WO2017109014A1 - Matière active positive pour batterie rechargeable au lithium-soufre - Google Patents

Matière active positive pour batterie rechargeable au lithium-soufre Download PDF

Info

Publication number
WO2017109014A1
WO2017109014A1 PCT/EP2016/082271 EP2016082271W WO2017109014A1 WO 2017109014 A1 WO2017109014 A1 WO 2017109014A1 EP 2016082271 W EP2016082271 W EP 2016082271W WO 2017109014 A1 WO2017109014 A1 WO 2017109014A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfur
hydroxide
iron
iii
oxide
Prior art date
Application number
PCT/EP2016/082271
Other languages
English (en)
Inventor
Thierry Le Mercier
Stéphane HAMELET
Marc-David BRAIDA
Lauriane D'ALENCON
Original Assignee
Rhodia Operations
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Operations filed Critical Rhodia Operations
Publication of WO2017109014A1 publication Critical patent/WO2017109014A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a sulfur-containing powder, a method of preparing such powder, the use of such powder as positive active material for a rechargeable lithium-sulfur battery and a rechargeable lithium-sulfur battery comprising such powder.
  • the lithium-sulfur battery is one of the most promising electrochemical technologies for "post-lithium-ion” batteries, owing to its high specific energy, along with its economic and environmental benefits.
  • These problems are related to a low electronic/ionic conductivity of sulfur and its reduction products and the solubility of active materials, particularly
  • the present inventors found that the above problems can be solved by using iron(III) oxide-hydroxide instead of LiFeP0 4 in the preparation of the positive active material.
  • the present invention therefore relates to a powder comprising elemental sulfur and/or a sulfur compound and iron(III) oxide-hydroxide.
  • the present invention relates to a method of preparing said powder.
  • the present invention relates to the use of said powder as positive active material for a rechargeable lithium-sulfur battery.
  • the present invention relates to a rechargeable lithium- sulfur battery comprising said powder as positive active material.
  • the present invention relates to a positive active material for a
  • the sulfur can be present in the powder in the form of elemental sulfur (such as Ss) or in the form of a sulfur compound.
  • Suitable sulfur compounds are Li 2 S n wherein n > 1, an organo sulfate compound, a carbon-sulfur polymer, and mixtures thereof.
  • the sulfur is present in the powder as elemental sulfur.
  • Iron(III) oxide-hydroxide is also known as ferric hydroxide. Iron(III) oxide-hydroxide has the chemical formula FeOOH. It can be obtained for example by reacting ferric chloride with sodium hydroxide. Alternatively, iron(II) may be oxidized to iron(III) by hydrogen peroxide in the presence of an acid.
  • ferric hydroxide can be prepared as described in
  • WO 03/053560 Alternatively, commercially available iron(III) oxide-hydroxide may be used.
  • Iron(III) oxide-hydroxide occurs in anhydrous and hydrated forms.
  • iron(III) oxide-hydroxide occurs in four different polymorphic forms, known as alpha-, beta-, gamma- and delta-FeOOH. All these forms may be used in the present invention.
  • the iron(III) oxide-hydroxide modifies the surface morphology of the elemental sulfur or sulfur compound thereby improving the wetting property thereof to an electrolyte and increasing the electrochemical activity thereof.
  • the elemental sulfur or sulfur compound is modified on the surface thereof to improve the electrochemical activity and to prevent the dissolution of the elemental sulfur or sulfur compound powder during an electrochemical reaction.
  • the elemental sulfur and sulfur compound is present in the form of particles having a median particle size being higher than the median particle size of the iron(III) oxide-hydroxide particles.
  • the median particle size D50 is according to a volume distribution. This and other particle sizes below are measured by laser diffraction methods according to ISO 13320.
  • the elemental sulfur and sulfur compound is present in the form of particles having a median particle size in the range of from about 5 to about 80 ⁇ , preferably from about 10 to about 70 ⁇ , more preferably from about 20 to about 60 ⁇ and even more preferably from about 30 to about 50 ⁇ , such as for example about 40 ⁇ .
  • the iron(III) oxide-hydroxide particles preferably have a median particle size below that of the elemental sulfur and/or sulfur compound.
  • the iron(III) oxide- hydroxide particles may have a median particle size in the range of from about 1 to about 3,000 nm, preferably about 5 to about 2,000 nm, more preferably from about 10 to about 700 nm, even more preferably from about 50 to about 500 nm, such as in the range of from about 100 to about 400 nm.
  • the ratio of elemental sulfur and/or sulfur compound to iron(III) oxide- hydroxide is not particularly limited.
  • the iron(III) oxide-hydroxide should be present in an amount sufficient to ensure covering of the elemental sulfur or sulfur compound particles. More preferably, all the iron(III) oxide- hydroxide should be used to form a uniform surface layer on the elemental sulfur or sulfur compound particles. This can be achieved, for example, when the weight ratio of elemental sulfur and/or sulfur compounds to iron(III) oxide- hydroxide in the powder of the present invention is in the range of from about 50:50 to about 95:5, preferably from about 70:30 to about 90: 10, such as about 80:20 or about 70:30.
