc.), polystyrene, ethylene vinyl alcohol, polyvinyl chloride, polyimide. , Polyvinyl alcohol, polycarbonate, polyether sulfone, acrylic cellulose (triacetylyl cellulose, diacetyl cellulose, etc.), polymethyl methacrylate resin, glass, metals such as iron and stainless steel, already coated plating film and lining film, etc. Is mentioned.
  • the cured product obtained by curing the active energy ray-curable composition can be used in water, an acidic aqueous solution, an alkaline aqueous solution, or hypochlorous acid water.
  • the operating temperature is not particularly limited.
  • the cured product obtained by curing the above active energy ray-curable composition is excellent in stretchability and mechanical strength, and can extend the duration of corrosion prevention and insulation function and extend its life.
  • the cured product obtained by curing the active energy ray-curable composition can be peeled off using an organic solvent when it becomes unnecessary.
  • Organic solvents include n-hexane, n-heptane, n-octane, isooctane, ethyl acetate, butyl acetate, isopropyl acetate, dimethyl ether, tetrahydrofuran, dichloromethane, chloroform, ethylene chloride, 1,1-dichloromethane, 1,2 -Dichloromethane, 1,1,1-trichloroethylene, acetone, methyl ethyl ketone, diethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, diisobutyl ketone, toluene, cyclohexanone, diacetone alcohol and the like.
  • the organic solvent may be used individually by 1 type, or may use 2 or more types together
  • the raw materials were dried and purified by a conventional method, deaerated with nitrogen, and transferred and supplied under a nitrogen atmosphere.
  • the consumption rate of each monomer after polymerization was determined by collecting 0.5 mL of the reaction solution, mixing it in 0.5 mL of methanol, and then mixing 0.1 mL from the mixture solution.
  • 1 H-NMR measurement was carried out under the following measurement conditions after dissolving in 0.5 mL of deuterated chloroform and derived from the proton directly connected to the carbon-carbon double bond of the (meth) acrylic acid ester used as the monomer.
  • Block efficiency from step (1) to step (2) Obtained in the above Mn (R1) and Mn (I1), the Mn of the polymer actually obtained in the step (2) (Mn (R2)), and the step (2) when the block efficiency is 100%.
  • the block efficiency (F2) from the step (1) to the step (2) was calculated from the Mn (calculated value: Mn (I2)) of the polymer obtained by the following equation.
  • F2 (%) 10000 ⁇ ⁇ Mn (I2) ⁇ Mn (I1) ⁇ / [F1 ⁇ ⁇ Mn (R2) ⁇ Mn (R1) ⁇ ]
  • each monomer unit forming the (meth) acrylic block copolymer The content of each monomer unit forming the (meth) acrylic block copolymer obtained in the following Examples and Comparative Examples was calculated by the following method. 0.01 g of the obtained (meth) acrylic block copolymer was dissolved in 0.5 mL of deuterated chloroform and subjected to 1 H-NMR measurement, and 1,1-dimethylpropane-1,3-diol dimethacrylate unit was measured.
  • the obtained solution was poured into a box-shaped container made of a release-treated PET film (manufactured by Toyobo Co., Ltd., K1504) and dried at room temperature for 24 hours to obtain an active energy ray-curable composition having a thickness of 150 ⁇ m.
  • the curable composition was cured by UV irradiation at 600 mJ / cm 2 in the atmosphere using a UV irradiation apparatus (GS Yuasa, 12A12-A10-HD3A, lamp used: GS Yuasa, HAK 125AL-F).
  • the obtained cured product was cut into a rectangle having a vertical width of 40 mm and a horizontal width of 5 mm, and then the test piece was set on a tensile tester (Instron Japan, model 5566) at 25 ° C. and a tensile speed of 60 mm / min.
  • the elongation at break was determined under the following conditions.
  • Example 1 (Process (1)) After 1.39 kg of toluene was added to a 3 L flask which had been dried and purged with nitrogen, 2.3 g of 1,1,4,7,10,10-hexamethyltriethylenetetramine as a Lewis base was added while stirring. 10.1 mmol), and 37.8 g (18.7 mmol) of a toluene solution containing 25.9% by mass of isobutylbis (2,6-di-t-butyl-4-methylphenoxy) aluminum as an organoaluminum compound were sequentially added. And cooled to -20 ° C.
  • the consumption rate of 1,1-dimethylpropane-1,3-diol dimethacrylate and methyl methacrylate in step (1) was 100%.
  • Mn (Mn (R1)) of the obtained polymer was 12,500 and Mw / Mn was 1.10.
  • the polymerization initiation efficiency (F1) in the step (1) was 99%.
  • (meth) acrylic block copolymer (hereinafter referred to as “(meth) acrylic block copolymer”).
  • Polymer (1) was obtained.
  • Table 1 shows the evaluation results of the cured product of the active energy ray-curable composition containing the obtained (meth) acrylic block copolymer (1).
  • Example 2 (Process (1)) After adding 867 g of toluene to a 2 L flask which had been dried and purged with nitrogen, 1.03 g (4.4) of 1,1,4,7,10,10-hexamethyltriethylenetetramine as a Lewis base was added while stirring. 48 mmol), and 32.6 g (16.4 mmol) of a toluene solution containing 26.4% by mass of isobutylbis (2,6-di-t-butyl-4-methylphenoxy) aluminum as the organoaluminum compound were sequentially added, Cooled to -20 ° C.
  • the consumption rate of 1,1-dimethylpropane-1,3-diol dimethacrylate and methyl methacrylate in step (1) was 100%.
  • Mn (Mn (R1)) of the obtained polymer was 18,000, and Mw / Mn was 1.10.
  • the polymerization initiation efficiency (F1) in the step (1) was 99%.
  • (meth) acrylic block copolymer (meth) acrylic block copolymer (hereinafter referred to as “(meth) acrylic block copolymer”).
  • Polymer (2) ) was obtained.
  • Table 1 shows the evaluation results of the cured product of the active energy ray-curable composition containing the obtained (meth) acrylic block copolymer (2).
  • Example 3 (Process (1)) After 1.47 kg of toluene was added to a 3 L flask which had been dried and purged with nitrogen, 2.36 g of 1,1,4,7,10,10-hexamethyltriethylenetetramine as a Lewis base was added while stirring. 10.4 mmol), and 47.4 g (23.9 mmol) of a toluene solution containing 26.4% by mass of isobutylbis (2,6-di-t-butyl-4-methylphenoxy) aluminum as an organoaluminum compound. And cooled to -20 ° C.
  • the consumption rate of 1,1-dimethylpropane-1,3-diol dimethacrylate and methyl methacrylate in step (1) was 100%.
  • Mn (Mn (R1)) of the obtained polymer was 13,300, and Mw / Mn was 1.09.
  • the polymerization initiation efficiency (F1) in the step (1) was 100%.
  • (meth) acrylic block copolymer (hereinafter referred to as “(meth) acrylic block copolymer”).
  • Polymer (3) was obtained.
  • Table 1 shows the evaluation results of the cured product of the active energy ray-curable composition containing the obtained (meth) acrylic block copolymer (3).
  • the consumption rate of 1,1-dimethylpropane-1,3-diol dimethacrylate and methyl methacrylate in step (1) was 100%.
  • Mn (Mn (R1)) of the obtained polymer was 12,400 and Mw / Mn was 1.09.
  • the polymerization initiation efficiency (F1) in the step (1) was 99%.
  • Example 5 (Process (1)) After 1.39 kg of toluene was added to a 3 L flask which had been dried and purged with nitrogen, 2.32 g of 1,1,4,7,10,10-hexamethyltriethylenetetramine as a Lewis base was added while stirring. 10.1 mmol) and 50.4 g (25.0 mmol) of a toluene solution containing 25.9% by mass of isobutylbis (2,6-di-t-butyl-4-methylphenoxy) aluminum as an organoaluminum compound were sequentially added. And cooled to -20 ° C.
  • the consumption rate of 1,1-dimethylpropane-1,3-diol dimethacrylate and methyl methacrylate in step (1) was 100%.
  • Mn (Mn (R1)) of the obtained polymer was 14,200 and Mw / Mn was 1.10.
  • the polymerization initiation efficiency (F1) in the step (1) was 97%.
  • (meth) acrylic block copolymer Polymer (5) was obtained.
  • Table 1 shows the evaluation results of the cured product of the active energy ray-curable composition containing the obtained (meth) acrylic block copolymer (5).
  • the consumption rate of 1,1-dimethylpropane-1,3-diol dimethacrylate and methyl methacrylate in step (1) was 100%.
  • Mn (Mn (R1)) of the obtained polymer was 9,400 and Mw / Mn was 1.10.
  • the polymerization initiation efficiency (F1) in the step (1) was 99%.
  • Example 7 (Process (1)) After 1.21 kg of toluene was added to a 3 L flask which had been dried and purged with nitrogen, 2.03 g of 1,1,4,7,10,10-hexamethyltriethylenetetramine as a Lewis base was added while stirring. 8.42 mmol), and 44.1 g (21.8 mmol) of a toluene solution containing 25.9% by mass of isobutylbis (2,6-di-t-butyl-4-methylphenoxy) aluminum as an organoaluminum compound were sequentially added. And cooled to -20 ° C.
  • the consumption rate of 1,1-dimethylpropane-1,3-diol dimethacrylate and methyl methacrylate in step (1) was 100%.
  • Mn (Mn (R1)) of the obtained polymer was 15,000, and Mw / Mn was 1.11.
  • the polymerization initiation efficiency (F1) in the step (1) was 99%.
  • (meth) acrylic block copolymer (hereinafter referred to as “(meth) acrylic block copolymer).
  • Polymer (7) was obtained.
  • Table 1 shows the evaluation results of the cured product of the active energy ray-curable composition containing the obtained (meth) acrylic block copolymer (7).
  • Example 8 (Process (1)) After adding 867 g of toluene to a 2 L flask which was dried and purged with nitrogen, 1.39 g (6. 6) of 1,1,4,7,10,10-hexamethyltriethylenetetramine as a Lewis base was added with stirring. 05 mmol), and 27.9 g (14.1 mmol) of a toluene solution containing 26.4% by mass of isobutylbis (2,6-di-t-butyl-4-methylphenoxy) aluminum as an organoaluminum compound, Cooled to -20 ° C.
  • the consumption rate of 1,1-dimethylpropane-1,3-diol dimethacrylate and methyl methacrylate in step (1) was 100%.
  • Mn (Mn (R1)) of the obtained polymer was 12,700 and Mw / Mn was 1.07.
  • the polymerization initiation efficiency (F1) in the step (1) was 99%.
  • (meth) acrylic block copolymer (hereinafter referred to as “(meth) acrylic block copolymer).
  • Polymer (8) was obtained.
  • Table 1 shows the evaluation results of the cured product of the active energy ray-curable composition containing the obtained (meth) acrylic block copolymer (8).
  • Example 9 (Process (1)) After adding 919 g of toluene to a 2 L flask which was dried and purged with nitrogen, 1.51 g (6. 6) of 1,1,4,7,10,10-hexamethyltriethylenetetramine was added as a Lewis base with stirring. 56 mmol), and 30.3 g (15.3 mmol) of a toluene solution containing 26.4% by mass of isobutylbis (2,6-di-t-butyl-4-methylphenoxy) aluminum as an organoaluminum compound, Cooled to -20 ° C.
  • the consumption rate of 1,1-dimethylpropane-1,3-diol dimethacrylate and methyl methacrylate in step (1) was 100%.
  • Mn (Mn (R1)) of the obtained polymer was 13,000, and Mw / Mn was 1.09.
  • the polymerization initiation efficiency (F1) in the step (1) was 99%.
  • the consumption rate of 1,1-dimethylpropane-1,3-diol dimethacrylate and methyl methacrylate in step (1) was 100%.
  • Mn (Mn (R1)) of the obtained polymer was 10,000, and Mw / Mn was 1.10.
  • the polymerization initiation efficiency (F1) in the step (1) was 99%.
  • (meth) acrylic block copolymer (hereinafter referred to as “(meth) acrylic block copolymer).
  • Polymer (10) ) was obtained.
  • Table 1 shows the evaluation results of the cured product of the active energy ray-curable composition containing the obtained (meth) acrylic block copolymer (10).
  • the consumption rate of 1,1-dimethylpropane-1,3-diol dimethacrylate and methyl methacrylate in step (1) was 100%.
  • Mn (Mn (R1)) of the obtained polymer was 1,320, and Mw / Mn was 1.16.
  • the polymerization initiation efficiency (F1) in the step (1) was 99%.
  • (meth) acrylic block copolymer (hereinafter referred to as “(meth) acrylic block copolymer).
  • Polymer (11) was obtained.
  • Table 1 shows the evaluation results of the cured product of the active energy ray-curable composition containing the obtained (meth) acrylic block copolymer (11).
  • the consumption rate of 1,1-dimethylpropane-1,3-diol dimethacrylate and methyl methacrylate in step (1) was 100%.
  • Mn (Mn (R1)) of the obtained polymer was 1,340, and Mw / Mn was 1.16.
  • the polymerization initiation efficiency (F1) in the step (1) was 98%.
  • the consumption rate of 1,1-dimethylpropane-1,3-diol dimethacrylate and methyl methacrylate in step (1) was 100%.
  • Mn (Mn (R1)) of the obtained polymer was 1,330 and Mw / Mn was 1.16.
  • the polymerization initiation efficiency (F1) in the step (1) was 99%.
  • (meth) acrylic block copolymer (hereinafter referred to as “(meth) acrylic block copolymer”).
  • Polymer (14) was obtained.
  • Table 1 shows the evaluation results of the cured product of the active energy ray-curable composition containing the obtained (meth) acrylic block copolymer (14).
  • the consumption rate of 1,1-dimethylpropane-1,3-diol dimethacrylate and methyl methacrylate in step (1) was 100%.
  • Mn (Mn (R1)) of the obtained polymer was 11,600, and Mw / Mn was 1.12.
  • the polymerization initiation efficiency (F1) in the step (1) was 99%.
  • (meth) acrylic block copolymer (hereinafter referred to as “(meth) acrylic block copolymer”).
  • Polymer (15) ) was obtained.
  • Table 1 shows the evaluation results of the cured product of the active energy ray-curable composition containing the obtained (meth) acrylic block copolymer (15).
  • the consumption rate of 1,1-dimethylpropane-1,3-diol dimethacrylate and methyl methacrylate in step (1) was 100%.
  • Mn (Mn (R1)) of the obtained polymer was 6,700, and Mw / Mn was 1.10.
  • the polymerization initiation efficiency (F1) in the step (1) was 99%.
  • the consumption rate of 1,1-dimethylpropane-1,3-diol dimethacrylate and methyl methacrylate in step (1) was 100%.
  • Mn (Mn (R1)) of the obtained polymer was 19,700 and Mw / Mn was 1.20.
  • the polymerization initiation efficiency (F1) in the step (1) was 97%.
  • (meth) acrylic block copolymer (hereinafter referred to as “(meth) acrylic block copolymer”).
  • Polymer (17) ) was obtained.
  • Table 1 shows the evaluation results of the cured product of the active energy ray-curable composition containing the obtained (meth) acrylic block copolymer (17).
  • the (meth) acrylic block copolymer of the present invention is excellent in curability, and the cured product obtained by irradiating active energy rays is excellent in stretchability and has no tackiness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)
  • Polymerisation Methods In General (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

活性エネルギー線を照射して得られる硬化物が延伸性に優れかつタック感を有さない、硬化性に優れる(メタ)アクリル系ブロック共重合体の提供。 下記一般式(1)で示される部分構造(1)を含む活性エネルギー線硬化性基を有するメタクリル系重合体ブロック(A)と、活性エネルギー線硬化性基を有さない(メタ)アクリル系重合体ブロック(B)とを含有する(メタ)アクリル系ブロック共重合体であり、 (メタ)アクリル系ブロック共重合体を構成する全単量体単位に対する部分構造(1)の含有量が0.3モル%以上5.0モル%以下であり、 (メタ)アクリル系ブロック共重合体におけるメタクリル系重合体ブロック(A)の含有量が30質量%以上60質量%以下であり、 (メタ)アクリル系ブロック共重合体の数平均分子量が40,000以上である(メタ)アクリル系ブロック共重合体。(式(1)中、R1は水素原子または炭素数1~20の炭化水素基を表す。)

