WO2017110629A1 - 透明スクリーン - Google Patents

透明スクリーン Download PDF

Info

Publication number
WO2017110629A1
WO2017110629A1 PCT/JP2016/087271 JP2016087271W WO2017110629A1 WO 2017110629 A1 WO2017110629 A1 WO 2017110629A1 JP 2016087271 W JP2016087271 W JP 2016087271W WO 2017110629 A1 WO2017110629 A1 WO 2017110629A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
cholesteric liquid
crystal layer
light
transparent screen
Prior art date
Application number
PCT/JP2016/087271
Other languages
English (en)
French (fr)
Inventor
雄二郎 矢内
昌 山本
永井 道夫
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2017558065A priority Critical patent/JP6670326B2/ja
Publication of WO2017110629A1 publication Critical patent/WO2017110629A1/ja
Priority to US16/015,513 priority patent/US10795254B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/604Polarised screens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133543Cholesteric polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/34Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 reflector
    • G02F2201/343Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 reflector cholesteric liquid crystal reflector
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/28Reflectors in projection beam

Definitions

  • the present invention relates to a transparent screen.
  • Patent Document 1 discloses that a base material layer that can transmit light and is formed in a substantially parallel plate shape, and a rear surface side opposite to the image source side of the base material layer protrudes along the screen surface.
  • a plurality of unit shapes arranged in a one-dimensional or two-dimensional direction and capable of transmitting light, and a reflection layer provided on the top of the back side of the unit shape and reflecting image light that has passed through the unit shape.
  • the shapes are arranged with a gap, and between the unit shapes are arranged, a background transmission portion is provided in which a base layer or a plane parallel to the base layer is exposed.
  • a transflective reflective screen is described. This transflective reflective screen is a screen that allows observation of the background on the back side from the front while allowing image light from the front to be reflected by a reflection surface and observable.
  • Patent Document 2 describes that a reflection element made of cholesteric liquid crystal having a function of reflecting light of a specific polarization component is used as a reflection element in a normal projection screen.
  • the normal of the element plane is obtained by aligning the average of the helical axis directions of the liquid crystal domains of the cholesteric liquid crystal layer so as to be inclined with respect to the normal direction of the surface of the cholesteric liquid crystal layer.
  • Optical characteristics that are anisotropic with respect to the direction can be obtained, and the reflection angle of the reflected light of the image light and the reflected light at the outermost surface can be made different to prevent the reflection of the light source from being seen by the observer. Is described.
  • Patent Document 2 describes that the reflected light of the image light is diffused because the spiral axis direction of the liquid crystal domain of the cholesteric liquid crystal layer varies. Therefore, there is a problem that the reflection intensity of the image light in a specific direction cannot be increased. In addition, since the light from the background is also scattered, the problem is that the transparency is low.
  • An object of the present invention is to solve such problems of the prior art.
  • a transparent screen that reflects light from the front side and transmits light from the back side, the reflected light of the image light and the outermost surface are reflected.
  • Provide a transparent screen that can prevent the reflection of the light source from being seen by the observer, and can increase the reflection intensity of the image light and increase the transparency by making the emission angle with the reflected light at There is.
  • a support that can transmit light, a plurality of convex portions that are formed on one surface of the support and have inclined surfaces parallel to each other, A cholesteric liquid crystal layer made of a liquid crystal material having a cholesteric structure formed on each inclined surface of a plurality of convex portions, and an overcoat laminated on the surface of the plurality of convex portions of the support so as to cover the cholesteric liquid crystal layer
  • the normal line of the inclined surface of the plurality of convex portions and the helical axis of the cholesteric liquid crystal layer are parallel to each other, and the normal line of the overcoat layer surface and the helical axis of the cholesteric liquid crystal layer
  • the refractive index difference between the cholesteric liquid crystal layer and the convex portion is 0.2 or less, and the refractive index difference between the cholesteric liquid crystal layer and the overcoat layer is 0.2 or less.
  • a support capable of transmitting light; A plurality of convex portions formed on one surface of the support and having inclined surfaces parallel to each other; A cholesteric liquid crystal layer made of a liquid crystal material having a cholesteric structure formed on each inclined surface of the plurality of convex portions; On the surface of the plurality of convex portions of the support, an overcoat layer that is laminated so as to cover the cholesteric liquid crystal layer, The normal line of the inclined surface of the plurality of convex portions and the spiral axis of the cholesteric structure of the cholesteric liquid crystal layer are parallel, The angle formed between the normal of the surface of the overcoat layer and the helical axis of the cholesteric structure of the cholesteric liquid crystal layer is 5 to 42 °, The refractive index difference between the cholesteric liquid crystal layer and the convex portion is 0.2 or less, A transparent screen having a refractive index difference of 0.2 or less between a cholesteric liquid crystal layer and the overcoat layer.
  • the shape of the protrusions is an obtuse triangle, and the apex of the obtuse angle is disposed on the surface side of the overcoat layer.
  • the reflection angles of the reflected light of the image light and the reflected light on the outermost surface are made different so that the reflection of the light source is prevented from being seen by an observer, and the reflection intensity of the image light is increased.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • an angle such as “45 °”, “parallel”, “vertical”, or “orthogonal”, unless otherwise specified, has a difference from an exact angle within a range of less than 5 degrees. Means. The difference from the exact angle is preferably less than 4 degrees, and more preferably less than 3 degrees.
  • “(meth) acrylate” is used to mean “one or both of acrylate and methacrylate”.
  • “same” includes an error range generally allowed in the technical field.
  • “all”, “any” or “entire surface” it includes an error range generally allowed in the technical field in addition to the case of 100%, for example, 99% or more, The case of 95% or more, or 90% or more is included.
  • Visible light is light having a wavelength visible to the human eye among electromagnetic waves, and indicates light having a wavelength range of 380 nm to 780 nm.
  • Invisible light is light having a wavelength range of less than 380 nm or a wavelength range of more than 780 nm.
  • light in the wavelength region of 420 nm to 495 nm is blue light
  • light in the wavelength region of 495 nm to 570 nm is green light
  • light in the range of 620 nm to 750 nm The light in the wavelength band is red light.
  • near infrared light is an electromagnetic wave having a wavelength range of 780 nm to 2500 nm.
  • Ultraviolet light is light having a wavelength in the range of 10 to 380 nm.
  • haze means a value measured using a haze meter NDH-2000 manufactured by Nippon Denshoku Industries Co., Ltd. Theoretically, haze means a value represented by the following equation. (Scattering transmittance of natural light of 380 to 780 nm) / (scattering transmittance of natural light of 380 to 780 nm + direct transmittance of natural light) ⁇ 100%
  • the scattering transmittance is a value that can be calculated by subtracting the direct transmittance from the obtained omnidirectional transmittance using a spectrophotometer and an integrating sphere unit.
  • the direct transmittance is a transmittance at 0 ° based on a value measured using an integrating sphere unit. That is, the low haze means that the direct transmitted light amount is large in the total transmitted light amount.
  • the refractive index is a refractive index for light having a wavelength of 589.3 nm.
  • the transparent screen of the present invention comprises a support capable of transmitting light, A plurality of convex portions formed on one surface of the support and having inclined surfaces parallel to each other; A cholesteric liquid crystal layer made of a liquid crystal material having a cholesteric structure formed on each inclined surface of the plurality of convex portions; On the surface of the plurality of convex portions of the support, an overcoat layer that is laminated so as to cover the cholesteric liquid crystal layer, The normal line of the inclined surface of the plurality of convex portions and the spiral axis of the cholesteric structure of the cholesteric liquid crystal layer are parallel, The angle between the normal of the surface of the overcoat layer and the helical axis of the cholesteric structure of the cholesteric liquid crystal layer is 5 to 42 °, The refractive index difference between the cholesteric liquid crystal layer and the convex portion is 0.2 or less, The transparent screen has a refractive index difference of 0.2 or less between the cholesteric liquid crystal layer and
  • FIG. 1 conceptually shows an example of the transparent screen of the present invention.
  • the figure in this invention is a schematic diagram, and the relationship of the thickness of each layer, a positional relationship, etc. do not necessarily correspond with an actual thing. The same applies to the following figures.
  • a transparent screen 10a shown in FIG. 1 includes a support 12 having a plurality of projections 12b, a cholesteric liquid crystal layer 14 formed on the inclined surface of the projection 12b, and a surface of the support 12 on the side of the plurality of projections 12b. And an overcoat layer 16 laminated to cover the cholesteric liquid crystal layer 14.
  • the image light is incident on the surface on which the cholesteric liquid crystal layer 14 is formed. That is, the surface on which the cholesteric liquid crystal layer 14 is formed is the front surface, and the opposite surface is the back surface.
  • the cholesteric liquid crystal layer 14 is formed on the inclined surface of the convex portion 12b, and the normal of the surface of the overcoat layer 16 (the surface of the transparent screen 10a) and the spiral axis of the cholesteric structure of the cholesteric liquid crystal layer 14 are formed.
  • helical axis angle ⁇ 1 is 5 to 42 °
  • the refractive index difference between the cholesteric liquid crystal layer 14 and the convex portion 12b is 0.2 or less
  • the refractive index difference between 14 and the overcoat layer 16 is 0.2 or less.
  • the light that has reached the cholesteric liquid crystal layer 14 is specularly reflected by the cholesteric liquid crystal layer 14 to be transparent screen 10a. Is emitted in the front direction.
  • the light reflected on the surface of the overcoat layer 16 transparent screen 10a
  • the light reflected on the surface of the overcoat layer 16 is specularly reflected on the surface of the overcoat layer 16 and obliquely (upper left in FIG. 1). Emitted.
  • the reflection direction of the light reflected by the cholesteric liquid crystal layer 14 and the light reflected by the surface of the overcoat layer 16 can be made different so that the reflection of the light source can be prevented from being seen by the observer. Further, since the light is emitted in the front direction of the transparent screen 10a due to the specular reflection at the cholesteric liquid crystal layer 14, the reflection intensity of the image light at the front can be increased.
  • light is incident on the transparent screen from an oblique direction, for example, by using a so-called short focus projector as an image source, and a large projection angle from the oblique direction to the transparent screen (on the main surface of the transparent screen).
  • a system for projecting image light at a normal of 0 ° By projecting image light onto the transparent screen of the present invention using a short focus projector, the reflected light of the image light is reflected in the front direction of the transparent screen, and the reflected light at the outermost surface is reflected in a direction other than the front direction. It is possible to prevent the reflection of the light source from being seen by an observer, and the reflection intensity of the image light at the front can be increased.
  • the support 12 preferably transmits light, that is, has a low light reflectance at a wavelength at which the cholesteric liquid crystal layer reflects light, and includes a material that reflects light at a wavelength at which the cholesteric liquid crystal layer reflects light. Preferably not.
  • the support 12 is preferably transparent in the visible light region. Further, the support 12 may be colored, but is preferably not colored or less colored.
  • the support 12 has a flat sheet-like substrate 12a and a plurality of convex portions 12b formed on one main surface of the substrate 12a.
  • the convex part 12b has a right-angled triangular cross section, and the surface adjacent to the right angle is formed on the surface side of the substrate 12a.
  • the convex part 12b turns into the inclined surface which the surface which does not adjoin at right angle inclines with the predetermined angle with respect to the main surface of the base material 12a.
  • the inclined surfaces of the convex portions 12b are parallel to each other.
  • the convex part 12b is arrange
  • a cholesteric liquid crystal layer 14 to be described later is formed on the inclined surface of each convex portion 12b.
  • ⁇ 1 (helical axis angle ⁇ 1 ) can be set to 5 to 42 °.
  • the plurality of convex portions 12b may have a long shape extending in the width direction (direction perpendicular to the paper surface in FIG. 1), or the plurality of convex portions 12b are arranged in the width direction. May be. Further, the size of the convex portion 12b, for example, the length of the side in contact with the base material 12a in the cross-sectional shape of the convex portion 12b (hereinafter referred to as “the length of the convex portion 12b”), and the height from the surface of the base material 12a There is no limitation on the height (hereinafter referred to as “the height of the convex portion 12b”), etc., but it is difficult to visually recognize the convex portion, ease of arrangement of the cholesteric liquid crystal, prevention of rainbow unevenness due to the influence of diffraction, etc.
  • the length of the convex portion 12b is preferably 15 ⁇ m to 300 ⁇ m, and more preferably 30 ⁇ m to 100 ⁇ m. Further, the height of the convex portion 12b is preferably 1 ⁇ m to 270 ⁇ m, and more preferably 9 ⁇ m to 90 ⁇ m.
  • the inclination angle of the inclined surface of the convex portion 12b with respect to the main surface of the substrate 12 is such that the angle formed between the normal line of the surface of the overcoat layer described later and the helical axis of the cholesteric structure of the cholesteric liquid crystal layer is 5 to 42 °. Any angle can be used. That is, the inclination angle of the inclined surface is preferably 5 to 42 °, more preferably 10 to 25 °, and still more preferably 15 to 20 °.
  • the refractive index difference between the convex portion 12b and the cholesteric liquid crystal layer 14 is 0.2 or less, preferably 0.05 or less, and more preferably 0.02 or less.
  • the thickness of the substrate 12a may be selected depending on the application and is not particularly limited, but may be about 5 ⁇ m to 1000 ⁇ m, preferably 10 ⁇ m to 250 ⁇ m. More preferably, it is 15 ⁇ m to 150 ⁇ m.
  • the difference in refractive index between the substrate 12a and the cholesteric liquid crystal layer 14 is preferably 0.2 or less, more preferably 0.05 or less, and particularly preferably 0.02 or less.
  • the transparent screen 10a shown in FIG. 1 although it was set as the structure which has arrange
  • symbol is attached
  • a support 34 having a convex portion forming layer 34b in which a large number of convex portions are integrally formed and a substrate 12a may be used.
  • the some convex part 12b was set as the structure arrange
  • the transparent screen shown in FIG. As a configuration in which a plurality of convex portions 12b are discretely arranged as in 10d, a gap may be provided between adjacent convex portions 12b.
  • the reflection intensity of the image light can be further increased.
  • positions by providing a clearance gap between the convex parts 12b transparency can be improved more.
  • the length is about L ⁇ tan ⁇ ⁇ tan 2 ⁇ . It is preferable to have a gap, and it is preferable to have a gap having a length of 0.9 ⁇ L ⁇ tan ⁇ ⁇ tan 2 ⁇ or more and 1.1 ⁇ L ⁇ tan ⁇ ⁇ tan 2 ⁇ or less.
  • L is the length of the side in contact with the base material 12a in the right triangle of the cross-sectional shape of the convex part 12b, that is, the length of the convex part 12b
  • is the angle at the apex of the acute angle in contact with the base material 12a.
  • the convex portion 12b has a right-angled triangular cross-section, and the surface adjacent to the right angle is formed on the surface side of the substrate 12a.
  • the shape of the convex portions 12b is an obtuse triangle, and the apex of the obtuse angle is the surface side of the overcoat layer. That is, it has the structure arrange
  • the obtuse angle ⁇ 2 is preferably about 90 ° + ⁇ , and is preferably (85 ° + ⁇ ) or more and (95 ° + ⁇ ) or less.
  • the cholesteric liquid crystal layer 14 is arranged on one inclined surface of the convex portion 12b having an obtuse triangular shape.
  • the present invention is not limited to this, and the cholesteric liquid crystal layer is formed on both inclined surfaces. It is good also as a structure by which the layer 14 is arrange
  • the transparent screen from an oblique lower side of the transparent screen can be reflected in the front direction
  • light incident on the transparent screen from an oblique upper side of the transparent screen can be reflected in the front direction.
  • the image for the left or right eye of the observer is displayed for each of the right and left circular polarizations of the image light.
  • stereoscopic viewing can be performed.
  • the support may be a single layer or a multilayer.
  • the material for forming the support 32 in the case of a single layer include glass, triacetyl cellulose (TAC), polyethylene terephthalate ( PET), polycarbonate, polyvinyl chloride, acrylic, polyolefin, and the like. From the viewpoint of maintaining the polarization state of the reflected light, glass with low birefringence, triacetyl cellulose (TAC), acrylic, etc. Is preferred.
  • TAC triacetyl cellulose
  • acrylic acrylic
  • a resin layer obtained by curing a composition including a monomer can be given.
  • the resin is not particularly limited, and may be selected in consideration of the adhesiveness to the liquid crystal material forming the base material 12a and / or the cholesteric liquid crystal layer 14.
  • a thermoplastic resin, a thermosetting resin, an ultraviolet curable resin, or the like can be used. From the viewpoint of durability, solvent resistance, etc., a resin of a type that is cured by crosslinking is preferable, and an ultraviolet curable resin that can be cured in a short time is particularly preferable.
  • Monomers that can be used as a material for forming the convex portion 12b include ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, N-vinylpyrrolidone, polymethylolpropane tri (meth) acrylate, hexanediol (meta ) Acrylate, tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and And neopentyl glycol di (meth) acrylate.
  • the convex part 12b in the case of a multilayer, after apply
  • An example is a so-called imprint method in which the resin is cured by ultraviolet irradiation or the like while being molded.
  • the convex 12b may be formed by filling a mold with a resin composition to be the convex portion 12b, transferring the molded resin composition onto the support 12a, and curing it by ultraviolet irradiation or the like.
  • the support in order to form the cholesteric liquid crystal layer 14 described later, preferably has an alignment film on the surface. That is, it is preferable to form a cholesteric liquid crystal layer by using a support having an alignment film on the surface and applying a coating liquid to the surface of the alignment film.
  • the alignment film is preferably formed by polymer rubbing treatment.
  • the polymer include methacrylate copolymers, styrene copolymers, polyolefins, polyvinyl alcohol and modified polyvinyl alcohol, poly (N-methylolacrylamide) described in paragraph [0022] of JP-A-8-338913.
  • Silane coupling agents can also be used as the polymer.
  • the polymer is preferably a water-soluble polymer (eg, poly (N-methylolacrylamide), carboxymethylcellulose, gelatin, polyvinyl alcohol, and modified polyvinyl alcohol), more preferably gelatin, polyvinyl alcohol, and modified polyvinyl alcohol, and polyvinyl alcohol and Modified polyvinyl alcohol is most preferred.
  • a treatment method widely used as a liquid crystal alignment treatment process of a liquid crystal panel used in a liquid crystal display (LCD) or the like can be applied. That is, a method of obtaining the orientation by rubbing the surface of the orientation film in a certain direction using paper, gauze, felt, rubber, nylon, polyester fiber or the like can be used. Generally, it is carried out by rubbing several times using a cloth or the like in which fibers having a uniform length and thickness are planted on average.
  • a composition to be a cholesteric liquid crystal layer 14 described later is applied to the rubbing-treated surface of the alignment film to align the molecules of the liquid crystalline compound. Thereafter, the cholesteric liquid crystal layer 14 is formed by reacting the alignment film polymer with the polyfunctional monomer contained in the optically anisotropic layer or cross-linking the alignment film polymer using a cross-linking agent as necessary. can do.
  • the thickness of the alignment film is preferably in the range of 0.1 to 10 ⁇ m.
  • the surface energy of the support may be adjusted in order to align the orientation direction of the cholesteric structure when forming the cholesteric liquid crystal layer 14 described later.
  • a process for adjusting the surface energy there is a corona treatment.
  • a cholesteric liquid crystal layer 14 is disposed on the inclined surface of the convex portion 12 b of the support 12.
  • the cholesteric liquid crystal layer 14 is a layer having a uniform thickness covering the surface of the inclined surface of the convex portion 12b.