  • the powder of the present invention comprises a composite which comprises particles of elemental sulfur and/or a sulfur compound covered by a layer of iron(III) oxide-hydroxide.
  • composite is to be understood as an agglomeration of iron(III) oxide-hydroxide around particles of elemental sulfur or sulfur compound wherein the iron(III) oxide-hydroxide covers the elemental sulfur or sulfur compound particles forming a coating around these particles.
  • Such composite can be obtained by high-energy mixing as described further below.
  • the above particle sizes relate to the particles prior to the formation of the composite.
  • sulfur particles can be densified or several smaller sulfur particles can agglomerate to one larger particle which is then coated by the iron(III) oxide-hydroxide. Therefore, the size of the composite particles can be different from the size of the single elemental sulfur, sulfur compound and iron(III) oxide-hydroxide particles.
  • the present invention furthermore relates to a method of preparing the above powder by mixing particles of elemental sulfur and/or a sulfur compound with particles of iron(III) oxide-hydroxide.
  • the mixing is conducted as a high-energy mixing.
  • High-energy mixing can be conducted for example in a ball mill, such as a SPEX ® miller.
  • High-energy mixing can for example be conducted during 5 to 10 minutes with 10 stainless steel balls having a diameter of for example 0.5 cm.
  • High-energy milling is also described by C. S. Kim, et al.
  • the present invention also relates to a powder comprising elemental sulfur and/or a sulfur compound and iron(III) oxide-hydroxide obtainable by high-energy mixing particles of elemental sulfur and/or a sulfur compound with particles of iron(III) oxide-hydroxide.
  • the above described powder is particularly suitable for use as positive active material for a rechargeable lithium- sulfur battery.
  • a rechargeable lithium- sulfur battery includes a positive active material including a sulfur-based compound having a sulfur-sulfur bond, and a negative active material including lithium metal or a carbonaceous material.
  • the sulfur- based compound may be elemental sulfur or a sulfur compound as described above.
  • the carbonaceous material is a material in which intercalation chemistry occurs, examples of which include graphite intercalation compounds, carbonaceous materials, and carbonaceous materials inserted with lithium.
  • the present invention therefore also relates to a lithium- sulfur battery comprising
  • a positive electrode including a positive active material, the positive active material comprising: a core of elemental sulfur and/or a sulfur compound, and
  • the surface-passivation layer comprising iron(III) oxide-hydroxide
  • a negative electrode comprising a negative active material, preferably including lithium metal or carbonaceous material
  • said lithium- sulfur battery comprises the above described powder as the positive active material.
  • a feed- solution was prepared from Fe(N0 3 ) 3 and acetic acid with the following concentrations: 1.5 mol/L in Fe and 1.5 mol/L in acetic acid.
  • a basic solution was prepared from ammonia 28 wt% with a final concentration of 4 mol/L.
  • the reactor was filled with 800 mL of water. The two feed solutions were introduced with speeds in order that pH was constant and adjusted to 6.9. In the same time the mixture was pumped with a speed in order to work at constant volume. After 40 min all the volume was renewed. The first collected batch was not kept. The second was kept. The product was then filtered and dried in an oven.
  • An electrode was prepared by mixing N-methyl-2-pyrrolidone (NMP) with the composite prepared above, carbon black SP C65 from TIMCAL as conductive additive and polyvinylidene fluoride (PVDF) binder (Solef 6020 from Solvay) in a weight proportion of 85/10/5.
  • NMP N-methyl-2-pyrrolidone
  • PVDF polyvinylidene fluoride
  • the amount of NMP is 400 % relative to the total mass of composite + carbon black + PVDF.
  • the resulting ink was deposited by coating using a doctor blade micrometer (deposit 150 ⁇ thickness leading to 10 mAh loadings) on an aluminum foil of 20 ⁇ thickness. The coating was then dried at 55°C for 24 hours in air.
  • Electrochemical cells were prepared as coin cells in an argon filled glove box as follows:
  • Celgard 2400 from Celgard
  • Viledon kind FS 2206-14 from Freudenberg
  • Anode Lithium foil 140 micrometers thick.
  • the testing device was an "ARBIN BT2000" from ARBIN
  • Capacity retention curves of i/ cathode containing only sulfur as active material (triangles for charge capacity; cross for discharge capacity) and ii/ the cathode containing S:FeOOH (80:20 in weight) (lozenges for charge capacity; squares for discharge capacity) composite as active material during a C/10 cycling are shown in Figures 1A and IB. Results are depicted both in terms of sulfur use (figure 1 A) and in terms of electrode gravimetric capacity (figure IB). Comparative Example
  • Example 1 was repeated except that iron(III) oxide-hydroxide was replaced with LiFeP0 4 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