Description

(メタ)アクリル系ブロック共重合体
 本発明は、活性エネルギー線を照射して得られる硬化物が延伸性に優れ、かつタック感を有さない(メタ)アクリル系ブロック共重合体に関する。
 従来、紫外線や電子線などの活性エネルギー線を照射することで硬化する活性エネルギー線硬化性材料が知られており、接着剤、粘着剤、塗料、インク、コーティング材、光造形材、マスキング材、ライニング材などの用途に用いられている。
 中でも、活性エネルギー線硬化性基を有する(メタ)アクリル系ブロック共重合体を含有する活性エネルギー線硬化性組成物は粘着性、成形性、耐候性などに優れているため、これらの特長を生かして接着剤、粘着剤、インク、コーティング材、マスキング材、ライニング材、各種成形材料などの用途への有用性が期待でき、検討が進められている。
 例えば、アクリル酸n-ブチルを重合してアクリル系重合体ブロックを形成した後、メタクリル酸メチルとメタクリル酸2-ヒドロキシエチルを共重合して水酸基含有メタクリル系重合体ブロックを形成し、得られたブロック共重合体が有する水酸基に塩化アクリロイルを反応させて活性エネルギー線硬化性基となるアクリロイル基を導入することで得られる、(メタ)アクリル系ブロック共重合体を含有する活性エネルギー線硬化性組成物が知られている(特許文献1参照)。
 また、メタクリル酸メチルと1,1-ジメチルプロパン-1,3-ジオールジメタクリレートとを共重合して活性エネルギー線硬化性基となるメタクリロイル基を導入したメタクリル系重合体ブロックを形成した後、アクリル酸n-ブチルを重合してアクリル系重合体ブロックを形成することで得られる(メタ)アクリル系ブロック共重合体を含有する活性エネルギー線硬化性組成物が知られている(特許文献2参照)。
 しかしながら、従来の活性エネルギー線硬化性組成物では、高度の強靱性を要求される技術分野において、満足できる強靭な硬化物を得ることは困難であった。特にインク、塗料等の皮膜形成用材料においては、延伸性と強靭性を併せ持ち、タック感を有さない素材の開発が期待されていた(特許文献3参照)。
特開2011-184678号公報 国際公開第2014/148251号パンフレット 特開2015-81294号公報
 本発明は、活性エネルギー線を照射して得られる硬化物が延伸性に優れかつタック感を有さない、活性エネルギー線硬化性組成物に有用な、硬化性に優れる(メタ)アクリル系ブロック共重合体を提供することを目的とする。
 本発明によれば、上記目的は、
[1]下記一般式(1)で示される部分構造(1)を含む活性エネルギー線硬化性基を有するメタクリル系重合体ブロック(A)と、活性エネルギー線硬化性基を有さない(メタ)アクリル系重合体ブロック(B)とを含有する(メタ)アクリル系ブロック共重合体であり、
(メタ)アクリル系ブロック共重合体を構成する全単量体単位に対する部分構造(1)の含有量が0.3モル%以上5.0モル%以下であり、
(メタ)アクリル系ブロック共重合体におけるメタクリル系重合体ブロック(A)の含有量が30質量%以上60質量%以下であり、
(メタ)アクリル系ブロック共重合体の数平均分子量が40,000以上である(メタ)アクリル系ブロック共重合体;
Figure JPOXMLDOC01-appb-C000002
(式(1)中、R1は水素原子または炭素数1~20の炭化水素基を表す。)
[2][1]の(メタ)アクリル系ブロック共重合体を含有する活性エネルギー線硬化性組成物;
[3][1]の(メタ)アクリル系ブロック共重合体または[2]の活性エネルギー線硬化性組成物を硬化して得られる硬化物;
を提供することにより達成される。
 本発明の(メタ)アクリル系ブロック共重合体は硬化性に優れ、該(メタ)アクリル系ブロック共重合体を含有する活性エネルギー線硬化性組成物に活性エネルギー線を照射して得られる硬化物は、延伸性に優れかつタック感を有さない。
 以下、本発明について、詳細に説明する。
 なお、本明細書において「(メタ)アクリル」とは「メタクリル」と「アクリル」との総称を意味し、後述する「(メタ)アクリロイル」は「メタクリロイル」と「アクリロイル」との総称を意味し、後述する「(メタ)アクリレート」は「メタクリレート」と「アクリレート」との総称を意味する。
 本発明の(メタ)アクリル系ブロック共重合体は、メタクリル系重合体ブロック(A)と(メタ)アクリル系重合体ブロック(B)とを含有し、該メタクリル系重合体ブロック(A)は部分構造(1)を有する。
 部分構造(1)は、活性エネルギー線の照射によって重合性を示す。この結果、本発明の(メタ)アクリル系ブロック共重合体を含有する活性エネルギー線硬化性組成物は活性エネルギー線の照射によって硬化して硬化物となる。なお、本明細書において活性エネルギー線とは、光線、電磁波、粒子線およびこれらの組み合わせを意味する。光線としては遠紫外線、紫外線(UV)、近紫外線、可視光線、赤外線などが挙げられ、電磁波としてはX線、γ線などが挙げられ、粒子線としては電子線(EB)、プロトン線(α線)、中性子線などが挙げられる。硬化速度、照射装置の入手性、価格等の観点から、これら活性エネルギー線の中でも紫外線、電子線が好ましく、紫外線がより好ましい。
 部分構造(1)は、下記一般式(1)で示される。
Figure JPOXMLDOC01-appb-C000003
 (式(1)中、R1は水素原子または炭素数1~20の炭化水素基を表す。)
 上記一般式(1)中、R1が表す炭素数1~20の炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、2-メチルブチル基、3-メチルブチル基、2-エチルブチル基、3-エチルブチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基、2-メチルペンチル基、3-メチルペンチル基、n-デシル基等のアルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基;フェニル基、ナフチル基等のアリール基;ベンジル基、フェニルエチル基などのアラルキル基が挙げられる。中でも、活性エネルギー線硬化性の観点から水素原子、メチル基、およびエチル基が好ましく、メチル基が最も好ましい。
 本発明のメタクリル系重合体ブロック(A)中の部分構造(1)は、硬化速度の観点から、下記一般式(2)で示される部分構造(以下「部分構造(2)」と称する)の一部であることが好ましい。
Figure JPOXMLDOC01-appb-C000004
(式(2)中、R1は水素原子または炭素数1~20の炭化水素基を表し、R2およびR3はそれぞれ独立して炭素数1~6の炭化水素基を表し、XはO、S、またはN(R4)(R4は水素原子または炭素数1~6の炭化水素基を表す。)を表し、nは1~20の整数を表す。)
 上記一般式(2)中、R1が表す炭素数1~20の炭化水素基の具体例および好適例としては、上記一般式(1)のR1と同様の炭化水素基が挙げられる。
 上記一般式(2)中、R2およびR3がそれぞれ独立して表す炭素数1~6の炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、2-メチルブチル基、3-メチルブチル基、2-エチルブチル基、3-エチルブチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基、2-メチルペンチル基、3-メチルペンチル基等のアルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基;フェニル基等のアリール基などが挙げられる。中でも、活性エネルギー線硬化性の観点から、メチル基およびエチル基が好ましく、メチル基が最も好ましい。
 上記一般式(2)中、XはO、SまたはN(R4)(R4は水素原子または炭素数1~6の炭化水素基を表す。)を表し、重合制御のしやすさからOが好ましい。XがN(R4)である場合、R4が表す炭素数1~6の炭化水素基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、2-メチルブチル基、3-メチルブチル基、2-エチルブチル基、3-エチルブチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基、2-メチルペンチル基、3-メチルペンチル基等のアルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基;フェニル基などが挙げられる。
 上記一般式(2)中、nが表す1~20の整数は、(メタ)アクリル系ブロック共重合体の流動性と硬化速度の観点から2~5であることが好ましい。
 本発明の(メタ)アクリル系ブロック共重合体を構成する全単量体単位に対する部分構造(1)の含有量は、0.3モル%以上5.0モル%以下である。部分構造(1)の含有量が上記範囲にあることにより、得られる硬化物は延伸性に優れ、タック感を有さなくなる。得られる硬化物において、延伸性がより優れ、タック感がより少なくなる傾向にあることから、上記部分構造(1)の含有量は、0.4モル%以上4.5モル%以下であることが好ましく、0.5モル%以上4.0モル%以下であることがより好ましく、0.5モル%以上3.5モル%以下であることがさらに好ましい。
 メタクリル系重合体ブロック(A)に含まれる部分構造(1)は、メタクリル系重合体ブロックの末端にあっても、側鎖にあってもよいが、好ましい含有量の部分構造(1)を導入する観点から、少なくとも側鎖にあることが好ましい。
 メタクリル系重合体ブロック(A)は、メタクリル酸エステルを含有する単量体に由来する単量体単位を含む。かかるメタクリル酸エステルは、1個のメタクリロイル基を有する単官能メタクリル酸エステルおよび2個以上のメタクリロイル基を有する多官能メタクリル酸エステルに大別される。
 上記単官能メタクリル酸エステルとしては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸t-ブチル、メタクリル酸シクロヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸イソボルニル、メタクリル酸ドデシル、メタクリル酸2-メトキシエチル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシブチル、メタクリル酸トリメトキシシリルプロピル、メタクリル酸2-アミノエチル、メタクリル酸N,N-ジメチルアミノエチル、メタクリル酸N,N-ジエチルアミノエチル、メタクリル酸フェニル、メタクリル酸ナフチル、メタクリル酸2-(トリメチルシリルオキシ)エチル、メタクリル酸3-(トリメチルシリルオキシ)プロピル、メタクリル酸グリシジル、γ-(メタクリロイルオキシプロピル)トリメトキシシラン、メタクリル酸のエチレンオキサイド付加物、メタクリル酸トリフルオロメチルメチル、メタクリル酸2-トリフルオロメチルエチル、メタクリル酸2-パーフルオロエチルエチル、メタクリル酸2-パーフルオロエチル-2-パーフルオロブチルエチル、メタクリル酸2-パーフルオロエチル、メタクリル酸パーフルオロメチル、メタクリル酸ジパーフルオロメチルメチル、メタクリル酸2-パーフルオロメチル-2-パーフルオロエチルメチル、メタクリル酸2-パーフルオロヘキシルエチル、メタクリル酸2-パーフルオロデシルエチル、メタクリル酸2-パーフルオロヘキサデシルエチルなどが挙げられる。これらの中でも、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸t-ブチル等の、炭素数1~5のアルキル基を有するメタクリル酸アルキルエステルが好ましい。
 メタクリル系重合体ブロック(A)の全単量体単位に対する、上記単官能メタクリル酸エステル(例えば、メタクリル酸メチル)に由来する単量体単位の含有量は、硬化物がタック感を有さなくなる観点から、60質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることがさらに好ましい。また、上記単官能メタクリル酸エステルに由来する単量体単位の含有量は、メタクリル系重合体ブロック(A)が(メタ)アクリル系ブロック共重合体に複数含まれる場合には、各重合体ブロックそれぞれにおいて、60質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることがさらに好ましい。
 また、上記多官能メタクリル酸エステルとして、下記一般式(3)で示される2官能メタクリル酸エステル(以下、「ジメタクリレート(3)」と称する)を用いると、後述する条件下でリビングアニオン重合することで、一方のメタクリロイル基(下記一般式(3)中「O(CH2n」が直結するメタクリロイル基)が選択的に重合して、部分構造(2)を有するメタクリル系重合体ブロック(A)が得られることから好ましい。
Figure JPOXMLDOC01-appb-C000005
 (式(3)中、R2およびR3はそれぞれ独立して炭素数1~6の炭化水素基を表し、nは1~20の整数を表す。)
 上記一般式(3)中、R2およびR3が表す炭素数1~6の炭化水素基の例としては上記一般式(2)のR2およびR3と同様の炭化水素基が挙げられる。上記一般式(3)中、nが表す1~20の整数は、(メタ)アクリル系ブロック共重合体の流動性と硬化速度の観点から2~5であることが好ましい。
 ジメタクリレート(3)の具体例としては、例えば1,1-ジメチルプロパン-1,3-ジオールジメタクリレート、1,1-ジメチルブタン-1,4-ジオールジメタクリレート、1,1-ジメチルペンタン-1,5-ジオールジメタクリレート、1,1-ジメチルヘキサン-1,6-ジオールジメタクリレート、1,1-ジエチルプロパン-1,3-ジオールジメタクリレート、1,1-ジエチルブタン-1,4-ジオールジメタクリレート、1,1-ジエチルペンタン-1,5-ジオールジメタクリレート、1,1-ジエチルヘキサン-1,6-ジオールジメタクリレートなどが挙げられ、1,1-ジメチルプロパン-1,3-ジオールジメタクリレート、1,1-ジメチルブタン-1,4-ジオールジメタクリレート、1,1-ジメチルペンタン-1,5-ジオールジメタクリレート、1,1-ジメチルヘキサン-1,6-ジオールジメタクリレート、1,1-ジエチルプロパン-1,3-ジオールジメタクリレート、1,1-ジエチルブタン-1,4-ジオールジメタクリレート、1,1-ジエチルペンタン-1,5-ジオールジメタクリレート、および1,1-ジエチルヘキサン-1,6-ジオールジメタクリレートが好ましく、1,1-ジメチルプロパン-1,3-ジオールジメタクリレート、1,1-ジメチルブタン-1,4-ジオールジメタクリレート、1,1-ジメチルペンタン-1,5-ジオールジメタクリレート、および1,1-ジメチルヘキサン-1,6-ジオールジメタクリレートがより好ましい。
 前述した単官能および多官能メタクリル酸エステルは1種を単独で使用しても、2種以上を併用してもよい。
 メタクリル系重合体ブロック(A)の全単量体単位に対する、多官能メタクリル酸エステルに由来する単量体単位の含有量は、0.1質量%以上であることが好ましく、1質量%以上であることがより好ましく、2質量%以上であることがさらに好ましい。また、メタクリル系重合体ブロック(A)の全単量体単位に対する、多官能メタクリル酸エステルに由来する単量体単位の含有量が、好ましくは0.5質量%以上、より好ましくは5質量%以上、さらには45質量%以上であることも望ましい一態様である。また、多官能メタクリル酸エステルがジメタクリレート(3)を含有する場合、メタクリル系重合体ブロック(A)の全単量体単位に対する、ジメタクリレート(3)に由来する単量体単位の含有量は、0.1~40質量%の範囲が好ましく、1~30質量%の範囲がより好ましく、2~20質量%の範囲がさらに好ましい。さらに、多官能メタクリル酸エステルがジメタクリレート(3)を含有する場合、メタクリル系重合体ブロック(A)の全単量体単位に対する、ジメタクリレート(3)に由来する単量体単位の含有量が、好ましくは0.5~70質量%の範囲、より好ましくは5~65質量%の範囲、さらに好ましくは45~60質量%の範囲であることも望ましい一態様である。
 メタクリル系重合体ブロック(A)が、単官能メタクリル酸エステルと多官能メタクリル酸エステルを含有する単量体から形成されている場合、単官能メタクリル酸エステルに由来する単量体単位の含有量と多官能メタクリル酸エステルに由来する単量体単位の含有量の合計量は、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることがさらに好ましく、100質量%であってもよい。さらに、メタクリル系重合体ブロック(A)が、メタクリル酸メチルとジメタクリレート(3)を含有する単量体から形成されている場合、メタクリル系重合体ブロック(A)の全単量体単位に対する、メタクリル酸メチルに由来する単量体単位の含有量とジメタクリレート(3)に由来する単量体単位の含有量の合計量は、メタクリル系重合体ブロック(A)の全単量体単位に対して、80~100質量%の範囲が好ましく、90~100質量%の範囲がより好ましく、95~100質量%の範囲がさらに好ましく、100質量%であってもよい。また、上記の各含有量は、メタクリル系重合体ブロック(A)が(メタ)アクリル系ブロック共重合体に複数含まれる場合には、各重合体ブロックそれぞれにおいて、上記好ましい範囲、望ましくはより好ましい範囲にあることが、好ましい一態様である。
 メタクリル系重合体ブロック(A)は、上記メタクリル酸エステル以外の他の単量体に由来する単量体単位を有していてもよい。該他の単量体としては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸t-ブチル、アクリル酸シクロヘキシル、アクリル酸2-エチルヘキシル、アクリル酸イソボルニル、アクリル酸ドデシル、アクリル酸2-メトキシエチル、アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシブチル、アクリル酸トリメトキシシリルプロピル、アクリル酸2-アミノエチル、アクリル酸N,N-ジメチルアミノエチル、アクリル酸N,N-ジエチルアミノエチル、アクリル酸フェニル、アクリル酸ナフチル、アクリル酸2-(トリメチルシリルオキシ)エチル、アクリル酸3-(トリメチルシリルオキシ)プロピル、アクリル酸グリシジル、γ-(アクリロイルオキシプロピル)トリメトキシシラン、アクリル酸のエチレンオキサイド付加物、アクリル酸トリフルオロメチルメチル、アクリル酸2-トリフルオロメチルエチル、アクリル酸2-パーフルオロエチルエチル、アクリル酸2-パーフルオロエチル-2-パーフルオロブチルエチル、アクリル酸2-パーフルオロエチル、アクリル酸パーフルオロメチル、アクリル酸ジパーフルオロメチルメチル、アクリル酸2-パーフルオロメチル-2-パーフルオロエチルメチル、アクリル酸2-パーフルオロヘキシルエチル、アクリル酸2-パーフルオロデシルエチル、アクリル酸2-パーフルオロヘキサデシルエチルなどのアクリル酸エステル;α-メトキシアクリル酸メチル、α-エトキシアクリル酸メチルなどのα-アルコキシアクリル酸エステル;クロトン酸メチル、クロトン酸エチルなどのクロトン酸エステル;3-メトキシアクリル酸エステルなどの3-アルコキシアクリル酸エステル;N-イソプロピル(メタ)アクリルアミド、N-t-ブチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミドなどの(メタ)アクリルアミド;2-フェニルアクリル酸メチル、2-フェニルアクリル酸エチル、2-ブロモアクリル酸n-ブチル、2-ブロモメチルアクリル酸メチル、2-ブロモメチルアクリル酸エチル、メチルビニルケトン、エチルビニルケトン、メチルイソプロペニルケトン、エチルイソプロペニルケトンなどが挙げられる。これら他の単量体は1種を単独で使用しても、2種以上を併用してもよい。上記他の単量体により形成される単量体単位の含有量は、メタクリル系重合体ブロック(A)の全単量体単位に対して、10質量%以下であることが好ましく、5質量%以下であることがより好ましい。また、上記他の単量体により形成される単量体単位の含有量は、メタクリル系重合体ブロック(A)が(メタ)アクリル系ブロック共重合体に複数含まれる場合には、各重合体ブロックそれぞれにおいて、好ましくは10質量%以下、より好ましくは5質量%以下であることが望ましい一態様である。
 メタクリル系重合体ブロック(A)の数平均分子量(MnA)は、得られるブロック共重合体の取り扱い性、流動性、力学特性等の観点から、12,000~120,000の範囲内であることが好ましく、15,000~60,000の範囲内であることがより好ましい。メタクリル系重合体ブロック(A)が(メタ)アクリル系ブロック共重合体に複数含まれる場合には、各重合体ブロックの数平均分子量が上記好ましい範囲、望ましくはより好ましい範囲にあることが、好ましい一態様である。なお、本明細書において数平均分子量および後述する分子量分布はゲルパーミエーションクロマトグラフィー(GPC)法(標準ポリスチレン換算)により測定される値である。
 本発明の(メタ)アクリル系ブロック共重合体におけるメタクリル系重合体ブロック(A)の含有量は30質量%以上60質量%以下である。重合体ブロック(A)の含有量が上記範囲にあることにより、得られる硬化物は延伸性に優れ、タック感を有さなくなる。得られる硬化物において、延伸性により優れ、タック感もより少なくなる傾向にあることから、重合体ブロック(A)の含有量は、32.5質量%以上57.5質量%以下であることが好ましく、35質量%以上55質量%以下であることがより好ましい。
 本発明の(メタ)アクリル系ブロック共重合体は、活性エネルギー線硬化性基を有さない(メタ)アクリル系重合体ブロック(B)を含んでいる。
 なお本明細書において、活性エネルギー線硬化性基とは、上記活性エネルギー線の照射により重合性を示す官能基を意味する。活性エネルギー線硬化性基としては、例えば、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、ビニル基、アリル基、ビニルオキシ基、1,3-ジエニル基、スチリル基等のエチレン性二重結合(特に一般式CH2=CR-(式中、Rはアルキル基または水素原子)で示されるエチレン性二重結合)を有する官能基;エポキシ基、オキセタニル基、チオール基、マレイミド基等が挙げられる。
 (メタ)アクリル系重合体ブロック(B)を形成できる(メタ)アクリル酸エステルとしては、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸トリメトキシシリルプロピル、(メタ)アクリル酸N,N-ジメチルアミノエチル、(メタ)アクリル酸N,N-ジエチルアミノエチル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ナフチル、(メタ)アクリル酸2-(トリメチルシリルオキシ)エチル、(メタ)アクリル酸3-(トリメチルシリルオキシ)プロピルなどの単官能(メタ)アクリル酸エステルが挙げられる。中でも、アクリル酸n-ブチル、アクリル酸2-エチルヘキシル、アクリル酸2-メトキシエチルが好ましく、アクリル酸n-ブチルがより好ましい。これら(メタ)アクリル酸エステルは1種を単独で使用しても、2種以上を併用してもよい。
 (メタ)アクリル系重合体ブロック(B)中の(メタ)アクリル酸エステルにより形成される単量体単位の含有量は、(メタ)アクリル系重合体ブロック(B)を形成する全単量体単位に対して90質量%以上であることが好ましく、95質量%以上であることがより好ましく、100質量%であってもよい。また、上記(メタ)アクリル酸エステルにより形成される単量体単位の含有量は、(メタ)アクリル系重合体ブロック(B)が(メタ)アクリル系ブロック共重合体に複数含まれる場合には、各重合体ブロックそれぞれにおいて、90質量%以上であることが好ましく、95質量%以上であることがより好ましく、100質量%であってもよい。
 (メタ)アクリル系重合体ブロック(B)は、(メタ)アクリル酸エステル以外の他の単量体から形成される単量体単位を有していてもよい。該他の単量体としては、例えばα-メトキシアクリル酸メチル、α-エトキシアクリル酸メチル等のα-アルコキシアクリル酸エステル;クロトン酸メチル、クロトン酸エチル等のクロトン酸エステル;3-メトキシアクリル酸エステル等の3-アルコキシアクリル酸エステル;N-イソプロピル(メタ)アクリルアミド、N-t-ブチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド等の(メタ)アクリルアミド;メチルビニルケトン、エチルビニルケトン、メチルイソプロペニルケトン、エチルイソプロペニルケトンなどが挙げられる。これら他の単量体は1種を単独で使用しても、2種以上を併用してもよい。
 (メタ)アクリル系重合体ブロック(B)中の上記他の単量体により形成される単量体単位の含有量は、(メタ)アクリル系重合体ブロック(B)を形成する全単量体単位に対して10質量%以下であることが好ましく、5質量%以下であることがより好ましい。また、上記他の単量体により形成される単量体単位の含有量は、(メタ)アクリル系重合体ブロック(B)が(メタ)アクリル系ブロック共重合体に複数含まれる場合には、各重合体ブロックそれぞれにおいて、好ましくは10質量%以下、より好ましくは5質量%以下であることが望ましい一態様である。
 (メタ)アクリル系重合体ブロック(B)の数平均分子量(MnB)は得られる(メタ)アクリル系ブロック共重合体の取り扱い性、流動性、力学特性等の観点から、16,000~140,000の範囲が好ましく、20,000~70,000の範囲がより好ましい。(メタ)アクリル系重合体ブロック(B)が(メタ)アクリル系ブロック共重合体に複数含まれる場合には、各重合体ブロックの数平均分子量が上記好ましい範囲、望ましくはより好ましい範囲にあることが、好ましい一態様である。
 本発明の(メタ)アクリル系ブロック共重合体における(メタ)アクリル系重合体ブロック(B)の含有量は、40質量%以上70質量%以下であることが好ましく、42.5質量%以上67.5質量%以下であることがより好ましく、45質量%以上65質量%以下であることがさらに好ましい。
 本発明の(メタ)アクリル系ブロック共重合体の数平均分子量(Mn)は、40,000以上である。Mnが40,000以上であることにより、そのブロック共重合体から得られる硬化物は延伸性に優れる。上記Mnは、得られる(メタ)アクリル系ブロック共重合体の取り扱い性、流動性、力学特性等の観点から、40,000以上200,000以下であることが好ましく、45,000以上100,000以下であることがより好ましい。
 本発明の(メタ)アクリル系ブロック共重合体の分子量分布、すなわち重量平均分子量/数平均分子量は2.00以下が好ましく、1.02~2.00の範囲がより好ましく、1.05~1.80の範囲がさらに好ましく、1.05~1.50の範囲が最も好ましく、1.10~1.50の範囲であってもよい。
 本発明の(メタ)アクリル系ブロック共重合体は、メタクリル系重合体ブロック(A)少なくとも1個と、(メタ)アクリル系重合体ブロック(B)少なくとも1個とを有するブロック共重合体であり、各重合体ブロックの数および結合順序に特に制限はないが、活性エネルギー線硬化性の観点からメタクリル系重合体ブロック(A)が(メタ)アクリル系ブロック共重合体の少なくとも1個の末端を形成することが好ましく、(メタ)アクリル系ブロック共重合体の製造容易性の観点から、直鎖状の重合体であることがより好ましく、1個のメタクリル系重合体ブロック(A)と1個の(メタ)アクリル系重合体ブロック(B)が結合したジブロック共重合体、または1個の(メタ)アクリル系重合体ブロック(B)の両端にメタクリル系重合体ブロック(A)各1個がそれぞれ結合したトリブロック共重合体がさらに好ましい。
