WO2017107988A1 - 洗衣机 - Google Patents

洗衣机 Download PDF

Info

Publication number
WO2017107988A1
WO2017107988A1 PCT/CN2016/111800 CN2016111800W WO2017107988A1 WO 2017107988 A1 WO2017107988 A1 WO 2017107988A1 CN 2016111800 W CN2016111800 W CN 2016111800W WO 2017107988 A1 WO2017107988 A1 WO 2017107988A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer tub
spring
displacement
tub
main body
Prior art date
Application number
PCT/CN2016/111800
Other languages
English (en)
French (fr)
Inventor
永井孝之
广濑彻
中本重阳
Original Assignee
青岛海尔洗衣机有限公司
海尔亚洲株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔洗衣机有限公司, 海尔亚洲株式会社 filed Critical 青岛海尔洗衣机有限公司
Priority to CN201680075484.3A priority Critical patent/CN108431323B/zh
Priority to KR1020187021319A priority patent/KR20180093075A/ko
Priority to US16/065,109 priority patent/US20190003099A1/en
Priority to EP16877798.5A priority patent/EP3406783A4/en
Publication of WO2017107988A1 publication Critical patent/WO2017107988A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/20Mountings, e.g. resilient mountings, for the rotary receptacle, motor, tub or casing; Preventing or damping vibrations
    • D06F37/24Mountings, e.g. resilient mountings, for the rotary receptacle, motor, tub or casing; Preventing or damping vibrations in machines with a receptacle rotating or oscillating about a vertical axis
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/26Casings; Tubs
    • D06F37/267Tubs specially adapted for mounting thereto components or devices not provided for in preceding subgroups
    • D06F37/268Tubs specially adapted for mounting thereto components or devices not provided for in preceding subgroups for suspension devices
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/12Casings; Tubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means

Definitions

  • the present invention relates to a washing machine capable of suppressing vibration when a washing and dewatering tub rotates.
  • a washing machine having a bottom cylindrical shape is supported inside a main body formed in a box shape, and a washing and dewatering tub as an inner tub is rotatably supported inside the outer tub (for example, Refer to Patent Document 1).
  • the outer tub is elastically supported at four positions of the main body via a suspension including a spring and a hanging rod that is suspended, thereby suppressing vibration during operation.
  • the number of low-order natural vibrations of the vibration form in which the outer tub is shaken around the rotation axis of the washing and dewatering tub appears in a region lower than the rotational speed of the washing and dewatering tub.
  • a pulsator agitating blade
  • the washing and dewatering tub and the pulsator are integrally rotated at a high speed inside the outer tub during dehydration.
  • the vibration temporarily increases.
  • the rotational speed of the washing and dewatering tub is further increased and the number of low-order natural vibrations is removed, the vibration is reduced, and it is possible to stably operate at the set rotational speed.
  • Patent Document 2 discloses a configuration in which a ring is coaxially disposed in a state where a gap is provided outside the outer tub of the washing machine, and a leaf spring is provided outside the ring (see paragraphs 0094 and 0095 and FIGS. 19D and 19E).
  • the leaf spring is held by the stopper in a state where the pressure is previously applied to be displaced, and in the case where the displacement is large and the stopper no longer has a restricting action, a large elastic force including the amount of pressing can be applied.
  • Patent Document 2 in the state in which one end of the leaf spring is fixed and pressure is applied to be compressed (displaced), the other end is locked by the stopper, and the vicinity of the center portion of the leaf spring is abutted against the ring. . In this way, it is extremely difficult to apply a relative displacement to both ends of the leaf spring and to pressurize the center portion, and it is extremely difficult to make the central portion abut against the ring. In order to achieve this, it is necessary to perform fine position adjustment in combination with the actual object, and thus the manufacturing cost is increased.
  • Patent Document 1 Japanese Laid-Open Patent Publication No. 2011-240041
  • Patent Document 2 Japanese Patent No. 3984630
  • An object of the present invention is to effectively solve such a problem, and an object of the present invention is to provide a washing machine which can not only appropriately suppress vibration of an outer tub, but also reduce a gap between an outer tub and a main body, and can also be configured with a simple structure. Assembly becomes easy, and manufacturing cost is reduced.
  • the present invention employs the following scheme.
  • the washing machine of the present invention includes: a main body having an internal space; an outer tub disposed in an inner space of the main body; an inner tub disposed inside the outer tub and rotatably supported; and a motor disposed on the outer
  • the outer tub rotates the inner tub
  • an elastic support unit elastically supports the outer tub to the main body, comprising: a plurality of tension springs disposed between the outer tub and the main body a reaction force applied to the outer tub to return it to the home position due to the displacement of the outer tub; and a displacement transmitting unit, only when the displacement of the outer tub is greater than a prescribed value The displacement of the outer tub is transmitted to the tension spring, which has a preset initial tension.
  • the tension spring includes at least one set of spring bodies configured to be axially symmetric with respect to the rotation axis of the inner tub, the spring bodies being respectively combined by a pair of spring assemblies, the spring assembly
  • the utility model comprises a spring body having a preset initial tension and at least one flexible rope constituting the displacement transmission unit, wherein each spring assembly of the spring body is preferably mounted at one end of the main body and at the other end of the outer barrel. The roughly tangential direction of each other.
  • the washing machine of the present invention includes: a main body having an internal space; an outer tub disposed in an inner space of the main body; an inner tub disposed inside the outer tub and rotatably supported; and a motor disposed at the The outer tub rotates the inner tub; and an elastic support unit elastically supports the outer tub to the main body, comprising: a plurality of tension springs disposed between the outer tub and the main body a reaction force for returning the outer tub to the home position due to the displacement of the outer tub; the displacement transmitting unit, when the displacement of the outer tub is greater than a prescribed value, The displacement of the outer tub is transmitted to the tension spring; and the damping device attenuates the displacement transmitted by the displacement transmitting unit, the tension spring having a preset initial tension.
  • the tension spring includes at least one set of spring bodies configured to be axially symmetric with respect to the rotation axis of the inner tub, the spring bodies being respectively combined by a pair of spring assemblies, the spring assembly
  • the utility model comprises a spring body having a preset initial tension and at least one flexible rope constituting the displacement transmission unit, wherein each spring assembly of the spring body is preferably mounted at one end of the main body and at the other end of the outer barrel. The roughly tangential direction of each other.
  • the elastic body provided on the outer circumference of the outer tub contacts the inside of the main body, thereby The natural vibration number can be changed to reduce the vibration.
  • the number of natural vibrations of the vibration form of the outer tub vibration depends on the elastic support strength (spring constant) of the elastic support unit supporting the outer tub, and the outer tub vibrates in a large shake manner due to the rotational speed approaching the natural vibration number.
  • the displacement of the outer tub is equal to or greater than a predetermined value
  • a reaction force can be generated by the tension spring and applied to the outer tub.
  • the inner bucket can be further accelerated to a predetermined rotation frequency by changing the elastic support strength of the outer tub to change the natural vibration number and suppressing the vibration of the outer tub.
  • the inner tub can be increased in speed to a predetermined rotational speed, so that noise and vibration can be prevented, and the environment in the installation place can be suppressed from being deteriorated.
  • a plurality of tension springs are used as the elastic body for changing the elastic support strength of the outer tub, the structure for imparting the initial tension can be easily realized, and the adjustment can be easily performed, and the manufacturing cost can be reduced.
  • the vibration in the rotational direction of the outer tub can also be applied to cancel it.
  • the reaction force enables the inner barrel to work more securely.
  • the further reduction of the resonance maximum value can be achieved as compared with the structure using only the tension spring having the initial tension.
  • the vibration in the rotational direction of the outer tub can also be performed. Applying a reaction force that counteracts it will enable the inner barrel to work more securely.