La présente invention concerne une poudre soufrée comprenant de l'oxyde-hydroxyde de fer (III), un procédé de préparation de cette poudre, l'utilisation de cette poudre comme matière active positive pour une batterie rechargeable au lithium-soufre, ainsi qu'une batterie rechargeable au lithium-soufre comprenant cette poudre.
PCT/EP2016/082271 2015-12-22 2016-12-21 Matière active positive pour batterie rechargeable au lithium-soufre WO2017109014A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15307099 2015-12-22
EP15307099.0 2015-12-22

Publications (1)

Publication Number Publication Date
WO2017109014A1 true WO2017109014A1 (fr) 2017-06-29

Family

ID=55077379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/082271 WO2017109014A1 (fr) 2015-12-22 2016-12-21 Matière active positive pour batterie rechargeable au lithium-soufre

Country Status (1)

Country Link
WO (1) WO2017109014A1 (fr)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108091839A (zh) * 2017-11-27 2018-05-29 浙江衡远新能源科技有限公司 一种锂硫电池正极浆料的制备方法
WO2018236060A1 (fr) * 2017-06-20 2018-12-27 주식회사 엘지화학 Procédé de préparation d'hydroxyde de fer (feooh), et cathode de batterie au lithium-soufre comprenant de l'hydroxyde de fer
WO2019106175A1 (fr) 2017-11-30 2019-06-06 Solvay Sa Composite d'hydroxyapatite comprenant du charbon actif destiné à être utilisé pour éliminer des contaminants d'effluents et procédé de fabrication
WO2019106178A1 (fr) 2017-11-30 2019-06-06 Solvay Sa Composite d'hydroxyapatite destiné à être utilisé pour éliminer des contaminants d'effluents et procédés de fabrication
WO2019107752A1 (fr) * 2017-11-30 2019-06-06 주식회사 엘지화학 Composite soufre-carbone, son procédé de préparation et batterie secondaire au lithium le comprenant
WO2019107747A1 (fr) * 2017-11-28 2019-06-06 주식회사 엘지화학 Électrode positive pour batterie rechargeable au lithium et son procédé de fabrication
WO2019106176A1 (fr) 2017-11-30 2019-06-06 Solvay Sa Élimination de contaminants d'un effluent d'eau à l'aide d'un composite d'hydroxyapatite
KR20190095115A (ko) * 2018-02-06 2019-08-14 주식회사 엘지화학 리튬 이차전지용 양극 첨가제 및 이의 제조방법
WO2019156376A1 (fr) * 2018-02-06 2019-08-15 주식회사 엘지화학 Additif de cathode destiné à une batterie secondaire au lithium, et son procédé de préparation
WO2019194429A1 (fr) * 2018-04-06 2019-10-10 주식회사 엘지화학 Électrode positive pour batterie rechargeable au lithium comprenant de la göthite et batterie rechargeable au lithium la comprenant
WO2019207075A1 (fr) 2018-04-25 2019-10-31 Solvay Sa Élimination de complexes de cyanure métallique stables et d'ions métalliques d'un flux d'eau
WO2020013482A1 (fr) * 2018-07-10 2020-01-16 주식회사 엘지화학 Procédé destiné à préparer de l'oxyhydroxyde de nitrate de fer, cathode contenant l'oxyhydroxyde de nitrate de fer ainsi préparé pour accumulateur au lithium, et accumulateur au lithium la comprenant
KR20200006279A (ko) * 2018-07-10 2020-01-20 주식회사 엘지화학 옥시수산화질산철의 제조방법