 本発明における(メタ)アクリル系ブロック共重合体の製造方法は特に限定されないが、アニオン重合法またはラジカル重合法が好ましく、重合制御の観点からリビングアニオン重合法またはリビングラジカル重合法がより好ましく、リビングアニオン重合法がさらに好ましい。
 リビングラジカル重合法としては、ポリスルフィドなどの連鎖移動剤を用いる重合法、コバルトポルフィリン錯体を用いる重合法、ニトロキシドを用いる重合法(国際公開第2004/014926号パンフレット参照)、有機テルル化合物などの高周期ヘテロ元素化合物を用いる重合法(特許第3839829号公報参照)、可逆的付加脱離連鎖移動重合法(RAFT)(特許第3639859号公報参照)、原子移動ラジカル重合法(ATRP)(特許第3040172号公報、国際公開第2004/013192号パンフレット参照)などが挙げられる。これらリビングラジカル重合法の中でも、原子移動ラジカル重合法が好ましく、有機ハロゲン化物またはハロゲン化スルホニル化合物を開始剤とし、Fe、Ru、Ni、Cuから選ばれる少なくとも1種類を中心金属とする金属錯体を触媒とする原子移動ラジカル重合法がより好ましい。
 リビングアニオン重合法としては、有機希土類金属錯体を重合開始剤としてリビング重合する方法(特開平06-93060号公報参照)、有機アルカリ金属化合物を重合開始剤としアルカリ金属またはアルカリ土類金属の塩などの鉱酸塩の存在下でリビングアニオン重合する方法(特表平05-507737号公報参照)、有機アルミニウム化合物の存在下で、有機アルカリ金属化合物を重合開始剤としリビングアニオン重合する方法(特開平11-335432号公報、国際公開2013/141105号パンフレット参照)などが挙げられる。これらリビングアニオン重合法の中でも、本発明の(メタ)アクリル系ブロック共重合体を直接、効率よく重合できる点からは、有機アルミニウム化合物の存在下で、有機アルカリ金属化合物を重合開始剤としリビングアニオン重合する方法が好ましく、有機アルミニウム化合物およびルイス塩基の存在下で、有機リチウム化合物を重合開始剤としリビングアニオン重合する方法がより好ましい。
 上記有機リチウム化合物としては、例えばt-ブチルリチウム、1,1-ジメチルプロピルリチウム、1,1-ジフェニルヘキシルリチウム、1,1-ジフェニル-3-メチルペンチルリチウム、エチルα-リチオイソブチレート、ブチルα-リチオイソブチレート、メチルα-リチオイソブチレート、イソプロピルリチウム、sec-ブチルリチウム、1-メチルブチルリチウム、2-エチルプロピルリチウム、1-メチルペンチルリチウム、シクロヘキシルリチウム、ジフェニルメチルリチウム、α-メチルベンジルリチウム、メチルリチウム、n-プロピルリチウム、n-ブチルリチウム、n-ペンチルリチウム等が挙げられる。中でも、入手容易性およびアニオン重合開始能の観点から、イソプロピルリチウム、sec-ブチルリチウム、1-メチルブチルリチウム、1-メチルペンチルリチウム、シクロヘキシルリチウム、ジフェニルメチルリチウム、α-メチルベンジルリチウム等の二級炭素原子を陰イオン中心とする化学構造を有する炭素数3~40の有機リチウム化合物が好ましく、sec-ブチルリチウムが特に好ましい。これら有機リチウム化合物は1種を単独で使用しても、2種以上を併用してもよい。
 有機リチウム化合物の使用量は、目的とするブロック共重合体の数平均分子量に応じて、用いる単量体の使用量との比率によって決定できる。
 上記有機アルミニウム化合物としては、下記一般式(A-1)または(A-2)で示される有機アルミニウム化合物が挙げられる。
    AlR5(R6)(R7)   (A-1)
(式中、R5は一価の飽和炭化水素基、一価の芳香族炭化水素基、アルコキシ基、アリールオキシ基またはN,N-二置換アミノ基を表し、R6およびR7はそれぞれ独立してアリールオキシ基を表すか、あるいはR6およびR7は互いに結合してアリーレンジオキシ基を形成している。)
    AlR8(R9)(R10)   (A-2)
(式中、R8はアリールオキシ基を表し、R9およびR10はそれぞれ独立して一価の飽和炭化水素基、一価の芳香族炭化水素基、アルコキシ基またはN,N-二置換アミノ基を表す。)
 上記一般式(A-1)および(A-2)中、R5、R6、R7およびR8がそれぞれ独立して表すアリールオキシ基としては、例えばフェノキシ基、2-メチルフェノキシ基、4-メチルフェノキシ基、2,6-ジメチルフェノキシ基、2,4-ジ-t-ブチルフェノキシ基、2,6-ジ-t-ブチルフェノキシ基、2,6-ジ-t-ブチル-4-メチルフェノキシ基、2,6-ジ-t-ブチル-4-エチルフェノキシ基、2,6-ジフェニルフェノキシ基、1-ナフトキシ基、2-ナフトキシ基、9-フェナントリルオキシ基、1-ピレニルオキシ基、7-メトキシ-2-ナフトキシ基等が挙げられる。
 上記一般式(A-1)中、R6とR7が互いに結合して形成されるアリーレンジオキシ基としては、例えば2,2'-ビフェノール、2,2'-メチレンビスフェノール、2,2'-メチレンビス(4-メチル-6-t-ブチルフェノール)、(R)-(+)-1,1'-ビ-2-ナフトール、(S)-(-)-1,1'-ビ-2-ナフトール等の2個のフェノール性水酸基を有する化合物中の該2個のフェノール性水酸基の水素原子を除いた官能基が挙げられる。
 なお、上記のアリールオキシ基およびアリーレンジオキシ基において含まれる1個以上の水素原子が、置換基により置換されていてもよく、該置換基としては、例えばメトキシ基、エトキシ基、イソプロポキシ基、t-ブトキシ基等のアルコキシ基;塩素原子、臭素原子等のハロゲン原子等が挙げられる。
 上記一般式(A-1)および(A-2)中、R5、R9およびR10がそれぞれ独立して表す一価の飽和炭化水素基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、2-メチルブチル基、3-メチルブチル基、n-オクチル基、2-エチルヘキシル基等のアルキル基;シクロヘキシル基等のシクロアルキル基等が挙げられ、一価の芳香族炭化水素基としては、例えばフェニル基等のアリール基;ベンジル基等のアラルキル基等が挙げられ、アルコキシ基としては、例えばメトキシ基、エトキシ基、イソプロポキシ基、t-ブトキシ基等が挙げられ、N,N-二置換アミノ基としては、例えばジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基等のジアルキルアミノ基;ビス(トリメチルシリル)アミノ基等が挙げられる。上述した一価の飽和炭化水素基、一価の芳香族炭化水素基、アルコキシ基およびN,N-二置換アミノ基において含まれる1個以上の水素原子は、置換基により置換されていてもよく、該置換基としては、例えばメトキシ基、エトキシ基、イソプロポキシ基、t-ブトキシ基等のアルコキシ基;塩素原子、臭素原子等のハロゲン原子等が挙げられる。
 上記有機アルミニウム化合物(A-1)としては、例えばエチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウム、エチルビス(2,6-ジ-t-ブチルフェノキシ)アルミニウム、エチル[2,2'-メチレンビス(4-メチル-6-t-ブチルフェノキシ)]アルミニウム、イソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウム、イソブチルビス(2,6-ジ-t-ブチルフェノキシ)アルミニウム、イソブチル[2,2'-メチレンビス(4-メチル-6-t-ブチルフェノキシ)]アルミニウム、n-オクチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウム、n-オクチルビス(2,6-ジ-t-ブチルフェノキシ)アルミニウム、n-オクチル[2,2'-メチレンビス(4-メチル-6-t-ブチルフェノキシ)]アルミニウム、メトキシビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウム、メトキシビス(2,6-ジ-t-ブチルフェノキシ)アルミニウム、メトキシ[2,2'-メチレンビス(4-メチル-6-t-ブチルフェノキシ)]アルミニウム、エトキシビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウム、エトキシビス(2,6-ジ-t-ブチルフェノキシ)アルミニウム、エトキシ[2,2'-メチレンビス(4-メチル-6-t-ブチルフェノキシ)]アルミニウム、イソプロポキシビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウム、イソプロポキシビス(2,6-ジ-t-ブチルフェノキシ)アルミニウム、イソプロポキシ[2,2'-メチレンビス(4-メチル-6-t-ブチルフェノキシ)]アルミニウム、t-ブトキシビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウム、t-ブトキシビス(2,6-ジ-t-ブチルフェノキシ)アルミニウム、t-ブトキシ[2,2'-メチレンビス(4-メチル-6-t-ブチルフェノキシ)]アルミニウム、トリス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウム、トリス(2,6-ジフェニルフェノキシ)アルミニウム等が挙げられる。中でも、重合開始効率、重合末端アニオンのリビング性、入手および取り扱いの容易さ等の観点から、イソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウム、イソブチルビス(2,6-ジ-t-ブチルフェノキシ)アルミニウム、イソブチル[2,2'-メチレンビス(4-メチル-6-t-ブチルフェノキシ)]アルミニウム等が好ましい。
 上記有機アルミニウム化合物(A-2)としては、例えばジエチル(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウム、ジエチル(2,6-ジ-t-ブチルフェノキシ)アルミニウム、ジイソブチル(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウム、ジイソブチル(2,6-ジ-t-ブチルフェノキシ)アルミニウム、ジ-n-オクチル(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウム、ジ-n-オクチル(2,6-ジ-t-ブチルフェノキシ)アルミニウム等が挙げられる。これら有機アルミニウム化合物は1種を単独で使用しても、2種以上を併用してもよい。
 有機アルミニウム化合物の使用量は、溶媒の種類、その他種々の重合条件等に応じて適宜好適な量を選択できるが、重合速度の観点から有機リチウム化合物1モルに対して通常、1.0~10.0モルの範囲で用いることが好ましく、1.1~7.5モルの範囲で用いることがより好ましく、1.2~5.0モルの範囲で用いることがさらに好ましい。有機アルミニウム化合物の使用量が有機リチウム化合物1モルに対して10.0モルを超えると、経済性において不利となる傾向となり、1.0モルを下回ると、重合開始効率が低下する傾向となる。
 上記ルイス塩基としては、分子内にエーテル結合および/または三級アミン構造を有する化合物が挙げられる。
 上記ルイス塩基として用いられる、分子内にエーテル結合を有する化合物としてはエーテルが挙げられる。上記エーテルとしては、重合開始効率の高さ、重合末端アニオンのリビング性の観点から、2個以上のエーテル結合を分子内に有する環状エーテルまたは1個以上のエーテル結合を分子内に有する非環状エーテルが好ましい。2個以上のエーテル結合を分子内に有する環状エーテルとしては、例えば12-クラウン-4、15-クラウン-5、18-クラウン-6等のクラウンエーテルが挙げられる。1個以上のエーテル結合を分子中に有する非環状エーテルとしては、例えばジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、アニソール等の非環状モノエーテル;1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジイソプロポキシエタン、1,2-ジブトキシエタン、1,2-ジフェノキシエタン、1,2-ジメトキシプロパン、1,2-ジエトキシプロパン、1,2-ジイソプロポキシプロパン、1,2-ジブトキシプロパン、1,2-ジフェノキシプロパン、1,3-ジメトキシプロパン、1,3-ジエトキシプロパン、1,3-ジイソプロポキシプロパン、1,3-ジブトキシプロパン、1,3-ジフェノキシプロパン、1,4-ジメトキシブタン、1,4-ジエトキシブタン、1,4-ジイソプロポキシブタン、1,4-ジブトキシブタン、1,4-ジフェノキシブタン等の非環状ジエーテル;ジエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、ジブチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールジエチルエーテル、ジブチレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル、トリプロピレングリコールジメチルエーテル、トリブチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリプロピレングリコールジエチルエーテル、トリブチレングリコールジエチルエーテル、テトラエチレングリコールジメチルエーテル、テトラプロピレングリコールジメチルエーテル、テトラブチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル、テトラプロピレングリコールジエチルエーテル、テトラブチレングリコールジエチルエーテル等の非環状ポリエーテルが挙げられる。中でも、副反応の抑制、入手容易性等の観点から、1~2個のエーテル結合を分子内に有する非環状エーテルが好ましく、ジエチルエーテルまたは1,2-ジメトキシエタンがより好ましい。
 上記ルイス塩基として用いられる、分子内に三級アミン構造を有する化合物としては、三級ポリアミンが挙げられる。三級ポリアミンとは、三級アミン構造を分子中に2個以上有する化合物を意味する。該三級ポリアミンとしては、例えばN,N,N',N'-テトラメチルエチレンジアミン、N,N,N',N'-テトラエチルエチレンジアミン、N,N,N',N",N"-ペンタメチルジエチレントリアミン、1,1,4,7,10,10-ヘキサメチルトリエチレンテトラアミン、トリス[2-(ジメチルアミノ)エチル]アミン等の鎖状ポリアミン;1,3,5-トリメチルヘキサヒドロ-1,3,5-トリアジン、1,4,7-トリメチル-1,4,7-トリアザシクロノナン、1,4,7,10,13,16-ヘキサメチル-1,4,7,10,13,16-ヘキサアザシクロオクタデカン等の非芳香族性複素環式化合物;2,2'-ビピリジル、2,2':6',2"-ターピリジン等の芳香族性複素環式化合物等が挙げられる。
 また、分子内に1個以上のエーテル結合と1個以上の三級アミン構造を有する化合物をルイス塩基として使用してもよい。このような化合物としては、例えばトリス[2-(2-メトキシエトキシ)エチル]アミン等が挙げられる。
 これらルイス塩基は1種を単独で使用しても、2種以上を併用してもよい。
 ルイス塩基の使用量は、重合開始効率、重合末端アニオンの安定性等の観点から、有機リチウム化合物1モルに対して0.1~6.0モルの範囲であることが好ましく、0.2~4.0モルの範囲であることがより好ましく、0.3~2.0モルの範囲であることがさらに好ましい。ルイス塩基の使用量が有機リチウム化合物1モルに対して、6.0モルを超えると経済性において不利となる傾向となり、0.1モルを下回ると重合開始効率が低下する傾向となる。
 また、ルイス塩基の使用量は、有機アルミニウム化合物1モルに対して、0.1~0.6モルの範囲であることが好ましく、0.2~0.5モルの範囲であることがより好ましい。
 上記リビングアニオン重合は、温度制御および系内を均一化して重合を円滑に進行させる観点から、有機溶媒の存在下に行うことが好ましい。有機溶媒としては、安全性、重合後の反応液の水洗における水との分離性、回収・再使用の容易性等の観点から、トルエン、キシレン、シクロヘキサン、メチルシクロヘキサン等の炭化水素;クロロホルム、塩化メチレン、四塩化炭素等のハロゲン化炭化水素;フタル酸ジメチル等のエステル等が好ましい。これら有機溶媒は1種を単独で使用しても、2種以上を併用してもよい。なお、有機溶媒は、重合を円滑に進行させる観点から、乾燥処理を施すとともに、不活性ガス存在下であらかじめ脱気しておくことが好ましい。
 また、上記リビングアニオン重合では、必要に応じ、反応系に他の添加剤を存在させてもよい。該他の添加剤としては、例えば塩化リチウム等の無機塩類;リチウムメトキシエトキシエトキシド、カリウムt-ブトキシド等の金属アルコキシド;テトラエチルアンモニウムクロリド、テトラエチルホスホニウムブロミド等が挙げられる。
 上記リビングアニオン重合は-30~25℃で行うのが好ましい。-30℃よりも低いと重合速度が低下し、生産性が低下する傾向がある。一方、25℃より高いと、上記ジメタクリレート(3)を含有する単量体の重合をリビング性よく行うことが困難となる傾向となる。
 上記リビングアニオン重合は、窒素、アルゴン、ヘリウム等の不活性ガスの雰囲気下で行うことが好ましい。さらに、反応系が均一になるように十分な攪拌条件下にて行うことが好ましい。
 上記リビングアニオン重合において、有機リチウム化合物、有機アルミニウム化合物、ルイス塩基および単量体を反応系に添加する方法としては、ルイス塩基が、有機リチウム化合物との接触前に有機アルミニウム化合物と接触するように添加することが好ましい。また、有機アルミニウム化合物は、単量体より先に反応系に添加しても、同時に添加してもよい。有機アルミニウム化合物を単量体と同時に反応系に添加する場合、有機アルミニウム化合物を単量体と別途混合したのちに添加してもよい。
 上記リビングアニオン重合は、メタノール;酢酸または塩酸のメタノール溶液;酢酸、塩酸の水溶液等のプロトン性化合物などの重合停止剤を反応液に添加して停止できる。重合停止剤の使用量は、通常、用いる有機リチウム化合物1モルに対して1~1,000モルの範囲が好ましい。
 リビングアニオン重合停止後の反応液からブロック共重合体を分離取得する方法としては、公知の方法を採用できる。例えば、反応液をブロック共重合体の貧溶媒に注いで沈殿させる方法、反応液から有機溶媒を留去してブロック共重合体を取得する方法等が挙げられる。
 なお、分離取得したブロック共重合体中に有機リチウム化合物および有機アルミニウム化合物に由来する金属成分が残存していると、ブロック共重合体の物性の低下、透明性不良等を生じる場合がある。よって、有機リチウム化合物および有機アルミニウム化合物に由来する金属成分をアニオン重合停止後に除去することが好ましい。該金属成分の除去方法としては、酸性水溶液を用いた洗浄処理、イオン交換樹脂、セライト、活性炭等の吸着剤を用いた吸着処理等が有効である。ここで、酸性水溶液としては、例えば、塩酸、硫酸水溶液、硝酸水溶液、酢酸水溶液、プロピオン酸水溶液、クエン酸水溶液等を使用することができる。
 本発明の(メタ)アクリル系ブロック共重合体の製造において、上記部分構造(1)を導入する方法としては、上記したジメタクリレート(3)を含有する単量体を重合してメタクリル系重合体ブロック(A)を形成する方法の他に、活性エネルギー線硬化性基である部分構造(1)の前駆体となる部分構造(以下、「前駆体構造」と称する)を含む重合体ブロックを形成した後に、該前駆体構造を部分構造(1)に変換する方法も挙げられる。前駆体構造を含む重合体ブロックは重合性官能基と前駆体構造を含む化合物(以下「重合性前駆体」と称する)を含有する単量体を重合することで得られる。該重合性官能基としては、スチリル基、1,3-ジエニル基、ビニルオキシ基、(メタ)アクリロイル基などが挙げられ、(メタ)アクリロイル基が好ましい。前駆体構造としては、水酸基および保護基(シリルオキシ基、アシルオキシ基、アルコキシ基など)によって保護された水酸基、アミノ基および保護基によって保護されたアミノ基、チオール基および保護基によって保護されたチオール基、ならびにイソシアネート基などが挙げられる。
 前駆体構造として水酸基を含む重合体ブロックは、部分構造(1)および水酸基と反応しうる部分構造(カルボン酸、エステル、カルボニルハライドなど)を有する化合物と反応させることでメタクリル系重合体ブロック(A)を形成できる。また、前駆体構造として保護基によって保護された水酸基を含む重合体ブロックは、該保護基を外して水酸基とした後、同様にメタクリル系重合体ブロック(A)を形成できる。
 前駆体構造としてアミノ基を含む重合体ブロックは、部分構造(1)およびアミノ基と反応しうる部分構造(カルボン酸、カルボン酸無水物、エステル、カルボニルハライド、アルデヒド基、イソシアネート基など)を有する化合物と反応させることでメタクリル系重合体ブロック(A)を形成できる。また、前駆体構造として保護基によって保護されたアミノ基を含む重合体ブロックは、該保護基を外してアミノ基とした後で同様にメタクリル系重合体ブロック(A)を形成できる。
 前駆体構造としてチオール基を含む重合体ブロックは、部分構造(1)およびチオール基と反応しうる部分構造(カルボン酸、カルボン酸無水物、エステル、カルボニルハライド、イソシアネート基、炭素-炭素二重結合など)を有する化合物と反応させることでメタクリル系重合体ブロック(A)を形成できる。また、前駆体構造として保護基によって保護されたチオール基を含む重合体ブロックは、該保護基を外してチオール基とした後で同様にメタクリル系重合体ブロック(A)を形成できる。
 前駆体構造としてイソシアネート基を含む重合体ブロックは、部分構造(1)およびイソシアネート基と反応しうる部分構造(水酸基など)を有する化合物と反応させることでメタクリル系重合体ブロック(A)を形成できる。
 本発明の(メタ)アクリル系ブロック共重合体の製造において、メタクリル系重合体ブロック(A)を形成する方法としては、部分構造(1)を容易に直接導入できる観点から、ジメタクリレート(3)を含有する単量体を重合する方法、典型的にはリビングアニオン重合する方法が好ましい。
 本発明の(メタ)アクリル系ブロック共重合体は、活性エネルギー線硬化性組成物の材料として用いることができる。かかる活性エネルギー線硬化性組成物中の、本発明の(メタ)アクリル系ブロック共重合体の含有量は特に制限はないが、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、20質量%以上であることがさらに好ましい。
 上記活性エネルギー線硬化性組成物には、さらに光重合開始剤が含まれていてもよい。光重合開始剤としては、例えば、アセトフェノン類(例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-1-ブタノン等)、ベンゾフェノン類(例えば、ベンゾフェノン、ベンゾイル安息香酸、ヒドロキシベンゾフェノン、3,3'-ジメチル-4-メトキシベンゾフェノン、アクリル化ベンゾフェノン等)、ミヒラーケトン類(例えば、ミヒラーケトン等)およびベンゾイン類(例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル等)等のカルボニル化合物;テトラメチルチウラムモノスルフィド、チオキサンソン類(例えば、チオキサンソン、2-クロルチオキサンソン等)等の硫黄化合物;アシルフォスフィンオキサイド類(例えば2,4,6-トリメチルベンゾイル-ジフェニルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等)等のリン化合物;チタノセン類(例えばビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム等)等のチタン化合物;アゾ化合物(例えば、アゾビスイソブチルニトリル等)等が挙げられる。また、光重合開始剤は1種を単独で使用しても、2種以上を併用してもよい。これらの中でも、アセトフェノン類およびベンゾフェノン類が好ましい。
 光重合開始剤を含有する場合、その含有量は、本発明の(メタ)アクリル系ブロック共重合体100質量部に対して、0.01~10質量部が好ましく、0.05~8質量部がより好ましい。0.01質量部以上であると活性エネルギー線硬化性組成物の硬化性が良好となり、また10質量部以下であると得られる硬化物の耐熱性が良好となる傾向がある。
 また、上記活性エネルギー線硬化性組成物には、必要に応じて増感剤が含まれていてもよい。増感剤としては、n-ブチルアミン、ジ-n-ブチルアミン、トリ-n-ブチルホスフィン、アリルチオ尿酸、トリエチルアミン、ジエチルアミノエチルメタクリレート等が挙げられる。これらの中でも、ジエチルアミノエチルメタクリレート、トリエチルアミンが好ましい。
 光重合開始剤と増感剤とを混合して使用する場合には、光重合開始剤と増感剤の質量比率は、10:90~90:10の範囲が好ましく、20:80~80:20の範囲がより好ましい。
 また、上記活性エネルギー線硬化性組成物には、本発明の効果を損なわない限り、本発明の(メタ)アクリル系ブロック共重合体以外の、活性エネルギー線の照射によって重合性を示す反応性希釈剤が含まれていてもよい。反応性希釈剤としては、活性エネルギー線の照射によって重合性を示す化合物であれば特に制限はないが、例えば、スチレン、インデン、p-メチルスチレン、α-メチルスチレン、p-メトキシスチレン、p-t-ブトキシスチレン、p-クロロメチルスチレン、p-アセトキシスチレン、ジビニルベンゼンなどのスチレン誘導体;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、カプロン酸ビニル、安息香酸ビニル、珪皮酸ビニルなどの脂肪酸ビニルエステル;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸アミル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸イソステアリル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ボルニル、(メタ)アクリル酸トリシクロデカニル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸ジシクロペンテニルオキシエチル、(メタ)アクリル酸4-ブチルシクロヘキシル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸テトラヒドロフルフリル、(メタ)アクリル酸ブトキシエチル、(メタ)アクリル酸エトキシジエチレングリコール、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸ポリエチレングリコールモノエステル、(メタ)アクリル酸ポリプロピレングリコールモノエステル、(メタ)アクリル酸メトキシエチレングリコール、(メタ)アクリル酸エトキシエチル、(メタ)アクリル酸メトキシポリエチレングリコール、(メタ)アクリル酸メトキシポリプロピレングリコール、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ジエチルアミノエチル、(メタ)アクリル酸7-アミノ-3,7-ジメチルオクチル、4-(メタ)アクリロイルモルホリン、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエトキシトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジ(メタ)アクリレート、トリシクロデカンジイルジメタノールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルの両末端(メタ)アクリル酸付加体、ペンタエリスリトールテトラ(メタ)アクリレート、2,4,6-トリオキソヘキサヒドロ-1,3,5-トリアジン-1,3,5-トリスエタノールトリ(メタ)アクリレート、N,N'-ビス[2-((メタ)アクリロイルオキシ)エチル]-N''-(2-ヒドロキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、トリシクロデカンジメタノールジ(メタ)アクリレート、ビスフェノールAのエチレンオキサイドまたはプロピレンオキサイドの付加体であるジオールのジ(メタ)アクリレート、水添ビスフェノールAのエチレンオキサイドまたはプロピレンオキサイドの付加体であるジオールのジ(メタ)アクリレート、ビスフェノールAのジグリシジルエーテルに(メタ)アクリレートを付加させたエポキシ(メタ)アクリレート、およびシクロヘキサンジメタノールジ(メタ)アクリレート等の(メタ)アクリル酸誘導体;ビスフェノールA型エポキシアクリレート樹脂、フェノールノボラック型エポキシアクリレート樹脂、クレゾールノボラック型エポキシアクリレート樹脂等のエポキシアクリレート系樹脂;カルボキシル基変性エポキシアクリレート系樹脂;ポリオール(ポリテトラメチレングリコール、エチレングリコールとアジピン酸のポリエステルジオール、ε-カプロラクトン変性ポリエステルジオール、ポリプロピレングリコール、ポリエチレングリコール、ポリカーボネートジオール、水酸基末端水添ポリイソプレン、水酸基末端ポリブタジエン、水酸基末端ポリイソブチレン等)と有機イソシアネート(トリレンジイソシアネート、イソホロンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート等)から得られたウレタン樹脂を水酸基含有(メタ)アクリレート(ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、ペンタエリスリトールトリアクリレート等)と反応させて得られたウレタンアクリレート系樹脂;上記ポリオールにエステル結合を介して(メタ)アクリル基を導入した樹脂;ポリエステルアクリレート系樹脂;エポキシ化大豆油、エポキシステアリン酸ベンジル等のエポキシ化合物等が挙げられる。これら反応性希釈剤は1種を単独で使用しても、2種以上を併用してもよい。