  • the cholesteric liquid crystal layer 14 has wavelength selective reflectivity.
  • the light in which the cholesteric liquid crystal layer 14 exhibits selective reflectivity is not particularly limited, and may be any of infrared light, visible light, ultraviolet light, and the like.
  • the transparent screen is used as a screen that displays an image of video light emitted from a video device such as a projector and a background on the back side of the transparent screen
  • the cholesteric liquid crystal layer 14 selectively reflects.
  • the light exhibiting the property is preferably visible light.
  • the said reflection wavelength is selected according to the wavelength of the light irradiated from the light source used in combination.
  • the cholesteric liquid crystal layer 14 is made of a liquid crystal material having a cholesteric structure.
  • the wavelength of light at which the cholesteric liquid crystal layer 14 exhibits selective reflectivity can be adjusted by adjusting the helical pitch in the cholesteric structure of the liquid crystal material forming the cholesteric liquid crystal layer 14.
  • the spiral axis direction of the cholesteric structure is parallel to the normal direction of the inclined surface of the convex portion 12b as will be described later.
  • the cholesteric liquid crystal layer 14 may be colored, but is preferably not colored or is not colored. Thereby, the transparency of a transparent screen can be improved.
  • Cholesteric structures are known to exhibit selective reflectivity at specific wavelengths.
  • the cholesteric structure gives a bright and dark stripe pattern in the cross-sectional view of the cholesteric liquid crystal layer 14 observed with a scanning electron microscope (SEM). Two repetitions of this bright part and dark part (two bright parts and two dark parts) correspond to one pitch of the spiral. Therefore, the pitch can be measured from the SEM sectional view.
  • the normal line of each line of the striped pattern is the spiral axis direction.
  • the reflected light of the cholesteric structure is circularly polarized light. That is, the reflected light of the cholesteric liquid crystal layer 14 is circularly polarized light on the transparent screen 10a. Whether the reflected light is right circularly polarized light or left circularly polarized light depends on the twist direction of the spiral in the cholesteric structure.
  • the selective reflection by the cholesteric liquid crystal reflects right circularly polarized light when the helical twist direction of the cholesteric liquid crystal is right, and reflects left circular polarized light when the helical twist direction is left.
  • any of right-handed and left-handed cholesteric liquid crystals may be used as the cholesteric liquid crystal layer 14.
  • the direction of the circularly polarized light is preferably selected to be the same as the direction of the circularly polarized light emitted from the light sources used in combination.
  • the direction of rotation of the cholesteric liquid crystal phase can be adjusted by the type of liquid crystal compound or the type of chiral agent added.
  • the half width of the reflection wavelength band is adjusted according to, for example, performance required for the transparent screen 10a.
  • the half-value width of the reflection wavelength band may be 10 to 500 nm, and preferably 25 to 100 nm.
  • the cholesteric structure can be obtained by fixing the cholesteric liquid crystal phase.
  • the structure in which the cholesteric liquid crystal phase is fixed may be a structure in which the alignment of the liquid crystal compound that is the cholesteric liquid crystal phase is maintained.
  • the polymerizable liquid crystal compound is in an alignment state of the cholesteric liquid crystal phase.
  • any structure may be used as long as it is polymerized and cured by ultraviolet irradiation, heating, or the like to form a layer having no fluidity, and at the same time, the orientation state is not changed by an external field or an external force.
  • the liquid crystal compound may no longer exhibit liquid crystallinity.
  • the polymerizable liquid crystal compound may have a high molecular weight due to a curing reaction and may no longer have liquid crystallinity.
  • Examples of the material used for forming the cholesteric liquid crystal layer 14 having a cholesteric structure include a liquid crystal composition containing a liquid crystal compound.
  • the liquid crystal compound is preferably a polymerizable liquid crystal compound.
  • the liquid crystal composition containing a polymerizable liquid crystal compound further contains a surfactant.
  • the liquid crystal composition may further contain a chiral agent and a polymerization initiator.
  • the polymerizable liquid crystal compound may be a rod-like liquid crystal compound or a disk-like liquid crystal compound, but is preferably a rod-like liquid crystal compound.
  • Examples of the rod-like polymerizable liquid crystal compound forming the cholesteric liquid crystal layer include a rod-like nematic liquid crystal compound.
  • rod-like nematic liquid crystal compounds examples include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines.
  • Phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles are preferably used. Not only low-molecular liquid crystal compounds but also high-molecular liquid crystal compounds can be used.
  • the polymerizable liquid crystal compound can be obtained by introducing a polymerizable group into the liquid crystal compound.
  • the polymerizable group include an unsaturated polymerizable group, an epoxy group, and an aziridinyl group, preferably an unsaturated polymerizable group, and particularly preferably an ethylenically unsaturated polymerizable group.
  • the polymerizable group can be introduced into the molecule of the liquid crystal compound by various methods.
  • the number of polymerizable groups possessed by the polymerizable liquid crystal compound is preferably 1 to 6, more preferably 1 to 3.
  • Examples of polymerizable liquid crystal compounds include Makromol. Chem., 190, 2255 (1989), Advanced Materials, 5, 107 (1993), US Pat. Nos.
  • polymerizable liquid crystal compound examples include compounds represented by the following formulas (1) to (11).
  • cyclic organopolysiloxane compounds having a cholesteric phase as disclosed in JP-A-57-165480 can be used.
  • the above-mentioned polymer liquid crystal compound includes a polymer in which a mesogenic group exhibiting liquid crystal is introduced into the main chain, a side chain, or both the main chain and the side chain, and a polymer cholesteric in which a cholesteryl group is introduced into the side chain
  • a liquid crystalline polymer as disclosed in JP-A-9-133810, a liquid crystalline polymer as disclosed in JP-A-11-293252, or the like can be used.
  • the addition amount of the polymerizable liquid crystal compound in the liquid crystal composition is preferably 75 to 99.9% by mass with respect to the solid content mass (mass excluding the solvent) of the liquid crystal composition, and preferably 80 to 99. More preferably, it is more preferably 85% to 90% by weight.
  • the inventors have added a surfactant to the liquid crystal composition used in forming the cholesteric liquid crystal layer 14 so that the polymerizable liquid crystal compound is horizontally aligned on the air interface side when the cholesteric liquid crystal layer 14 is formed, and the helical axis A cholesteric liquid crystal layer 14 whose direction is controlled as described above is obtained.
  • a surfactant added to the liquid crystal composition used in forming the cholesteric liquid crystal layer 14 so that the polymerizable liquid crystal compound is horizontally aligned on the air interface side when the cholesteric liquid crystal layer 14 is formed, and the helical axis A cholesteric liquid crystal layer 14 whose direction is controlled as described above is obtained.
  • the cholesteric liquid crystal layer 14 can be formed even when a surfactant is added.
  • the surfactant is preferably a compound that can function as an alignment control agent that contributes to stable or rapid conversion to a planar cholesteric structure.
  • the surfactant include a silicone-based surfactant and a fluorine-based surfactant, and a fluorine-based surfactant is preferable.
  • surfactant examples include compounds described in JP-A-2014-119605, [0082] to [0090], JP-A 2012-203237, paragraphs [0031] to [0034], Compounds exemplified in [0092] and [0093] of JP-A-2005-99248, exemplified in [0076] to [0078] and [0082] to [0085] of JP-A-2002-129162 And fluorine (meth) acrylate polymers described in paragraphs [0018] to [0043] of JP-A-2007-272185, and the like.
  • 1 type may be used independently and 2 or more types may be used together.
  • fluorine-based surfactant compounds represented by the following general formula (I) described in [0082] to [0090] of JP-A No. 2014-119605 are particularly preferable.
  • L 11 , L 12 , L 13 , L 14 , L 15 and L 16 are each independently a single bond, —O—, —S—, —CO—, —COO—, —OCO. —, —COS—, —SCO—, —NRCO—, —CONR— (in the general formula (I), R represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms), —NRCO—, — CONR- has an effect of reducing solubility, and has a tendency to increase haze when the cholesteric liquid crystal layer 14 is produced.
  • the alkyl group that R can take may be linear or branched.
  • the number of carbon atoms is more preferably 1 to 3, and examples thereof include a methyl group, an ethyl group, and an n-propyl group.
  • Sp 11 , Sp 12 , Sp 13 and Sp 14 each independently represents a single bond or an alkylene group having 1 to 10 carbon atoms, more preferably a single bond or an alkylene group having 1 to 7 carbon atoms, and more preferably A single bond or an alkylene group having 1 to 4 carbon atoms.
  • the hydrogen atom of the alkylene group may be substituted with a fluorine atom.
  • the alkylene group may or may not be branched, but a linear alkylene group having no branch is preferred. From the viewpoint of synthesis, it is preferable that Sp 11 and Sp 14 are the same, and Sp 12 and Sp 13 are the same.
  • a 11 and A 12 are monovalent to tetravalent aromatic hydrocarbon groups.
  • the aromatic hydrocarbon group preferably has 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms, still more preferably 6 to 10 carbon atoms, and still more preferably 6.
  • the aromatic hydrocarbon groups represented by A 11 and A 12 may have a substituent. Examples of such a substituent include an alkyl group having 1 to 8 carbon atoms, an alkoxy group, a halogen atom, a cyano group, or an ester group. For the explanation and preferred ranges of these groups, the corresponding description of T below can be referred to.
  • Examples of the substituent for the aromatic hydrocarbon group represented by A 11 and A 12 include a methyl group, an ethyl group, a methoxy group, an ethoxy group, a bromine atom, a chlorine atom, and a cyano group.
  • Molecules having many perfluoroalkyl moiety in the molecule it is possible to align the liquid crystal in a small amount, since the lead to haze reduction, A 11, A 12 to have much a perfluoroalkyl group in the molecule It is preferably tetravalent. From the viewpoint of synthesis, A 11 and A 12 are preferably the same.
  • T 11 is (Wherein X in T 11 represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group, a halogen atom, a cyano group or an ester group) And each of Ya, Yb, Yc, and Yd independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. More preferably, And particularly preferably, It is.
  • the alkyl group that X contained in T 11 can have 1 to 8 carbon atoms, preferably 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms.
  • the alkyl group may be linear, branched or cyclic, and is preferably linear or branched. Examples of preferable alkyl groups include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group, and among them, a methyl group is preferable.
  • the alkyl moiety of the alkoxy group X contained in the T 11 can be taken, it is possible to refer to the description and the preferred range of the alkyl group X contained in the T 11 can take.
  • Examples of the halogen atom that X contained in T 11 can take include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a chlorine atom and a bromine atom are preferable.
  • Examples of the ester group that X contained in T 11 can take include a group represented by R′COO—.
  • Examples of R ′ include an alkyl group having 1 to 8 carbon atoms.
  • Specific examples of the ester include CH 3 COO— and C 2 H 5 COO—.
  • the alkyl group having 1 to 4 carbon atoms which Ya, Yb, Yc and Yd can take may be linear or branched.
  • a methyl group, an ethyl group, an n-propyl group, an isopropyl group and the like can be exemplified.
  • the divalent aromatic heterocyclic group preferably has a 5-membered, 6-membered or 7-membered heterocyclic ring.
  • a 5-membered ring or a 6-membered ring is more preferable, and a 6-membered ring is most preferable.
  • As the hetero atom constituting the heterocyclic ring a nitrogen atom, an oxygen atom and a sulfur atom are preferable.
  • the heterocycle is preferably an aromatic heterocycle.
  • the aromatic heterocycle is generally an unsaturated heterocycle. An unsaturated heterocyclic ring having the most double bond is more preferable.
  • heterocyclic rings examples include furan ring, thiophene ring, pyrrole ring, pyrroline ring, pyrrolidine ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring, imidazoline ring, imidazolidine ring, pyrazole ring, pyrazoline Ring, pyrazolidine ring, triazole ring, triazane ring, tetrazole ring, pyran ring, thiyne ring, pyridine ring, piperidine ring, oxazine ring, morpholine ring, thiazine ring, pyridazine ring, pyrimidine ring, pyrazine ring, piperazine ring and triazine ring included.
  • the divalent heterocyclic group may have a substituent.
  • substituents that can be taken by the above-described monovalent to tetravalent aromatic hydrocarbons of A 1 and A 2 .
  • Hb 11 represents a perfluoroalkyl group having 2 to 30 carbon atoms, more preferably a perfluoroalkyl group having 3 to 20 carbon atoms, and still more preferably a perfluoroalkyl group having 3 to 10 carbon atoms.
  • the perfluoroalkyl group may be linear, branched or cyclic, but is preferably linear or branched, and more preferably linear.
  • m11 and n11 are each independently 0 to 3, and m11 + n11 ⁇ 1.
  • a plurality of structures in parentheses may be the same or different from each other, but are preferably the same.
  • M11 and n11 in the general formula (I) are determined by the valences of A 11 and A 12 , and the preferable range is also determined by the preferable ranges of the valences of A 11 and A 12 .
  • O and p contained in T 11 are each independently an integer of 0 or more, and when o and p are 2 or more, a plurality of X may be the same or different from each other.
  • O contained in T 11 is preferably 1 or 2.
  • P contained in T 11 is preferably an integer of 1 to 4, and more preferably 1 or 2.
  • the compound represented by the general formula (I) may have a symmetrical molecular structure or may have no symmetry.
  • the symmetry means at least one of point symmetry, line symmetry, and rotational symmetry
  • asymmetry means that does not correspond to any of point symmetry, line symmetry, or rotational symmetry. means.
  • the compound represented by the general formula (I) includes the perfluoroalkyl group (Hb 11 ) and the linking group — (— Sp 11 -L 11 -Sp 12 -L 12 ) m 11 -A 11 -L 13 described above. - and -L 14 -A 12 - (L 15 -Sp 13 -L 16 -Sp 14 -) n 11 -, and is preferably a compound which is a combination of T is a divalent group having the excluded volume effect.
  • the two perfluoroalkyl groups (Hb 11 ) present in the molecule are preferably the same as each other, and the linking group present in the molecule — (— Sp 11 -L 11 -Sp 12 -L 12 ) m 11 -A 11 -L 13 - and -L 14 -A 12 - (L 15 -Sp 13 -L 16 -Sp 14 -) n 11 - preferably also the same.
  • the terminal Hb 11 -Sp 11 -L 11 -Sp 12 -and -Sp 13 -L 16 -Sp 14 -Hb 11 are preferably groups represented by any one of the following general formulas.
  • a is preferably from 2 to 30, more preferably from 3 to 20, and even more preferably from 3 to 10.
  • b is preferably 0 to 20, more preferably 0 to 10, and still more preferably 0 to 5.
  • a + b is 3 to 30.
  • r is preferably from 1 to 10, and more preferably from 1 to 4.
  • Hb 11 -Sp 11 -L 11 -Sp 12 -L 12 -and -L 15 -Sp 13 -L 16 -Sp 14 -Hb 11 at the terminal of the general formula (I) are any of the following general formulas: It is preferable that it is group represented by these.
  • the addition amount of the surfactant in the liquid crystal composition is preferably 0.01% by mass to 10% by mass, more preferably 0.01% by mass to 5% by mass with respect to the total mass of the polymerizable liquid crystal compound. ⁇ 1% by weight is particularly preferred.
  • the chiral agent has a function of inducing a helical structure of a cholesteric liquid crystal phase.
  • the chiral compound may be selected according to the purpose because the twist direction or the spiral pitch of the spiral induced by the compound is different.
  • the chiral agent is not particularly limited, and known compounds (for example, liquid crystal device handbook, Chapter 3-4-3, TN, chiral agent for STN, 199 pages, Japan Society for the Promotion of Science, 142nd edition, 1989) Description), isosorbide, and isomannide derivatives can be used.
  • a chiral agent generally contains an asymmetric carbon atom, but an axially asymmetric compound or a planar asymmetric compound containing no asymmetric carbon atom can also be used as the chiral agent.
  • the axial asymmetric compound or the planar asymmetric compound include binaphthyl, helicene, paracyclophane, and derivatives thereof.
  • the chiral agent may have a polymerizable group. When both the chiral agent and the liquid crystal compound have a polymerizable group, they are derived from the repeating unit derived from the polymerizable liquid crystal compound and the chiral agent by a polymerization reaction between the polymerizable chiral agent and the polymerizable liquid crystal compound.
  • the polymerizable group possessed by the polymerizable chiral agent is preferably the same group as the polymerizable group possessed by the polymerizable liquid crystal compound. Therefore, the polymerizable group of the chiral agent is also preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and an ethylenically unsaturated polymerizable group. Particularly preferred.
  • the chiral agent may be a liquid crystal compound.
  • the chiral agent has a photoisomerizable group because a pattern having a desired reflection wavelength corresponding to the emission wavelength can be formed by photomask irradiation such as actinic rays after coating and orientation.
  • a photoisomerization group the isomerization part of the compound which shows photochromic property, an azo, an azoxy, and a cinnamoyl group are preferable.
  • Specific examples of the compound include JP2002-80478, JP200280851, JP2002-179668, JP2002-179669, JP2002-179670, and JP2002.
  • chiral agent examples include compounds represented by the following formula (12).
  • X is 2 to 5 (integer).
  • the content of the chiral agent in the liquid crystal composition is preferably 0.01 to 200 mol%, more preferably 1 to 30 mol% of the polymerizable liquid crystalline compound amount.
  • the liquid crystal composition contains a polymerizable compound, it preferably contains a polymerization initiator.
  • the polymerization initiator to be used is preferably a photopolymerization initiator that can start the polymerization reaction by ultraviolet irradiation.
  • photopolymerization initiators include ⁇ -carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ether (described in US Pat. No. 2,448,828), ⁇ -hydrocarbon substituted aromatics.
  • Group acyloin compounds described in US Pat. No.
  • the content of the photopolymerization initiator in the liquid crystal composition is preferably 0.1 to 20% by mass, more preferably 0.5 to 12% by mass with respect to the content of the polymerizable liquid crystal compound. .
  • the liquid crystal composition may optionally contain a crosslinking agent in order to improve the film strength after curing and improve the durability.
  • a crosslinking agent one that can be cured by ultraviolet rays, heat, moisture, or the like can be suitably used.
  • polyfunctional acrylate compounds such as a trimethylol propane tri (meth) acrylate and pentaerythritol tri (meth) acrylate
  • Glycidyl (meth) acrylate Epoxy compounds such as ethylene glycol diglycidyl ether; aziridine compounds such as 2,2-bishydroxymethylbutanol-tris [3- (1-aziridinyl) propionate], 4,4-bis (ethyleneiminocarbonylamino) diphenylmethane; hexa Isocyanate compounds such as methylene diisocyanate and biuret type isocyanate; polyoxazoline compounds having an oxazoline group in the side chain; vinyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylto Alkoxysilane compounds such as methoxy silane.
  • a well-known catalyst can be used according to the reactivity of a crosslinking agent, and productivity can be improved in addition to membrane strength and durability improvement. These may be used individually by 1 type and may use 2 or more types together.
  • the content of the crosslinking agent is preferably 3 to 20% by mass, and more preferably 5 to 15% by mass. When the content of the crosslinking agent is less than 3% by mass, the effect of improving the crosslinking density may not be obtained. When the content exceeds 20% by mass, the stability of the cholesteric liquid crystal layer may be decreased.
  • a monofunctional polymerizable monomer may be used in order to obtain generally required ink physical properties.
  • the monofunctional polymerizable monomer include 2-methoxyethyl acrylate, isobutyl acrylate, isooctyl acrylate, isodecyl acrylate, octyl / decyl acrylate, and the like.
  • liquid crystal composition if necessary, a polymerization inhibitor, an antioxidant, an ultraviolet absorber, a light stabilizer, a colorant, metal oxide fine particles, etc., in a range that does not deteriorate the optical performance and the like. Can be added.
  • the liquid crystal composition is preferably used as a liquid when forming the cholesteric liquid crystal layer 14.
  • the liquid crystal composition may contain a solvent.
  • a solvent There is no restriction
  • the organic solvent is not particularly limited and may be appropriately selected depending on the intended purpose. For example, ketones such as methyl ethyl ketone and methyl isobutyl ketone, alkyl halides, amides, sulfoxides, heterocyclic compounds, hydrocarbons , Esters, ethers and the like. These may be used individually by 1 type and may use 2 or more types together. Among these, ketones are particularly preferable in consideration of environmental load.
  • the above-described components such as the above-mentioned monofunctional polymerizable monomer may function as a solvent.
  • the liquid crystal composition is applied onto the support 12, dried, and then cured to form the cholesteric liquid crystal layer 14.
  • the liquid crystal composition can be applied using a known coating apparatus such as a bar coater such as a wire bar coater, a die coater, a wire coater, a spin coater, or a doctor blade.
  • a bar coater such as a wire bar coater, a die coater, a wire coater, a spin coater, or a doctor blade.
  • a printing method can be suitably used.