  • Fig. 1 is a longitudinal sectional view showing a washing machine according to a first embodiment of the present invention.
  • Fig. 2 is a cross-sectional view taken along line A-A of Fig. 1;
  • Fig. 3 is an explanatory view showing the initial tension of the same washing machine.
  • Fig. 4 is an explanatory view schematically showing a force acting on a tub of the same washing machine.
  • Fig. 5 is an explanatory diagram for explaining the relationship between the force and the displacement acting on the same outer tub.
  • Fig. 6 is a longitudinal sectional view showing a washing machine in a second embodiment of the present invention.
  • Fig. 7 is a vertical cross-sectional view showing a state in which the outer tub is displaced in the horizontal direction from the state of Fig. 6;
  • Fig. 8 is a cross-sectional view taken along line A-A of Fig. 6;
  • Fig. 9 is a view showing a spring assembly used in the same washing machine.
  • Fig. 10 is a longitudinal sectional view showing a washing machine according to a third embodiment of the present invention.
  • Fig. 11 is a cross-sectional view taken along line A-A of Fig. 10;
  • Fig. 12 is a view showing a simplified state in which a part of the strip body is removed from the state of Fig. 11;
  • Fig. 13 is a view showing a state in which the outer tub is displaced in the horizontal direction from the state of Fig. 12;
  • Fig. 14 is a longitudinal sectional view showing a washing machine in a fourth embodiment of the invention.
  • Fig. 15 is a longitudinal sectional view showing a washing machine in accordance with a fifth embodiment of the present invention.
  • Fig. 16 is a cross-sectional view taken along line A-A of Fig. 15;
  • Fig. 17 is a vertical cross-sectional view showing a state in which the outer tub is displaced from the state of Fig. 16 in the rotational direction.
  • Fig. 18 is a view showing a pressurizing setting unit for imparting initial tension.
  • FIG. 1 is a longitudinal cross-sectional view showing a washing machine 1 according to a first embodiment of the present invention
  • FIG. 2(a) is a cross-sectional view taken along line A-A of FIG. 1.
  • Fig. 1 shows a cross section at the diagonal position, that is, the position B-B of Fig. 2(a).
  • (b) of FIG. 2 shows a state in which the outer tub 3 is displaced as will be described later.
  • the washing machine 1 shown in the two figures of Figs. 1 and 2 shows a schematic configuration, and a portion that is not related to the present invention is omitted. Further, in FIG. 2, the elastic support unit 5 described later in FIG. 1 is omitted.
  • the washing machine 1 includes a main body 2, an outer tub 3, a washing and dewatering tub 4 as an inner tub, and elastic supporting units 5 to 5.
  • the main body 2 includes an internal space 2a which is formed by a substantially square lower plate 22 in plan view, four side plates 21 to 21 rising from the edge of the lower plate 22, and upper portions of the side plates 21 to 21.
  • the upper plate 23 is integrally formed in a substantially rectangular parallelepiped shape, and has an internal space 2a formed in a substantially rectangular parallelepiped shape surrounded by the plates.
  • the side plates 21 and the lower plate 22 are formed of a metal plate, and the upper plate 23 is formed of a resin.
  • the lower plate 22 has legs 22a to 22a which can set the main body 2 to the ground near the four corners of the lower surface thereof.
  • the upper plate 23 is provided with a substantially circular opening 23a through which the laundry can be taken in and out of the washing and dewatering tub 4.
  • the upper plate 23 can be detached from the side plate 21, whereby the outer tub 3 can be easily loaded into the inner space 2a of the main body 2.
  • the upper plate 23 can be integrally formed with an operation panel for performing the operation of the washing machine 1.
  • the outer tub 3 is formed of a synthetic resin having heat resistance, and is a bottomed cylindrical member having a bottom plate 31 that is substantially circular in plan view and a side plate 32 that rises from the edge of the bottom plate 31.
  • the outer tub 3 is suspended from the inner space 2a of the main body 2 by the elastic supporting unit 5, and the engaging portion 33 for attaching the elastic supporting unit 5 is provided at four portions of the lower portion of the side plate 32.
  • the washing and dewatering tub 4 is made of metal and is a bottomed cylindrical member having a bottom plate 41 that is substantially circular in plan view and a side plate 42 that rises from the edge of the bottom plate 41.
  • the washing and dewatering tub 4 is disposed coaxially with the outer tub 3 inside the outer tub 3, and is rotatably supported by the outer tub 3.
  • a plurality of openings are provided in the side plate 42 and the bottom plate 41, and the water in the washing and dewatering tub 4 can be discharged through the opening.
  • the washing and dewatering tub 4 is rotated by the motor 34 to rotate the drive shaft 35 that extends toward the upper surface side of the bottom plate 31.
  • the motor 34 also applies a driving force to the pulsator (agitating blade) 43 provided at the center of the bottom plate 41 of the washing and dewatering tub 4 via a transmission unit (not shown) to rotate the pulsator 43. Therefore, the washing machine 1 can mainly rotate only the pulsator 43 at the time of washing, and the washing and dewatering tub 4 and the pulsator 43 are integrally rotated at high speed during dehydration.
  • the rotation center of the pulsator 43 and the rotation center of the washing and dewatering tub 4 are set to the same rotation axis Ra arranged in the vertical direction. It should be noted that the rotation axis Ra also passes through the center of the bottom plate 41 of the washing and dewatering tub 4 and the center of the bottom plate 31 of the outer tub 3.
  • the elastic support units 5 to 5 hang the outer tub 3.
  • four elastic supporting units 5 to 5 are provided, which are respectively constituted by a boom 51 and a suspension 52 attached to the tip end of the boom 51.
  • the suspension 52 has an outer tube 53 and a compression spring 54 disposed inside the outer tube 53.
  • the boom attachment portions 24 to 24 are respectively provided at the four corners 2a1 to 2a1 (see FIG. 2) on the upper portion of the internal space 2a, and the base end sides of the boom 51 are attached to the boom attachment portions 24 to 24, respectively.
  • the outer tube 53 of the suspension 52 is engaged with the engaging portion 33 so as to be hung on the engaging portion 33 of the outer tub 3.
  • the outer tub 3 is suspended in the inner space 2a by the four elastic supporting units 5 to 5.
  • the compression springs 54 of the respective elastic supporting units 5 elastically support the outer tub 3 while being compressed by the weight of the outer tub 3 to generate a reaction force and absorb the displacement. Further, the four elastic supporting units 5 to 5 respectively hang the outer tub 3 obliquely, thereby functioning to balance the outer tub 3 in the center direction of the main body 2.
  • the elastic supporting unit 5 can not only generate the elasticity of the compression spring 54 of the suspension 52, but also generate a restoring force for returning the hanging outer tub 3 to the center like a vibrator depending on its positional relationship. Therefore, when the outer tub 3 is displaced from the center position, the restoring force corresponding to the displacement amount is obtained by the elastic support unit 5, and is returned to the center position of the main body 2 by the restoring force.
  • the number of low-order natural vibrations corresponding to the vibration form in which the outer tub 3 is shaken around the rotation axis Ra is extremely low at about 2 to 3 Hz.
  • the rotation speed area appears.
  • the washing and dewatering tub 4 rotates at a high speed together with the pulsator 43. Although it is usually rotated at a predetermined operating speed which is sufficiently higher than the number of low-order natural vibrations, it is performed after starting.
  • the outer tub 3 vibrates greatly so as to be shaken about the rotation axis Ra. Further, when the laundry placed inside the washing and dewatering tub 4 is biased, it becomes an unbalanced state around the rotation axis Ra, the exciting force increases, and the vibration of the outer tub 3 further increases.