 上記活性エネルギー線硬化性組成物には、その硬化性を著しく阻害しない範囲内で、可塑剤、粘着付与剤、軟化剤、充填剤、安定剤、顔料、染料などの活性エネルギー線硬化性基を有さない各種添加剤が含まれていてもよい。
 上記可塑剤を活性エネルギー線硬化性組成物に含有させる目的は、例えば活性エネルギー線硬化性組成物の粘度の調整、該活性エネルギー線硬化性組成物を硬化して得られる硬化物の機械的強度の調整である。上記可塑剤としては、例えばジブチルフタレート、ジヘプチルフタレート、ジ(2-エチルヘキシル)フタレート、ブチルベンジルフタレート等のフタル酸エステル;ジオクチルアジペート、ジオクチルセバケート、ジブチルセバケート、コハク酸イソデシル等の非芳香族二塩基酸エステル;オレイン酸ブチル、アセチルリシリノール酸メチル等の脂肪族エステル;ジエチレングリコールジベンゾエート、トリエチレングリコールジベンゾエート、ペンタエリスリトールエステル等のポリアルキレングリコールのエステル;トリクレジルホスフェート、トリブチルホスフェート等のリン酸エステル;トリメリット酸エステル;ポリブタジエン、ブタジエン-アクリロニトリル共重合体、ポリクロロプレン等のジエン系(共)重合体;ポリブテン;ポリイソブチレン;塩素化パラフィン;アルキルジフェニル、部分水添ターフェニル等の炭化水素系油;プロセスオイル;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリエーテルポリオールとこれらポリエーテルポリオールの水酸基をエステル基、エーテル基等に変換した誘導体等のポリエーテル;セバシン酸、アジピン酸、アゼライン酸、フタル酸等の2塩基酸と、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール等の2価アルコールから得られるポリエステル;等が挙げられる。なお、(共)重合体は、単独重合体と共重合体の総称である。これら可塑剤は1種を単独で使用しても、2種以上を併用してもよい。
 これら可塑剤の分子量または数平均分子量としては、400~15,000であることが好ましく、800~10,000であることがより好ましく、1,000~8,000であることがより好ましい。なお、かかる可塑剤は活性エネルギー線硬化性基以外の官能基(例えば水酸基、カルボキシル基、ハロゲン基など)を有していても、有していなくてもよい。可塑剤の分子量または数平均分子量が400以上であることで、活性エネルギー線硬化性組成物の硬化物から可塑剤が経時的に流出せず、初期の物性を長期にわたり維持できる。また、可塑剤の分子量または数平均分子量が15,000以下であることで、活性エネルギー線硬化性組成物の取り扱い性がよくなる傾向がある。
 上記活性エネルギー線硬化性組成物において可塑剤を含有させる場合、その含有量は、本発明の(メタ)アクリル系ブロック共重合体100質量部に対して5~150質量部が好ましく、10~120質量部がより好ましく、20~100質量部がさらに好ましい。5質量部以上とすることで物性の調整、性状の調節等の効果が顕著となり、150質量部以下とすることで活性エネルギー線硬化性組成物を硬化した硬化物は機械強度に優れる傾向がある。
 なお、活性エネルギー線硬化性基を有さない添加剤は有機化合物であっても無機化合物であってもよい。
 本発明の(メタ)アクリル系ブロック共重合体、または該(メタ)アクリル系ブロック共重合体を含有する活性エネルギー線硬化性組成物を硬化させる際に使用する活性エネルギー線は、公知の装置を用いて照射することができる。電子線(EB)の場合の加速電圧としては0.1~10MeV、照射線量としては1~500kGyの範囲が適当である。
 紫外線照射には、150~450nm波長域の光を発する高圧水銀ランプ、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、LED等を用いることができる。活性エネルギー線の積算光量は、通常10~20000mJ/cm2の範囲であり、30~5000mJ/cm2の範囲が好ましい。10mJ/cm2より少ないと(メタ)アクリル系ブロック共重合体の硬化性が不十分となる傾向があり、20,000mJ/cm2より多いと(メタ)アクリル系ブロック共重合体が劣化するおそれがある。
 本発明の(メタ)アクリル系ブロック共重合体、または該(メタ)アクリル系ブロック共重合体を含有する活性エネルギー線硬化性組成物に対して活性エネルギー線を照射する場合の相対湿度は、(メタ)アクリル系ブロック共重合体の分解を抑制する観点から、30%以下であることが好ましく、10%以下であることがより好ましい。
 本発明の(メタ)アクリル系ブロック共重合体、または該(メタ)アクリル系ブロック共重合体を含有する活性エネルギー線硬化性組成物に対して、活性エネルギー線照射中または照射後に、さらに必要に応じて加熱を行って硬化を促進させることもできる。かかる加熱温度は40~130℃の範囲が好ましく、50~100℃の範囲がより好ましい。
 上記活性エネルギー線硬化性組成物の使い方は特に限定されないが、基材に塗布して硬化した硬化物は、インクや塗料、コーティング材、マスキング材、ライニング材として使用することができる。ここで期待される効果としては、情報付与や表面保護、防食、絶縁、耐摩耗などが挙げられる。また、めっきやライニング、コーティングした材料の上からさらに塗布し、既設の配管などの補修をすることもできる。
 前記基材としては、例えば、ポリオレフィン(ポリエチレン、ポリプロピレン等)、ポリエステル(ポリエチレンナフタレート、ポリエチレンテレフタレート等)、ポリアミド(ナイロン-6、ナイロン-66等)、ポリスチレン、エチレンビニルアルコール、ポリ塩化ビニル、ポリイミド、ポリビニルアルコール、ポリカーボネート、ポリエーテルスルホン、アクリルセルロース(トリアセチリルセルロース、ジアセチルセルロース等)、ポリメタクリル酸メチル樹脂、ガラス、鉄やステンレス鋼などの金属、既に塗工されためっき膜やライニング膜等が挙げられる。
 上記活性エネルギー線硬化性組成物を硬化した硬化物は水や酸性水溶液、アルカリ性水溶液、次亜塩素酸水の中でも使用することができる。使用温度は特に限定されない。
 上記活性エネルギー線硬化性組成物を硬化した硬化物は延伸性と機械強度に優れ、防食や絶縁機能の持続時間の延長や長寿命化ができる。
 上記活性エネルギー線硬化性組成物を硬化した硬化物は、不要になった場合には有機溶剤を用いて剥離することができる。有機溶剤としては、n-ヘキサン、n-ヘプタン、n-オクタン、イソオクタン、酢酸エチル、酢酸ブチル、酢酸イソプロピル、ジメエルエーテル、テトラヒドロフラン、ジクロロメタン、クロロホルム、塩化エチレン、1,1-ジクロロメタン、1,2-ジクロロメタン、1,1,1-トリクロロエチレン、アセトン、メチルエチルケトン、ジエチルケトン、メチルイソプロピルケトン、メチルイソブチルケトン、ジイソブチルケトン、トルエン、シクロヘキサノン、ジアセトンアルコールなどが挙げられる。また、有機溶剤は1種を単独で使用しても、2種以上を併用してもよい。
 以下、本発明を実施例および比較例によってさらに具体的に説明するが、本発明はかかる実施例に限定されない。
 下記実施例および比較例において、原料は常法により乾燥精製し、窒素にて脱気したものを使用し、移送および供給は窒素雰囲気下にて行った。
 [単量体消費率]
 下記実施例および比較例における、重合後の各単量体の消費率は、反応液0.5mLを採取してメタノール0.5mL中に入れて混合後、該混合液から0.1mLを採取して、重クロロホルム0.5mLに溶解させて1H-NMR測定を下記の測定条件にて行い、単量体として用いた(メタ)アクリル酸エステルの炭素-炭素二重結合に直結するプロトンに由来するピーク(化学シフト値5.79~6.37ppm)および溶媒として用いたトルエンの芳香環に直結するプロトンに由来するピーク(化学シフト値7.00~7.38ppm)の積分値の比率の変化から算出した。
1H-NMR測定条件)
装置:日本電子株式会社製核磁気共鳴装置 「JNM-ECX400」
温度:25℃
 [数平均分子量(Mn)、分子量分布(Mw/Mn)]
 下記実施例および比較例において、得られた重合体のGPC(ゲルパーミュエーションクロマトグラフィー)測定を下記の測定条件にて行い、標準ポリスチレン換算の数平均分子量(Mn)および分子量分布(Mw/Mn)の値を求めた。
(GPC測定条件)
 装置:東ソー株式会社製 GPC装置「HLC-8220GPC」
 分離カラム:東ソー株式会社製 「TSKgel SuperMultiporeHZ-M(カラム径=4.6mm、カラム長=15cm)」(2本を直列に繋いで使用)
 溶離液:テトラヒドロフラン
 溶離液流量:0.35mL/分
 カラム温度:40℃
 検出方法:示差屈折率(RI)
 [重合開始効率]
 実際に工程(1)で得られた重合体のMn(Mn(R1)とする)、および重合開始効率が100%である場合の工程(1)で得られる重合体のMn(計算値:Mn(I1)とする)から、工程(1)における重合開始効率(F1)を以下の式によって算出した。
 F1(%)=100×Mn(I1)/Mn(R1)
 [工程(1)から工程(2)にかけてのブロック効率]
 上記Mn(R1)およびMn(I1)、実際に工程(2)で得られた重合体のMn(Mn(R2)とする)、並びにブロック効率が100%である場合の工程(2)で得られる重合体のMn(計算値:Mn(I2)とする)から、工程(1)から工程(2)にかけてのブロック効率(F2)を以下の式によって算出した。
 F2(%)=10000×{Mn(I2)-Mn(I1)}/[F1×{Mn(R2)-Mn(R1)}]
 [(メタ)アクリル系ブロック共重合体を形成する各単量体単位の含有量]
 下記実施例および比較例で得られた(メタ)アクリル系ブロック共重合体を形成する各単量体単位の含有量は、以下の方法により算出した。
 得られた(メタ)アクリル系ブロック共重合体0.01gを、重クロロホルム0.5mLに溶解させて1H-NMR測定を行い、1,1-ジメチルプロパン-1,3-ジオールジメタクリレート単位のメタクリロイル基(-C(=O)-C(=CH2)-CH3)の炭素-炭素二重結合に直結するプロトンに由来するピーク(6.0ppm付近)、メタクリル酸メチル単位のメトキシ基(-O-CH3)のプロトンに由来するピーク(3.6ppm付近)、アクリル酸n-ブチル単位のn-ブトキシ基(-O-CH2-CH2-CH2-CH3)の酸素原子に直結するメチレンのプロトンに由来するピーク(4.0ppm付近)、アクリル酸2-エチルヘキシル単位の2-エチルヘキシロキシ基(-O-CH2-CH(-CH2-CH3)-CH2-CH2-CH2-CH3)の酸素原子に直結するメチレンのプロトンに由来するピーク(3.9ppm付近)、アクリル酸2-メトキシエチル単位の2-メトキシエトキシ基(-O-CH2-CH2-O-CH3)のメトキシのプロトンに由来するピーク(3.3ppm付近)、の積分値の比率から算出した。
1H-NMR測定条件)
 装置:日本電子株式会社製核磁気共鳴装置 「JNM-ECX400」
 温度:25℃
 [硬化物の破断伸び評価]
 実施例および比較例で得られた(メタ)アクリル系ブロック共重合体が25℃において固体状の場合には、(メタ)アクリル系ブロック共重合体を100質量部、メチルエチルケトンを154質量部、ラジカル重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(チバ・スペシャルティ・ケミカルズ製、イルガキュア(登録商標)184)を3質量部、攪拌混合して溶液を得た。得られた溶液を離型処理済みPETフィルム(東洋紡株式会社製、K1504)で作製した箱型容器に流し込み、室温で24時間乾燥させ、厚さ150μmの活性エネルギー線硬化性組成物とした後、UV照射装置(GSユアサ製、12A12-A10-HD3A,使用ランプ:GSユアサ製、HAK 125AL-F)を用いて大気下でUVを600mJ/cm2照射して硬化性組成物を硬化させた。得られた硬化物を縦幅40mm、横幅5mmの長方形にカットしたのち、その試験片を引張試験機(インストロンジャパン製、5566型)にセットし、25℃、引張速度60mm/min.の条件において破断伸びを求めた。
 実施例および比較例で得られた(メタ)アクリル系ブロック共重合体が25℃において液状の場合には、(メタ)アクリル系ブロック共重合体を100質量部、ラジカル重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(チバ・スペシャルティ・ケミカルズ製、イルガキュア(登録商標)184)を3質量部、攪拌混合して溶液を得たこと以外は、(メタ)アクリル系ブロック共重合体が固体状の場合と同様に活性エネルギー線硬化性組成物を作製し、破断伸びを求めた。
 [硬化物のタック感評価]
 実施例および比較例で得られた(メタ)アクリル系ブロック共重合体の硬化物表面を室温において指で触り、タック感の有無を調べた。なお、少しでもべたつきが認められる場合はタック感有とした。
 [実施例1]
 (工程(1))
 内部を乾燥し窒素置換した3Lのフラスコにトルエン1.39kgを添加した後、攪拌しながら、さらに、ルイス塩基として1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン2.3g(10.1mmol)、および有機アルミニウム化合物としてイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムを25.9質量%含むトルエン溶液37.8g(18.7mmol)を順次添加して、-20℃に冷却した。これに有機リチウム化合物としてsec-ブチルリチウムを9.98質量%含むシクロヘキサン溶液6.16g(9.60mmol)を加え、その後、単量体として1,1-ジメチルプロパン-1,3-ジオールジメタクリレート6.34g(26.4mmol)とメタクリル酸メチル112g(1.13mol)との混合物118.34gを一括で添加し、アニオン重合を開始した。混合物の添加終了後から390分後に反応液は当初の黄色から無色に変わった。さらに20分撹拌後に反応液をサンプリングした。
 工程(1)における1,1-ジメチルプロパン-1,3-ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。また、得られた重合体のMn(Mn(R1))は12,500、Mw/Mnは1.10であった。さらに、工程(1)における重合開始効率(F1)は99%であった。
 (工程(2))
 引き続き反応液を-20℃で撹拌しつつ、有機アルミニウム化合物としてイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムを25.9質量%含むトルエン溶液を10.7g(5.28mmol)加え、その1分後に単量体としてアクリル酸n-ブチル257g(2.01mol)を5g/分の速度で添加した。単量体の添加終了直後に反応液をサンプリングした。
 工程(2)におけるアクリル酸n-ブチルの消費率は100%であった。また、得られた重合体のMn(Mn(R2))は41,600、Mw/Mnは1.08であった。さらに、工程(1)から工程(2)にかけてのブロック効率(F2)は93%であった。
 (工程(3))
 引き続き反応液を-20℃で撹拌しつつ、単量体として1,1-ジメチルプロパン-1,3-ジオールジメタクリレート5.56g(23.2mmol)とメタクリル酸メチル98.9g(988mmol)との混合物104.46gを一括で添加したのち、2℃/分の速度で20℃に昇温した。上記混合物の添加から120分後に反応液をサンプリングした。
 工程(3)における1,1-ジメチルプロパン-1,3-ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。
 (工程(4))
 引き続き反応液を20℃で攪拌しつつ、50質量%酢酸水を51.2g加えることによりアニオン重合を停止させて、メタクリル系重合体ブロック(A)-(メタ)アクリル系重合体ブロック(B)-メタクリル系重合体ブロック(A)(A-B-A)の順に結合したトリブロック共重合体である(メタ)アクリル系ブロック共重合体を含有する溶液を得た。かかる溶液からサンプリングした(メタ)アクリル系ブロック共重合体のMnは50,800、Mw/Mnは1.23であった。
 (工程(5))
 次いで得られた溶液を窒素流動下、90℃で攪拌しつつ、90分加熱することで触媒金属の酢酸塩を形成させた。該溶液を25℃まで冷却した後、遠心分離機(日立工機株式会社製、himacCR22GII)を用いて18,800Gの遠心力で30分間遠心分離して酢酸塩を沈殿させ、上澄み液を回収した。回収した上澄み液を5倍量のヘキサンに滴下して再沈殿を行い、さらに80℃、30Paで乾燥して450gの(メタ)アクリル系ブロック共重合体(以下、「(メタ)アクリル系ブロック共重合体(1)」と称する)を得た。得られた(メタ)アクリル系ブロック共重合体(1)を含有する活性エネルギー線硬化性組成物の硬化物の評価結果を表1に示す。
 [実施例2]
 (工程(1))
 内部を乾燥し窒素置換した2Lのフラスコにトルエン867gを添加した後、攪拌しながら、さらに、ルイス塩基として1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン1.03g(4.48mmol)、および有機アルミニウム化合物としてイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムを26.4質量%含むトルエン溶液32.6g(16.4mmol)を順次添加して、-20℃に冷却した。これに有機リチウム化合物としてsec-ブチルリチウムを10.1質量%含むシクロヘキサン溶液2.70g(4.27mmol)を加え、その後、単量体として1,1-ジメチルプロパン-1,3-ジオールジメタクリレート3.06g(12.7mmol)とメタクリル酸メチル73.0g(730mmol)との混合物76.06gを一括で添加し、アニオン重合を開始した。混合物の添加終了後から340分後に反応液は当初の黄色から無色に変わった。さらに20分撹拌後に反応液をサンプリングした。
 工程(1)における1,1-ジメチルプロパン-1,3-ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。また、得られた重合体のMn(Mn(R1))は18,000、Mw/Mnは1.10であった。さらに、工程(1)における重合開始効率(F1)は99%であった。
 (工程(2))
 引き続き反応液を-20℃で撹拌しつつ、有機アルミニウム化合物としてイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムを26.4質量%含むトルエン溶液を4.65g(2.35mmol)加え、その1分後に単量体としてアクリル酸n-ブチル174g(1.35mol)を3g/分の速度で添加した。単量体の添加終了直後に反応液をサンプリングした。
 工程(2)におけるアクリル酸n-ブチルの消費率は100%であった。また、得られた重合体のMn(Mn(R2))は59,800、Mw/Mnは1.20であった。さらに、工程(1)から工程(2)にかけてのブロック効率(F2)は99%であった。
 (工程(3))
 引き続き反応液を-20℃で撹拌しつつ、単量体として1,1-ジメチルプロパン-1,3-ジオールジメタクリレート2.71g(11.3mmol)とメタクリル酸メチル64.8g(647mmol)の混合物67.51gを一括で添加したのち、2℃/分の速度で20℃に昇温した。上記混合物の添加から120分後に反応液をサンプリングした。
 工程(3)における1,1-ジメチルプロパン-1,3-ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。
 (工程(4))
 引き続き反応液を20℃で攪拌しつつ、50質量%酢酸水を33.0g加えることによりアニオン重合を停止させて、メタクリル系重合体ブロック(A)-(メタ)アクリル系重合体ブロック(B)-メタクリル系重合体ブロック(A)(A-B-A)の順に結合したトリブロック共重合体である(メタ)アクリル系ブロック共重合体を含有する溶液を得た。かかる溶液からサンプリングした(メタ)アクリル系ブロック共重合体のMnは71,600、Mw/Mnは1.27であった。
 (工程(5))
 次いで得られた溶液を窒素流動下、90℃で攪拌しつつ、90分加熱することで触媒金属の酢酸塩を形成させた。該溶液を25℃まで冷却した後、遠心分離機(日立工機株式会社製、himacCR22GII)を用いて18,800Gの遠心力で30分間遠心分離して酢酸塩を沈殿させ、上澄み液を回収した。回収した上澄み液を5倍量のヘキサンに滴下して再沈殿を行い、さらに80℃、30Paで乾燥して294gの(メタ)アクリル系ブロック共重合体(以下、「(メタ)アクリル系ブロック共重合体(2)」と称する)を得た。得られた(メタ)アクリル系ブロック共重合体(2)を含有する活性エネルギー線硬化性組成物の硬化物の評価結果を表1に示す。
 [実施例3]
 (工程(1))
 内部を乾燥し窒素置換した3Lのフラスコにトルエン1.47kgを添加した後、攪拌しながら、さらに、ルイス塩基として1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン2.36g(10.1mmol)、および有機アルミニウム化合物としてイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムを26.4質量%含むトルエン溶液47.4g(23.9mmol)を順次添加して、-20℃に冷却した。これに有機リチウム化合物としてsec-ブチルリチウムを10.1質量%含むシクロヘキサン溶液6.16g(9.76mmol)を加え、その後、単量体として1,1-ジメチルプロパン-1,3-ジオールジメタクリレート3.44g(14.3mmol)とメタクリル酸メチル126g(1.26mol)との混合物129.44gを一括で添加し、アニオン重合を開始した。混合物の添加終了後から220分後に反応液は当初の黄色から無色に変わった。さらに20分撹拌後に反応液をサンプリングした。
 工程(1)における1,1-ジメチルプロパン-1,3-ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。また、得られた重合体のMn(Mn(R1))は13,300、Mw/Mnは1.09であった。さらに、工程(1)における重合開始効率(F1)は100%であった。
 (工程(2))
 引き続き反応液を-20℃で撹拌しつつ、有機アルミニウム化合物としてイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムを26.4質量%含むトルエン溶液を10.6g(5.37mmol)加え、その1分後に単量体としてアクリル酸n-ブチル282g(2.20mol)を5g/分の速度で添加した。単量体の添加終了直後に反応液をサンプリングした。
 工程(2)におけるアクリル酸n-ブチルの消費率は100%であった。また、得られた重合体のMn(Mn(R2))は43,600、Mw/Mnは1.06であった。さらに、工程(1)から工程(2)にかけてのブロック効率(F2)は96%であった。
 (工程(3))
 引き続き反応液を-20℃で撹拌しつつ、単量体として1,1-ジメチルプロパン-1,3-ジオールジメタクリレート3.05g(12.7mmol)とメタクリル酸メチル111g(1.11mol)の混合物114.05gを一括で添加したのち、2℃/分の速度で20℃に昇温した。上記混合物の添加から120分後に反応液をサンプリングした。
 工程(3)における1,1-ジメチルプロパン-1,3-ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。
 (工程(4))
 引き続き反応液を20℃で攪拌しつつ、50質量%酢酸水を58.3g加えることによりアニオン重合を停止させて、メタクリル系重合体ブロック(A)-(メタ)アクリル系重合体ブロック(B)-メタクリル系重合体ブロック(A)(A-B-A)の順に結合したトリブロック共重合体である(メタ)アクリル系ブロック共重合体を含有する溶液を得た。かかる溶液からサンプリングした(メタ)アクリル系ブロック共重合体のMnは51,700、Mw/Mnは1.11であった。
 (工程(5))
 次いで得られた溶液を窒素流動下、90℃で攪拌しつつ、90分加熱することで触媒金属の酢酸塩を形成させた。該溶液を25℃まで冷却した後、遠心分離機(日立工機株式会社製、himacCR22GII)を用いて18,800Gの遠心力で30分間遠心分離して酢酸塩を沈殿させ、上澄み液を回収した。回収した上澄み液を5倍量のヘキサンに滴下して再沈殿を行い、さらに80℃、30Paで乾燥して500gの(メタ)アクリル系ブロック共重合体(以下、「(メタ)アクリル系ブロック共重合体(3)」と称する)を得た。得られた(メタ)アクリル系ブロック共重合体(3)を含有する活性エネルギー線硬化性組成物の硬化物の評価結果を表1に示す。
 [実施例4]
 (工程(1))
 内部を乾燥し窒素置換した3Lのフラスコにトルエン1.39kgを添加した後、攪拌しながら、さらに、ルイス塩基として1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン2.32g(10.1mmol)、および有機アルミニウム化合物としてイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムを25.9質量%含むトルエン溶液47.5g(23.5mmol)を順次添加して、-20℃に冷却した。これに有機リチウム化合物としてsec-ブチルリチウムを9.98質量%含むシクロヘキサン溶液6.16g(9.60mmol)を加え、その後、単量体として1,1-ジメチルプロパン-1,3-ジオールジメタクリレート15.9g(66.1mmol)とメタクリル酸メチル102g(1.01mol)との混合物117.9gを一括で添加し、アニオン重合を開始した。混合物の添加終了後から220分後に反応液は当初の黄色から無色に変わった。さらに20分撹拌後に反応液をサンプリングした。