  • the printing method is not particularly limited, and an inkjet method, a gravure printing method, a flexographic printing method, or the like can be used.
  • a liquid crystal composition that is a layer on the support 12 side is applied.
  • the first layer is then cured to form a second layer, and then the second layer of liquid crystal composition is deposited on the first layer and cured to form the second layer.
  • the cholesteric liquid crystal layer 14 having a plurality of regions having different wavelength regions or polarization directions of reflected light can be formed.
  • the liquid crystal composition coated on the support 12 is dried or heated as necessary, and then cured.
  • the polymerizable liquid crystal compound in the liquid crystal composition may be aligned in the drying or heating step.
  • the heating temperature is preferably 200 ° C. or lower, more preferably 130 ° C. or lower.
  • the aligned liquid crystal compound may be further polymerized.
  • the polymerization may be either thermal polymerization or photopolymerization by light irradiation, but photopolymerization is preferred. It is preferable to use ultraviolet rays for light irradiation.
  • the irradiation energy is preferably 20 to 50 J / cm 2, more preferably 10 to 1,500 mJ / cm 2 .
  • light irradiation may be performed under heating conditions or in a nitrogen atmosphere.
  • the irradiation ultraviolet wavelength is preferably 250 to 430 nm.
  • the polymerization reaction rate is preferably high from the viewpoint of stability, preferably 70% or more, and more preferably 80% or more.
  • the polymerization reaction rate can determine the consumption rate of a polymerizable functional group using an IR absorption spectrum.
  • An overcoat layer 16 is formed on the cholesteric liquid crystal layer 14.
  • the overcoat layer 16 is provided on the surface of the support 12 where the cholesteric liquid crystal layer 14 is formed so as to cover the cholesteric liquid crystal layer 14. Further, the surface of the overcoat layer 16 is substantially flat, and is substantially parallel to the main surface of the substrate 12a of the support 12.
  • the overcoat layer 16 is not particularly limited, but the smaller the difference from the refractive index of the cholesteric liquid crystal layer 14, the better.
  • the difference in refractive index is 0.2 or less, and preferably 0.05 or less.
  • a resin layer having a refractive index of about 1.4 to 1.8 is preferable.
  • the overcoat examples include a resin layer obtained by coating a composition containing a monomer on the surface of the cholesteric liquid crystal layer 14 and then curing the coating film.
  • the resin is not particularly limited, and may be selected in consideration of adhesion to the liquid crystal material forming the support 12 and / or the cholesteric liquid crystal layer 14.
  • a thermoplastic resin, a thermosetting resin, an ultraviolet curable resin, or the like can be used. From the viewpoint of durability, solvent resistance, etc., a resin of a type that is cured by crosslinking is preferable, and an ultraviolet curable resin that can be cured in a short time is particularly preferable.
  • Monomers that can be used to form the overcoat include ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, N-vinylpyrrolidone, polymethylolpropane tri (meth) acrylate, and hexanediol (meth) acrylate.
  • Tripropylene glycol di (meth) acrylate Tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (Meth) acrylate etc. are mentioned.
  • the thickness of the overcoat is not particularly limited and may be determined in consideration of the maximum height of the cholesteric liquid crystal layer 14 and may be about 1 ⁇ m to 270 ⁇ m, preferably 5 ⁇ m to 180 ⁇ m, more preferably 9 ⁇ m. ⁇ 90 ⁇ m.
  • the thickness is the distance from the surface of the support 12 where there is no cholesteric liquid crystal layer 14 to the overcoat surface on the opposite surface.
  • cholesteric liquid crystal layers 14 reflect light in the same wavelength range, but the present invention is not limited to this, and reflects light in different wavelength ranges. It is good also as a structure containing 2 or more types of cholesteric liquid crystal layers. For example, a cholesteric liquid crystal layer that reflects red light in the wavelength range of 610 nm to 690 nm, a cholesteric liquid crystal layer that reflects green light in the wavelength range of 515 nm to 585 nm, and a cholesteric liquid crystal that reflects blue light in the wavelength range of 420 nm to 480 nm. A structure including a plurality of layers may be employed.
  • a cholesteric liquid crystal layer that reflects red light a cholesteric liquid crystal layer that reflects green light
  • a cholesteric liquid crystal layer that reflects blue light the red light, green light, and blue light of the incident video light are formed. It can reflect light and display the color of an image projected on a transparent screen, and blue light regardless of whether the image light emitted from an image device such as a projector is red light or green light. However, it is preferable in that it can be used.
  • the cholesteric liquid crystal layer that reflects red light, green light, and blue light is included.
  • the present invention is not limited to this, and the cholesteric liquid crystal layer that reflects light in other wavelength ranges. May be included.
  • the cholesteric liquid crystal layer that reflects red light, green light, and blue light may be any layer that reflects light in the above wavelength range, and the peak wavelength of the reflected wave may be outside the above range.
  • the configuration is not limited to three cholesteric liquid crystal layers that reflect red light, green light, and blue light.
  • a cholesteric liquid crystal layer that reflects red light, green light, and blue light four or more types of cholesteric liquid crystal layers that reflect light in other wavelength ranges may be used. It is good also as a structure containing.
  • the reflection wavelength of the cholesteric liquid crystal layer according to the wavelength of the image light emitted from the image device such as a projector, only the image light is efficiently reflected, and light having a wavelength not included in the image light is reflected. It can be transmitted and the transparency can be further enhanced.
  • the effect can be enhanced by narrowing the wavelength of the image light emitted from the image device such as a projector and making the reflection band of the cholesteric liquid crystal layer of the transparent screen correspond.
  • the arrangement of the cholesteric liquid crystal layers is not particularly limited. For example, they may be arranged alternately or randomly. You may arrange.
  • the reflected light of the cholesteric structure of the liquid crystal material constituting the cholesteric liquid crystal layer is circularly polarized light. That is, the cholesteric structure of the liquid crystal material selectively reflects one of right circularly polarized light and left circularly polarized light and transmits the other. Therefore, in the present invention, the plurality of formed cholesteric liquid crystal layers may have a configuration in which all cholesteric liquid crystal layers reflect the same circularly polarized light, or a cholesteric liquid crystal layer that reflects right circularly polarized light, It may be configured to include a cholesteric liquid crystal layer that reflects circularly polarized light.
  • a cholesteric liquid crystal layer that reflects right-handed circularly polarized light and a cholesteric liquid crystal layer that reflects left-handed circularly polarized light it is possible to reflect the right-handed and left-handed circularly polarized light of the image light and improve the reflectance, It is emitted from a video device such as a projector, in which an image for an observer's left eye or right eye can be displayed on each of the right circular polarization and left circular polarization of the image light for stereoscopic viewing (so-called 3D display). It is preferable in that the image light can be used regardless of whether it is right circularly polarized light or left circularly polarized light.
  • the cholesteric structure of the liquid crystal material selectively reflects one of the right circularly polarized light and the left circularly polarized light and transmits the other
  • the image light emitted from the image device such as a projector is right circularly polarized, or Combined with either one of the left circularly polarized light and a transparent screen using a cholesteric liquid crystal layer that reflects the circularly polarized light corresponding to the image light, it efficiently reflects only the image light and is not included in the image light. Can be transmitted, and the transparency can be further improved.
  • the circularly polarized light selective reflectivity of whether the reflected light of the cholesteric structure is right circularly polarized light or left circularly polarized light depends on the twist direction of the spiral of the cholesteric structure.
  • the selective reflection by the cholesteric liquid crystal reflects right circularly polarized light when the spiral direction of the cholesteric liquid crystal is right, and reflects left circularly polarized light when the twist direction of the spiral is left.
  • cholesteric liquid crystal layers that reflect light in different wavelength ranges, and a cholesteric liquid crystal layer that reflects right circular polarized light and a left circular polarized light as cholesteric liquid crystal layers that reflect light in each wavelength range.
  • a cholesteric liquid crystal layer that reflects light may be included.
  • the image projected on the transparent screen can be displayed in color, and for the right circular polarization and left circular polarization of the image light, respectively, for the left eye or right eye of the observer
  • the image can be displayed and stereoscopic viewing (so-called 3D display) can be performed, and the image light emitted from the image device such as a projector can be used regardless of the wavelength range or the direction of circular polarization. .
  • each cholesteric liquid crystal layer is configured to reflect light in one wavelength range, but is not limited thereto, and one cholesteric liquid crystal layer includes light in a plurality of wavelength ranges. It is good also as a structure which reflects. That is, a cholesteric liquid crystal layer having two or more layers that reflect light in different wavelength ranges may be included in one cholesteric liquid crystal layer.
  • FIG. 7 shows a schematic sectional view of another example of the transparent screen of the present invention. A transparent screen 10f shown in FIG.
  • cholesteric liquid crystal layer 7 includes, as a cholesteric liquid crystal layer, a red layer 15R that reflects red light, a green layer 15G that reflects green light, and a blue layer 15B that reflects blue light in one cholesteric liquid crystal layer. And a three-layer cholesteric liquid crystal layer 14T.
  • the three-layer cholesteric liquid crystal layer 14T includes the red layer 15R on the convex portion 12b side, the green layer 15G stacked on the surface of the red layer 15R, and the blue layer 15B stacked on the surface of the green layer 15G. Are stacked in the normal direction of the substrate 12.
  • Such a three-layer cholesteric liquid crystal layer 14T has a layer that reflects red light, a layer that reflects green light, and a layer that reflects blue light. Therefore, one cholesteric liquid crystal layer has red light of incident video light, Green light and blue light can be reflected. Therefore, the image projected on the transparent screen can be displayed in color. Further, the image light emitted from the image device such as a projector can be used regardless of whether it is red light, green light or blue light. Further, red light, green light and blue light of the image light can be reflected, and the reflectance can be improved.
  • the configuration includes three layers that respectively reflect red light, green light, and blue light.
  • the present invention is not limited to this, and includes two layers that reflect light in different wavelength ranges. It may be a thing, or may consist of four or more layers.
  • the three-layer cholesteric liquid crystal layer 14T has a structure in which the red layer 15R, the green layer 15G, and the blue layer 15B are stacked in this order from the convex portion 12b side.
  • the order of stacking may be any order.
  • Each cholesteric liquid crystal layer is configured to reflect either right-handed circularly polarized light or left-handed circularly polarized light.
  • the present invention is not limited to this, and one cholesteric liquid crystal layer includes right-handed circularly polarized light and left-handed circularly-polarized light. It is good also as a structure which reflects. That is, a cholesteric liquid crystal layer having a region that reflects right circularly polarized light and a region that reflects left circularly polarized light may be included in one cholesteric liquid crystal layer.
  • Such a cholesteric liquid crystal layer has a layer that reflects right circularly polarized light and a layer that reflects left circularly polarized light.
  • one cholesteric liquid crystal layer reflects right circularly polarized light and left circularly polarized light of incident video light. be able to. Therefore, the right circularly polarized light and the left circularly polarized light of the image light can be reflected and the reflectance can be improved.
  • one cholesteric liquid crystal layer may be configured to reflect light in a plurality of wavelength regions and reflect right circularly polarized light and left circularly polarized light in each wavelength region.
  • the above-described transparent screen may be used as one unit, and a plurality of transparent screen units may be stacked in the thickness direction to form one transparent screen. In that case, it is preferable that each transparent screen unit reflects the light of a different wavelength range.
  • FIG. 8 shows another example of the transparent screen of the present invention.
  • the transparent screen 100a shown in FIG. 8 has a configuration in which the above-described transparent screen 10a is used as one transparent screen unit and three transparent screen units 10aR, 10aG, and 10aB are stacked in the thickness direction.
  • Each transparent screen unit reflects light in a different wavelength range
  • the transparent screen unit 10aR has a red cholesteric liquid crystal layer 14R that reflects red light
  • the transparent screen unit 10aG emits green light.
  • the transparent screen unit 10aB has a blue cholesteric liquid crystal layer 14B that reflects blue light.
  • the projected image can be displayed in color, and the image light emitted from the image device such as a projector can be used regardless of whether it is red light, green light, or blue light.
  • the forming material and / or thickness of the support 12 may be the same or different from each other.
  • the material and / or thickness of the cholesteric liquid crystal layer 14 may be the same or different from each other.
  • the spiral axis angle ⁇ 1 may be the same or different.
  • the transparent screen unit 10aR, the transparent screen unit 10aG, and the transparent screen unit 10aB are laminated and bonded by an adhesive according to the material for forming the overcoat layer 16 and the support 12. .
  • the overcoat layer 16 may also serve as an adhesive. Note that an adhesive having sufficient light permeability is used.
  • the transparent screen unit 10aR, the transparent screen unit 10aG, and the transparent screen unit 10aB are stacked in this order, but the present invention is not limited thereto, and the transparent screen unit 10aR, the transparent screen unit 10aG, and There is no limitation on the stacking order of the transparent screen units 10aB.
  • Example 1 As Example 1, a three-layer transparent screen 100a as shown in FIG.
  • Cellulose acetate solution composition Cellulose acetate having an acetylation degree of 60.7 to 61.1% 100 parts by weight Triphenyl phosphate (plasticizer) 7.8 parts by weight Biphenyl diphenyl phosphate (plasticizer) 3.9 parts by weight Methylene chloride (first solvent) 336 parts by weight Methanol (second solvent) 29 parts 1-butanol (third solvent) 11 parts
  • a dope was prepared by mixing 474 parts by mass of the cellulose acetate solution with 25 parts by mass of the retardation increasing agent solution and stirring sufficiently.
  • the addition amount of the retardation increasing agent was 6.0 parts by mass with respect to 100 parts by mass of cellulose acetate.
  • the obtained dope was cast using a band stretching machine. After the film surface temperature on the band reaches 40 ° C., the film is dried with warm air of 70 ° C. for 1 minute, and the film from the band is dried with 140 ° C. drying air for 10 minutes, and the residual solvent amount is 0.3% by mass.
  • a triacetylcellulose film was prepared. This film is used as a base material.
  • a UV curable resin (PAK-02: manufactured by Toyo Gosei Co., Ltd.) on a mold having a plurality of sawtooth-shaped right triangles (nickel, right triangle length 100 ⁇ m, height 18 ⁇ m, inclined surface inclination angle 10 °) Is applied, and the substrate is covered with it, and it is confirmed that the UV curable resin spreads over the entire substrate. After irradiating with 500 mJ / cm 2 ultraviolet rays, the substrate and the mold are peeled off to produce a support. did.
  • Rod-shaped liquid crystal compound The numerical value is mass%.
  • R is a group bonded with oxygen.
  • a cholesteric liquid crystal liquid 2 was prepared in the same manner as the cholesteric liquid crystal liquid 1 except that the addition amount of the chiral agent was 5.1 parts by mass, and the liquid volume was adjusted so that the thickness was 3.5 ⁇ m.
  • An optical member 02 having a green cholesteric liquid crystal layer on the inclined surface of the convex portion was produced in the same manner as in the production of the optical member 01 except that this cholesteric liquid crystal liquid 2 was used.
  • Cholesteric liquid crystal liquid 3 was prepared in the same manner as cholesteric liquid crystal liquid 1, except that the amount of chiral agent added was 4.4 parts by mass, and the liquid volume was adjusted so as to have a thickness of 4.0 ⁇ m.
  • An optical member 03 having a red cholesteric liquid crystal layer on the inclined surface of the convex portion was prepared in the same manner as the optical member 01 except that this cholesteric liquid crystal liquid 3 was used.
  • the prepared overcoat coating solution 1 was applied onto the cholesteric liquid crystal layers of the embossed optical member 01, optical member 02 and optical member 03 using a # 15 bar coater.
  • the optical member 01, the optical member 02, and the optical member 03 coated with the overcoat coating solution 1 were laminated in the thickness direction, and then heated to a film surface temperature of 50 ° C. and dried for 60 seconds.
  • an ultraviolet ray irradiation device is used to irradiate with 500 mJ / cm 2 of ultraviolet rays to advance the crosslinking reaction, to form an overcoat layer, and to bond the optical member 01, the optical member 02, and the optical member 03 to form the transparent screen 100a.
  • Each cholesteric liquid crystal layer has a helical axis angle ⁇ 1 of 10 °.
  • the refractive index difference between the cholesteric liquid crystal layer and the convex portion is 0.08, and the refractive index difference between the cholesteric liquid crystal layer and the overcoat layer is 0.02.
  • Example 2 to 4 The inclination angles of the inclined surfaces of the convex portions are 15 °, 20 °, and 25 °, respectively, and the bar numbers are # 20, # 28, and # 35, respectively, that is, the spiral axis angle ⁇ 1 is 15 ° and 20 °, respectively.
  • a transparent screen 100a was produced in the same manner as in Example 1 except that the bar number was changed to 25 °.
  • Example 5 A transparent screen 10f as shown in FIG. 7 was produced in the same manner as in Example 2 except that the configuration had three cholesteric liquid crystal layers reflecting light in different wavelength ranges.
  • the cholesteric liquid crystal liquid 1, the cholesteric liquid crystal liquid 2, and the cholesteric liquid crystal liquid 3 are used to form a cholesteric liquid crystal layer having a three-layer structure in the order shown in FIG. did.
  • Example 6 A three-layer transparent screen 100e as shown in FIG. 9 was produced in the same manner as in Example 2 except that the cross-sectional shape of the convex portion was an obtuse triangular shape and the obtuse angle was 110 °.
  • Example 7 A three-layer transparent screen was produced in the same manner as in Example 2 except that a gap of 92 ⁇ m was provided between adjacent convex portions.
  • Example 8 A transparent screen 100a was produced in the same manner as in Example 1 except that an ink jet printer JV400SUV (manufactured by Mimaki) was used when the cholesteric liquid crystal liquid was ejected.
  • JV400SUV is a shuttle scan type solvent UV printer having a pre-heater, a print heater, and a post heater as a heating system, and a hot cathode tube as a curing light source at the most downstream side.
  • the preheater is a heater that warms the substrate before printing
  • the print heater is a heater that warms the substrate during printing
  • the post heater is heated after printing
  • the organic solvent is volatilized from the landed ink
  • the liquid crystal It is a heater for promoting the orientation of the compound.
  • the solvent in the ink is volatilized before curing, and is cured by the hot cathode tube with the solvent removed.
  • the printing conditions were set to 60 ° C. for 24 pass bidirectional, preheater, print heater and post heater.
  • Example 1 A transparent screen was produced in the same manner as in Example 2 except that a metal layer was formed instead of the cholesteric liquid crystal layer. The metal layer was vapor-deposited on the support by vacuum sputtering. At this time, the film thickness was adjusted so that the transmittance was 30%.
  • Example 2 A transparent screen was produced in the same manner as in Example 1 except that the inclination angles of the inclined surfaces of the convex portions were 2 ° and 50 °, respectively, that is, the spiral axis angle ⁇ 1 was 2 ° and 50 °, respectively. .
  • Examples 1 to 7 of the present invention in which the spiral axis angle is 5 to 42 °, and the refractive index difference between the cholesteric liquid crystal layer and the convex portion and the overcoat layer is 0.2 or less. Compared with Comparative Examples 1 to 3, it can be seen that the reflectance at the front is high, the transmittance is high, and the haze value is small.
  • the helical axis angle is more preferably 15 to 20 °.
  • the reflectance and transmittance can be improved by making the cross-sectional shape of the convex part an obtuse triangle, or by providing a gap between the convex parts. It turns out that it becomes more preferable. From the above, the effects of the present invention are clear.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Polarising Elements (AREA)
  • Overhead Projectors And Projection Screens (AREA)
  • Optical Filters (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)