  • the washing machine 1 of the present embodiment further includes four tension springs 6 to 6 as shown in (a) of FIG. 1 and FIG. 2 in order to suppress the vibration of the outer tub 3 to be small.
  • the displacement of the tub 3 applies a reaction force to the outer tub 3 to return it to the home position, and is given an initial tension for achieving the above object; and the displacement transmitting unit 8 only when the displacement of the outer tub 3 is larger than a predetermined value The displacement of the outer tub 3 is transmitted to the tension spring 6.
  • each of the tension springs 6 to 6 is disposed at the corner portion 2a1 of the main body 2 which is often used as a dead space, it has a function for suppressing vibration and can suppress an increase in size of the entire apparatus.
  • the displacement transmission unit 8 is composed of a ring-shaped vibration restricting member 81 and four flexible ropes 82 to 82 for supporting the vibration restricting member 81.
  • the vibration restricting member 81 can be formed of metal or resin.
  • the flexible cord 82 is formed of a rope such as a metal that is not easily stretchable, and has flexibility. Therefore, force is transmitted only in the stretching direction, and substantially no force is transmitted in the compression direction.
  • the flexible cords 82 to 82 are disposed between the upper portion of the outer tub 3 and the corner portion 2a1, and have one end connected to the four portions of the vibration restricting member 81 and the other end connected to one of the tension springs 6 to 6, respectively. Further, each of the tension springs 6 to 6 is connected to the corner portions 2a1 to 2a1 of the main body 2. Therefore, the vibration restricting member 81 is supported by the four corners (corner portions 2a1 to 2a1) of the main body 2 via the tension springs 6 to 6 and the flexible cords 82 to 82.
  • the vibration restricting member 81 is disposed coaxially with the outer tub 3 near the upper portion of the outer tub 3, and the outer circumference of the outer tub 3 A substantially uniform gap E is formed between the faces 32a over the entire circumference.
  • FIG. 3 is a cross-sectional view showing the tension spring 6.
  • the tension spring 6 uses the tension coil type spring member 60x made of a metal wire in the spring main body 60
  • (a) of FIG. 3 shows the spring member of the spring main body 60 constituting the tension spring 6.
  • 60x is in the state of the natural length L
  • the arrow Fp in the figure indicates the preset initial tension which it has.
  • an arrow Fb of (b) of FIG. 3 indicates a case where a tensile force balanced with the initial tension Fp is applied
  • an arrow Fc of (c) of FIG. 3 indicates a case where a tensile force exceeding the initial tension Fp is applied.
  • the tension spring 6 does not elongate from the natural length L as shown in (a) and (b) of FIG. 3, and applies a tensile force Fc exceeding the initial tension Fp.
  • elongation starts as shown in (c) of FIG.
  • Both ends of the spring main body 60 constituting the tension spring 6 are provided with a mounting portion 60b via a spring holding portion 71, which is connected to at least one flexible cord 82 constituting the displacement transmitting unit 8 shown in Fig. 1 as a "spring assembly". 6A works. Flexible cords 82 can also be attached to both sides. The same is true below.
  • One of the spring holding portions 71 is connected to the outer tub 3 by the flexible cord 82 (see FIG. 2) attached to the attaching portion 60b, and the other is attached to the corner portion 2a1 of the main body 2 by the attaching portion 60b (see FIG. 2).
  • the vibration control member 81 is supported by the four corners (corner portions 2a1 to 2a1) of the main body 2 via the spring assembly 6A.
  • the vibration restricting member 81 is supported by the four spring assemblies 6A to 6A having the initial tension. At this time, since the length of each of the flexible cords 82 to 82 is slightly rich, the respective tension springs 6 to 6 are not stretched even when the vibration restricting member 81 is supported.
  • the spring main body 60 of the tension spring 6 slightly has an elongation exceeding the natural length due to the displacement of the outer tub 3, within this range, the spring main body 60 of the tension spring 6 itself
  • the force of the initial tension of the burden Fp also acts on both ends of the tension spring 6, and the force that can be pulled back to the outer barrel 3 can be applied to the outer tub 3 via the vibration restricting member 81.
  • FIG. 4 are diagrams schematically showing the structure of the washing machine 1 of the present embodiment.
  • the force acting on the outer tub 3 of the washing machine 1 will be described with reference to Fig. 1 and (a) and (b) of Fig. 4 .
  • k is a spring constant when the restoring force acting in the center direction by the elastic supporting units 5 to 5 is regarded as an elastic force (see (a) of FIG. 4 ).
  • the spring constant k can also be said to elastically support the elastic support strength of the outer tub 3.
  • FIG. 5 is a graph showing the relationship between the above equation by setting the amplitude (displacement) e to the horizontal axis and the vibration force F including the inertial force Fi and the elastic force Fk as the vertical axis.
  • the straight lines L1 to L10 shown in the figure are expressed by the formula (3)
  • the inertial characteristic line of the relationship is a straight line
  • the straight line La is an elastic characteristic straight line indicating the relationship of the formula (4), and the intersection point thereof represents the amplitude (displacement) e and the vibration force F at the angular frequency ⁇ .
  • the slope is proportional to the square of the angular frequency ⁇
  • the intercept (intersection) with the horizontal axis is represented by ⁇ m ⁇ r / M.
  • the inertia characteristic lines L1 to L10 are straight lines described so that the magnitudes of the angular frequencies ⁇ are different, and the amplitudes e and the straight lines L1 to L2, L3, ... L10 are shown as the angular frequency ⁇ increases.
  • the situation in which the relationship of the inertial force Fi changes. Therefore, the intersection of each of the inertial characteristic straight lines L1 to L10 and the elastic characteristic straight line La indicates the relationship between the amplitude e of each angular frequency ⁇ and the vibration force F.
  • the angular frequency is the angular frequency ⁇ corresponding to the inertial straight line L1
  • the amplitude e and the vibrational force F corresponding to the intersection P1 of the inertial characteristic straight line L1 and the elastic characteristic straight line La are generated.
  • the angular frequency ⁇ increases and becomes an angular frequency corresponding to the inertia characteristic line L2
  • the amplitude e and the vibration force F corresponding to the intersection P2 of the inertia characteristic line L2 and the elastic characteristic line La are generated.
  • the angular frequency ⁇ increases and becomes an angular frequency corresponding to the inertia characteristic line L3
  • the amplitude e and the vibration force F corresponding to the intersection P3 of the inertia characteristic line L3 and the elastic characteristic line La are generated.
  • the angular frequency ⁇ is further increased from this state and is in a state to be converted to the inertia line L4
  • the amplitude e corresponding to the intersection with the inertia characteristic line La is extremely large.
  • the vibration restricting member 81 constituting the displacement transmitting unit 8 is provided by the gap E between the outer tub 3 and the main body 2, and the vibration is transmitted via the flexible cord 82 and the tension spring 6.
  • the restricting member 81 is coupled to the main body 2, thereby pulling the outer tub 3 back to the center direction with a stronger force by the action of the tension spring 6.
  • the force of the magnitude of the initial tension Fp is added to the outer tub 3 when it is slightly extended.
  • the elastic characteristic straight line La migrates toward the elastic characteristic straight line Lb having a larger slope in a region where the amplitude e is equal to or larger than the gap E.
  • the amplitude and the vibration force become the amplitude e and the vibration force F corresponding to the intersection point P4 of the inertia line L4 and the elastic characteristic line Lb, and the amplitude e sharply decreases.
  • the number of low-order natural vibrations of the outer tub 3 is returned to the original state again because the amplitude e becomes smaller than the gap E.
  • the angular frequency ⁇ becomes larger than the low-order natural vibration number at this time, and the resonance state can be prevented from occurring again.