 工程(1)における1,1-ジメチルプロパン-1,3-ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。また、得られた重合体のMn(Mn(R1))は12,400、Mw/Mnは1.09であった。さらに、工程(1)における重合開始効率(F1)は99%であった。
 (工程(2))
 引き続き反応液を-20℃で撹拌しつつ、有機アルミニウム化合物としてイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムを25.9質量%含むトルエン溶液を10.7g(5.28mmol)加え、その1分後に単量体としてアクリル酸n-ブチル266g(2.08mol)を5g/分の速度で添加した。単量体の添加終了直後に反応液をサンプリングした。
 工程(2)におけるアクリル酸n-ブチルの消費率は100%であった。また、得られた重合体のMn(Mn(R2))は41,000、Mw/Mnは1.06であった。さらに、工程(1)から工程(2)にかけてのブロック効率(F2)は99%であった。
 (工程(3))
 引き続き反応液を-20℃で撹拌しつつ、単量体として1,1-ジメチルプロパン-1,3-ジオールジメタクリレート14.0g(58.3mmol)とメタクリル酸メチル89.5g(894mmol)の混合物103.5gを一括で添加したのち、2℃/分の速度で20℃に昇温した。上記混合物の添加から120分後に反応液をサンプリングした。
 工程(3)における1,1-ジメチルプロパン-1,3-ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。
 (工程(4))
 引き続き反応液を20℃で攪拌しつつ、50質量%酢酸水を57.3g加えることによりアニオン重合を停止させて、メタクリル系重合体ブロック(A)-(メタ)アクリル系重合体ブロック(B)-メタクリル系重合体ブロック(A)(A-B-A)の順に結合したトリブロック共重合体である(メタ)アクリル系ブロック共重合体を含有する溶液を得た。かかる溶液からサンプリングした(メタ)アクリル系ブロック共重合体のMnは50,400、Mw/Mnは1.23であった。
 (工程(5))
 次いで得られた溶液を窒素流動下、90℃で攪拌しつつ、90分加熱することで触媒金属の酢酸塩を形成させた。該溶液を25℃まで冷却した後、遠心分離機(日立工機株式会社製、himacCR22GII)を用いて18,800Gの遠心力で30分間遠心分離して酢酸塩を沈殿させ、上澄み液を回収した。回収した上澄み液を5倍量のヘキサンに滴下して再沈殿を行い、さらに80℃、30Paで乾燥して480gの(メタ)アクリル系ブロック共重合体(以下、「(メタ)アクリル系ブロック共重合体(4)」と称する)を得た。得られた(メタ)アクリル系ブロック共重合体(4)を含有する活性エネルギー線硬化性組成物の硬化物の評価結果を表1に示す。
 [実施例5]
 (工程(1))
 内部を乾燥し窒素置換した3Lのフラスコにトルエン1.39kgを添加した後、攪拌しながら、さらに、ルイス塩基として1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン2.32g(10.1mmol)、および有機アルミニウム化合物としてイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムを25.9質量%含むトルエン溶液50.4g(25.0mmol)を順次添加して、-20℃に冷却した。これに有機リチウム化合物としてsec-ブチルリチウムを9.98質量%含むシクロヘキサン溶液6.16g(9.60mmol)を加え、その後、単量体として1,1-ジメチルプロパン-1,3-ジオールジメタクリレート20.0g(83.3mmol)とメタクリル酸メチル112g(1.11mol)との混合物132.0gを一括で添加し、アニオン重合を開始した。混合物の添加終了後から260分後に反応液は当初の黄色から無色に変わった。さらに20分撹拌後に反応液をサンプリングした。
 工程(1)における1,1-ジメチルプロパン-1,3-ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。また、得られた重合体のMn(Mn(R1))は14,200、Mw/Mnは1.10であった。さらに、工程(1)における重合開始効率(F1)は97%であった。
 (工程(2))
 引き続き反応液を-20℃で撹拌しつつ、有機アルミニウム化合物としてイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムを25.9質量%含むトルエン溶液を10.7g(5.28mmol)加え、その1分後に単量体としてアクリル酸n-ブチル240g(1.88mol)を5g/分の速度で添加した。単量体の添加終了直後に反応液をサンプリングした。
 工程(2)におけるアクリル酸n-ブチルの消費率は100%であった。また、得られた重合体のMn(Mn(R2))は40,800、Mw/Mnは1.07であった。さらに、工程(1)から工程(2)にかけてのブロック効率(F2)は99%であった。
 (工程(3))
 引き続き反応液を-20℃で撹拌しつつ、単量体として1,1-ジメチルプロパン-1,3-ジオールジメタクリレート17.6g(73.4mmol)とメタクリル酸メチル98.3g(982mmol)の混合物115.9gを一括で添加したのち、2℃/分の速度で20℃に昇温した。上記混合物の添加から140分後に反応液をサンプリングした。
 工程(3)における1,1-ジメチルプロパン-1,3-ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。
 (工程(4))
 引き続き反応液を20℃で攪拌しつつ、50質量%酢酸水を59.1g加えることによりアニオン重合を停止させて、メタクリル系重合体ブロック(A)-(メタ)アクリル系重合体ブロック(B)-メタクリル系重合体ブロック(A)(A-B-A)の順に結合したトリブロック共重合体である(メタ)アクリル系ブロック共重合体を含有する溶液を得た。かかる溶液からサンプリングした(メタ)アクリル系ブロック共重合体のMnは50,300、Mw/Mnは1.23であった。
 (工程(5))
 次いで得られた溶液を窒素流動下、90℃で攪拌しつつ、90分加熱することで触媒金属の酢酸塩を形成させた。該溶液を25℃まで冷却した後、遠心分離機(日立工機株式会社製、himacCR22GII)を用いて18,800Gの遠心力で30分間遠心分離して酢酸塩を沈殿させ、上澄み液を回収した。回収した上澄み液を5倍量のヘキサンに滴下して再沈殿を行い、さらに80℃、30Paで乾燥して480gの(メタ)アクリル系ブロック共重合体(以下、「(メタ)アクリル系ブロック共重合体(5)」と称する)を得た。得られた(メタ)アクリル系ブロック共重合体(5)を含有する活性エネルギー線硬化性組成物の硬化物の評価結果を表1に示す。
 [実施例6]
 (工程(1))
 内部を乾燥し窒素置換した3Lのフラスコにトルエン1.39kgを添加した後、攪拌しながら、さらに、ルイス塩基として1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン2.32g(10.1mmol)、および有機アルミニウム化合物としてイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムを25.9質量%含むトルエン溶液37.8g(18.7mmol)を順次添加して、-20℃に冷却した。これに有機リチウム化合物としてsec-ブチルリチウムを9.98質量%含むシクロヘキサン溶液6.16g(9.60mmol)を加え、その後、単量体として1,1-ジメチルプロパン-1,3-ジオールジメタクリレート6.53g(27.2mmol)とメタクリル酸メチル82.5g(824mmol)との混合物89.03gを一括で添加し、アニオン重合を開始した。混合物の添加終了後から200分後に反応液は当初の黄色から無色に変わった。さらに20分撹拌後に反応液をサンプリングした。
 工程(1)における1,1-ジメチルプロパン-1,3-ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。また、得られた重合体のMn(Mn(R1))は9,400、Mw/Mnは1.10であった。さらに、工程(1)における重合開始効率(F1)は99%であった。
 (工程(2))
 引き続き反応液を-20℃で撹拌しつつ、有機アルミニウム化合物としてイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムを25.9質量%含むトルエン溶液を10.7g(5.28mmol)加え、その1分後に単量体としてアクリル酸n-ブチル315g(2.46mol)を5g/分の速度で添加した。単量体の添加終了直後に反応液をサンプリングした。
 工程(2)におけるアクリル酸n-ブチルの消費率は100%であった。また、得られた重合体のMn(Mn(R2))は43,000、Mw/Mnは1.07であった。さらに、工程(1)から工程(2)にかけてのブロック効率(F2)は99%であった。
 (工程(3))
 引き続き反応液を-20℃で撹拌しつつ、単量体として1,1-ジメチルプロパン-1,3-ジオールジメタクリレート5.76g(24.0mmol)とメタクリル酸メチル72.7g(726mmol)の混合物78.46gを一括で添加したのち、2℃/分の速度で20℃に昇温した。上記混合物の添加から100分後に反応液をサンプリングした。
 工程(3)における1,1-ジメチルプロパン-1,3-ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。
 (工程(4))
 引き続き反応液を20℃で攪拌しつつ、50質量%酢酸水を51.2g加えることによりアニオン重合を停止させて、メタクリル系重合体ブロック(A)-(メタ)アクリル系重合体ブロック(B)-メタクリル系重合体ブロック(A)(A-B-A)の順に結合したトリブロック共重合体である(メタ)アクリル系ブロック共重合体を含有する溶液を得た。かかる溶液からサンプリングした(メタ)アクリル系ブロック共重合体のMnは50,400、Mw/Mnは1.18であった。
 (工程(5))
 次いで得られた溶液を窒素流動下、90℃で攪拌しつつ、90分加熱することで触媒金属の酢酸塩を形成させた。該溶液を25℃まで冷却した後、遠心分離機(日立工機株式会社製、himacCR22GII)を用いて18,800Gの遠心力で30分間遠心分離して酢酸塩を沈殿させ、上澄み液を回収した。回収した上澄み液を5倍量のヘキサンに滴下して再沈殿を行い、さらに80℃、30Paで乾燥して470gの(メタ)アクリル系ブロック共重合体(以下、「(メタ)アクリル系ブロック共重合体(6)」と称する)を得た。得られた(メタ)アクリル系ブロック共重合体(6)を含有する活性エネルギー線硬化性組成物の硬化物の評価結果を表1に示す。
 [実施例7]
 (工程(1))
 内部を乾燥し窒素置換した3Lのフラスコにトルエン1.21kgを添加した後、攪拌しながら、さらに、ルイス塩基として1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン2.03g(8.82mmol)、および有機アルミニウム化合物としてイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムを25.9質量%含むトルエン溶液44.1g(21.8mmol)を順次添加して、-20℃に冷却した。これに有機リチウム化合物としてsec-ブチルリチウムを9.98質量%含むシクロヘキサン溶液5.39g(8.40mmol)を加え、その後、単量体として1,1-ジメチルプロパン-1,3-ジオールジメタクリレート5.71g(23.8mmol)とメタクリル酸メチル119g(1.19mol)との混合物124.71gを一括で添加し、アニオン重合を開始した。混合物の添加終了後から220分後に反応液は当初の黄色から無色に変わった。さらに20分撹拌後に反応液をサンプリングした。
 工程(1)における1,1-ジメチルプロパン-1,3-ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。また、得られた重合体のMn(Mn(R1))は15,000、Mw/Mnは1.11であった。さらに、工程(1)における重合開始効率(F1)は99%であった。
 (工程(2))
 引き続き反応液を-20℃で撹拌しつつ、有機アルミニウム化合物としてイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムを25.9質量%含むトルエン溶液を9.33g(4.62mmol)加え、その1分後に単量体としてアクリル酸n-ブチル192g(1.50mol)を5g/分の速度で添加した。単量体の添加終了直後に反応液をサンプリングした。
 工程(2)におけるアクリル酸n-ブチルの消費率は100%であった。また、得られた重合体のMn(Mn(R2))は38,300、Mw/Mnは1.08であった。さらに、工程(1)から工程(2)にかけてのブロック効率(F2)は100%であった。
 (工程(3))
 引き続き反応液を-20℃で撹拌しつつ、単量体として1,1-ジメチルプロパン-1,3-ジオールジメタクリレート5.04g(21.0mmol)とメタクリル酸メチル105g(1.05mol)の混合物110.04gを一括で添加したのち、2℃/分の速度で20℃に昇温した。上記混合物の添加から140分後に反応液をサンプリングした。
 工程(3)における1,1-ジメチルプロパン-1,3-ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。
 (工程(4))
 引き続き反応液を20℃で攪拌しつつ、50質量%酢酸水を51.7g加えることによりアニオン重合を停止させて、メタクリル系重合体ブロック(A)-(メタ)アクリル系重合体ブロック(B)-メタクリル系重合体ブロック(A)(A-B-A)の順に結合したトリブロック共重合体である(メタ)アクリル系ブロック共重合体を含有する溶液を得た。かかる溶液からサンプリングした(メタ)アクリル系ブロック共重合体のMnは50,100、Mw/Mnは1.16であった。
 (工程(5))
 次いで得られた溶液を窒素流動下、90℃で攪拌しつつ、90分加熱することで触媒金属の酢酸塩を形成させた。該溶液を25℃まで冷却した後、遠心分離機(日立工機株式会社製、himacCR22GII)を用いて18,800Gの遠心力で30分間遠心分離して酢酸塩を沈殿させ、上澄み液を回収した。回収した上澄み液を5倍量のヘキサンに滴下して再沈殿を行い、さらに80℃、30Paで乾燥して420gの(メタ)アクリル系ブロック共重合体(以下、「(メタ)アクリル系ブロック共重合体(7)」と称する)を得た。得られた(メタ)アクリル系ブロック共重合体(7)を含有する活性エネルギー線硬化性組成物の硬化物の評価結果を表1に示す。
 [実施例8]
 (工程(1))
 内部を乾燥し窒素置換した2Lのフラスコにトルエン867gを添加した後、攪拌しながら、さらに、ルイス塩基として1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン1.39g(6.05mmol)、および有機アルミニウム化合物としてイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムを26.4質量%含むトルエン溶液27.9g(14.1mmol)を順次添加して、-20℃に冷却した。これに有機リチウム化合物としてsec-ブチルリチウムを9.98質量%含むシクロヘキサン溶液3.70g(5.76mmol)を加え、その後、単量体として1,1-ジメチルプロパン-1,3-ジオールジメタクリレート1.87g(7.77mmol)とメタクリル酸メチル70.3g(703mmol)との混合物72.17gを一括で添加し、アニオン重合を開始した。混合物の添加終了後から260分後に反応液は当初の黄色から無色に変わった。さらに20分撹拌後に反応液をサンプリングした。
 工程(1)における1,1-ジメチルプロパン-1,3-ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。また、得られた重合体のMn(Mn(R1))は12,700、Mw/Mnは1.07であった。さらに、工程(1)における重合開始効率(F1)は99%であった。
 (工程(2))
 引き続き反応液を-20℃で撹拌しつつ、有機アルミニウム化合物としてイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムを26.4質量%含むトルエン溶液を6.27g(3.17mmol)加え、その1分後に単量体としてアクリル酸2-エチルヘキシル154g(833mmol)を3g/分の速度で添加した。単量体の添加終了直後に反応液をサンプリングした。
 工程(2)におけるアクリル酸2-エチルヘキシルの消費率は100%であった。また、得られた重合体のMn(Mn(R2))は40,100、Mw/Mnは1.04であった。さらに、工程(1)から工程(2)にかけてのブロック効率(F2)は99%であった。
 (工程(3))
 引き続き反応液を-20℃で撹拌しつつ、単量体として1,1-ジメチルプロパン-1,3-ジオールジメタクリレート1.67g(6.94mmol)とメタクリル酸メチル61.0g(609mmol)の混合物62.67gを一括で添加したのち、2℃/分の速度で20℃に昇温した。上記混合物の添加から60分後に反応液をサンプリングした。
 工程(3)における1,1-ジメチルプロパン-1,3-ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。
 (工程(4))
 引き続き反応液を20℃で攪拌しつつ、50質量%酢酸水を34.4g加えることによりアニオン重合を停止させて、メタクリル系重合体ブロック(A)-(メタ)アクリル系重合体ブロック(B)-メタクリル系重合体ブロック(A)(A-B-A)の順に結合したトリブロック共重合体である(メタ)アクリル系ブロック共重合体を含有する溶液を得た。かかる溶液からサンプリングした(メタ)アクリル系ブロック共重合体のMnは49,800、Mw/Mnは1.05であった。
 (工程(5))
 次いで得られた溶液を窒素流動下、90℃で攪拌しつつ、90分加熱することで触媒金属の酢酸塩を形成させた。該溶液を25℃まで冷却した後、遠心分離機(日立工機株式会社製、himacCR22GII)を用いて18,800Gの遠心力で30分間遠心分離して酢酸塩を沈殿させ、上澄み液を回収した。回収した上澄み液を5倍量のヘキサンに滴下して再沈殿を行い、さらに80℃、30Paで乾燥して280gの(メタ)アクリル系ブロック共重合体(以下、「(メタ)アクリル系ブロック共重合体(8)」と称する)を得た。得られた(メタ)アクリル系ブロック共重合体(8)を含有する活性エネルギー線硬化性組成物の硬化物の評価結果を表1に示す。
 [実施例9]
 (工程(1))
 内部を乾燥し窒素置換した2Lのフラスコにトルエン919gを添加した後、攪拌しながら、さらに、ルイス塩基として1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン1.51g(6.56mmol)、および有機アルミニウム化合物としてイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムを26.4質量%含むトルエン溶液30.3g(15.3mmol)を順次添加して、-20℃に冷却した。これに有機リチウム化合物としてsec-ブチルリチウムを10.4質量%含むシクロヘキサン溶液3.85g(6.25mmol)を加え、その後、単量体として1,1-ジメチルプロパン-1,3-ジオールジメタクリレート2.09g(8.70mmol)とメタクリル酸メチル78.8g(787mmol)との混合物80.89gを一括で添加し、アニオン重合を開始した。混合物の添加終了後から300分後に反応液は当初の黄色から無色に変わった。さらに20分撹拌後に反応液をサンプリングした。
 工程(1)における1,1-ジメチルプロパン-1,3-ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。また、得られた重合体のMn(Mn(R1))は13,000、Mw/Mnは1.09であった。さらに、工程(1)における重合開始効率(F1)は99%であった。
 (工程(2))
 引き続き反応液を-20℃で撹拌しつつ、有機アルミニウム化合物としてイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムを26.4質量%含むトルエン溶液を6.81g(3.44mmol)加え、その1分後に単量体としてアクリル酸2-メトキシエチル173g(1.33mol)を3g/分の速度で添加した。単量体の添加終了直後に反応液をサンプリングした。
 工程(2)におけるアクリル酸2-メトキシエチルの消費率は100%であった。また、得られた重合体のMn(Mn(R2))は42,000、Mw/Mnは1.07であった。さらに、工程(1)から工程(2)にかけてのブロック効率(F2)は96%であった。
 (工程(3))
 引き続き反応液を-20℃で撹拌しつつ、単量体として1,1-ジメチルプロパン-1,3-ジオールジメタクリレート1.87g(7.80mmol)とメタクリル酸メチル68.5g(684mmol)の混合物114.05gを一括で添加したのち、2℃/分の速度で20℃に昇温した。上記混合物の添加から80分後に反応液をサンプリングした。
 工程(3)における1,1-ジメチルプロパン-1,3-ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。
 (工程(4))
 引き続き反応液を20℃で攪拌しつつ、50質量%酢酸水を37.3g加えることによりアニオン重合を停止させて、メタクリル系重合体ブロック(A)-(メタ)アクリル系重合体ブロック(B)-メタクリル系重合体ブロック(A)(A-B-A)の順に結合したトリブロック共重合体である(メタ)アクリル系ブロック共重合体を含有する溶液を得た。かかる溶液からサンプリングした(メタ)アクリル系ブロック共重合体のMnは47,800、Mw/Mnは1.09であった。
 (工程(5))
 次いで得られた溶液を窒素流動下、90℃で攪拌しつつ、90分加熱することで触媒金属の酢酸塩を形成させた。該溶液を25℃まで冷却した後、遠心分離機(日立工機株式会社製、himacCR22GII)を用いて18,800Gの遠心力で30分間遠心分離して酢酸塩を沈殿させ、上澄み液を回収した。回収した上澄み液を5倍量のヘキサンに滴下して再沈殿を行い、さらに80℃、30Paで乾燥して320gの(メタ)アクリル系ブロック共重合体(以下、「(メタ)アクリル系ブロック共重合体(9)」と称する)を得た。得られた(メタ)アクリル系ブロック共重合体(9)を含有する活性エネルギー線硬化性組成物の硬化物の評価結果を表1に示す。
 [比較例1]
 (工程(1))
 内部を乾燥し窒素置換した3Lのフラスコにトルエン1.30kgを添加した後、攪拌しながら、さらに、ルイス塩基として1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン2.83g(12.3mmol)、および有機アルミニウム化合物としてイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムを26.4質量%含むトルエン溶液60.2g(30.4mmol)を順次添加して、-20℃に冷却した。これに有機リチウム化合物としてsec-ブチルリチウムを10.8質量%含むシクロヘキサン溶液6.93g(11.7mmol)を加え、その後、単量体として1,1-ジメチルプロパン-1,3-ジオールジメタクリレート17.5g(72.9mmol)とメタクリル酸メチル98.4g(983mmol)との混合物115.9gを一括で添加し、アニオン重合を開始した。混合物の添加終了後から240分後に反応液は当初の黄色から無色に変わった。さらに20分撹拌後に反応液をサンプリングした。
 工程(1)における1,1-ジメチルプロパン-1,3-ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。また、得られた重合体のMn(Mn(R1))は10,000、Mw/Mnは1.10であった。さらに、工程(1)における重合開始効率(F1)は99%であった。
 (工程(2))
 引き続き反応液を-20℃で撹拌しつつ、有機アルミニウム化合物としてイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムを26.4質量%含むトルエン溶液を12.7g(6.44mmol)加え、その1分後に単量体としてアクリル酸n-ブチル211g(1.64mol)を5g/分の速度で添加した。単量体の添加終了直後に反応液をサンプリングした。
 工程(2)におけるアクリル酸n-ブチルの消費率は100%であった。また、得られた重合体のMn(Mn(R2))は28,400、Mw/Mnは1.09であった。さらに、工程(1)から工程(2)にかけてのブロック効率(F2)は99%であった。
 (工程(3))
 引き続き反応液を-20℃で撹拌しつつ、単量体として1,1-ジメチルプロパン-1,3-ジオールジメタクリレート15.4g(64.2mmol)とメタクリル酸メチル86.7g(866mmol)の混合物102.1gを一括で添加したのち、2℃/分の速度で20℃に昇温した。上記混合物の添加から150分後に反応液をサンプリングした。
 工程(3)における1,1-ジメチルプロパン-1,3-ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。
 (工程(4))
 引き続き反応液を20℃で攪拌しつつ、50質量%酢酸水を72.1g加えることによりアニオン重合を停止させて、メタクリル系重合体ブロック(A)-(メタ)アクリル系重合体ブロック(B)-メタクリル系重合体ブロック(A)(A-B-A)の順に結合したトリブロック共重合体である(メタ)アクリル系ブロック共重合体を含有する溶液を得た。かかる溶液からサンプリングした(メタ)アクリル系ブロック共重合体のMnは36,300、Mw/Mnは1.23であった。
 (工程(5))
 次いで得られた溶液を窒素流動下、90℃で攪拌しつつ、90分加熱することで触媒金属の酢酸塩を形成させた。該溶液を25℃まで冷却した後、遠心分離機(日立工機株式会社製、himacCR22GII)を用いて18,800Gの遠心力で30分間遠心分離して酢酸塩を沈殿させ、上澄み液を回収した。回収した上澄み液を5倍量のヘキサンに滴下して再沈殿を行い、さらに80℃、30Paで乾燥して410gの(メタ)アクリル系ブロック共重合体(以下、「(メタ)アクリル系ブロック共重合体(10)」と称する)を得た。得られた(メタ)アクリル系ブロック共重合体(10)を含有する活性エネルギー線硬化性組成物の硬化物の評価結果を表1に示す。
 [比較例2]
 (工程(1))