Abstract

支持体(12)の一方の面に形成された互いに平行な傾斜面を有する複数の凸部(12b)と、凸部(12b)の各傾斜面上に形成されたコレステリック液晶層(14)と、支持体(12)の凸部(12b)側の面にコレステリック液晶層(14)を覆って積層されるオーバーコート層(16)とを有し、凸部(12b)の傾斜面の法線とコレステリック液晶層(14)のコレステリック構造の螺旋軸とが平行で、オーバーコート層(16)表面の法線とコレステリック構造の螺旋軸とのなす角度が5~42°で、コレステリック液晶層(14)と凸部(12b)との屈折率差、および、コレステリック液晶層(14)とオーバーコート層(16)との屈折率差が0.2以下である。

Description

透明スクリーン
 本発明は、透明スクリーンに関する。
 近年、表示装置の一つとして、前面側からの光は反射し、裏面側からの光は透過する透明スクリーンが提案されている。
 例えば、特許文献1には、光を透過可能であり、略平行平板状に形成された基材層と、基材層の映像源側とは反対側である裏面側に突出してスクリーン面に沿って1次元又は2次元方向に多数並べて配列され、光を透過可能な単位形状と、単位形状の裏面側頂部に設けられ、単位形状を通過した映像光を反射する反射層と、を備え、単位形状は、隙間を空けて配列されており、単位形状同士が配列される間には、基材層又は基材層と平行な平面が露出した状態となっている背景透過部が設けられている半透過型反射スクリーンが記載されている。この半透過型反射スクリーンは、前方からの映像光を反射面により反射させて観察可能としながらも、裏面側の背景を前方から観察可能なスクリーンである。
 また、特許文献2には、通常の投影スクリーンにおいて、反射素子として、特定の偏光成分の光を反射する機能を有するコレステリック液晶からなる反射素子を用いることが記載されている。
 ところで、投影スクリーンおよび透明スクリーンにおいて、観察者の後方から投影スクリーンの投影面に映像光を投影した場合には、すなわち、投影スクリーンへ正面から映像光を入射した場合には、光が最表面で反射されて(光源が映り込んで)正面方向への反射強度が高くなりすぎて、観察者が眩しさを感じるおそれがある。
 これに対して、投影スクリーンで反射する、映像光の反射光と最表面での反射光との出射角度を異ならせることで、光源の映り込みが観察者に見えることを防止することが考えられている。
 例えば、特許文献2では、コレステリック液晶層の液晶ドメインの螺旋軸方向の平均がこのコレステリック液晶層の表面の法線方向に対して傾いた状態となるように配向させることで、素子平面の法線方向に対して異方的な光学特性を得ることができ、映像光の反射光と最表面での反射光との出射角度を異ならせて、光源の映り込みが観察者に見えることを防止できることが記載されている。
特開2006-337944号公報 特開2006-284862号公報
 しかしながら、特許文献2に記載される投影スクリーンにおいては、コレステリック液晶層の液晶ドメインの螺旋軸方向がばらついた状態になるため、映像光の反射光を拡散すると記載されている。
 そのため、特定の方向への映像光の反射強度を高くできないという問題があった。また、背景からの光も散乱するため、透明性が低いことも問題であった。
 本発明の目的は、このような従来技術の問題点を解決することにあり、前面側からの光は反射し、裏面側からの光は透過する透明スクリーンにおいて、映像光の反射光と最表面での反射光との出射角度を異ならせて、光源の映り込みが観察者に見えることを防止し、かつ、映像光の反射強度を高くでき、かつ、透明性を高くできる透明スクリーンを提供することにある。
 本発明者らは、従来技術の問題点について鋭意検討した結果、光を透過可能な支持体と、支持体の一方の面に形成された、互いに平行な傾斜面を有する複数の凸部と、複数の凸部の各傾斜面上に形成された、コレステリック構造を有する液晶材料からなるコレステリック液晶層と、支持体の複数の凸部側の面に、コレステリック液晶層を覆って積層されるオーバーコート層とを有し、複数の凸部の傾斜面の法線と、コレステリック液晶層のコレステリック構造の螺旋軸とが平行であり、オーバーコート層表面の法線とコレステリック液晶層のコレステリック構造の螺旋軸とのなす角度が5~42°であり、コレステリック液晶層と凸部との屈折率差が0.2以下であり、コレステリック液晶層とオーバーコート層との屈折率差が0.2以下であることにより、上記課題を解決できることを見出した。
 すなわち、以下の構成により上記目的を達成することができることを見出した。
 (1) 光を透過可能な支持体と、
 支持体の一方の面に形成された、互いに平行な傾斜面を有する複数の凸部と、
 複数の凸部の各傾斜面上に形成された、コレステリック構造を有する液晶材料からなるコレステリック液晶層と、
 支持体の複数の凸部側の面に、コレステリック液晶層を覆って積層されるオーバーコート層とを有し、
 複数の凸部の傾斜面の法線と、コレステリック液晶層の前記コレステリック構造の螺旋軸とが平行であり、
 オーバーコート層表面の法線と前記コレステリック液晶層の前記コレステリック構造の螺旋軸とのなす角度が5~42°であり、
 コレステリック液晶層と凸部との屈折率差が0.2以下であり、
 コレステリック液晶層と前記オーバーコート層との屈折率差が0.2以下である透明スクリーン。
 (2) オーバーコート層表面に対するコレステリック液晶層のコレステリック構造の螺旋軸の角度が15~25°である(1)に記載の透明スクリーン。
 (3) コレステリック液晶層と凸部との屈折率差が0.05以下であり、
 コレステリック液晶層とオーバーコート層との屈折率差が0.05以下である(1)または(2)に記載の透明スクリーン。
 (4) コレステリック液晶層が、互いに異なる波長域の光を反射する2以上の層からなる(1)~(3)のいずれかに記載の透明スクリーン。
 (5) オーバーコート層表面に垂直で、複数の凸部の傾斜面の傾斜方向に平行な断面において、凸部の形状が鈍角三角形であり、鈍角の頂点がオーバーコート層の表面側に配置される(1)~(4)のいずれかに記載の透明スクリーン。
 (6) (1)~(5)のいずれかに記載の透明スクリーンを2以上積層してなり、
 各透明スクリーンのコレステリック液晶層が、互いに異なる波長域の光を反射する透明スクリーン。
 本発明によれば、映像光の反射光と最表面での反射光との出射角度を異ならせて、光源の映り込みが観察者に見えることを防止し、かつ、映像光の反射強度を高くできる透明スクリーンを提供することができる。
本発明の透明スクリーンの一例を概念的に示す図である。 図1に示す透明スクリーンの一部を拡大して示す図である。 本発明の透明スクリーンの他の一例を概念的に示す図である。 本発明の透明スクリーンの他の一例を概念的に示す図である。 本発明の透明スクリーンの他の一例を概念的に示す図である。 本発明の透明スクリーンの他の一例を概念的に示す図である。 本発明の透明スクリーンの他の一例を概念的に示す図である。 本発明の透明スクリーンの他の一例を概念的に示す図である。 本発明の透明スクリーンの他の一例を概念的に示す図である。
 以下、本発明の透明スクリーンについて、添付の図面に示される好適な実施例を基に、詳細に説明する。
 なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本明細書において、例えば、「45°」、「平行」、「垂直」あるいは「直交」等の角度は、特に記載がなければ、厳密な角度との差異が5度未満の範囲内であることを意味する。厳密な角度との差異は、4度未満であることが好ましく、3度未満であることがより好ましい。
 本明細書において、「(メタ)アクリレート」は、「アクリレートおよびメタクリレートのいずれか一方または双方」の意味で使用される。
 本明細書において、「同一」は、技術分野で一般的に許容される誤差範囲を含むものとする。また、本明細書において、「全部」、「いずれも」または「全面」などというとき、100%である場合のほか、技術分野で一般的に許容される誤差範囲を含み、例えば99%以上、95%以上、または90%以上である場合を含むものとする。
 可視光は電磁波のうち、ヒトの目で見える波長の光であり、380nm~780nmの波長域の光を示す。非可視光は、380nm未満の波長域または780nmを超える波長域の光である。
 またこれに限定されるものではないが、可視光のうち、420nm~495nmの波長域の光は、青色光であり、495nm~570nmの波長域の光は、緑色光であり、620nm~750nmの波長域の光は、赤色光である。
 赤外光のうち、近赤外光は780nm~2500nmの波長域の電磁波である。紫外光は波長10~380nmの範囲の光である。
 本明細書において、「ヘイズ」は、日本電色工業株式会社製のヘイズメーターNDH-2000を用いて測定される値を意味する。
 理論上は、ヘイズは、以下式で表される値を意味する。
(380~780nmの自然光の散乱透過率)/(380~780nmの自然光の散乱透過率+自然光の直透過率)×100%
 散乱透過率は分光光度計と積分球ユニットを用いて、得られる全方位透過率から直透過率を差し引いて算出することができる値である。直透過率は、積分球ユニットを用いて測定した値に基づく場合、0°での透過率である。つまり、ヘイズが低いということは、全透過光量のうち、直透過光量が多いことを意味する。
 屈折率は、波長589.3nmの光に対する屈折率である。
 本発明の透明スクリーンは、光を透過可能な支持体と、
 支持体の一方の面に形成された、互いに平行な傾斜面を有する複数の凸部と、
 複数の凸部の各傾斜面上に形成された、コレステリック構造を有する液晶材料からなるコレステリック液晶層と、
 支持体の複数の凸部側の面に、コレステリック液晶層を覆って積層されるオーバーコート層とを有し、
 複数の凸部の傾斜面の法線と、コレステリック液晶層のコレステリック構造の螺旋軸とが平行であり、
 オーバーコート層表面の法線とコレステリック液晶層のコレステリック構造の螺旋軸とのなす角度が5~42°であり、
 コレステリック液晶層と凸部との屈折率差が0.2以下であり、
 コレステリック液晶層とオーバーコート層との屈折率差が0.2以下である透明スクリーンである。
 図1に、本発明の透明スクリーンの一例を概念的に示す。
 なお、本発明における図は模式図であり、各層の厚みの関係や位置関係などは必ずしも実際のものとは一致しない。以下の図も同様である。
 図1に示す透明スクリーン10aは、複数の凸部12bを有する支持体12と、凸部12bの傾斜面に形成されたコレステリック液晶層14と、支持体12の複数の凸部12b側の面に、コレステリック液晶層14を覆って積層されるオーバーコート層16とを有する。
 また、映像光はコレステリック液晶層14が形成される側の面に入射される。すなわち、コレステリック液晶層14が形成される側の面が前面であり、反対側の面が裏面である。
 ここで、本発明においては、凸部12bの傾斜面にコレステリック液晶層14を形成して、オーバーコート層16表面(透明スクリーン10aの表面)の法線とコレステリック液晶層14のコレステリック構造の螺旋軸とのなす角度(図2参照、以下「螺旋軸角度θ1」ともいう)を5~42°とし、コレステリック液晶層14と凸部12bとの屈折率差を0.2以下とし、コレステリック液晶層14とオーバーコート層16との屈折率差を0.2以下とする。
 これにより、図1に矢印aで示すように、透明スクリーン10aに対して斜め方向から入射した光のうち、コレステリック液晶層14に到達した光は、コレステリック液晶層14で鏡面反射されて透明スクリーン10aの正面方向に出射される。一方、矢印bで示すように、オーバーコート層16の表面(透明スクリーン10a)の表面で反射された光は、オーバーコート層16表面で鏡面反射されて、斜め方向(図1中左上方向)に出射される。すなわち、コレステリック液晶層14で反射される光と、オーバーコート層16表面で反射される光の反射方向を異ならせることができ、光源の映り込みが観察者に見えることを防止することができる。
 また、コレステリック液晶層14での鏡面反射により、透明スクリーン10aの正面方向に光を出射するので、正面における映像光の反射強度を高くできる。
 なお、透明スクリーンに対して、斜め方向から光を入射するものとしては、例えば、映像源としていわゆる短焦点プロジェクタを用いて、透明スクリーンに対して斜め方向から大きな投影角度(透明スクリーンの主面の垂線を0°とする)で映像光を投影するシステムがある。本発明の透明スクリーンに、短焦点プロジェクタを用いて映像光を投影することで、映像光の反射光は透明スクリーンの正面方向に反射させ、最表面での反射光は正面方向以外の方向に反射させることができ、光源の映り込みが観察者に見えることを防止することができ、また、正面における映像光の反射強度を高くできる。
 [支持体]
 支持体12は、光を透過可能、すなわち、コレステリック液晶層が光を反射する波長において、光の反射率が低いことが好ましく、コレステリック液晶層が光を反射する波長において光を反射する材料を含んでいないことが好ましい。
 また、支持体12は可視光領域において、透明であるのが好ましい。また、支持体12は、着色していてもよいが、着色していないか、着色が少ないのが好ましい。
 支持体12は、平坦なシート状の基材12aと基材12aの一方の主面上に形成された複数の凸部12bとを有する。
 図示例において、凸部12bは、直角三角形状の断面を有し、直角と隣接する面を基材12aの表面側にして形成される。また、凸部12bは、直角に隣接しない面が、基材12aの主面に対して所定の角度傾斜した傾斜面となる。
 図に示すように、各凸部12bの傾斜面は互いに平行である。
 また、図示例においては、凸部12bは、基材12aの長さ方向(図1中上下方向)において隙間なく密に配置されている。
 各凸部12bの傾斜面には、後述するコレステリック液晶層14が形成される。所定の角度で傾斜した傾斜面にコレステリック液晶層を形成することで、コレステリック液晶層14のコレステリック構造の螺旋軸と、透明スクリーン10aの表面(オーバーコート層16の表面)の法線とのなす角度θ1(螺旋軸角度θ1)を5~42°とすることができる。
 なお、複数の凸部12bは、幅方向(図1中紙面に垂直な方向)には、延在する長尺な形状であってもよいし、複数の凸部12bが幅方向に配列されていてもよい。
 また、凸部12bの大きさ、例えば、凸部12bの断面形状における基材12aと接する辺の長さ(以下、「凸部12bの長さ」という)、および、基材12a表面からの高さ(以下、「凸部12bの高さ」という)等には限定はないが、凸部の視認されにくさ、コレステリック液晶の配置のしやすさ、回折等の影響による虹ムラ防止等の観点から凸部12bの長さは、15μm~300μmが好ましく、30μm~100μmがより好ましい。また、凸部12bの高さは、1μm~270μmが好ましく、9μm~90μmがより好ましい。
 また、凸部12bの傾斜面の、基材12の主面に対する傾斜角度は、後述するオーバーコート層表面の法線とコレステリック液晶層のコレステリック構造の螺旋軸とのなす角度が5~42°になる角度であればよい。すなわち、傾斜面の傾斜角度は、5~42°が好ましく、10~25°であるのがより好ましく、15~20°であるのが更に好ましい。
 また、凸部12bとコレステリック液晶層14との屈折率差は0.2以下であり、0.05以下が好ましく、0.02以下がより好ましい。
 凸部12bとコレステリック液晶層14との屈折率差を0.2以下とすることで、凸部12b(支持体12)とコレステリック液晶層14との界面での光の反射を抑制して、透明性を高くできる。
 また、基材12aの厚さ(凸部12bを除く厚さ)は、用途に応じて選択すればよく、特に限定されないが、5μm~1000μm程度であればよく、好ましくは10μm~250μmであり、より好ましくは15μm~150μmである。
 また、基材12aとコレステリック液晶層14との屈折率差は0.2以下が好ましく、0.05以下がより好ましく、0.02以下が特に好ましい。
 基材12aとコレステリック液晶層14との屈折率差を0.2以下とすることで、基材12a(支持体12)とコレステリック液晶層14との界面での光の反射を抑制して、透明性を高くできる。
 また、図1に示す透明スクリーン10aにおいては、平面状の基材12aの表面に、基材12aの主面に対して傾斜する傾斜面を有する複数の凸部12bを配置する構成としたが、これに限定はされない。
 例えば、図3に示す透明スクリーン10bのように、基材部32aと凸部32bとが一体的に形成された支持体32を用いる構成としてもよい。
 なお、図3に示す透明スクリーン10bにおいて、図1に示す透明スクリーン10aと同じ部位には同じ符号を付し、その詳細な説明は省略する。この点は以下の図についても同様である。
 あるいは、図4に示す透明スクリーン10cのように、多数の凸部が一体的に形成された凸部形成層34bと基材12aとを有する支持体34を用いる構成としてもよい。
 また、図1に示す例においては、複数の凸部12bは、基材12aの長さ方向において隙間なく密に配置される構成としたが、これに限定はされず、図5に示す透明スクリーン10dのように、複数の凸部12bを離散的に配置する構成として、隣接する凸部12b間に間隙を設けてもよい。
 凸部12bを密に配置した場合には、映像光の反射強度をより高くできる。一方、凸部12b間に間隙を設けて配置した場合には、透明性をより向上できる。
 複数の凸部12bを隙間を空けて配置する場合の間隙の大きさには限定はないが、凸部12bの断面形状が直角三角形である場合には、L×tanα×tan2α程度の長さの間隙を有するのが好ましく、0.9×L×tanα×tan2α以上、1.1×L×tanα×tan2α以下の長さの間隙を有するのが好ましい。ここで、Lは凸部12bの断面形状の直角三角形における基材12aと接する辺の長さ、すなわち、凸部12bの長さであり、αは基材12aと接する鋭角の頂点における角度である。
 凸部12b間の間隙の長さをこの範囲とすることで、透明スクリーンに対して斜め方向から光が入射した場合に、凸部12bの傾斜面に形成されたコレステリック液晶層14を効率よく利用することができる。
 また、図1に示す例においては、凸部12bは、直角三角形状の断面を有し、直角と隣接する面を基材12aの表面側にして形成される構成としたが、螺旋軸角度θ1を5~42°とできる傾斜面を有するものであれば、これに限定はされない。
 一例として、図6に示す透明スクリーン10eは、複数の凸部12bの傾斜面の傾斜方向に平行な断面において、凸部12bの形状が鈍角三角形であり、鈍角の頂点がオーバーコート層の表面側、すなわち、基材12aの反対側に配置される構成を有する。
 鈍角の角度θ2としては、90°+α程度の角度であるのが好ましく、(85°+α)以上、(95°+α)以下であるのが好ましい。
 これにより、透明スクリーンに対して斜め方向から光が入射した場合に、凸部12bの傾斜面に形成されたコレステリック液晶層14を効率よく利用することができる。