  • the state in which the amplitude e is small is maintained. That is, even if the angular frequency ⁇ is increased and converted to, for example, the inertial straight lines L5 and L6, as shown by the intersections P5 and P6 of the inertial straight line and the elastic characteristic straight line La, the amplitude e does not exceed the gap E and can be maintained at a small level.
  • the elastic characteristic straight line Lb does not have to pass the origin, and it is sufficient to show the relationship that the spring constant k abruptly increases.
  • the amount of elongation ⁇ L and the gap E (see FIG. 2) when the initial tension Fp is applied can be appropriately changed.
  • the vibration restricting member 81 constituting the displacement transmitting unit 8 is provided with the gap E interposed between the outer tub 3 and the main body 2, and the vibration restricting member 81 is connected to the main body 2 via the flexible cord 82 and the tension spring 6. Therefore, during the period in which the washing and dewatering tub 4 is rotated and increased to a predetermined operating speed, the outer tub 3 is obtained when the angular frequency ⁇ , that is, the rotational speed is close to the low-order natural vibration number of the outer tub 3, and the amplitude e is large enough to exceed the gap E. Abutting against the vibration restricting member 81.
  • the tension spring 6 connected to the vibration restricting member 81 via the flexible cord 82 increases the number of low-order natural vibrations when the initial tension Fp is exceeded, whereby the vibration can be weakened. Further, when the amplitude e becomes smaller than the gap E, the number of low-order natural vibrations returns to the original state, but the rotational speed of the washing and dewatering tub 4 is increased, and the state of the low-order natural vibration is already removed, so that it can be suppressed. The vibration increases.
  • the washing machine 1 can be improved. Further, even if the gap between the main body 2 and the outer tub 3 is made small, it is possible to suppress the collision between the main body 2 and the outer tub 3 by the vibration. Therefore, the main body 2 can be made small with respect to the outer tub 3, and the entire washing machine 1 can be downsized. Further, in the case where the size of the main body 2 is maintained and the outer tub 3 is set large, the washing capacity can be increased without changing the size of the entire washing machine 1.
  • the tension spring 6 used to obtain the restoring force for returning the outer tub 3 to the center direction in addition to the elastic supporting units 5 to 5 utilizes the initial tension of the spring main body 60 itself. Therefore, it is easy to control the initial tension and does not require components other than the spring body. Further, since the vibration restricting member 81 and the spring assembly 6A are connected, it is possible to more easily assemble the spring member of the tension spring 6 without causing elongation of the spring length beyond the natural length.
  • the vibration restricting member 81 is formed in a ring shape, even when the outer tub 3 is displaced in any direction intersecting the rotation axis Ra, the amount of displacement in the horizontal direction exceeds the gap E, because Further, the tub 3 can be in contact with and displaced from the vibration restricting member 81. Therefore, by acting on one of the tension springs 6 or the plurality of tension springs 6 to 6 on the opposite side to the displacement direction, the elastic support strength of the support outer tub 3 can be changed, and the natural vibration number can be deviated.
  • the spring main body 60 of the tension spring 6 has a structure in which only the spring member 60x is used as shown in FIG. 3, but may be used instead on the spring main body 60 according to FIG. A damping device 60y to be described later or a spring main body including a limiting shaft body 72 to be described later according to FIG. 18 is provided.
  • Fig. 6 corresponds to Fig. 1 of the first embodiment described above, and is a longitudinal sectional view showing a washing machine 201 according to a second embodiment of the present invention.
  • Fig. 7 is a view showing a state in which the outer tub 3 is displaced in the horizontal direction.
  • (a) and (b) of Fig. 8 correspond to (a) and (b) of Fig. 2 of the first embodiment described above. That is, Fig. 8(a) is a cross-sectional view taken along line A-A of Fig. 6, and Fig. 6 is a cross-sectional view taken along line B-B of Fig. 8(a).
  • the washing machine 201 shown in Fig. 6 and Fig. 8(a) is the same as the washing machine 1 shown in the first embodiment (Figs. 1 to 5) except for the configuration described later, and therefore the same portion is provided with the same
  • the reference numerals are given and the description is omitted.
  • the washing machine 201 does not include a member corresponding to the vibration restricting member 81 (see FIG. 1) of the first embodiment, and the displacement transmitting unit 208 is composed of four flexible cords 282 to 282. Further, one end of each of the flexible cords 282 to 282 is disposed between the vicinity of the upper portion of the outer tub 3 and the corner portion 2a1, and is attached to the upper portion of the outer peripheral surface 32a of the side plate 32 constituting the outer tub 3 at one position. Fixing members 236 to 236. Since the flexible cords 282 to 282 are made of a metal or the like which is not easily stretched, and has flexibility, the force is transmitted only in the stretching direction, and substantially no force is transmitted in the compression direction.
  • the tension spring 6 is connected to at least one flexible cord 282 constituting the displacement transmission unit on the spring main body 60 including the spring member 60x having a predetermined initial tension, and functions as a "spring assembly" 206A. At this time, since the length of each of the flexible cords 282 to 282 is sufficient, the respective tension springs 6 to 6 do not undergo elongation exceeding the natural length.
  • the tension spring shown in (a) of the same figure is configured as a group within the sleeve 61 constituting the spring body 60.
  • Attenuating device 60y is installed and integrated.
  • the damping device 60y is an oil damper type device configured to reciprocate the piston 62b in the cylinder chamber 62a.
  • One end of the spring member 60x is connected to the mounting portion 60b outside the sleeve to constitute the damping device 60y.
  • the other end of the piston rod 62c is connected to the mounting portion 60b outside the sleeve 61, and the other end of the spring member 60x is connected to one end of the piston rod 62c by an internal connecting portion 60a.
  • a spring assembly 206A composed of a spring main body 60 and a flexible cord 282 having such a structure is coupled between the main body 2 and the outer tub 3, and attenuates the displacement transmitted by the flexible cord 282 as a displacement transmitting unit.
  • FIGS. 7 and 8( b ) show a state in which the outer tub 3 is displaced from the above state to the direction intersecting the rotation axis Ra.
  • the displacement e in the horizontal direction of the outer tub 3 is increased to a predetermined value or more, the flexible cord 282 on the opposite side to the displacement direction is tightened, and the displacement of the outer tub 3 is transmitted to the tension spring 6.
  • the predetermined value set as a necessary displacement amount for transmitting the displacement of the outer tub 3 to the tension spring 6 via the tensioned flexible cord 282 corresponds to the gap E of the first embodiment (refer to the figure). 2).
  • the tension spring 6 can act on the outer barrel 3 to pull it back in a direction opposite to the displacement. Therefore, as in the case of the first embodiment, by changing the elastic support strength of the outer tub 3 abruptly, the natural vibration number can be deviated and the vibration can be weakened.
  • the displacement transmission unit 208 is constituted by the flexible cord 282, the structure can be further simplified and the manufacturing cost can be reduced as compared with the first embodiment.
  • the function of the damping device 60y also contributes to suppressing vibration.
  • the amplitude e and the vibration force F are shifted by the intersection of the inertia characteristic line L1 and the elastic characteristic line La by P1 ⁇ P2 ⁇ P3, and then the outer tub 3 is largely vibrated and displaced by the gap E or more.
  • the spring force constant k the spring constant k is increased, and the elastic characteristic line La is shifted to the elastic characteristic line Lb having a larger slope in the region where the amplitude e is equal to or larger than the gap E.
  • the amplitude and the vibration force become the amplitude e and the vibration force F corresponding to the intersection point P4 of the inertia line L4 and the elastic characteristic line Lb, and the amplitude e sharply decreases.