 内部を乾燥し窒素置換した3Lのフラスコにトルエン1.21kgを添加した後、攪拌しながら、さらに、ルイス塩基として1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン9.44g(41.0mmol)、および有機アルミニウム化合物としてイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムを26.4質量%含むトルエン溶液85.0g(42.9mmol)を順次添加して、-20℃に冷却した。これに有機リチウム化合物としてsec-ブチルリチウムを10.8質量%含むシクロヘキサン溶液23.1g(39.0mmol)を加え、その後、単量体として1,1-ジメチルプロパン-1,3-ジオールジメタクリレート27.9g(116mmol)とメタクリル酸メチル23.3g(232mmol)との混合物51.2gを一括で添加し、アニオン重合を開始した。混合物の添加終了後から80分後に反応液は当初の黄色から無色に変わった。さらに20分撹拌後に反応液をサンプリングした。
 工程(1)における1,1-ジメチルプロパン-1,3-ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。また、得られた重合体のMn(Mn(R1))は1,320、Mw/Mnは1.16であった。さらに、工程(1)における重合開始効率(F1)は99%であった。
 (工程(2))
 引き続き反応液を-20℃で撹拌しつつ、有機アルミニウム化合物としてイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムを26.4質量%含むトルエン溶液を42.5g(21.5mmol)加え、その1分後に単量体としてアクリル酸n-ブチル345g(2.69mol)を5g/分の速度で添加した。単量体の添加終了直後に反応液をサンプリングした。
 工程(2)におけるアクリル酸n-ブチルの消費率は100%であった。また、得られた重合体のMn(Mn(R2))は11,300、Mw/Mnは1.18であった。さらに、工程(1)から工程(2)にかけてのブロック効率(F2)は89%であった。
 (工程(3))
 引き続き反応液を-20℃で撹拌しつつ、単量体として1,1-ジメチルプロパン-1,3-ジオールジメタクリレート24.3g(101mmol)とメタクリル酸メチル20.2g(202mmol)の混合物44.5gを一括で添加したのち、2℃/分の速度で20℃に昇温した。上記混合物の添加から100分後に反応液をサンプリングした。
 工程(3)における1,1-ジメチルプロパン-1,3-ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。
 (工程(4))
 引き続き反応液を20℃で攪拌しつつ、50質量%酢酸水を166g加えることによりアニオン重合を停止させて、メタクリル系重合体ブロック(A)-(メタ)アクリル系重合体ブロック(B)-メタクリル系重合体ブロック(A)(A-B-A)の順に結合したトリブロック共重合体である(メタ)アクリル系ブロック共重合体を含有する溶液を得た。かかる溶液からサンプリングした(メタ)アクリル系ブロック共重合体のMnは13,400、Mw/Mnは1.19であった。
 (工程(5))
 次いで得られた溶液を窒素流動下、90℃で攪拌しつつ、90分加熱することで触媒金属の酢酸塩を形成させた。該溶液を25℃まで冷却した後、遠心分離機(日立工機株式会社製、himacCR22GII)を用いて18,800Gの遠心力で30分間遠心分離して酢酸塩を沈殿させ、上澄み液を回収した。回収した上澄み液からエバポレータを用いて60℃にて溶媒を除去した後、さらに100℃、30Paで乾燥して430gの(メタ)アクリル系ブロック共重合体(以下、「(メタ)アクリル系ブロック共重合体(11)」と称する)を得た。得られた(メタ)アクリル系ブロック共重合体(11)を含有する活性エネルギー線硬化性組成物の硬化物の評価結果を表1に示す。
 [比較例3]
 (工程(1))
 内部を乾燥し窒素置換した3Lのフラスコにトルエン1.21kgを添加した後、攪拌しながら、さらに、ルイス塩基として1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン5.66g(24.6mmol)、および有機アルミニウム化合物としてイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムを26.4質量%含むトルエン溶液51.0g(25.7mmol)を順次添加して、-20℃に冷却した。これに有機リチウム化合物としてsec-ブチルリチウムを10.8質量%含むシクロヘキサン溶液13.9g(23.4mmol)を加え、その後、単量体として1,1-ジメチルプロパン-1,3-ジオールジメタクリレート16.7g(69.7mmol)とメタクリル酸メチル14.0g(139mmol)との混合物30.7gを一括で添加し、アニオン重合を開始した。混合物の添加終了後から80分後に反応液は当初の黄色から無色に変わった。さらに20分撹拌後に反応液をサンプリングした。
 工程(1)における1,1-ジメチルプロパン-1,3-ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。また、得られた重合体のMn(Mn(R1))は1,340、Mw/Mnは1.16であった。さらに、工程(1)における重合開始効率(F1)は98%であった。
 (工程(2))
 引き続き反応液を-20℃で撹拌しつつ、有機アルミニウム化合物としてイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムを26.4質量%含むトルエン溶液を25.5g(12.9mmol)加え、その1分後に単量体としてアクリル酸n-ブチル401g(3.13mol)を5g/分の速度で添加した。単量体の添加終了直後に反応液をサンプリングした。
 工程(2)におけるアクリル酸n-ブチルの消費率は100%であった。また、得られた重合体のMn(Mn(R2))は21,300、Mw/Mnは1.18であった。さらに、工程(1)から工程(2)にかけてのブロック効率(F2)は88%であった。
 (工程(3))
 引き続き反応液を-20℃で撹拌しつつ、単量体として1,1-ジメチルプロパン-1,3-ジオールジメタクリレート14.6g(60.6mmol)とメタクリル酸メチル12.1g(121mmol)の混合物26.7gを一括で添加したのち、2℃/分の速度で20℃に昇温した。上記混合物の添加から60分後に反応液をサンプリングした。
 工程(3)における1,1-ジメチルプロパン-1,3-ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。
 (工程(4))
 引き続き反応液を20℃で攪拌しつつ、50質量%酢酸水を99.8g加えることによりアニオン重合を停止させて、メタクリル系重合体ブロック(A)-(メタ)アクリル系重合体ブロック(B)-メタクリル系重合体ブロック(A)(A-B-A)の順に結合したトリブロック共重合体である(メタ)アクリル系ブロック共重合体を含有する溶液を得た。かかる溶液からサンプリングした(メタ)アクリル系ブロック共重合体のMnは22,600、Mw/Mnは1.19であった。
 (工程(5))
 次いで得られた溶液を窒素流動下、90℃で攪拌しつつ、90分加熱することで触媒金属の酢酸塩を形成させた。該溶液を25℃まで冷却した後、遠心分離機(日立工機株式会社製、himacCR22GII)を用いて18,800Gの遠心力で30分間遠心分離して酢酸塩を沈殿させ、上澄み液を回収した。回収した上澄み液からエバポレータを用いて60℃にて溶媒を除去した後、さらに100℃、30Paで乾燥して450gの(メタ)アクリル系ブロック共重合体(以下、「(メタ)アクリル系ブロック共重合体(12)」と称する)を得た。得られた(メタ)アクリル系ブロック共重合体(12)を含有する活性エネルギー線硬化性組成物の硬化物の評価結果を表1に示す。
 [比較例4]
 (工程(1))
 内部を乾燥し窒素置換した3Lのフラスコにトルエン1.30kgを添加した後、攪拌しながら、さらに、ルイス塩基として1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン3.1g(13.7mmol)、および有機アルミニウム化合物としてイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムを26.4質量%含むトルエン溶液29.6g(15.0mmol)を順次添加して、-20℃に冷却した。これに有機リチウム化合物としてsec-ブチルリチウムを10.5質量%含むシクロヘキサン溶液7.9g(13.0mmol)を加え、その後、単量体として1,1-ジメチルプロパン-1,3-ジオールジメタクリレート9.4g(39mmol)とメタクリル酸メチル7.8g(78mmol)との混合物17.2gを一括で添加し、アニオン重合を開始した。混合物の添加終了後から160分後に反応液は当初の黄色から無色に変わった。さらに20分撹拌後に反応液をサンプリングした。
 工程(1)における1,1-ジメチルプロパン-1,3-ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。また、得られた重合体のMn(Mn(R1))は1,330、Mw/Mnは1.16であった。さらに、工程(1)における重合開始効率(F1)は99%であった。
 (工程(2))
 引き続き反応液を-20℃で撹拌しつつ、有機アルミニウム化合物としてイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムを26.4質量%含むトルエン溶液を18.0g(9.1mmol)加え、その1分後に単量体としてアクリル酸n-ブチル446g(3.48mol)を5g/分の速度で添加した。単量体の添加終了直後に反応液をサンプリングした。
 工程(2)におけるアクリル酸n-ブチルの消費率は100%であった。また、得られた重合体のMn(Mn(R2))は41,200、Mw/Mnは1.18であった。さらに、工程(1)から工程(2)にかけてのブロック効率(F2)は87%であった。
 (工程(3))
 引き続き反応液を-20℃で撹拌しつつ、単量体として1,1-ジメチルプロパン-1,3-ジオールジメタクリレート8.1g(33.6mmol)とメタクリル酸メチル6.7g(67.3mmol)の混合物14.8gを一括で添加したのち、2℃/分の速度で20℃に昇温した。上記混合物の添加から120分後に反応液をサンプリングした。
 工程(3)における1,1-ジメチルプロパン-1,3-ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。
 (工程(4))
 引き続き反応液を20℃で攪拌しつつ、50質量%酢酸水を29.4g加えることによりアニオン重合を停止させて、メタクリル系重合体ブロック(A)-(メタ)アクリル系重合体ブロック(B)-メタクリル系重合体ブロック(A)(A-B-A)の順に結合したトリブロック共重合体である(メタ)アクリル系ブロック共重合体を含有する溶液を得た。かかる溶液からサンプリングした(メタ)アクリル系ブロック共重合体のMnは42,600、Mw/Mnは1.19であった。
 (工程(5))
 次いで得られた溶液を窒素流動下、90℃で攪拌しつつ、90分加熱することで触媒金属の酢酸塩を形成させた。該溶液を25℃まで冷却した後、遠心分離機(日立工機株式会社製、himacCR22GII)を用いて18,800Gの遠心力で30分間遠心分離して酢酸塩を沈殿させ、上澄み液を回収した。回収した上澄み液からエバポレータを用いて60℃にて溶媒を除去した後、さらに100℃、30Paで乾燥して460gの(メタ)アクリル系ブロック共重合体(以下、「(メタ)アクリル系ブロック共重合体(13)」と称する)を得た。得られた(メタ)アクリル系ブロック共重合体(13)を含有する活性エネルギー線硬化性組成物の硬化物の評価結果を表1に示す。
 [比較例5]
 (工程(1))
 内部を乾燥し窒素置換した3Lのフラスコにトルエン1.39kgを添加した後、攪拌しながら、さらに、ルイス塩基として1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン2.32g(10.1mmol)、および有機アルミニウム化合物としてイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムを25.9質量%含むトルエン溶液37.8g(18.7mmol)を順次添加して、-20℃に冷却した。これに有機リチウム化合物としてsec-ブチルリチウムを9.98質量%含むシクロヘキサン溶液6.16g(9.60mmol)を加え、その後、単量体としてメタクリル酸メチル117g(1.17mol)を一括で添加し、アニオン重合を開始した。混合物の添加終了後から80分後に反応液は当初の黄色から無色に変わった。さらに20分撹拌後に反応液をサンプリングした。
 工程(1)におけるメタクリル酸メチルの消費率は100%であった。また、得られた重合体のMn(Mn(R1))は12,400、Mw/Mnは1.07であった。さらに、工程(1)における重合開始効率(F1)は98%であった。
 (工程(2))
 引き続き反応液を-20℃で撹拌しつつ、有機アルミニウム化合物としてイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムを25.9質量%含むトルエン溶液を10.7g(5.28mmol)加え、その1分後に単量体としてアクリル酸n-ブチル266g(2.08mol)を5g/分の速度で添加した。単量体の添加終了直後に反応液をサンプリングした。
 工程(2)におけるアクリル酸n-ブチルの消費率は100%であった。また、得られた重合体のMn(Mn(R2))は40,900、Mw/Mnは1.07であった。さらに、工程(1)から工程(2)にかけてのブロック効率(F2)は100%であった。
 (工程(3))
 引き続き反応液を-20℃で撹拌しつつ、単量体としてメタクリル酸メチル103g(1.03mol)を一括で添加したのち、2℃/分の速度で20℃に昇温した。上記混合物の添加から100分後に反応液をサンプリングした。
 工程(3)における1,1-ジメチルプロパン-1,3-ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。
 (工程(4))
 引き続き反応液を20℃で攪拌しつつ、50質量%酢酸水を51.2g加えることによりアニオン重合を停止させて、メタクリル系重合体ブロック(A)-(メタ)アクリル系重合体ブロック(B)-メタクリル系重合体ブロック(A)(A-B-A)の順に結合したトリブロック共重合体である(メタ)アクリル系ブロック共重合体を含有する溶液を得た。かかる溶液からサンプリングした(メタ)アクリル系ブロック共重合体のMnは50,300、Mw/Mnは1.12であった。
 (工程(5))
 次いで得られた溶液を窒素流動下、90℃で攪拌しつつ、90分加熱することで触媒金属の酢酸塩を形成させた。該溶液を25℃まで冷却した後、遠心分離機(日立工機株式会社製、himacCR22GII)を用いて18,800Gの遠心力で30分間遠心分離して酢酸塩を沈殿させ、上澄み液を回収した。回収した上澄み液を5倍量のヘキサンに滴下して再沈殿を行い、さらに80℃、30Paで乾燥して480gの(メタ)アクリル系ブロック共重合体(以下、「(メタ)アクリル系ブロック共重合体(14)」と称する)を得た。得られた(メタ)アクリル系ブロック共重合体(14)を含有する活性エネルギー線硬化性組成物の硬化物の評価結果を表1に示す。
 [比較例6]
 (工程(1))
 内部を乾燥し窒素置換した3Lのフラスコにトルエン1.39kgを添加した後、攪拌しながら、さらに、ルイス塩基として1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン2.32g(10.1mmol)、および有機アルミニウム化合物としてイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムを25.9質量%含むトルエン溶液37.8g(18.7mmol)を順次添加して、-20℃に冷却した。これに有機リチウム化合物としてsec-ブチルリチウムを9.98質量%含むシクロヘキサン溶液6.16g(9.60mmol)を加え、その後、単量体として1,1-ジメチルプロパン-1,3-ジオールジメタクリレート26.6g(111mmol)とメタクリル酸メチル83.4g(833mmol)との混合物110.0gを一括で添加し、アニオン重合を開始した。混合物の添加終了後から280分後に反応液は当初の黄色から無色に変わった。さらに20分撹拌後に反応液をサンプリングした。
 工程(1)における1,1-ジメチルプロパン-1,3-ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。また、得られた重合体のMn(Mn(R1))は11,600、Mw/Mnは1.12であった。さらに、工程(1)における重合開始効率(F1)は99%であった。
 (工程(2))
 引き続き反応液を-20℃で撹拌しつつ、有機アルミニウム化合物としてイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムを25.9質量%含むトルエン溶液を10.7g(5.28mmol)加え、その1分後に単量体としてアクリル酸n-ブチル255g(2.00mol)を5g/分の速度で添加した。単量体の添加終了直後に反応液をサンプリングした。
 工程(2)におけるアクリル酸n-ブチルの消費率は100%であった。また、得られた重合体のMn(Mn(R2))は38,900、Mw/Mnは1.10であった。さらに、工程(1)から工程(2)にかけてのブロック効率(F2)は99%であった。
 (工程(3))
 引き続き反応液を-20℃で撹拌しつつ、単量体として1,1-ジメチルプロパン-1,3-ジオールジメタクリレート23.4g(97.4mmol)とメタクリル酸メチル73.5g(734mmol)の混合物96.9gを一括で添加したのち、2℃/分の速度で20℃に昇温した。上記混合物の添加から150分後に反応液をサンプリングした。
 工程(3)における1,1-ジメチルプロパン-1,3-ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。
 (工程(4))
 引き続き反応液を20℃で攪拌しつつ、50質量%酢酸水を51.2g加えることによりアニオン重合を停止させて、メタクリル系重合体ブロック(A)-(メタ)アクリル系重合体ブロック(B)-メタクリル系重合体ブロック(A)(A-B-A)の順に結合したトリブロック共重合体である(メタ)アクリル系ブロック共重合体を含有する溶液を得た。かかる溶液からサンプリングした(メタ)アクリル系ブロック共重合体のMnは47,400、Mw/Mnは1.22であった。
 (工程(5))
 次いで得られた溶液を窒素流動下、90℃で攪拌しつつ、90分加熱することで触媒金属の酢酸塩を形成させた。該溶液を25℃まで冷却した後、遠心分離機(日立工機株式会社製、himacCR22GII)を用いて18,800Gの遠心力で30分間遠心分離して酢酸塩を沈殿させ、上澄み液を回収した。回収した上澄み液を5倍量のヘキサンに滴下して再沈殿を行い、さらに80℃、30Paで乾燥して450gの(メタ)アクリル系ブロック共重合体(以下、「(メタ)アクリル系ブロック共重合体(15)」と称する)を得た。得られた(メタ)アクリル系ブロック共重合体(15)を含有する活性エネルギー線硬化性組成物の硬化物の評価結果を表1に示す。
 [比較例7]
 (工程(1))
 内部を乾燥し窒素置換した3Lのフラスコにトルエン1.39kgを添加した後、攪拌しながら、さらに、ルイス塩基として1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン2.32g(10.1mmol)、および有機アルミニウム化合物としてイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムを25.9質量含む%トルエン溶液37.8g(15.0mmol)を順次添加して、-20℃に冷却した。これに有機リチウム化合物としてsec-ブチルリチウムを9.98質量%含むシクロヘキサン溶液6.16g(9.60mmol)を加え、その後、単量体として1,1-ジメチルプロパン-1,3-ジオールジメタクリレート6.53g(27.2mmol)とメタクリル酸メチル57.1g(571mmol)との混合物63.63gを一括で添加し、アニオン重合を開始した。混合物の添加終了後から140分後に反応液は当初の黄色から無色に変わった。さらに20分撹拌後に反応液をサンプリングした。
 工程(1)における1,1-ジメチルプロパン-1,3-ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。また、得られた重合体のMn(Mn(R1))は6,700、Mw/Mnは1.10であった。さらに、工程(1)における重合開始効率(F1)は99%であった。
 (工程(2))
 引き続き反応液を-20℃で撹拌しつつ、有機アルミニウム化合物としてイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムを25.9質量%含むトルエン溶液を10.7g(5.28mmol)加え、その1分後に単量体としてアクリル酸n-ブチル361g(2.82mol)を5g/分の速度で添加した。単量体の添加終了直後に反応液をサンプリングした。
 工程(2)におけるアクリル酸n-ブチルの消費率は100%であった。また、得られた重合体のMn(Mn(R2))は45,000、Mw/Mnは1.15であった。さらに、工程(1)から工程(2)にかけてのブロック効率(F2)は99%であった。
 (工程(3))
 引き続き反応液を-20℃で撹拌しつつ、単量体として1,1-ジメチルプロパン-1,3-ジオールジメタクリレート5.76g(24.0mmol)とメタクリル酸メチル50.4g(503mmol)の混合物56.16gを一括で添加したのち、2℃/分の速度で20℃に昇温した。上記混合物の添加から90分後に反応液をサンプリングした。
 工程(3)における1,1-ジメチルプロパン-1,3-ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。
 (工程(4))
 引き続き反応液を20℃で攪拌しつつ、50質量%酢酸水を51.2g加えることによりアニオン重合を停止させて、メタクリル系重合体ブロック(A)-(メタ)アクリル系重合体ブロック(B)-メタクリル系重合体ブロック(A)(A-B-A)の順に結合したトリブロック共重合体である(メタ)アクリル系ブロック共重合体を含有する溶液を得た。かかる溶液からサンプリングした(メタ)アクリル系ブロック共重合体のMnは50,300、Mw/Mnは1.16であった。
 (工程(5))
 次いで得られた溶液を窒素流動下、90℃で攪拌しつつ、90分加熱することで触媒金属の酢酸塩を形成させた。該溶液を25℃まで冷却した後、遠心分離機(日立工機株式会社製、himacCR22GII)を用いて18,800Gの遠心力で30分間遠心分離して酢酸塩を沈殿させ、上澄み液を回収した。回収した上澄み液からエバポレータを用いて60℃にて溶媒を除去した後、さらに100℃、30Paで乾燥して470gの(メタ)アクリル系ブロック共重合体(以下、「(メタ)アクリル系ブロック共重合体(16)」と称する)を得た。得られた(メタ)アクリル系ブロック共重合体(16)を含有する活性エネルギー線硬化性組成物の硬化物の評価結果を表1に示す。
 [比較例8]
 (工程(1))
 内部を乾燥し窒素置換した3Lのフラスコにトルエン1.39kgを添加した後、攪拌しながら、さらに、ルイス塩基として1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン1.74g(7.56mmol)、および有機アルミニウム化合物としてイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムを25.9質量%含むトルエン溶液28.3g(14.0mmol)を順次添加して、-20℃に冷却した。これに有機リチウム化合物としてsec-ブチルリチウムを9.98質量%含むシクロヘキサン溶液4.62g(7.20mmol)を加え、その後、単量体として1,1-ジメチルプロパン-1,3-ジオールジメタクリレート4.90g(20.4mmol)とメタクリル酸メチル132g(1.32mol)との混合物136.9gを一括で添加し、アニオン重合を開始した。混合物の添加終了後から300分後に反応液は当初の黄色から無色に変わった。さらに20分撹拌後に反応液をサンプリングした。
 工程(1)における1,1-ジメチルプロパン-1,3-ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。また、得られた重合体のMn(Mn(R1))は19,700、Mw/Mnは1.20であった。さらに、工程(1)における重合開始効率(F1)は97%であった。
 (工程(2))
 引き続き反応液を-20℃で撹拌しつつ、有機アルミニウム化合物としてイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムを25.9質量%含むトルエン溶液を8.00g(3.96mmol)加え、その1分後に単量体としてアクリル酸n-ブチル111g(868mmol)を5g/分の速度で添加した。単量体の添加終了直後に反応液をサンプリングした。
 工程(2)におけるアクリル酸n-ブチルの消費率は100%であった。また、得られた重合体のMn(Mn(R2))は36,700、Mw/Mnは1.24であった。さらに、工程(1)から工程(2)にかけてのブロック効率(F2)は97%であった。
 (工程(3))
 引き続き反応液を-20℃で撹拌しつつ、単量体として1,1-ジメチルプロパン-1,3-ジオールジメタクリレート4.32g(18.0mmol)とメタクリル酸メチル117g(1.17mol)の混合物121.32gを一括で添加したのち、2℃/分の速度で20℃に昇温した。上記混合物の添加から240分後に反応液をサンプリングした。
 工程(3)における1,1-ジメチルプロパン-1,3-ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。
 (工程(4))
 引き続き反応液を20℃で攪拌しつつ、50質量%酢酸水を38.4g加えることによりアニオン重合を停止させて、メタクリル系重合体ブロック(A)-(メタ)アクリル系重合体ブロック(B)-メタクリル系重合体ブロック(A)(A-B-A)の順に結合したトリブロック共重合体である(メタ)アクリル系ブロック共重合体を含有する溶液を得た。かかる溶液からサンプリングした(メタ)アクリル系ブロック共重合体のMnは50,200、Mw/Mnは1.19であった。
 (工程(5))
 次いで得られた溶液を窒素流動下、90℃で攪拌しつつ、90分加熱することで触媒金属の酢酸塩を形成させた。該溶液を25℃まで冷却した後、遠心分離機(日立工機株式会社製、himacCR22GII)を用いて18,800Gの遠心力で30分間遠心分離して酢酸塩を沈殿させ、上澄み液を回収した。回収した上澄み液を5倍量のヘキサンに滴下して再沈殿を行い、さらに80℃、30Paで乾燥して350gの(メタ)アクリル系ブロック共重合体(以下、「(メタ)アクリル系ブロック共重合体(17)」と称する)を得た。得られた(メタ)アクリル系ブロック共重合体(17)を含有する活性エネルギー線硬化性組成物の硬化物の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000006
 表1から分かるように、本発明の(メタ)アクリル系ブロック共重合体は硬化性に優れ、活性エネルギー線を照射して得られる硬化物は延伸性に優れかつタック感を有さない。