 なお、図6に示す例では、鈍角三角形状である凸部12bの一方の傾斜面上にコレステリック液晶層14が配置される構成としたが、これに限定はされず両方の傾斜面にコレステリック液晶層14が配置される構成としてもよい。
 凸部の形状を傾斜面を2つ有する構成とし、両方の傾斜面にコレステリック液晶層14を配置することで、透明スクリーンへ複数の方向から光を入射可能となる。例えば、透明スクリーンの斜め下側から透明スクリーンに入射する光を正面方向に反射することができ、また、透明スクリーンの斜め上側から透明スクリーンに入射する光を正面方向に反射することができる。
 また、両傾斜面に形成されるコレステリック液晶層が反射する光の変更方向を異ならせることで、映像光の右円偏光と左円偏光それぞれに、観察者の左目用または右目用の画像を表示させて立体視(いわゆる3D表示)を行うことができる。
 このように、支持体は単層であっても、多層であってもよく、単層である場合の支持体32の形成材料の例としては、ガラス、トリアセチルセルロース(TAC)、ポリエチレンテレフタレート(PET)、ポリカーボネート、ポリ塩化ビニル、アクリル、および、ポリオレフィン等が挙げられるが、反射した光の偏光状態を維持する観点で、複屈折性の小さいガラス、トリアセチルセルロース(TAC)、および、アクリル等が好ましい。
 多層である場合の支持体の形成材料の例としては、上記の単層である場合の支持体32の形成材料の例が基材12aの形成材料の例として挙げられる。
 また、多層である場合の凸部を含む層の形成材料の例としては、モノマーを含む組成物を硬化して得られる樹脂層などが挙げられる。
 樹脂は、特に限定されず、基材12aおよび/またはコレステリック液晶層14を形成する液晶材料への密着性などを考慮して選択すればよい。例えば、熱可塑性樹脂、熱硬化性樹脂、紫外線硬化性樹脂等を用いることができる。耐久性、耐溶剤性等の点からは、架橋により硬化するタイプの樹脂が好ましく、特に、短時間での硬化が可能である紫外線硬化性樹脂が好ましい。凸部12bの形成材料として用いることができるモノマーとしては、エチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N-ビニルピロリドン、ポリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、および、ネオペンチルグリコールジ(メタ)アクリレート等が挙げられる。
 また、単層の場合の凸部32bの形成方法としては、平板状の支持体を加熱しつつ金型を押圧して支持体を金型の形状に応じた形状に成型する、いわゆるエンボス加工によって形成する方法が例示される。
 また、多層の場合の凸部12bの形成方法としては、例えば、平板状の支持体12aの表面に凸部12bとなる樹脂組成物を塗布し、この樹脂組成物を、乾燥した後、金型で成型しつつ紫外線照射等によって硬化する、いわゆる、インプリントによる方法が例示される。
 あるいは、金型に凸部12bとなる樹脂組成物を充填し、成型した樹脂組成物を支持体12a上に転写して紫外線照射等によって硬化して、凸部12bを形成してもよい。
 なお、後述するコレステリック液晶層14を形成するため、支持体(凸部)は、表面に配向膜を有するのが好ましい。すなわち、表面に配向膜を有する支持体を用い、配向膜の表面に塗布液を塗布してコレステリック液晶層を形成するのが好ましい。
 配向膜は、ポリマーのラビング処理により形成することが好ましい。
 ポリマーとしては、例えば、特開平8-338913号公報の段落番号[0022]に記載のメタクリレート系共重合体、スチレン系共重合体、ポリオレフィン、ポリビニルアルコールおよび変性ポリビニルアルコール、ポリ(N-メチロールアクリルアミド)、ポリエステル、ポリイミド、酢酸ビニル共重合体、カルボキシメチルセルロース、および、ポリカーボネート等が例示される。シランカップリング剤もポリマーとして用いることができる。ポリマーとしては、水溶性ポリマー(例、ポリ(N-メチロールアクリルアミド)、カルボキシメチルセルロース、ゼラチン、ポリビニルアルコール、および、変性ポリビニルアルコール)が好ましく、ゼラチン、ポリビニルアルコールおよび変性ポリビニルアルコールが更に好ましく、ポリビニルアルコールおよび変性ポリビニルアルコールが最も好ましい。
 ラビング処理は、液晶表示装置(LCD)等で用いられる液晶パネルの液晶配向処理工程として広く採用されている処理方法を適用することができる。すなわち、配向膜の表面を、紙やガーゼ、フェルト、ゴムあるいはナイロン、ポリエステル繊維などを用いて一定方向に擦ることにより、配向を得る方法を用いることができる。一般的には、長さおよび太さが均一な繊維を平均的に植毛した布などを用いて数回程度ラビングを行うことにより実施される。
 配向膜のラビング処理面に後述するコレステリック液晶層14となる組成物を塗布して、液晶性化合物の分子を配向させる。その後、必要に応じて、配向膜ポリマーと光学異方性層に含まれる多官能モノマーとを反応させるか、あるいは、架橋剤を用いて配向膜ポリマーを架橋させることで、コレステリック液晶層14を形成することができる。
 配向膜の膜厚は、0.1~10μmの範囲にあるのが好ましい。
 また、後述するコレステリック液晶層14を形成する際にコレステリック構造の配向方向をそろえるために、支持体(凸部)の表面エネルギーを調整してもよい。例えば、表面エネルギーを調整する処理としては、コロナ処理が挙げられる。
 支持体12の凸部12bの傾斜面には、コレステリック液晶層14が配置される。
 コレステリック液晶層14は、凸部12bの傾斜面の表面を覆う、厚さが均一な層状のものである。
 [コレステリック液晶層]
 コレステリック液晶層14は、波長選択反射性を有する。コレステリック液晶層14が選択反射性を示す光は特に限定されず、例えば、赤外光、可視光、紫外光などいずれであってもよい。例えば、透明スクリーンを、プロジェクタ等の映像装置から出射される映像光による画像と、透明スクリーンの裏面側の背景とを重畳して表示するスクリーンとして使用する場合には、コレステリック液晶層14が選択反射性を示す光は、可視光であることが好ましい。
 あるいは、上記反射波長は、組み合わせて用いられる光源から照射される光の波長に従って選択されていることも好ましい。
 コレステリック液晶層14は、コレステリック構造を有する液晶材料からなる。コレステリック液晶層14が選択反射性を示す光の波長はコレステリック液晶層14を形成する液晶材料のコレステリック構造における螺旋ピッチを調整することにより行うことができる。また、本発明の透明スクリーンにおけるコレステリック液晶層14は、後述のようにコレステリック構造の螺旋軸方向が凸部12bの傾斜面の法線方向と平行になる。
 コレステリック液晶層14は着色していてもよいが、着色していないか、着色が少ないことが好ましい。これにより、透明スクリーンの透明性を向上できる。
 (コレステリック構造)
 コレステリック構造は、特定の波長において、選択反射性を示すことが知られている。選択反射の中心波長λは、コレステリック構造における螺旋構造のピッチ(=螺旋の周期)に依存し、コレステリック液晶の平均屈折率nとλ=n×Pの関係に従う。そのため、この螺旋構造のピッチを調節することによって、選択反射波長を調節することができる。コレステリック構造のピッチは、コレステリック液晶層14の形成の際、重合性液晶化合物とともに用いるキラル剤の種類、またはその添加濃度に依存するため、これらを調節することによって所望のピッチを得ることができる。なお、ピッチの調節については富士フイルム研究報告No.50(2005年)p.60-63に詳細な記載がある。螺旋のセンスやピッチの測定法については「液晶化学実験入門」日本液晶学会編 シグマ出版2007年出版、46頁、および「液晶便覧」液晶便覧編集委員会 丸善 196頁に記載の方法を用いることができる。
 コレステリック構造は走査型電子顕微鏡(SEM)にて観測されるコレステリック液晶層14の断面図において明部と暗部との縞模様を与える。この明部と暗部の繰り返し2回分(明部2つおよび暗部2つ)が螺旋1ピッチ分に相当する。このことからピッチは、SEM断面図から測定することができる。縞模様の各線の法線が螺旋軸方向となる。
 なお、コレステリック構造の反射光は円偏光である。すなわち、透明スクリーン10aにおいてコレステリック液晶層14の反射光は円偏光となる。反射光が右円偏光であるか、または左円偏光であるかは、コレステリック構造における螺旋の捩れ方向による。コレステリック液晶による選択反射は、コレステリック液晶の螺旋の捩れ方向が右の場合は右円偏光を反射し、螺旋の捩れ方向が左の場合は左円偏光を反射する。
 本発明では、コレステリック液晶層14として、右捩れおよび左捩れのいずれのコレステリック液晶を使用してもよい。あるいは、円偏光の方向は、組み合わせて用いられる光源から照射される光の円偏光の方向と同じに選択されていることも好ましい。
 なお、コレステリック液晶相の旋回の方向は、液晶化合物の種類または添加されるキラル剤の種類によって調節できる。
 また選択反射を示す選択反射帯(円偏光反射帯)の半値幅Δλ(nm)は、Δλが液晶化合物の複屈折ΔnとピッチPに依存し、Δλ=Δn×Pの関係に従う。そのため、選択反射帯の幅の制御は、Δnを調節して行うことができる。Δnの調節は重合性液晶化合物の種類やその混合比率を調節したり、配向固定時の温度を制御したりすることで行うことができる。
 反射波長帯域の半値幅は、例えば、透明スクリーン10aに要求される性能等に応じて調節される。反射波長帯域の半値幅は、一例として、10~500nmであればよく、好ましくは25~100nmであればよい。
 (コレステリック構造の作製方法)
 コレステリック構造は、コレステリック液晶相を固定して得ることができる。コレステリック液晶相を固定した構造は、コレステリック液晶相となっている液晶化合物の配向が保持されている構造であればよく、典型的には、重合性液晶化合物をコレステリック液晶相の配向状態としたうえで、紫外線照射、加熱等によって重合、硬化し、流動性が無い層を形成して、同時に、また外場や外力によって配向形態に変化を生じさせることない状態に変化した構造であればよい。なお、コレステリック液晶相を固定した構造においては、コレステリック液晶相の光学的性質が保持されていれば十分であり、液晶化合物はもはや液晶性を示していなくてもよい。例えば、重合性液晶化合物は、硬化反応により高分子量化して、もはや液晶性を失っていてもよい。
 コレステリック構造を有するコレステリック液晶層14の形成に用いる材料としては、液晶化合物を含む液晶組成物などが挙げられる。液晶化合物は重合性液晶化合物であるのが好ましい。
 重合性液晶化合物を含む液晶組成物はさらに界面活性剤を含む。液晶組成物は、さらにキラル剤、重合開始剤を含んでいてもよい。
--重合性液晶化合物--
 重合性液晶化合物は、棒状液晶化合物であっても、円盤状液晶化合物であってもよいが、棒状液晶化合物であるのが好ましい。
 コレステリック液晶層を形成する棒状の重合性液晶化合物の例としては、棒状ネマチック液晶化合物が挙げられる。棒状ネマチック液晶化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。低分子液晶化合物だけではなく、高分子液晶化合物も用いることができる。
 重合性液晶化合物は、重合性基を液晶化合物に導入することで得られる。重合性基の例には、不飽和重合性基、エポキシ基、およびアジリジニル基が含まれ、不飽和重合性基が好ましく、エチレン性不飽和重合性基が特に好ましい。重合性基は種々の方法で、液晶化合物の分子中に導入できる。重合性液晶化合物が有する重合性基の個数は、好ましくは1~6個、より好ましくは1~3個である。重合性液晶化合物の例は、Makromol.Chem.,190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許第4683327号明細書、同5622648号明細書、同5770107号明細書、国際公開WO95/22586号公報、同95/24455号公報、同97/00600号公報、同98/23580号公報、同98/52905号公報、特開平1-272551号公報、同6-16616号公報、同7-110469号公報、同11-80081号公報、および特開2001-328973号公報などに記載の化合物が含まれる。2種類以上の重合性液晶化合物を併用してもよい。2種類以上の重合性液晶化合物を併用すると、配向温度を低下させることができる。
 重合性液晶化合物の具体例としては、下記式(1)~(11)に示す化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
[化合物(11)において、X1は2~5(整数)である。]
 また、これ以外の重合性液晶化合物としては、特開昭57-165480号公報に開示されているようなコレステリック相を有する環式オルガノポリシロキサン化合物等を用いることができる。さらに、前述の高分子液晶化合物としては、液晶を呈するメソゲン基を主鎖、側鎖、あるいは主鎖および側鎖の両方の位置に導入した高分子、コレステリル基を側鎖に導入した高分子コレステリック液晶、特開平9-133810号公報に開示されているような液晶性高分子、特開平11-293252号公報に開示されているような液晶性高分子等を用いることができる。
 また、液晶組成物中の重合性液晶化合物の添加量は、液晶組成物の固形分質量(溶媒を除いた質量)に対して、75~99.9質量%であるのが好ましく、80~99質量%であるのがより好ましく、85~90質量%であるのが特に好ましい。
--界面活性剤--
 本発明者らは、コレステリック液晶層14を形成する際に用いる液晶組成物に界面活性剤を加えることにより、コレステリック液晶層14形成時に重合性液晶化合物が空気界面側で水平に配向し、螺旋軸方向が上述のように制御されたコレステリック液晶層14が得られる。一般的に、コレステリック液晶層14の形成のためには、印刷の際の液滴形状を保つため、表面張力を低下させない必要がある。そのため界面活性剤を加えてもコレステリック液晶層14の形成が可能である。
 界面活性剤は、安定的にまたは迅速にプレーナー配向のコレステリック構造とするために寄与する配向制御剤として機能できる化合物が好ましい。界面活性剤としては、例えば、シリコ-ン系界面活性剤およびフッ素系界面活性剤が挙げられ、フッ素系界面活性剤が好ましい。
 界面活性剤としては、一例として、特開2014-119605号公報の[0082]~[0090]に記載の化合物、特開2012-203237号公報の段落[0031]~[0034]に記載の化合物、特開2005-99248号公報の[0092]および[0093]中に例示されている化合物、特開2002-129162号公報の[0076]~[0078]および[0082]~[0085]中に例示されている化合物、特開2007-272185号公報の段落[0018]~[0043]等に記載のフッ素(メタ)アクリレート系ポリマー、などが挙げられる。
 なお、水平配向剤としては1種を単独で用いてもよいし、2種以上を併用してもよい。
 フッ素系界面活性剤として、特開2014-119605の[0082]~[0090]に記載の下記一般式(I)で表される化合物が特に好ましい。
Figure JPOXMLDOC01-appb-C000003
 一般式(I)において、L11、L12、L13、L14、L15、L16はおのおの独立して単結合、-O-、-S-、-CO-、-COO-、-OCO-、-COS-、-SCO-、-NRCO-、-CONR-(一般式(I)中におけるRは水素原子または炭素数が1~6のアルキル基を表す)を表し、-NRCO-、-CONR-は溶解性を減ずる効果があり、コレステリック液晶層14の作製時にヘイズが上昇する傾向があることから、より好ましくは-O-、-S-、-CO-、-COO-、-OCO-、-COS-、-SCO-であり、化合物の安定性の観点から、さらに好ましくは-O-、-CO-、-COO-、-OCO-である。Rが取り得るアルキル基は、直鎖状であっても分枝状であってもよい。炭素数は1~3であるのがより好ましく、メチル基、エチル基、n-プロピル基を例示することができる。
 Sp11、Sp12、Sp13、Sp14はそれぞれ独立して単結合または炭素数1~10のアルキレン基を表し、より好ましくは単結合または炭素数1~7のアルキレン基であり、さらに好ましくは単結合または炭素数1~4のアルキレン基である。但し、アルキレン基の水素原子はフッ素原子で置換されていてもよい。アルキレン基には、分枝があっても無くてもよいが、好ましいのは分枝がない直鎖のアルキレン基である。合成上の観点からは、Sp11とSp14が同一であり、かつ、Sp12とSp13が同一であるのが好ましい。
 A11、A12は1~4価の芳香族炭化水素基である。芳香族炭化水素基の炭素数は6~22であるのが好ましく、6~14であるのがより好ましく、6~10であるのがさらに好ましく、6であるのがさらにより好ましい。A11、A12で表される芳香族炭化水素基は置換基を有していてもよい。そのような置換基の例として、炭素数1~8のアルキル基、アルコキシ基、ハロゲン原子、シアノ基またはエステル基を挙げることができる。これらの基の説明と好ましい範囲については、下記のTの対応する記載を参照することができる。A11、A12で表される芳香族炭化水素基に対する置換基としては、例えばメチル基、エチル基、メトキシ基、エトキシ基、臭素原子、塩素原子、シアノ基などを挙げることができる。パーフルオロアルキル部分を分子内に多く有する分子は、少ない添加量で液晶を配向させることができ、ヘイズ低下につながることから、分子内にパーフルオロアルキル基を多く有するようにA11、A12は4価であるのが好ましい。合成上の観点からは、A11とA12は同一であるのが好ましい。
 T11
Figure JPOXMLDOC01-appb-C000004
で表される二価の基または二価の芳香族複素環基を表す(上記T11中に含まれるXは炭素数1~8のアルキル基、アルコキシ基、ハロゲン原子、シアノ基またはエステル基を表し、Ya、Yb、Yc、Ydはおのおの独立して水素原子または炭素数1~4のアルキル基を表す)のが好ましく、
より好ましくは、
Figure JPOXMLDOC01-appb-C000005
であり、特に好ましくは、
Figure JPOXMLDOC01-appb-C000006
である。
 上記T11中に含まれるXがとりうるアルキル基の炭素数は1~8であり、1~5であるのが好ましく、1~3であるのがより好ましい。アルキル基は、直鎖状、分枝状、環状のいずれであってもよく、直鎖状または分枝状であるのが好ましい。好ましいアルキル基として、メチル基、エチル基、n-プロピル基、イソプロピル基などを例示することができ、その中でもメチル基が好ましい。上記T11中に含まれるXがとりうるアルコキシ基のアルキル部分については、上記T11中に含まれるXがとりうるアルキル基の説明と好ましい範囲を参照することができる。上記T11中に含まれるXがとりうるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子を挙げることができ、塩素原子、臭素原子が好ましい。上記T11中に含まれるXがとりうるエステル基としては、R’COO-で表される基を例示することができる。R’としては炭素数1~8のアルキル基を挙げることができる。R’がとりうるアルキル基の説明と好ましい範囲については、上記T11中に含まれるXがとりうるアルキル基の説明と好ましい範囲を参照することができる。エステルの具体例として、CH3COO-、C25COO-を挙げることができる。Ya、Yb、Yc、Ydがとりうる炭素数1~4のアルキル基は、直鎖状であっても分枝状であってもよい。例えば、メチル基、エチル基、n-プロピル基、イソプロピル基などを例示することができる。