  • the damping device 60y since the damping device 60y operates at the same time, the vibration becomes attenuated vibration and the maximum value of the resonance becomes small, so that the actual vibration amplitude is further reduced, and the excessive shaking of the outer tub 3 can be further advanced in advance.
  • the tension spring is configured as shown in FIG. 9( a ), but the flexible cord 282 may be built in as described later in FIG. 9( b ).
  • the structure inside the sleeve of the spring body 60 and the configuration in which only the initial tension of the spring member 60x is used as shown in Fig. 3 is shown.
  • a configuration in which the initial tension is set using the pressurizing setting unit 7 to be described later based on FIG. 18 may be employed.
  • Fig. 10 corresponds to Fig. 1 of the first embodiment, and is a longitudinal sectional view showing a washing machine 301 according to a third embodiment of the present invention.
  • Fig. 11 corresponds to (a) of Fig. 2 of the first embodiment described above. That is, Fig. 11 is a cross-sectional view at the position A-A of Fig. 10, and Fig. 10 is a cross-sectional view at the position of B-B of Fig. 11.
  • FIG. 10 is a figure which abbreviate
  • the washing machine 301 does not include a member corresponding to the vibration restricting member 81 (see FIG. 1) of the first embodiment, and the displacement transmitting unit 308 is constituted by the strip bodies 381 to 381.
  • the outer circumference of the outer tub 3 is provided with four spring bodies 60 constituting the tension springs 6 to 6.
  • the spring main body 60 is described only by the spring main body of the spring member 60x having the initial tension shown in FIG. 3, the spring member 60x shown in (a) of FIG. 9 may be used in combination.
  • the spring body of the attenuating device 60y may be any of the above. Both ends of the spring main body 60 constituting the tension springs 6 to 6 are respectively connected to a flexible strip-shaped body 381 to constitute a spring assembly 206A.
  • FIG. 12 (a) is a simplified view showing only one tension spring 6 provided in the washing machine 301 of Fig. 11 .
  • FIG. 12(b) is an enlarged view of the periphery of the tension spring 6 of FIG. 11(a).
  • the tension spring 6 is disposed on the base 336 provided on the outer peripheral surface 32a of the outer tub 3, and thus is restrained in the vertical direction.
  • One ends of the strip-shaped bodies 381 and 381 are respectively connected to both ends of the tension spring 6, and the other ends of the strip-shaped bodies 381 and 381 are fixed to the corner portion 2a1 of the main body 2.
  • the tension spring 6 and the strip bodies 381 and 381 connected in series therewith have a margin, and a predetermined gap is formed between the tension springs 6 and the outer peripheral surface 32a of the outer tub 3, and covers about 2/3 of the circumference of the outer tub 3. In this state, the tension spring 6 does not undergo elongation beyond the natural length.
  • FIG. 13 are views showing a state in which the outer tub 3 is displaced from the above-described state to a direction intersecting the rotation axis Ra (the lower left direction in the drawing).
  • the displacement e in the horizontal direction of the outer tub 3 is increased to a predetermined value or more, the strip-shaped body 381 fixed to the corner portion 2a1 opposite to the displacement direction is tightened to displace the outer tub 3. It is transmitted to the tension spring 6.
  • the predetermined value set as the necessary displacement amount for transmitting the displacement of the outer tub 3 to the tension spring 6 via the tensioned strip-shaped body 381 corresponds to the gap E of the first embodiment (see FIG. 2).
  • the displacement is transmitted to the tension spring 6 through the belt-shaped body 381 constituting the displacement transmitting unit 308, and the tension spring 6 can be externally barreled. 3 acts to pull it back in the opposite direction of the displacement. Since four sets of such strip-shaped bodies 381 and tension springs 6 (see FIG. 11) are provided and the outer buckets 3 are equally disposed at the center, the displacement can be performed regardless of which direction the outer tub 3 is displaced. It is transmitted to the tension spring 6. Therefore, as in the case of the first embodiment, by changing the elastic support strength of the outer tub 3 abruptly, the natural vibration number can be deviated and the vibration can be weakened. In addition, the same effect as described above can be obtained by providing at least two sets of the strip-shaped body 381 and the tension spring 6 so as to face each other with the rotation axis Ra as the center.
  • the frictional resistance is generated by sliding the inner side of the strip 381 with the outer peripheral surface 32a of the outer tub 3, and the effect as a damper can also be obtained. Therefore, by using the strip-shaped body 381 as in the present embodiment, a better vibration suppressing effect can be obtained.
  • the spring main body 60 of the tension spring 6 is described as a spring main body having only the structure of the spring member 60x shown in FIG. 3, but it may be used in combination.
  • Fig. 14 is a view showing a modification of the second embodiment.
  • the flexible cord 282 which is a displacement transmission unit that is externally attached to the spring main body 60 shown in FIG. 9(a)
  • the spring assembly 206A is connected between the main body 2 and the outer tub 3.
  • the flexible cord 282 as the displacement transmitting unit is built in and integrated between the spring member 60x constituting the spring main body 60 of the spring unit 206A shown in the same figure (b) and the damping device 60y, and can be mounted on the two.
  • the member 282x of the end mounting portion 60b is a non-flexible member. That is, as shown in FIG.
  • the spring assembly 206A can be linearly mounted between the main body 2 and the outer tub 3 in a state where there is no slack. With such a configuration, the outer tub 3 is allowed to vibrate within a range in which the inner flexible cord 282 shown in Fig. 9(b) is not stretched, and the spring member 60x of the tension spring 6 and the attenuating means 60y are provided. Work begins at the stage of elongation of the flexible cord 282.
  • Fig. 15 corresponds to Fig. 1 of the first embodiment described above, and is a longitudinal sectional view showing a washing machine 501 according to a fifth embodiment of the present invention. Further, Fig. 16 corresponds to (a) of Fig. 2 of the first embodiment described above. That is, Fig. 16 is a cross-sectional view taken along line A-A of Fig. 15, and Fig. 15 is a cross-sectional view taken along line B-B of Fig. 16.
  • the washing machine 501 shown in FIG. 15 and FIG. 16 is the same as the washing machine 1 shown in the first, second, and fourth embodiments except for the configuration described later. Therefore, the same portions are denoted by the same reference numerals and are omitted. Description.
  • the washing machine 501 does not have a member corresponding to the vibration restricting member 81 (see FIG. 1) of the first embodiment, and the spring main body 60 including the tension spring 6 and the spring assembly 206A of the flexible cord 282 are the same as the spring assembly of FIG.
  • the equidistant portions of the outer circumference of the outer tub 3 are integrally provided with flanges 536 which are flanged 536 is connected to the closest two of the four corners (corners 2a1 to 2a1) of the main body 21 by a spring assembly 206A having a spring body 60 interposed therebetween.
  • the spring body 60 of the tension spring 6 is provided with a spring member 60x having a predetermined initial tension, and the "spring assembly" 206A is constituted by at least one flexible cord 282 constituting the displacement transmission unit (refer to (b) of FIG. 9). .
  • one end of the spring assembly 206A is attached to the corner portion 2a1 of the main body 2, and the other end extends in a substantially tangential direction and is attached to the flange 536 of the outer tub 3. That is, the two spring assemblies 206A extend in pairs from a substantially tangential direction in which the corner portions 2a1 are different from each other with respect to the outer circumferential direction of the outer tub 3, and the pair of spring assemblies 206A are also disposed as the spring body 206P on the opposite side of the rotation shaft Ra.
  • the tension spring 6 is formed by at least the pair of spring bodies 206P and 206P on the diagonal corner portion 2a1 side of the corner portion 2a1.
  • a set of spring bodies 206P, 206P are also disposed between the corner portion 2a1 of the other diagonal main body 2 and the flange 536 of the outer tub 3, and are composed of a total of two sets of spring bodies 206P, 206P.