KR20200008421A (ko) * 2018-07-16 2020-01-28 주식회사 엘지화학 산화철을 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
KR20200008437A (ko) * 2018-07-16 2020-01-28 주식회사 엘지화학 옥시수산화질산철을 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
EP3604234A1 (fr) 2018-08-02 2020-02-05 Solvay Sa Élimination des complexes métal-cyanure stables et des ions métalliques des effluents aqueux
CN112204779A (zh) * 2019-02-13 2021-01-08 株式会社Lg化学 含有针铁矿的锂二次电池用正极和包含所述正极的锂二次电池
CN112335078A (zh) * 2019-02-13 2021-02-05 株式会社Lg化学 锂二次电池用正极活性材料
WO2021029534A1 (fr) * 2019-08-13 2021-02-18 주식회사 엘지화학 Oxyhydroxynitrate de fer ayant une surface adsorbée par anion d'acide phosphorique, son procédé de préparation, cathode comprenant de l'oxyhydroxynitrate de fer ayant une surface adsorbée par anion d'acide phosphorique pour pile secondaire au lithium et pile secondaire au lithium comprenant celui-ci
US11038174B2 (en) 2017-06-20 2021-06-15 Lg Chem, Ltd. Method for preparing iron oxide-hydroxide (FeOOH) and positive electrode for lithium-sulfur battery comprising iron oxide-hydroxide
US11349113B2 (en) 2018-04-10 2022-05-31 Lg Energy Solution, Ltd. Method of producing iron phosphide, positive electrode for lithium secondary battery comprising iron phosphide, and lithium secondary battery comprising same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19755351A1 (de) * 1997-12-12 1999-06-17 Walter Prof Dr Jansen Niedertemperatur-Metall-Schwefel-Batterie
JP2008176981A (ja) * 2007-01-17 2008-07-31 Toyota Motor Corp 全固体リチウム二次電池用電極および全固体リチウム二次電池
CN104087339B (zh) * 2014-06-19 2015-11-18 北京宝塔三聚能源科技有限公司 一种杂油、煤和煤焦油加氢共炼的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19755351A1 (de) * 1997-12-12 1999-06-17 Walter Prof Dr Jansen Niedertemperatur-Metall-Schwefel-Batterie
JP2008176981A (ja) * 2007-01-17 2008-07-31 Toyota Motor Corp 全固体リチウム二次電池用電極および全固体リチウム二次電池
CN104087339B (zh) * 2014-06-19 2015-11-18 北京宝塔三聚能源科技有限公司 一种杂油、煤和煤焦油加氢共炼的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIAN JIANG ET AL: "Encapsulation of sulfur with thin-layered nickel-based hydroxides for long-cyclic lithium-sulfur cells", NATURE COMMUNICATIONS, vol. 6, 16 October 2015 (2015-10-16), United Kingdom, pages 8622, XP055275435, ISSN: 2041-1723, DOI: 10.1038/ncomms9622 *
JUNWU XIAO ET AL: "Design Hierarchical Electrodes with Highly Conductive NiCo 2 S 4 Nanotube Arrays Grown on Carbon Fiber Paper for High-Performance Pseudocapacitors", NANO LETTERS, vol. 14, no. 2, 12 February 2014 (2014-02-12), US, pages 831 - 838, XP055275484, ISSN: 1530-6984, DOI: 10.1021/nl404199v *
XIAO-QING NIU ET AL: "Nickel Hydroxide-Modified Sulfur/Carbon Composite as a High-Performance Cathode Material for Lithium Sulfur Battery", ACS APPLIED MATERIALS AND INTERFACES, vol. 7, no. 30, 9 July 2015 (2015-07-09), US, pages 16715 - 16722, XP055275465, ISSN: 1944-8244, DOI: 10.1021/acsami.5b04408 *