 二価の芳香族複素環基は、5員、6員または7員の複素環を有することが好ましい。5員環または6員環がさらに好ましく、6員環が最も好ましい。複素環を構成する複素原子としては、窒素原子、酸素原子および硫黄原子が好ましい。複素環は、芳香族性複素環であるのが好ましい。芳香族性複素環は、一般に不飽和複素環である。最多二重結合を有する不飽和複素環がさらに好ましい。複素環の例には、フラン環、チオフェン環、ピロール環、ピロリン環、ピロリジン環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、イミダゾリン環、イミダゾリジン環、ピラゾール環、ピラゾリン環、ピラゾリジン環、トリアゾール環、フラザン環、テトラゾール環、ピラン環、チイン環、ピリジン環、ピペリジン環、オキサジン環、モルホリン環、チアジン環、ピリダジン環、ピリミジン環、ピラジン環、ピペラジン環およびトリアジン環が含まれる。二価の複素環基は置換基を有していてもよい。そのような置換基の例の説明と好ましい範囲については、上記のA1とA2の1~4価の芳香族炭化水素が取り得る置換基に関する説明と記載を参照することができる。
 Hb11は炭素数2~30のパーフルオロアルキル基を表し、より好ましくは炭素数3~20のパーフルオロアルキル基であり、さらに好ましくは3~10のパーフルオロアルキル基である。パーフルオロアルキル基は、直鎖状、分枝状、環状のいずれであってもよいが、直鎖状または分枝状であるものが好ましく、直鎖状であるのがより好ましい。
 m11、n11はそれぞれ独立に0から3であり、かつm11+n11≧1である。このとき複数存在する括弧内の構造は互いに同一であっても異なっていてもよいが、互いに同一であるのが好ましい。一般式(I)のm11、n11は、A11、A12の価数によって定まり、好ましい範囲もA11、A12の価数の好ましい範囲によって定まる。
 T11中に含まれるoおよびpはそれぞれ独立に0以上の整数であり、oおよびpが2以上であるとき複数のXは互いに同一であっても異なっていてもよい。T11中に含まれるoは1または2であるのが好ましい。T11中に含まれるpは1~4のいずれかの整数であるのが好ましく、1または2であるのがより好ましい。
 一般式(I)で表される化合物は、分子構造が対称性を有するものであってもよいし、対称性を有しないものであってもよい。なお、ここでいう対称性とは、点対称、線対称、回転対称のいずれかひとつに少なくとも該当するものを意味し、非対称とは点対称、線対称、回転対称のいずれにも該当しないものを意味する。
 一般式(I)で表される化合物は、先に述べたパーフルオロアルキル基(Hb11)、連結基-(-Sp11-L11-Sp12-L12)m11-A11-L13-および-L14-A12-(L15-Sp13-L16-Sp14-)n11-、ならびに好ましくは排除体積効果を持つ2価の基であるTを組み合わせた化合物である。分子内に2つ存在するパーフルオロアルキル基(Hb11)は互いに同一であるのが好ましく、分子内に存在する連結基-(-Sp11-L11-Sp12-L12)m11-A11-L13-および-L14-A12-(L15-Sp13-L16-Sp14-)n11-も互いに同一であるのが好ましい。末端のHb11-Sp11-L11-Sp12-および-Sp13-L16-Sp14-Hb11は、以下のいずれかの一般式で表される基であるのが好ましい。
(Ca2a+1)-(Cb2b)-
(Ca2a+1)-(Cb2b)-O-(Cr2r)-
(Ca2a+1)-(Cb2b)-COO-(Cr2r)-
(Ca2a+1)-(Cb2b)-OCO-(Cr2r)-
 上式において、aは2~30であるのが好ましく、3~20であるのがより好ましく、3~10であるのがさらに好ましい。bは0~20であるのが好ましく、0~10であるのがより好ましく、0~5であるのがさらに好ましい。a+bは3~30である。rは1~10であるのが好ましく、1~4であるのがより好ましい。
 また、一般式(I)の末端のHb11-Sp11-L11-Sp12-L12-および-L15-Sp13-L16-Sp14-Hb11は、以下のいずれかの一般式で表される基であるのが好ましい。
(Ca2a+1)-(Cb2b)-O-
(Ca2a+1)-(Cb2b)-COO-
(Ca2a+1)-(Cb2b)-O-(Cr2r)-O-
(Ca2a+1)-(Cb2b)-COO-(Cr2r)-COO-
(Ca2a+1)-(Cb2b)-OCO-(Cr2r)-COO-
上式におけるa、bおよびrの定義は直上の定義と同じである。
 液晶組成物中における、界面活性剤の添加量は、重合性液晶化合物の全質量に対して0.01質量%~10質量%が好ましく、0.01~5質量%がより好ましく、0.02~1質量%が特に好ましい。
--キラル剤(光学活性化合物)--
 キラル剤はコレステリック液晶相の螺旋構造を誘起する機能を有する。キラル化合物は、化合物によって誘起する螺旋の捩れ方向または螺旋ピッチが異なるため、目的に応じて選択すればよい。
 キラル剤としては、特に制限はなく、公知の化合物(例えば、液晶デバイスハンドブック、第3章4-3項、TN、STN用カイラル剤、199頁、日本学術振興会第142委員会編、1989に記載)、イソソルビド、イソマンニド誘導体を用いることができる。
 キラル剤は、一般に不斉炭素原子を含むが、不斉炭素原子を含まない軸性不斉化合物あるいは面性不斉化合物もキラル剤として用いることができる。軸性不斉化合物または面性不斉化合物の例には、ビナフチル、ヘリセン、パラシクロファンおよびこれらの誘導体が含まれる。キラル剤は、重合性基を有していてもよい。キラル剤と液晶化合物とがいずれも重合性基を有する場合は、重合性キラル剤と重合性液晶化合物との重合反応により、重合性液晶化合物から誘導される繰り返し単位と、キラル剤から誘導される繰り返し単位とを有するポリマーを形成することができる。この態様では、重合性キラル剤が有する重合性基は、重合性液晶化合物が有する重合性基と、同種の基であるのが好ましい。従って、キラル剤の重合性基も、不飽和重合性基、エポキシ基またはアジリジニル基であるのが好ましく、不飽和重合性基であるのがさらに好ましく、エチレン性不飽和重合性基であるのが特に好ましい。
 また、キラル剤は、液晶化合物であってもよい。
 キラル剤が光異性化基を有する場合には、塗布、配向後に活性光線などのフォトマスク照射によって、発光波長に対応した所望の反射波長のパターンを形成することができるので好ましい。光異性化基としては、フォトクロッミック性を示す化合物の異性化部位、アゾ、アゾキシ、シンナモイル基が好ましい。具体的な化合物として、特開2002-80478号公報、特開2002-80851号公報、特開2002-179668号公報、特開2002-179669号公報、特開2002-179670号公報、特開2002-179681号公報、特開2002-179682号公報、特開2002-338575号公報、特開2002-338668号公報、特開2003-313189号公報、特開2003-313292号公報に記載の化合物を用いることができる。
 キラル剤の具体例としては以下の式(12)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000007
式中、Xは2~5(整数)である。
 液晶組成物における、キラル剤の含有量は、重合性液晶性化合物量の0.01~200モル%が好ましく、1~30モル%がより好ましい。
--重合開始剤--
 液晶組成物に重合性化合物を含む場合は、重合開始剤を含有していることが好ましい。紫外線照射により重合反応を進行させる態様では、使用する重合開始剤は、紫外線照射によって重合反応を開始可能な光重合開始剤であるのが好ましい。光重合開始剤の例には、α-カルボニル化合物(米国特許第2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許第2448828号明細書記載)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書記載)、多核キノン化合物(米国特許第3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60-105667号公報、米国特許第4239850号明細書記載)およびオキサジアゾール化合物(米国特許第4212970号明細書記載)等が挙げられる。
 液晶組成物中の光重合開始剤の含有量は、重合性液晶化合物の含有量に対して0.1~20質量%であるのが好ましく、0.5~12質量%であるのがさらに好ましい。
--架橋剤--
 液晶組成物は、硬化後の膜強度向上、耐久性向上のため、任意に架橋剤を含有していてもよい。架橋剤としては、紫外線、熱、湿気等で硬化するものが好適に使用できる。
 架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えばトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等の多官能アクリレート化合物;グリシジル(メタ)アクリレート、エチレングリコールジグリシジルエーテル等のエポキシ化合物;2,2-ビスヒドロキシメチルブタノール-トリス[3-(1-アジリジニル)プロピオネート]、4,4-ビス(エチレンイミノカルボニルアミノ)ジフェニルメタン等のアジリジン化合物;ヘキサメチレンジイソシアネート、ビウレット型イソシアネート等のイソシアネート化合物;オキサゾリン基を側鎖に有するポリオキサゾリン化合物;ビニルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルトリメトキシシラン等のアルコキシシラン化合物などが挙げられる。また、架橋剤の反応性に応じて公知の触媒を用いることができ、膜強度および耐久性向上に加えて生産性を向上させることができる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 架橋剤の含有量は、3~20質量%が好ましく、5~15質量%がより好ましい。架橋剤の含有量が、3質量%未満であると、架橋密度向上の効果が得られないことがあり、20質量%を超えると、コレステリック液晶層の安定性を低下させてしまうことがある。
--その他の添加剤--
 コレステリック液晶層14の形成方法として、インクジェット法を用いる場合には、一般的に求められるインク物性を得るために、単官能重合性モノマーを使用してもよい。単官能重合性モノマーとしては、2-メトキシエチルアクリレート、イソブチルアクリレート、イソオクチルアクリレート、イソデシルアクリレート、オクチル/デシルアクリレート等が挙げられる。
 また、液晶組成物中には、必要に応じて、さらに重合禁止剤、酸化防止剤、紫外線吸収剤、光安定化剤、色材、金属酸化物微粒子等を、光学的性能等を低下させない範囲で添加することができる。
 液晶組成物は、コレステリック液晶層14を形成する際には、液体として用いられることが好ましい。
 液晶組成物は溶媒を含んでいてもよい。溶媒としては、特に制限はなく、目的に応じて適宜選択することができるが、有機溶媒が好ましく用いられる。
 有機溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メチルエチルケトン、メチルイソブチルケトン等のケトン類、アルキルハライド類、アミド類、スルホキシド類、ヘテロ環化合物、炭化水素類、エステル類、エーテル類などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、環境への負荷を考慮した場合にはケトン類が特に好ましい。上述の単官能重合性モノマーなどの上述の成分が溶媒として機能していてもよい。
 液晶組成物は、支持体12上に塗布、乾燥されて、その後、硬化されてコレステリック液晶層14を形成する。
 液晶組成物の塗布は、ワイヤーバーコータなどのバーコータ、ダイコータ、ワイヤーコータ、スピンコータ、ドクターブレード等の公知の塗布装置を用いて行うことができる。
 あるいは、図1のように傾斜面のみにコレステリック液晶層を形成する場合には、印刷法が好適に利用可能である。印刷法としては特に限定されず、インクジェット法、グラビア印刷法、フレキソ印刷法などを用いることができる。
 さらに、後述するように、1つのコレステリック液晶層の中に、互いに異なる波長域の光を反射する複数の領域を有する場合には、まず、支持体12側の層となる液晶組成物を塗布して硬化させて1層目を形成し、次に2層目となる液晶組成物を、1層目の上に打滴して硬化させて2層目を形成し、さらに、3層目以降も同様の方法で形成することで、反射する光の波長域あるいは偏光方向が異なる複数の領域を有するコレステリック液晶層14を形成することができる。
 支持体12上に塗布された液晶組成物は必要に応じて乾燥または加熱され、その後、硬化される。乾燥または加熱の工程で、液晶組成物中の重合性液晶化合物が配向していればよい。加熱を行う場合、加熱温度は、200℃以下が好ましく、130℃以下がより好ましい。
 配向させた液晶化合物は、さらに重合させればよい。重合は、熱重合、光照射による光重合のいずれでもよいが、光重合が好ましい。光照射は、紫外線を用いるのが好ましい。照射エネルギーは、20~50J/cm2が好ましく、10~1,500mJ/cm2がより好ましい。光重合反応を促進するため、加熱条件下または窒素雰囲気下で光照射を実施してもよい。照射紫外線波長は250~430nmが好ましい。重合反応率は安定性の観点から、高いことが好ましく70%以上が好ましく、80%以上がより好ましい。
 重合反応率は、重合性の官能基の消費割合を、IR吸収スペクトルを用いて決定することができる。
 コレステリック液晶層14の上には、オーバーコート層16が形成される。
 オーバーコート層16は支持体12のコレステリック液晶層14が形成された面側に、コレステリック液晶層14を覆って設けられる。また、オーバーコート層16の表面は略平坦であり、また、支持体12の基材12aの主面と略平行である。
 オーバーコート層16は特に限定されないが、コレステリック液晶層14の屈折率との差が小さいほど好ましく、屈折率の差が0.2以下であり、0.05以下であるのが好ましい。例えば、液晶材料からなるコレステリック液晶層14の屈折率は1.6程度であるので、屈折率が1.4~1.8程度の樹脂層であるのが好ましい。コレステリック液晶層14の屈折率に近い屈折率を有するオーバーコート層16を用いることによって、コレステリック液晶層14とオーバーコート層16との屈折率差に起因する界面での反射を抑制でき、透明性を高くすることができる。
 また、オーバーコート層16と支持体12との屈折率の差が小さいのが好ましい。
 なお、オーバーコート層16は、反射防止層、粘着剤層、接着剤層としての機能を有していてもよい。
 オーバーコートの例としては、モノマーを含む組成物をコレステリック液晶層14の表面に塗布、その後塗布膜を硬化して得られる樹脂層などが挙げられる。
 樹脂は、特に限定されず、支持体12および/またはコレステリック液晶層14を形成する液晶材料への密着性などを考慮して選択すればよい。例えば、熱可塑性樹脂、熱硬化性樹脂、紫外線硬化性樹脂等を用いることができる。耐久性、耐溶剤性等の点からは、架橋により硬化するタイプの樹脂が好ましく、特に、短時間での硬化が可能である紫外線硬化性樹脂が好ましい。オーバーコートの形成に用いることができるモノマーとしては、エチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N-ビニルピロリドン、ポリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等が挙げられる。
 オーバーコートの厚さは、特に限定されず、コレステリック液晶層14の最大高さを考慮して決定すればよく、1μm~270μm程度であればよく、好ましくは5μm~180μmであり、より好ましくは9μm~90μmである。厚みは、コレステリック液晶層14が無い部分の支持体12の表面から対向する面にあるオーバーコート表面までの距離である。
 ここで、図1に示す透明スクリーン10aにおいては、全てのコレステリック液晶層14が、同じ波長域の光を反射するものとしたが、これに限定はされず、互いに異なる波長域の光を反射するコレステリック液晶層を2種以上含む構成としてもよい。
 例えば、610nm~690nmの波長域の赤色光を反射するコレステリック液晶層と、515nm~585nmの波長域の緑色光を反射するコレステリック液晶層と、420nm~480nmの波長域の青色光を反射するコレステリック液晶層とをそれぞれ複数含む構成としてもよい。
 このように、赤色光を反射するコレステリック液晶層、緑色光を反射するコレステリック液晶層、および青色光を反射するコレステリック液晶層を形成することで、入射される映像光の赤色光、緑色光および青色光を反射することができ、透明スクリーンに投影される映像をカラー表示することができる点、プロジェクタ等の映像装置から出射される映像光が赤色光であっても緑色光であっても青色光であっても利用可能である点等で好ましい。
 なお、上述の例においては、赤色光、緑色光および青色光をそれぞれ反射するコレステリック液晶層を含む構成としたが、これに限定はされず、これ以外の波長域の光を反射するコレステリック液晶層を含んでいてもよい。
 また、赤色光、緑色光および青色光をそれぞれ反射するコレステリック液晶層は、上記波長域の光を反射するものであればよく、反射波のピーク波長が上記波長域の範囲外であってもよい。
 また、赤色光、緑色光および青色光をそれぞれ反射する3種のコレステリック液晶層からなる構成に限定はされず、例えば、赤色光を反射するコレステリック液晶層と、青色光を反射するコレステリック液晶層との2種を含む構成としてもよく、あるいは、さらに、赤色光、緑色光および青色光をそれぞれ反射するコレステリック液晶層に加えて、他の波長域の光を反射するコレステリック液晶層との4種以上を含む構成としてもよい。また、プロジェクタ等の映像装置から出射される映像光の波長に応じて、コレステリック液晶層の反射波長を調整することで、映像光のみを効率良く反射し、映像光に含まれない波長の光を透過させることができ、より透明性を高めることができる。さらには、プロジェクタ等の映像装置から出射される映像光の波長を狭帯域にし、透明スクリーンのコレステリック液晶層の反射帯域を対応させることで、その効果を高めることもできる。
 また、互いに異なる波長域の光を反射するコレステリック液晶層を2種以上有する場合には、コレステリック液晶層の配列には特に限定はなく、例えば、交互に配列してもよいし、あるいは、ランダムに配列してもよい。