  • the tension spring 6 is described.
  • the displacement is transmitted in such a manner as to constitute the spring body 206P.
  • the spring assembly 206A of the pair of spring assemblies 206A, 206A on the leading side in the rotational direction is elongated, and the spring assembly 206A on the retard side in the rotational direction is contracted.
  • the spring body 60 of the elongated side spring assembly 206A can act on the outer bucket 3 to pull it back in the opposite direction of the displacement.
  • the reaction force counteracting the rotation of the outer tub 3 to either of the right and left sides can be applied.
  • the vibration is weakened, and the washing and dewatering tub 4 can be reliably operated.
  • the displacement is connected to the outer tub 3
  • the pair of spring assemblies 206A constituting the spring body 206P on the far side are elongated, and the pair of spring assemblies 206A constituting the spring body 206P attached to the near side of the outer tub 3 are contracted, so that the spring assembly 206A of the extension side
  • the spring body 60 is capable of acting on the outer tub 3 to pull it back in the opposite direction of the displacement, and is capable of driving that avoids the resonance point.
  • the tension spring 6 is provided with the belt shown in FIG.
  • the spring of the structure of the attenuation function in particular, the spring of the type in which the restriction rope 282 is built as shown in the same figure (b), but a spring of the type shown in (a) of the same figure may be used, and further, it may be A spring constituted by the spring member 60x shown in Fig. 3 is used.
  • the initial tension of the spring main body 60 constituting the tension spring can be used, and the restriction shaft body shown in Fig. 18 can be used.
  • a restricting shaft body 72 is provided inside the tension spring 6 of the illustrated example along the longitudinal direction of the tension spring 6.
  • FIG. 18 is a cross-sectional view showing an example in which the pressurizing setting unit 7 is used to apply the initial tension of the tension spring 6.
  • (a) of FIG. 18 is a view showing a state in which the tension spring 6 is in a state of a natural length L.
  • (b) of FIG. 18 is a view showing a state in which the pressurization Fp constituting the initial tension is applied to both ends of the tension spring 6 so as to extend only ⁇ L and maintain the length.
  • the restricting shaft body 72 By inserting the restricting shaft body 72 inside the tension spring 6, the relative position between the disc portions 71a, 71a of the spring end restricting portions 71, 71 is restricted by the restricting shaft body 72. In this way, the tension spring 6 can be held in a state where the initial tension Fp is applied via the spring end regulating portions 71, 71 and the tension spring 6 is extended by ⁇ L only from the natural length L. That is, the spring end regulating portions 71 and 71 and the regulating shaft body 72 function as the pressurizing setting unit 7 for setting the initial tension Fp to the tension spring 6.
  • FIG. 18 is a view showing a state in which the tension spring 6 is further extended from the state of FIG. 18(b).
  • the pressurizing setting unit 7 applies a force exceeding the pressurizing Fp to both ends of the tension spring 6, the tension spring 6 can be extended.
  • the pressurizing setting unit 7 allows the tension spring 6 to be deformed in the direction in which the pressurizing Fp is set, and the deformation in the direction in which the pressurization Fp is set to be shorter.
  • damping device 60y is provided in the spring body 60 in the above embodiment, it may be formed outside the spring body 60.