Claims (3)

  1.  下記一般式(1)で示される部分構造(1)を含む活性エネルギー線硬化性基を有するメタクリル系重合体ブロック(A)と、活性エネルギー線硬化性基を有さない(メタ)アクリル系重合体ブロック(B)とを含有する(メタ)アクリル系ブロック共重合体であり、
    (メタ)アクリル系ブロック共重合体を構成する全単量体単位に対する部分構造(1)の含有量が0.3モル%以上5.0モル%以下であり、
    (メタ)アクリル系ブロック共重合体におけるメタクリル系重合体ブロック(A)の含有量が30質量%以上60質量%以下であり、
    (メタ)アクリル系ブロック共重合体の数平均分子量が40,000以上である(メタ)アクリル系ブロック共重合体。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R1は水素原子または炭素数1~20の炭化水素基を表す。)
  2.  請求項1に記載の(メタ)アクリル系ブロック共重合体を含有する活性エネルギー線硬化性組成物。
  3.  請求項1に記載の(メタ)アクリル系ブロック共重合体または請求項2に記載の活性エネルギー線硬化性組成物の硬化物。
PCT/JP2016/087936 2015-12-25 2016-12-20 (メタ)アクリル系ブロック共重合体 WO2017110802A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017558153A JPWO2017110802A1 (ja) 2015-12-25 2016-12-20 (メタ)アクリル系ブロック共重合体