 ここで、上記コレステリック液晶層を構成する液晶材料のコレステリック構造の反射光は円偏光である。すなわち、液晶材料のコレステリック構造は、右円偏光または左円偏光の一方を選択的に反射し、他方を透過する。
 したがって、本発明においては、複数形成されるコレステリック液晶層は、全てのコレステリック液晶層が同じ円偏光を反射する構成であってもよいし、あるいは、右円偏光を反射するコレステリック液晶層と、左円偏光を反射するコレステリック液晶層とを含む構成としてもよい。
 右円偏光を反射するコレステリック液晶層と、左円偏光を反射するコレステリック液晶層とを含む構成とすることで、映像光の右円偏光と左円偏光とを反射でき反射率を向上できる点、映像光の右円偏光と左円偏光それぞれに、観察者の左目用または右目用の画像を表示させて立体視(いわゆる3D表示)を行うことができる点、プロジェクタ等の映像装置から出射される映像光が右円偏光であっても左円偏光であっても利用可能である点等で好ましい。
 また、液晶材料のコレステリック構造が、右円偏光または左円偏光の一方を選択的に反射し、他方を透過する場合には、プロジェクタ等の映像装置から出射される映像光を右円偏光、もしくは左円偏光のいずれか一方とし、その映像光に対応した円偏光を反射させるコレステリック液晶層を用いた透明スクリーンと組み合わせることで、映像光のみを効率良く反射し、映像光に含まれない円偏光を透過させることができ、より透明性を高めることができる。
 なお、コレステリック構造の反射光が右円偏光であるか、または左円偏光であるかの円偏光選択反射性は、コレステリック構造の螺旋の捩れ方向による。コレステリック液晶による選択反射は、コレステリック液晶の螺旋の捩れ方向が右の場合は右円偏光を反射し、螺旋の捩れ方向が左の場合は左円偏光を反射する。
 さらに、互いに異なる波長域の光を反射するコレステリック液晶層を2種以上有し、かつ、各波長域の光を反射するコレステリック液晶層として、右円偏光を反射するコレステリック液晶層と、左円偏光を反射するコレステリック液晶層を有していてもよい。
 互いに異なる波長域の光を反射するコレステリック液晶層を2種以上有し、かつ、各波長域の光を反射するコレステリック液晶層として、右円偏光を反射するコレステリック液晶層と、左円偏光を反射するコレステリック液晶層を有する構成とすることで、透明スクリーンに投影される映像をカラー表示することができる点、映像光の右円偏光と左円偏光それぞれに、観察者の左目用または右目用の画像を表示させて立体視(いわゆる3D表示)を行うことができる点、プロジェクタ等の映像装置から出射される映像光の、波長域や円偏光の方向によらず利用可能である点等で好ましい。
 また、図1に示す例では、各コレステリック液晶層はそれぞれ、1つの波長域の光を反射する構成としたが、これに限定はされず、1つのコレステリック液晶層が、複数の波長域の光を反射する構成としてもよい。すなわち、1つのコレステリック液晶層内に互いに異なる波長域の光を反射する層を2以上有するコレステリック液晶層を含む構成としてもよい。
 図7に本発明の透明スクリーンの他の一例の概略断面図を示す。
 図7に示す透明スクリーン10fは、コレステリック液晶層として、1つのコレステリック液晶層内に、赤色光を反射する赤色層15Rと、緑色光を反射する緑色層15Gと、青色光を反射する青色層15Bとを有する3層コレステリック液晶層14Tを含む構成を有する。
 具体的には、3層コレステリック液晶層14Tは、凸部12b側の、赤色層15Rと、赤色層15Rの表面に積層された緑色層15Gと、緑色層15Gの表面に積層された青色層15Bとの3層を基板12の法線方向に積層した構成を有する。
 このような3層コレステリック液晶層14Tは、赤色光を反射する層、緑色光を反射する層および青色光を反射する層を有するので、1つのコレステリック液晶層で、入射した映像光の赤色光、緑色光および青色光を反射することができる。
 したがって、透明スクリーンに投影される映像をカラー表示することができる。また、プロジェクタ等の映像装置から出射される映像光が赤色光であっても緑色光であっても青色光であっても利用可能である。また、映像光の赤色光、緑色光および青色光を反射でき、反射率を向上できる。
 なお、図7に示す例では、赤色光、緑色光および青色光をそれぞれ反射する3層を有する構成としたが、これに限定はされず、互いに異なる波長域の光を反射する2層からなるものであってもよく、あるいは、4層以上からなるものであってもよい。
 また、図7に示す例では、3層コレステリック液晶層14Tは、凸部12b側から赤色層15R、緑色層15Gおよび青色層15Bの順に積層する構成としたがこれに限定はされず、各層の積層順はどのような順番であってもよい。
 また、各コレステリック液晶層はそれぞれ、右円偏光と左円偏光のいずれか一方を反射する構成としたが、これに限定はされず、1つのコレステリック液晶層が、右円偏光と左円偏光とを反射する構成としてもよい。すなわち、1つのコレステリック液晶層内に右円偏光を反射する領域と、左円偏光を反射する領域とを有するコレステリック液晶層を含む構成としてもよい。
 このようなコレステリック液晶層は、右円偏光を反射する層と左円偏光を反射する層とを有するので、1つのコレステリック液晶層で、入射した映像光の右円偏光および左円偏光を反射することができる。
 したがって、映像光の右円偏光および左円偏光を反射でき、反射率を向上できる。また、映像光の右円偏光と左円偏光それぞれに、観察者の左目用または右目用の画像を表示させて立体視(いわゆる3D表示)を行うことができる。また、プロジェクタ等の映像装置から出射される映像光が右円偏光であっても左円偏光であっても利用可能である。
 さらに、1つのコレステリック液晶層が、複数の波長域の光を反射し、かつ、各波長域の右円偏光と左円偏光とを反射する構成としてもよい。
 また、本発明においては、上述した透明スクリーンを1つのユニットとして、複数の透明スクリーンユニットを厚さ方向に積層して1つの透明スクリーンとしてもよい。その際、各透明スクリーンユニットは異なる波長域の光を反射するものであるのが好ましい。
 図8に本発明の透明スクリーンの他の一例を示す。
 図8に示す透明スクリーン100aは、上述した透明スクリーン10aを1つの透明スクリーンユニットとして、3つの透明スクリーンユニット10aR、10aGおよび10aBを厚さ方向に積層した構成を有する。
 また、各透明スクリーンユニットは、それぞれ異なる波長域の光を反射するものであり、透明スクリーンユニット10aRは、赤色光を反射する赤色コレステリック液晶層14Rを有し、透明スクリーンユニット10aGは、緑色光を反射する緑色コレステリック液晶層14Gを有し、透明スクリーンユニット10aBは、青色光を反射する青色コレステリック液晶層14Bを有する。
 このように、異なる波長域の光を反射する複数の透明スクリーンユニットを積層した構成とすることで、入射される映像光の赤色光、緑色光および青色光を反射することができ、透明スクリーンに投影される映像をカラー表示することができ、プロジェクタ等の映像装置から出射される映像光が赤色光であっても緑色光であっても青色光であっても利用可能である。
 なお、透明スクリーンユニット10aR、透明スクリーンユニット10aG、および、透明スクリーンユニット10aBにおいて、支持体12の形成材料および/または厚さは、同じでも、互いに異なってもよい。
 透明スクリーンユニット10aR、透明スクリーンユニット10aG、および、透明スクリーンユニット10aBにおいて、コレステリック液晶層14の形成材料および/または厚さは、同じでも、互いに異なってもよい。
 また、透明スクリーンユニット10aR、透明スクリーンユニット10aG、および、透明スクリーンユニット10aBにおいて、螺旋軸角度θ1は同じであっても、異なってもよい。
 また、透明スクリーン100aにおいて、透明スクリーンユニット10aR、透明スクリーンユニット10aG、および、透明スクリーンユニット10aBは、積層されて、オーバーコート層16および支持体12の形成材料に応じた接着剤によって、接着される。あるいは、オーバーコート層16が接着剤を兼ねてもよい。
 なお、接着剤は、十分な光透過性を有するものを使用する。
 また、透明スクリーン100aにおいては、透明スクリーンユニット10aR、透明スクリーンユニット10aG、および、透明スクリーンユニット10aBの順に積層されているがこれに限定はされず、透明スクリーンユニット10aR、透明スクリーンユニット10aG、および、透明スクリーンユニット10aBの積層順には限定はない。
 以上、本発明の透明スクリーンについて詳細に説明したが、本発明は上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。
 以下に実施例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、試薬、使用量、物質量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
[実施例1]
 実施例1として、図8に示すような3層の透明スクリーン100aを作製した。
<支持体の作製>
 <<基材の作製>>
 下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルロースアセテート溶液を調製した。
 (セルロースアセテート溶液組成)
   酢化度60.7~61.1%のセルロースアセテート 100質量部
   トリフェニルホスフェート(可塑剤)        7.8質量部
   ビフェニルジフェニルホスフェート(可塑剤)    3.9質量部
   メチレンクロライド(第1溶媒)          336質量部
   メタノール(第2溶媒)               29質量部
   1-ブタノール(第3溶媒)             11質量部
 別のミキシングタンクに、下記のレターデーション上昇剤(A)16質量部、メチレンクロライド92質量部およびメタノール8質量部を投入し、加熱しながら攪拌して、レターデーション上昇剤溶液を調製した。セルロースアセテート溶液474質量部にレターデーション上昇剤溶液25質量部を混合し、充分に攪拌してドープを調製した。レターデーション上昇剤の添加量は、セルロースアセテート100質量部に対して、6.0質量部であった。
Figure JPOXMLDOC01-appb-C000008
 得られたドープを、バンド延伸機を用いて流延した。バンド上での膜面温度が40℃となってから、70℃の温風で1分乾燥し、バンドからフィルムを140℃の乾燥風で10分乾燥し、残留溶剤量が0.3質量%のトリアセチルセルロースフィルムを作製した。
 このフィルムを、基材とする。
 <<凸部の形成>>
 のこぎり歯状の直角三角形状を複数有する金型(ニッケル製、直角三角形の長さ100μm、高さ18μm、傾斜面の傾斜角度10°)上に、UV硬化樹脂(PAK-02:東洋合成製)を滴下し、その上に基材をかぶせ、UV硬化樹脂が基材全体にいきわたる事を確認し、500mJ/cm2の紫外線を照射した後、基材と金型を剥離し、支持体を作製した。
<透明スクリーンユニットの作製>
 <<青色コレステリック液晶層用液晶液の調製>>
 下記に示すコレステリック液晶液1を、25℃に保温された容器中にて、攪拌、溶解させ、コレステリック液晶液1を調製した。
 (コレステリック液晶液1)
   メトキシエチルアクリレート            145質量部
   下記の棒状液晶化合物の混合物           100質量部
   IRGACURE 819 (BASF社製)       10質量部
   下記構造のキラル剤A              5.78質量部
   下記構造の界面活性剤              0.08質量部
棒状液晶化合物
Figure JPOXMLDOC01-appb-C000009
 数値は質量%である。また、Rは酸素で結合する基である。
キラル剤A
Figure JPOXMLDOC01-appb-C000010
界面活性剤
Figure JPOXMLDOC01-appb-C000011
 <<青色コレステリック液晶層の形成>>
 上記で調製したコレステリック液晶液1を、作製した支持体の凸部の傾斜面に、インクジェットプリンター(DMP-2831、FUJIFILM Dimatix社製)にて、厚さ2.8μmになるように液量を調整して打滴した。95℃、30秒間乾燥した後に、紫外線照射装置により、500mJ/cm2の紫外線を照射し、傾斜面上に青色コレステリック液晶層を形成した。これを光学部材01とする。
 <<緑色コレステリック液晶層の形成>>
 キラル剤の添加量を5.1質量部にし、厚さ3.5μmになるように液量を調整して打滴した以外は,コレステリック液晶液1と同様にコレステリック液晶液2を調製した。
 このコレステリック液晶液2を用いた以外は、光学部材01の作製と同様にして、凸部の傾斜面に緑色コレステリック液晶層を有する光学部材02を作製した。
 <<赤色コレステリック液晶層の形成>>
 キラル剤の添加量を4.4質量部にし、厚さ4.0μmになるように液量を調整して打滴した以外は,コレステリック液晶液1と同様にコレステリック液晶液3を調製した。
 このコレステリック液晶液3を用いた以外は、光学部材01の作製と同様にして、凸部の傾斜面に赤色コレステリック液晶層を有する光学部材03を作製した。
 <<オーバーコートの形成>>
 下記に示す組成物を、25℃に保温された容器中にて、攪拌、溶解させ、オーバーコート用塗布液を調製した。
(オーバーコート用塗布液)
   アセトン                     100質量部
   KAYARAD DPCA-30(日本化薬株式会社製)         30質量部
   EA-200(大阪ガスケミカル社製)        70質量部
   IRGACURE 819 (BASF社製)              3質量部
 調製したオーバーコート用塗布液1を、エンボス加工した光学部材01、光学部材02および光学部材03のコレステリック液晶層上に、#15のバーコーターを用いて、それぞれ塗布した。
 次に、オーバーコート用塗布液1を塗布した光学部材01、光学部材02および光学部材03を厚さ方向に積層し、その後、膜面温度が50℃になるように加熱し、60秒間乾燥した後に、紫外線照射装置により、500mJ/cm2の紫外線を照射し、架橋反応を進行させ、オーバーコート層を形成すると共に、光学部材01、光学部材02および光学部材03を接着し、透明スクリーン100aを作製した。
 各コレステリック液晶層の螺旋軸角度θ1は、いずれも10°である。
 また、コレステリック液晶層と凸部との屈折率差は0.08であり、コレステリック液晶層とオーバーコート層との屈折率差は0.02である。
 [実施例2~4]
 凸部の傾斜面の傾斜角度をそれぞれ15°、20°、25°とし、バーの番手をそれぞれ#20、#28、#35とした、すなわち、螺旋軸角度θ1をそれぞれ15°、20°、25°としてバーの番手を変更した以外は、実施例1と同様にして、透明スクリーン100aを作製した。
 [実施例5]
 互いに異なる波長域の光を反射するコレステリック液晶層を3層有する構成とした以外は、実施例2と同様にして、図7に示すような透明スクリーン10fを作製した。
 具体的には、上記コレステリック液晶液1、コレステリック液晶液2およびコレステリック液晶液3を用いて、3層構成のコレステリック液晶層を、図7に示す順に積層するように形成して透明スクリーン10fを作製した。
 [実施例6]
 凸部の断面形状を鈍角三角形状とし、鈍角を110°とした以外は、実施例2と同様にして、図9に示すような3層の透明スクリーン100eを作製した。
 [実施例7]
 隣接する凸部間に92μmの間隙を有する構成とした以外は、実施例2と同様にして、3層の透明スクリーンを作製した。
 [実施例8]
 コレステリック液晶液を打滴する際に、インクジェットプリンターJV400SUV(ミマキ社製)を用いること以外は、実施例1と同様にして、透明スクリーン100aを作製した。
 ここでJV400SUVの構造について記載する。
 JV400SUVはシャトルスキャン型ソルベントUVプリンターであり、加熱系としてプレヒーター、プリントヒーター、ポストヒーターを有し、最下流に硬化光源として熱陰極管を有する構成となっている。
 プレヒーターとは基材を印字前に暖めるヒーターであり、プリントヒーターは、印字時に基材を暖めるヒーターであり、ポストヒーターは印字後に加熱し、着弾したインクから有機溶剤を揮発させるため、および液晶化合物の配向を促進させるためのヒーターである。インク中の溶剤は硬化前に揮発され、溶剤が除去された状態で熱陰極管によって硬化される。
 なお、印字条件は24pass双方向、プレヒーター、プリントヒーター、ポストヒーターは各々60℃に設定した。
 [比較例1]
 コレステリック液晶層に代えて、金属層を形成した以外は実施例2と同様にして透明スクリーンを作製した。
 金属層は、真空スパッタ法により、Agを支持体上に蒸着した。この時、透過率が30%になるように膜厚を調整した。
 [比較例2および3]
 凸部の傾斜面の傾斜角度をそれぞれ2°、50°とした、すなわち、螺旋軸角度θ1をそれぞれ2°、50°とした以外は、実施例1と同様にして、透明スクリーンを作製した。
 [評価]
<反射率>
 プロジェクターEH-TW410(EPSON製)を用いて、60度から各透明スクリーンに白画像を投影し、透明スクリーンの法線方向(つまり正面方向)から輝度を色彩輝度計BM-5(トプコン製)測定し、反射率を算出した。
 ここで、透明スクリーンの位置に鏡を配置し、プロジェクターと正反射の位置に色彩輝度計を配置したときの正反射光の輝度を100として反射率を算出した。
 また、ヘイズメーターNDH-2000(日本電色工業株式会社製)を用いて、透過率とヘイズ値とを測定した。
 結果を表1に示す。
 なお、表1において、オーバーコート層をOC層と表す。
Figure JPOXMLDOC01-appb-T000012
 表1に示すように、螺旋軸角度が5~42°で、コレステリック液晶層と凸部、および、オーバーコート層との屈折率差が0.2以下である本発明の実施例1~7は、比較例1~3と比べて、正面での反射率が高く、かつ、透過率が高く、また、ヘイズ値が小さいことがわかる。
 また、実施例1~4の対比から螺旋軸角度は、15~20°がより好ましいことがわかる。
 また、実施例2と実施例6、7との対比から、凸部の断面形状を鈍角三角形とすることで、あるいは、凸部間に間隙を設けて配置することで、反射率および透過率が高くなりより好ましいことがわかる。
 以上より本発明の効果は明らかである。
 10、10a~10f 透明スクリーン
 12、32、34 支持体
 12a 基材
 12b、32b 凸部
 14 コレステリック液晶層
 14R 赤色コレステリック液晶層
 14G 緑色コレステリック液晶層
 14B 青色コレステリック液晶層
 14T 3層コレステリック液晶層
 15R 赤色領域
 15G 緑色領域
 15B 青色領域
 16 オーバーコート層
 32a 基材部
 34b 凸部層
 θ1 螺旋軸角度
 θ2 鈍角角度