  • the outer tub 3 is configured to use the inner tub supported inside as the washing and dewatering tub 4, and the present invention can be suitably applied in the case where the inner tub is required to be rotated at a high speed, even if the inner tub is only used as a washing tub or
  • the dewatering bucket can also be applied to the above structure.
  • the axial direction of the outer tub 3 is set to the vertical direction, but the same can be applied to the present invention even if it is oriented obliquely upward. Further, even in the drum type washing machine in which the axial direction of the outer tub 3 is horizontal, the same effects as described above can be obtained by the present invention.
  • 60y attenuation device
  • Ra Rotating axis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Main Body Construction Of Washing Machines And Laundry Dryers (AREA)

Abstract

一种洗衣机,其不仅能适当地抑制外桶的振动,还能以简单的构造使组装变得容易,实现制造成本的降低。在具备将外桶(3)弹性支承于主体(2)的弹性支承单元(5)的洗衣机中,包括:多个拉伸弹簧(6)~(6),配置于外桶(3)与主体(2)之间,由于被传递了外桶(3)的位移而对外桶(3)施加使其向原位返回的反作用力;以及位移传递单元(8),仅在外桶(3)的位移大到规定值以上时,将外桶(3)的位移传递给拉伸弹簧(6)~(6),拉伸弹簧(6)具有预先设定的初张力(Fp)。

Description

洗衣机 技术领域
本发明涉及一种可抑制洗涤脱水桶旋转时的振动的洗衣机。
背景技术
以往,普遍已知有如下结构的洗衣机:在形成为箱状的主体的内部支承有底圆筒状的外桶,并在该外桶的内侧可旋转地支承作为内桶的洗涤脱水桶(例如,参照专利文献1)。
在这样的一般的洗衣机中,外桶经由包括了弹簧而构成的悬架、和将其吊挂的吊棒,弹性支承于主体的四个部位,由此抑制工作时的振动。
在采用这种结构的情况下,外桶绕洗涤脱水桶的旋转轴抖动的振动形态的低阶固有振动数在比洗涤脱水桶的旋转速度低的区域出现。具体而言,在洗涤脱水桶的底部设置有波轮(搅拌翼),在脱水时在外桶的内部使洗涤脱水桶和波轮一体地高速旋转。在开始洗涤脱水桶的旋转并使其增速的过程中,当洗涤脱水桶的旋转速度与上述低阶固有振动数一致,则振动暂时增大。随着进一步提高洗涤脱水桶的旋转速度并脱离低阶固有振动数,振动减小,能在设定的旋转速度下稳定地工作。
但是,可以想到,在进入洗涤脱水桶的洗涤物存在偏倚,绕旋转轴的不平衡量大的情况下,外桶的振动增大,特别是在低阶固有振动数下,外桶大幅抖动并接触到主体的内部。而且,存在下述隐患:由于洗衣机整体产生大的噪音、振动,使得洗衣机的设置场所周围的环境变差,并且构成洗衣机的部件受到损伤。
为抑制上述的不良情况,通常可以考虑使外桶与主体之间具有一定以上的间隙来减少外桶与主体的碰撞。另外,还可以考虑在检测到过大的振动时停止旋转或进行纠正洗涤物的偏倚的控制。
但是,在使外桶与主体之间具有一定以上的间隙的情况下,与主体相比, 不得不使外桶小型化,主体内部需要大的无用空间。另外,在通过控制来执行振动对策的情况下,需要振动检测单元以及复杂的控制,导致成本增大。
因此,为解决上述问题,可以考虑使用下述专利文献2所记载的技术。专利文献2公开了如下结构:在使洗衣机的外桶的外侧具有间隙的状态下同轴配置环,并在该环的外侧设置板簧(参照段落0094、0095以及图19D、19E)。该板簧在预先施加压力使其位移的状态下由止动件保持,在位移很多而止动件不再具有限制作用的情况下,可以作用包含施压量的大的弹力。
因此,专利文献2所记载的技术中,在洗涤脱水桶的旋转速度接近低阶固有振动数,外桶大幅抖动并接触到环时,外桶处于不仅由上述悬架所含的弹簧支承,而且还由设于环的板簧弹性支承的状态,通过使低阶固有振动数发生变化,可减弱振动。
但是,在上述专利文献2中,在将板簧的一端固定并施加压力使其压缩(位移)的状态下将另一端通过止动件卡定,并且将板簧的中央部附近与环抵接。像这样对板簧的两端赋予相对位移并赋予加压的同时,使中央部与环抵接是极其困难的,为了实现这一点需要结合实物进行细微的位置调整,因此制造成本增大。
进而,由于如上所述需要细微的位置调整,因此用于支承板簧的机构以及用于支承环的机构变得复杂,进一步增加了制造成本。
现有技术文献
专利文献
专利文献1:日本特开2011-240041号公报
专利文献2:日本特许第3984630号公报
发明内容
发明所要解决的问题
本发明的目的在于有效地解决这样的课题,具体而言,其目的在于提供一种洗衣机,其不仅能适当地抑制外桶的振动、缩小外桶与主体的间隙,还能以简单的构造使组装变得容易,实现制造成本的降低。
用于解决问题的方案
本发明为了实现该目的,采用了如下的方案。
即,本发明的洗衣机具备:主体,形成有内部空间;外桶,配置于所述主体的内部空间;内桶,配置于所述外桶的内部并被自由旋转地支承;电机,设置于所述外桶并使所述内桶旋转;以及弹性支承单元,将所述外桶弹性支承于所述主体,其特征在于,包括:多个拉伸弹簧,配置于所述外桶与所述主体之间,由于被传递了所述外桶的位移而对所述外桶施加使其向原位返回的反作用力;以及位移传递单元,仅在所述外桶的位移大到规定值以上时,将所述外桶的位移传递给所述拉伸弹簧,所述拉伸弹簧具有预先设定的初张力。
在这种情况下,所述拉伸弹簧包括以轴对称于所述内桶的旋转轴的方式配置的至少一组弹簧体,所述弹簧体分别由一对弹簧组件组合而成,所述弹簧组件包括具有预先设定的初张力的弹簧主体和至少一根构成所述位移传递单元的挠性绳索,所述弹簧体的各弹簧组件优选一端安装于主体的角部,另一端固定于外桶的互不相同的大致切线方向。
此外,本发明的洗衣机具备:主体,形成有内部空间;外桶,配置于所述主体的内部空间;内桶,配置于所述外桶的内部并被自由旋转地支承;电机,设置于所述外桶并使所述内桶旋转;以及弹性支承单元,将所述外桶弹性支承于所述主体,其特征在于,包括:多个拉伸弹簧,配置于所述外桶与所述主体之间,由于被传递了所述外桶的位移而对所述外桶施加使其向原位返回的反作用力;位移传递单元,仅在所述外桶的位移大到规定值以上时,将所述外桶的位移传递给所述拉伸弹簧;以及衰减装置,衰减由所述位移传递单元传递的位移,所述拉伸弹簧具有预先设定的初张力。
在这种情况下,所述拉伸弹簧包括以轴对称于所述内桶的旋转轴的方式配置的至少一组弹簧体,所述弹簧体分别由一对弹簧组件组合而成,所述弹簧组件包括具有预先设定的初张力的弹簧主体和至少一根构成所述位移传递单元的挠性绳索,所述弹簧体的各弹簧组件优选一端安装于主体的角部,另一端固定于外桶的互不相同的大致切线方向。
发明效果
根据以上所说明的本发明,在通过电机使内桶旋转时,当外桶因旋转速度接近外桶的固有振动数而大幅抖动时,通过设置于外桶的外周的弹性体与主体内部接触,从而能使固有振动数发生变化,减弱振动。
具体而言,外桶抖动的振动形态的固有振动数取决于支承外桶的弹性支承单元的弹性支承强度(弹簧常数),外桶由于旋转速度接近该固有振动数而以大幅抖动的方式振动,在外桶的位移为规定值以上的情况下,由于外桶的位移经由位移传递单元被传递给拉伸弹簧,因此能通过拉伸弹簧产生反作用力并施加给外桶。此时,由于预先对拉伸弹簧赋予了初张力,因此会急剧地对外桶产生大的反作用力。因此,能通过使外桶的弹性支承强度急剧变化从而使固有振动数发生变化,抑制外桶的振动,能将内桶进一步加速到规定的旋转频率。
这样,由于可在振幅变得过大之前减弱因外桶的固有振动数而引起的振动,将内桶增速到规定的旋转速度,因此能防止噪音、振动,抑制设置场所的环境变差的情况。进而,由于使用多个拉伸弹簧作为用于使外桶的弹性支承强度发生变化的弹性体,因此能简单地实现赋予初张力的结构,并且容易进行调整,能实现制造成本的降低。
此外,根据由连接于外桶的切线方向的一对弹簧组件构成弹簧体,并隔着旋转轴设置至少一组该弹簧体的本发明,对于外桶的旋转方向的振动也能施加将其抵消的反作用力,能使内桶更稳妥地进行工作。
另一方面,根据使用了衰减装置的本发明,与仅使用具有初张力的拉伸弹簧的结构相比,可实现共振最大值的进一步缩小。
在这种情况下,根据由连接于外桶的切线方向的一对弹簧组件构成弹簧体,并隔着旋转轴设置至少一组该弹簧体的本发明,也能对于外桶的旋转方向的振动施加将其抵消的反作用力,能使内桶更稳妥地进行工作。