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11038174B2 (en) 2017-06-20 2021-06-15 Lg Chem, Ltd. Method for preparing iron oxide-hydroxide (FeOOH) and positive electrode for lithium-sulfur battery comprising iron oxide-hydroxide
WO2018236060A1 (fr) * 2017-06-20 2018-12-27 주식회사 엘지화학 Procédé de préparation d'hydroxyde de fer (feooh), et cathode de batterie au lithium-soufre comprenant de l'hydroxyde de fer
CN108091839A (zh) * 2017-11-27 2018-05-29 浙江衡远新能源科技有限公司 一种锂硫电池正极浆料的制备方法
WO2019107747A1 (fr) * 2017-11-28 2019-06-06 주식회사 엘지화학 Électrode positive pour batterie rechargeable au lithium et son procédé de fabrication
WO2019106175A1 (fr) 2017-11-30 2019-06-06 Solvay Sa Composite d'hydroxyapatite comprenant du charbon actif destiné à être utilisé pour éliminer des contaminants d'effluents et procédé de fabrication
WO2019106178A1 (fr) 2017-11-30 2019-06-06 Solvay Sa Composite d'hydroxyapatite destiné à être utilisé pour éliminer des contaminants d'effluents et procédés de fabrication
WO2019107752A1 (fr) * 2017-11-30 2019-06-06 주식회사 엘지화학 Composite soufre-carbone, son procédé de préparation et batterie secondaire au lithium le comprenant
WO2019106176A1 (fr) 2017-11-30 2019-06-06 Solvay Sa Élimination de contaminants d'un effluent d'eau à l'aide d'un composite d'hydroxyapatite
KR20190063699A (ko) * 2017-11-30 2019-06-10 주식회사 엘지화학 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
US11472706B2 (en) 2017-11-30 2022-10-18 Solvay Sa Hydroxyapatite composite for use in removal of contaminants from effluents and methods of making
KR102268182B1 (ko) * 2017-11-30 2021-06-22 주식회사 엘지화학 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019156376A1 (fr) * 2018-02-06 2019-08-15 주식회사 엘지화학 Additif de cathode destiné à une batterie secondaire au lithium, et son procédé de préparation
KR102229459B1 (ko) * 2018-02-06 2021-03-18 주식회사 엘지화학 리튬 이차전지용 양극 첨가제 및 이의 제조방법
KR20190095115A (ko) * 2018-02-06 2019-08-14 주식회사 엘지화학 리튬 이차전지용 양극 첨가제 및 이의 제조방법
WO2019194429A1 (fr) * 2018-04-06 2019-10-10 주식회사 엘지화학 Électrode positive pour batterie rechargeable au lithium comprenant de la göthite et batterie rechargeable au lithium la comprenant
US11349113B2 (en) 2018-04-10 2022-05-31 Lg Energy Solution, Ltd. Method of producing iron phosphide, positive electrode for lithium secondary battery comprising iron phosphide, and lithium secondary battery comprising same
WO2019207075A1 (fr) 2018-04-25 2019-10-31 Solvay Sa Élimination de complexes de cyanure métallique stables et d'ions métalliques d'un flux d'eau
CN111630691B (zh) * 2018-07-10 2023-04-04 株式会社Lg新能源 羟基氧化硝酸铁的制备方法、含有由其制备的羟基氧化硝酸铁的锂二次电池用正极和包含所述正极的锂二次电池
WO2020013482A1 (fr) * 2018-07-10 2020-01-16 주식회사 엘지화학 Procédé destiné à préparer de l'oxyhydroxyde de nitrate de fer, cathode contenant l'oxyhydroxyde de nitrate de fer ainsi préparé pour accumulateur au lithium, et accumulateur au lithium la comprenant