Claims (6)

  1.  光を透過可能な支持体と、
     前記支持体の一方の面に形成された、互いに平行な傾斜面を有する複数の凸部と、
     前記複数の凸部の各傾斜面上に形成された、コレステリック構造を有する液晶材料からなるコレステリック液晶層と、
     前記支持体の前記複数の凸部側の面に、前記コレステリック液晶層を覆って積層されるオーバーコート層とを有し、
     前記複数の凸部の傾斜面の法線と、前記コレステリック液晶層の前記コレステリック構造の螺旋軸とが平行であり、
     前記オーバーコート層表面の法線と前記コレステリック液晶層の前記コレステリック構造の螺旋軸とのなす角度が5~42°であり、
     前記コレステリック液晶層と前記凸部との屈折率差が0.2以下であり、
     前記コレステリック液晶層と前記オーバーコート層との屈折率差が0.2以下であることを特徴とする透明スクリーン。
  2.  前記オーバーコート層表面に対する前記コレステリック液晶層の前記コレステリック構造の螺旋軸の角度が15~25°である請求項1に記載の透明スクリーン。
  3.  前記コレステリック液晶層と前記凸部との屈折率差が0.05以下であり、
     前記コレステリック液晶層と前記オーバーコート層との屈折率差が0.05以下である請求項1または2に記載の透明スクリーン。
  4.  前記コレステリック液晶層が、互いに異なる波長域の光を反射する2以上の層からなる請求項1~3のいずれか一項に記載の透明スクリーン。
  5.  前記オーバーコート層表面に垂直で、前記複数の凸部の前記傾斜面の傾斜方向に平行な断面において、前記凸部の形状が鈍角三角形であり、鈍角の頂点が前記オーバーコート層の表面側に配置される請求項1~4のいずれか一項に記載の透明スクリーン。
  6.  請求項1~5のいずれか一項に記載の透明スクリーンを2以上積層してなり、
     各透明スクリーンのコレステリック液晶層が、互いに異なる波長域の光を反射する透明スクリーン。
PCT/JP2016/087271 2015-12-25 2016-12-14 透明スクリーン WO2017110629A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017558065A JP6670326B2 (ja) 2015-12-25 2016-12-14 透明スクリーン
US16/015,513 US10795254B2 (en) 2015-12-25 2018-06-22 Transparent screen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-253937 2015-12-25
JP2015253937 2015-12-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/015,513 Continuation US10795254B2 (en) 2015-12-25 2018-06-22 Transparent screen

Publications (1)

Publication Number Publication Date
WO2017110629A1 true WO2017110629A1 (ja) 2017-06-29

Family

ID=59090131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087271 WO2017110629A1 (ja) 2015-12-25 2016-12-14 透明スクリーン

Country Status (3)

Country Link
US (1) US10795254B2 (ja)
JP (1) JP6670326B2 (ja)
WO (1) WO2017110629A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071169A1 (ja) * 2018-10-01 2020-04-09 富士フイルム株式会社 ディスプレイ
CN111033329A (zh) * 2017-08-14 2020-04-17 富士胶片株式会社 结构体及反射层的形成方法
JP2020129052A (ja) * 2019-02-08 2020-08-27 日東樹脂工業株式会社 反射型透明スクリーン
WO2021020284A1 (ja) * 2019-07-26 2021-02-04 富士フイルム株式会社 光学素子および光学素子の製造方法
WO2023080245A1 (ja) * 2021-11-08 2023-05-11 Agc株式会社 プリズム層、表示装置及び光学シートの製造方法
JP7510605B2 (ja) 2020-07-03 2024-07-04 大日本印刷株式会社 スクリーン及び投影システム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017191778A1 (ja) * 2016-05-02 2017-11-09 富士フイルム株式会社 透明スクリーンおよび画像表示システム
TWI686661B (zh) * 2018-04-20 2020-03-01 億立材料有限公司 可多角度投影成像之投影幕
JP2022144917A (ja) * 2021-03-19 2022-10-03 株式会社ジャパンディスプレイ 液晶素子

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005003823A (ja) * 2003-06-10 2005-01-06 Dainippon Printing Co Ltd 投影スクリーン及びそれを備えた投影システム
JP2005165271A (ja) * 2003-11-10 2005-06-23 Dainippon Printing Co Ltd 投影スクリーン及びそれを備えた投影システム
JP2006284862A (ja) * 2005-03-31 2006-10-19 Dainippon Printing Co Ltd 異方性光学素子の製造方法
JP2006309017A (ja) * 2005-04-28 2006-11-09 Casio Comput Co Ltd 表示装置
JP2007178624A (ja) * 2005-12-27 2007-07-12 Dainippon Printing Co Ltd パターン材、投影スクリーン及びスクリーンシステム
JP2014119605A (ja) * 2012-12-17 2014-06-30 Fujifilm Corp コレステリック液晶積層体およびその製造方法ならびにコレステリック液晶積層体の組合せ体
JP2015060193A (ja) * 2013-09-20 2015-03-30 大日本印刷株式会社 反射型スクリーン、および、映像表示システム
JP2015146003A (ja) * 2014-02-04 2015-08-13 株式会社 オルタステクノロジー 表示装置用反射板、及びその製造方法
JP2015524079A (ja) * 2012-05-25 2015-08-20 サン−ゴバン グラス フランス 拡散反射特性を有する透明層状素子を備えるガラスへの投影又は逆投影方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5317405A (en) * 1991-03-08 1994-05-31 Nippon Telegraph And Telephone Corporation Display and image capture apparatus which enables eye contact
US7193777B2 (en) * 2003-09-08 2007-03-20 Dai Nippon Printing Co., Ltd. Projection screen and projection system comprising the same
US7158299B2 (en) * 2003-09-26 2007-01-02 Dai Nippon Printing Co., Ltd. Projection screen and projection system comprising the same
JP2005146003A (ja) 2003-11-11 2005-06-09 Lion Corp 担持体
US7502085B2 (en) * 2005-04-26 2009-03-10 Samsung Electronics Co., Ltd. Display device having functional transparent plate in prismatic structure on retarder provided on polarizer above display panel assembly
JP2006337944A (ja) 2005-06-06 2006-12-14 Dainippon Printing Co Ltd 半透過型反射スクリーン
CN110441854B (zh) * 2015-05-29 2021-12-21 富士胶片株式会社 背光单元

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005003823A (ja) * 2003-06-10 2005-01-06 Dainippon Printing Co Ltd 投影スクリーン及びそれを備えた投影システム
JP2005165271A (ja) * 2003-11-10 2005-06-23 Dainippon Printing Co Ltd 投影スクリーン及びそれを備えた投影システム
JP2006284862A (ja) * 2005-03-31 2006-10-19 Dainippon Printing Co Ltd 異方性光学素子の製造方法
JP2006309017A (ja) * 2005-04-28 2006-11-09 Casio Comput Co Ltd 表示装置
JP2007178624A (ja) * 2005-12-27 2007-07-12 Dainippon Printing Co Ltd パターン材、投影スクリーン及びスクリーンシステム
JP2015524079A (ja) * 2012-05-25 2015-08-20 サン−ゴバン グラス フランス 拡散反射特性を有する透明層状素子を備えるガラスへの投影又は逆投影方法
JP2014119605A (ja) * 2012-12-17 2014-06-30 Fujifilm Corp コレステリック液晶積層体およびその製造方法ならびにコレステリック液晶積層体の組合せ体
JP2015060193A (ja) * 2013-09-20 2015-03-30 大日本印刷株式会社 反射型スクリーン、および、映像表示システム
JP2015146003A (ja) * 2014-02-04 2015-08-13 株式会社 オルタステクノロジー 表示装置用反射板、及びその製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7023967B2 (ja) 2017-08-14 2022-02-22 富士フイルム株式会社 構造体および反射層の形成方法
CN111033329A (zh) * 2017-08-14 2020-04-17 富士胶片株式会社 结构体及反射层的形成方法
JPWO2019035449A1 (ja) * 2017-08-14 2020-07-30 富士フイルム株式会社 構造体および反射層の形成方法
US11262634B2 (en) 2017-08-14 2022-03-01 Fujifilm Corporation Structure comprising a reflective layer having lines formed by bright portions and dark portions derived from a cholesteric liquid crystalline phase and method for forming the reflective layer
US11275271B2 (en) 2018-10-01 2022-03-15 Fujifilm Corporation Display comprising a transparent screen having a cholesteric liquid crystal layer exhibiting selective reflectivity attached to a light guide plate
CN112805622A (zh) * 2018-10-01 2021-05-14 富士胶片株式会社 显示器
JPWO2020071169A1 (ja) * 2018-10-01 2021-09-02 富士フイルム株式会社 ディスプレイ
WO2020071169A1 (ja) * 2018-10-01 2020-04-09 富士フイルム株式会社 ディスプレイ
CN112805622B (zh) * 2018-10-01 2022-08-19 富士胶片株式会社 显示器
JP2020129052A (ja) * 2019-02-08 2020-08-27 日東樹脂工業株式会社 反射型透明スクリーン
JP7217518B2 (ja) 2019-02-08 2023-02-03 日東樹脂工業株式会社 反射型透明スクリーン
WO2021020284A1 (ja) * 2019-07-26 2021-02-04 富士フイルム株式会社 光学素子および光学素子の製造方法
JP7510605B2 (ja) 2020-07-03 2024-07-04 大日本印刷株式会社 スクリーン及び投影システム
WO2023080245A1 (ja) * 2021-11-08 2023-05-11 Agc株式会社 プリズム層、表示装置及び光学シートの製造方法

Also Published As

Publication number Publication date
US20180321577A1 (en) 2018-11-08
JPWO2017110629A1 (ja) 2018-10-04
US10795254B2 (en) 2020-10-06
JP6670326B2 (ja) 2020-03-18

Similar Documents

Publication Publication Date Title
WO2017110629A1 (ja) 透明スクリーン
JP6606604B2 (ja) 透明フィルム、透明スクリーンおよび画像表示システムならびに透明ポスター
JP6453450B2 (ja) 透明スクリーン
JP6481018B2 (ja) 透明スクリーン
JP6586518B2 (ja) 透明スクリーンおよび画像表示システム
US10908491B2 (en) Optical film
JP6470411B2 (ja) 3d表示用透明スクリーンおよび3d表示システム
JP6149006B2 (ja) 反射フィルムおよび反射フィルムを有するディスプレイ
US10663827B2 (en) Transparent screen comprising a plurality of dot arrays having different selective reflective wavelengths, the plurality of dot arrays obtained by immobilizing a cholesteric liquid crystalline phase
US12044913B2 (en) Optical laminate, light guide element, and AR display device
JP2018045210A (ja) 車両用の投映像表示用システム
WO2016129645A1 (ja) 光学部材、光学素子、液晶表示装置および近接眼光学部材
JP6220738B2 (ja) 光学部材および光学部材を有するディスプレイ
US10514490B2 (en) Backlight unit used in a liquid crystal display device
WO2017188251A1 (ja) 透明スクリーンおよび画像表示システム
WO2021060394A1 (ja) 光学素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878520

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017558065

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878520

Country of ref document: EP

Kind code of ref document: A1