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-253991 2015-12-25
JP2015253991 2015-12-25
JP2016121659 2016-06-20
JP2016-121659 2016-06-20

Publications (1)

Publication Number Publication Date
WO2017110802A1 true WO2017110802A1 (ja) 2017-06-29

Family

ID=59090419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087936 WO2017110802A1 (ja) 2015-12-25 2016-12-20 (メタ)アクリル系ブロック共重合体

Country Status (3)

Country Link
JP (1) JPWO2017110802A1 (ja)
TW (1) TW201734068A (ja)
WO (1) WO2017110802A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019077807A (ja) * 2017-10-25 2019-05-23 株式会社クラレ 活性エネルギー線硬化性樹脂組成物、それを含む積層体および成形体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002145972A (ja) * 2000-11-09 2002-05-22 Kuraray Co Ltd アクリル系熱可塑性エラストマー組成物の製造方法
JP2011184678A (ja) * 2009-09-17 2011-09-22 Kaneka Corp 活性エネルギー線硬化性組成物
JP2016041794A (ja) * 2014-08-19 2016-03-31 株式会社クラレ 活性エネルギー線硬化性組成物
WO2016093953A1 (en) * 2014-12-08 2016-06-16 Henkel IP & Holding GmbH Process for making branched reactive block polymers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002145972A (ja) * 2000-11-09 2002-05-22 Kuraray Co Ltd アクリル系熱可塑性エラストマー組成物の製造方法
JP2011184678A (ja) * 2009-09-17 2011-09-22 Kaneka Corp 活性エネルギー線硬化性組成物
JP2016041794A (ja) * 2014-08-19 2016-03-31 株式会社クラレ 活性エネルギー線硬化性組成物
WO2016093953A1 (en) * 2014-12-08 2016-06-16 Henkel IP & Holding GmbH Process for making branched reactive block polymers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019077807A (ja) * 2017-10-25 2019-05-23 株式会社クラレ 活性エネルギー線硬化性樹脂組成物、それを含む積層体および成形体

Also Published As

Publication number Publication date
TW201734068A (zh) 2017-10-01
JPWO2017110802A1 (ja) 2018-10-18

Similar Documents

Publication Publication Date Title
JP6842416B2 (ja) (メタ)アクリル系ブロック共重合体
JP7153665B2 (ja) (メタ)アクリル系ブロック共重合体およびそれを含有する活性エネルギー線硬化性組成物
JP6309402B2 (ja) (メタ)アクリル系ブロック共重合体および活性エネルギー線硬化性組成物
JP2016056313A (ja) 活性エネルギー線硬化型アンダーコート剤および表面被覆成形体
WO2017110802A1 (ja) (メタ)アクリル系ブロック共重合体
JP2018039941A (ja) (メタ)アクリル系ブロック共重合体組成物
JP2016041794A (ja) 活性エネルギー線硬化性組成物
JP6346528B2 (ja) ブロック共重合体および活性エネルギー線硬化性組成物
WO2017110439A1 (ja) (メタ)アクリル系ブロック共重合体および該(メタ)アクリル系ブロック共重合体を含有する活性エネルギー線硬化性組成物
JP6289306B2 (ja) 硬化型接着剤
JP6498518B2 (ja) ブロック共重合体ならびにその製造方法および用途
JP2018188501A (ja) 活性エネルギー線硬化性ハードコート剤およびハードコートフィルム
JP2020007503A (ja) 活性エネルギー線硬化性組成物
JP6289320B2 (ja) 硬化型インク用バインダーおよび硬化型インク
JP6329028B2 (ja) 硬化型シーリング剤
JP2018145276A (ja) (メタ)アクリル系ブロック共重合体およびそれを含有する活性エネルギー線硬化性組成物。
JP2020007502A (ja) 活性エネルギー線硬化性組成物
JP2019052248A (ja) 活性エネルギー線硬化性組成物
JP2018039940A (ja) (メタ)アクリル系ブロック共重合体組成物
JP2019035029A (ja) 活性エネルギー線硬化性組成物
JP2016056250A (ja) 活性エネルギー線硬化性ハードコート剤およびハードコートフィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878691

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017558153

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878691

Country of ref document: EP

Kind code of ref document: A1