KR102617868B1 (ko) 2018-07-10 2023-12-22 주식회사 엘지에너지솔루션 옥시수산화질산철의 제조방법
US11417880B2 (en) 2018-07-10 2022-08-16 Lg Energy Solution, Ltd. Method for preparing iron nitrate oxyhydroxide, cathode containing iron nitrate oxyhydroxide prepared thereby for lithium secondary battery, and lithium secondary battery comprising same
JP2021508919A (ja) * 2018-07-10 2021-03-11 エルジー・ケム・リミテッド オキシ水酸化硝酸鉄の製造方法、これによって製造されたオキシ水酸化硝酸鉄を含むリチウム二次電池用正極及びこれを備えたリチウム二次電池
KR20200006279A (ko) * 2018-07-10 2020-01-20 주식회사 엘지화학 옥시수산화질산철의 제조방법
CN111630691A (zh) * 2018-07-10 2020-09-04 株式会社Lg化学 羟基氧化硝酸铁的制备方法、含有由其制备的羟基氧化硝酸铁的锂二次电池用正极和包含所述正极的锂二次电池
JP7062067B2 (ja) 2018-07-10 2022-05-02 エルジー エナジー ソリューション リミテッド オキシ水酸化硝酸鉄の製造方法、これによって製造されたオキシ水酸化硝酸鉄を含むリチウム二次電池用正極及びこれを備えたリチウム二次電池
EP3716366A4 (fr) * 2018-07-10 2021-04-14 Lg Chem, Ltd. Procédé destiné à préparer de l'oxyhydroxyde de nitrate de fer, cathode contenant l'oxyhydroxyde de nitrate de fer ainsi préparé pour accumulateur au lithium, et accumulateur au lithium la comprenant
KR20200008421A (ko) * 2018-07-16 2020-01-28 주식회사 엘지화학 산화철을 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
KR20200008437A (ko) * 2018-07-16 2020-01-28 주식회사 엘지화학 옥시수산화질산철을 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
KR102308465B1 (ko) 2018-07-16 2021-10-01 주식회사 엘지화학 산화철을 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
KR102229456B1 (ko) 2018-07-16 2021-03-17 주식회사 엘지화학 옥시수산화질산철을 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
EP3604234A1 (fr) 2018-08-02 2020-02-05 Solvay Sa Élimination des complexes métal-cyanure stables et des ions métalliques des effluents aqueux
CN112204779A (zh) * 2019-02-13 2021-01-08 株式会社Lg化学 含有针铁矿的锂二次电池用正极和包含所述正极的锂二次电池
US20210104741A1 (en) * 2019-02-13 2021-04-08 Lg Chem, Ltd. Positive electrode comprising goethite for lithium secondary battery and lithium secondary battery comprising same
US11837731B2 (en) 2019-02-13 2023-12-05 Lg Energy Solution, Ltd. Cathode active material for lithium secondary battery
CN112335078A (zh) * 2019-02-13 2021-02-05 株式会社Lg化学 锂二次电池用正极活性材料
CN112335078B (zh) * 2019-02-13 2024-02-13 株式会社Lg新能源 锂二次电池用正极活性材料
CN112204779B (zh) * 2019-02-13 2024-06-18 株式会社Lg新能源 含有针铁矿的锂二次电池用正极和包含所述正极的锂二次电池
US12027700B2 (en) 2019-02-13 2024-07-02 Lg Energy Solution, Ltd. Positive electrode comprising goethite for lithium secondary battery and lithium secondary battery comprising same
WO2021029534A1 (fr) * 2019-08-13 2021-02-18 주식회사 엘지화학 Oxyhydroxynitrate de fer ayant une surface adsorbée par anion d'acide phosphorique, son procédé de préparation, cathode comprenant de l'oxyhydroxynitrate de fer ayant une surface adsorbée par anion d'acide phosphorique pour pile secondaire au lithium et pile secondaire au lithium comprenant celui-ci

Similar Documents

Publication Publication Date Title
WO2017109014A1 (fr) Matière active positive pour batterie rechargeable au lithium-soufre
Lin et al. Lithium–sulfur batteries: from liquid to solid cells
EP3457474B1 (fr) Composite soufre-carbone, son procédé de préparation et batterie au lithium-soufre comprenant celui-ci
TWI496333B (zh) 膨脹石墨於鋰/硫電池中之用途
Kang et al. Lithium metal anode with lithium borate layer for enhanced cycling stability of lithium metal batteries
CN100524901C (zh) 用于锂电池的正极和使用该正极的锂电池
KR101990615B1 (ko) 금속 나노입자를 포함하는 양극 활물질 및 양극, 이를 포함하는 리튬-황 전지
US20150017550A1 (en) Metal three-dimensional network porous body for collectors, electrode, and non-aqueous electrolyte secondary battery
KR20070056765A (ko) 리튬 이차 전지용 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
CN105742713B (zh) 全固态聚合物锂电池
Kim et al. Highly reversible lithium-sulfur batteries with nitrogen-doped carbon encapsulated sulfur cathode and nitrogen-doped carbon-coated ZnS anode
JP6441006B2 (ja) リチウムイオン電池用負極材料の製造方法
EP3105806A1 (fr) Batteries au lithium-ion comprenant des particules composites de lithium stablisées
Wang et al. AlF3-modified LiCoPO4 for an advanced cathode towards high energy lithium-ion battery
CN104766965A (zh) 纳米级锂硅合金材料及其制备方法和用途
CN109428050B (zh) 正极活性材料、制备方法、正极和锂离子电池
US20190157665A1 (en) Graphene-polymer porous scaffold for stable lithium-sulfur batteries
JP2014530473A (ja) 電池用活物質
Örnek et al. Characteristics of nanosized LiNi x Fe 1− x PO 4/C (x= 0.00–0.20) composite material prepared via sol–gel-assisted carbothermal reduction method
CN103367743A (zh) 锂离子二次电池用正极材料、锂离子二次电池用正极以及锂离子二次电池
KR20160057007A (ko) 활물질이 포함된 중간층을 갖는 고에너지밀도 리튬-설퍼 전지
Li et al. Facile synthesis of spherical nanostructured LiCoPO4 particles and its electrochemical characterization for lithium batteries
Li et al. LiNi0. 5Mn1. 5O4 porous micro-cubes synthesized by a facile oxalic acid co-precipitation method as cathode materials for lithium-Ion batteries
Quan et al. Enhanced properties of LiFePO4/C cathode materials modified by CePO4 nanoparticles
KR20230137927A (ko) 배터리 성능 개선을 위한 고체 전해질

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16819559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16819559

Country of ref document: EP

Kind code of ref document: A1