附图说明
图1是表示本发明的第一实施方式的洗衣机的纵剖图。
图2是图1的A-A剖面向视图。
图3是表示同一洗衣机的初张力的说明图。
图4是示意性地表示作用于同一洗衣机的外桶的力的说明图。
图5是用于说明作用于同一外桶的力和位移的关系的说明图。
图6是表示本发明的第二实施方式的洗衣机的纵剖图。
图7是表示外桶从图6的状态向水平方向位移后的状态的纵剖图。
图8是图6的A-A剖面向视图。
图9是表示在同一洗衣机中使用的弹簧组件的图。
图10是表示本发明的第三实施方式的洗衣机的纵剖图。
图11是图10的A-A剖面向视图。
图12是表示从图11的状态卸下带状体的一部分的简化后的状态的图。
图13是表示外桶从图12的状态向水平方向位移后的状态的图。
图14是表示本发明的第四实施方式的洗衣机的纵剖图。
图15是表示本发明的第五实施方式的洗衣机的纵剖图。
图16是图15的A-A剖面向视图。
图17是表示外桶从图16的状态向旋转方向位移后的状态的纵剖图。
图18是表示用于赋予初张力的加压设定单元的图。
具体实施方式
以下,参照附图,对本发明的实施方式进行说明。
(第一实施方式)
图1是表示本发明的第一实施方式的洗衣机1的纵剖图,图2的(a)是图1中记载的A-A位置处的剖面向视图。其中,图1表示图2的(a)的B-B位置即对角位置处的剖面。此外,图2的(b)如后所述,表示外桶3位移后的状态。图1、2这两个图中记载的洗衣机1示出了大致结构,省略了与本发明无关的部分。进而,图2中,省略了图1中记载的后述的弹性支承单元5。
该洗衣机1具备:主体2、外桶3、作为内桶的洗涤脱水桶4、以及弹性支承单元5~5。
主体2具备内部空间2a,该内部空间由俯视时大致正方形的下板22、从下板22的缘部立起的形成四面的侧板21~21、以及与侧板21~21的上部连接的上板23一体构成为大致长方体状,并具有由这些板包围而形成为大致长方体状的内部空间2a。
侧板21以及下板22由金属板形成,上板23由树脂形成。下板22在其下表面的四角附近具有可将主体2设置于地面的脚22a~22a。在上述上板23,设有可使洗涤物出入于洗涤脱水桶4的大致圆形的开口23a。另外,上板23可从侧板21拆装,由此可容易地将外桶3装入主体2的内部空间2a。此外,上板 23可以与用于进行洗衣机1的操作的操作面板一体构成。
外桶3由具备耐热性的合成树脂成型,是具有俯视时大致圆形的底板31和从底板31的缘部立起的侧板32的有底圆筒状的部件。外桶3由弹性支承单元5吊挂在主体2的内部空间2a,在侧板32的下部的四个部位具备用于安装弹性支承单元5的卡合部33。
洗涤脱水桶4由金属形成,是具有俯视时大致圆形的底板41和从底板41的缘部立起的侧板42的有底圆筒状的部件。洗涤脱水桶4在外桶3的内部与该外桶3同轴配置,并且由外桶3自由旋转地支承。在侧板42以及底板41,设有未图示的多个开口,通过该开口能排出洗涤脱水桶4内的水。
洗涤脱水桶4通过电机34使朝向底板31的上表面侧延伸的驱动轴35旋转而进行旋转。另外,电机34经由未图示的传递单元,对设于洗涤脱水桶4的底板41中央的波轮(搅拌翼)43也赋予驱动力,使波轮43旋转。因此,洗衣机1能在洗涤时主要仅使波轮43旋转,在脱水时使洗涤脱水桶4和波轮43一体高速旋转。
波轮43的旋转中心和洗涤脱水桶4的旋转中心设定为沿铅直方向配置的同一旋转轴Ra。需要说明的是,旋转轴Ra也穿过洗涤脱水桶4的底板41的中心、以及外桶3的底板31的中心。
弹性支承单元5~5吊挂外桶3。在本实施方式中,设有四个弹性支承单元5~5,分别由吊棒51和安装于吊棒51的顶端的悬架52构成。悬架52具有外管53和配置于外管53的内部的压缩弹簧54。在主体2,在其内部空间2a上部的四角2a1~2a1(参照图2)分别设有吊棒安装部24~24,在各吊棒安装部24~24安装有吊棒51的基端侧。进而,悬架52的外管53以挂在上述外桶3的卡合部33的方式与该卡合部33卡合。这样,外桶3通过四个弹性支承单元5~5吊挂在内部空间2a内。
各弹性支承单元5的压缩弹簧54在通过外桶3的重量被压缩而产生反作用力并吸收位移的同时,弹性地支承外桶3。进而,四个弹性支承单元5~5通过分别从斜向吊挂外桶3,从而一起发挥使外桶3位于主体2的中央方向的保持平衡的作用。
即,弹性支承单元5不仅能产生悬架52的压缩弹簧54的弹性,还能根据其位置关系,产生使吊挂的外桶3如同振子一样返回中心的恢复力。因此,外桶3在从中心位置发生了位移的情况下,通过弹性支承单元5得到与其位移量对应的恢复力,并通过该恢复力返回主体2的中心位置。
此处,如上所述,通过利用弹性支承单元5弹性地支承外桶3,与外桶3绕旋转轴Ra抖动的振动形态相对应的低阶固有振动数在约2~3Hz程度的非常低的旋转速度区域出现。洗衣机1中最容易发生振动的是洗涤脱水桶4与波轮43一同高速旋转的情况,虽然通常以比上述低阶固有振动数而言足够高的规定的运转速度旋转,但是在起动后到进行加速的阶段或从上述运转速度减速的阶段,在洗涤脱水桶4的旋转速度与低阶固有振动数一致或者接近的情况下,外桶3以绕旋转轴Ra抖动的方式大幅振动。进而,在放入洗涤脱水桶4的内部的洗涤物有偏倚的情况下,其变成绕旋转轴Ra的不平衡状态,激振力增加,外桶3的振动进一步增大。
因此,本实施方式的洗衣机1为了将外桶3的振动抑制得较小,如图1、图2的(a)所示,还具备:四个拉伸弹簧6~6,由于被传递了外桶3的位移而对外桶3施加使其向原位返回的反作用力,并为了实现上述目的而被赋予了初张力;以及位移传递单元8,仅在外桶3的位移大到规定值以上时将该外桶3的位移传递给拉伸弹簧6。
由于各拉伸弹簧6~6配置于常常作为无用空间的主体2的角部2a1,因此具有用于抑制振动的功能的同时,还能抑制装置整体的大型化。
位移传递单元8由呈环状的振动限制构件81和用于支承该振动限制构件81的四个挠性绳索82~82构成。振动限制构件81能由金属或树脂形成。挠性绳索82利用不易伸缩的金属制等的绳索构成,由于具有挠性,因此只在拉伸方向进行力的传递,而在压缩方向上基本不会发生力的传递。
挠性绳索82~82配置于外桶3的上部附近和角部2a1之间,其一端与振动限制构件81的四个部位连接,另一端分别与所述拉伸弹簧6~6之一连接。进而,各拉伸弹簧6~6与主体2的角部2a1~2a1连接。因此,振动限制构件81经由拉伸弹簧6~6以及挠性绳索82~82,由主体2的四角(角部2a1~2a1)支承。振动限制构件81在外桶3的上部附近与外桶3同轴配置,与外桶3的外周 面32a之间遍及整周地形成大致均等的间隙E。
图3是表示拉伸弹簧6的剖视图。具体而言,由于该拉伸弹簧6在弹簧主体60中使用了金属线材构成的拉伸线圈型的弹簧构件60x,因此图3的(a)表示构成拉伸弹簧6的弹簧主体60的弹簧构件60x处于自然长度L的状态的情况,图中箭头Fp表示其本身所具有的预先设定的初张力。此外,图3的(b)的箭头Fb表示施加了与初张力Fp相互平衡的拉伸力的情况,图3的(c)的箭头Fc表示施加了超出初张力Fp的拉伸力的情况。该拉伸弹簧6只要拉伸力不超过初张力Fp,就如图3的(a)、(b)所示不会从自然长度L伸长,在施加了超过初张力Fp的拉伸力Fc时开始如图3的(c)所示伸长。
构成拉伸弹簧6的弹簧主体60的两端经由弹簧保持部71设有安装部60b,其与图1所示的构成位移传递单元8的至少一根挠性绳索82连接,作为“弹簧组件”6A发挥作用。挠性绳索82也可以连接到两侧。以下同样如此。
弹簧保持部71的一方利用安装于安装部60b的上述挠性绳索82(参照图2)与外桶3连接,另一方利用安装部60b安装于主体2的角部2a1(参照图2)。由此,如图2所示,经由弹簧组件6A,使振动限制构件81由主体2的四角(角部2a1~2a1)支承。
这样,振动限制构件81通过具有初张力的四个弹簧组件6A~6A受到支承。此时,由于各挠性绳索82~82的长度还有一点点富余,因此即使在支承了振动限制构件81的状态下,各拉伸弹簧6~6也不会伸长。
使用图2的(a),如上所述,由于振动限制构件81以相对于外桶3的外周保持间隙E的方式配置,因此当如图2的(b)所示,外桶3朝向水平方向(图中的例中为右下方向)发生了大到间隙E以上的位移时,外桶3的外周面32a与振动限制构件81抵接。此时,外桶3的位移经由构成位移传递单元8的振动限制构件81以及挠性绳索82,传递至位于与外桶3的位移方向相反侧(图中的例中为左上)的拉伸弹簧6。需要说明的是,虽然安装于该挠性绳索82的相反侧的挠性绳索82的松弛增加,但不会对与其连接的拉伸弹簧6产生力的作用。
即使在拉伸弹簧6的弹簧主体60由于被传递了外桶3的位移而稍微发生了超过自然长度的伸长的情况下,在该范围内,拉伸弹簧6的弹簧主体60本身所 负担的初张力Fp大小的力也会作用于拉伸弹簧6的两端,并能经由振动限制构件81,对外桶3施加将其向原位回拉的力。
图4的(a)、(b)是示意性地表示本实施方式的洗衣机1的构造的图。以下,参照图1并使用图4的(a)、(b),对作用于洗衣机1的外桶3的力进行说明。
首先,通过由上述的四个弹性支承单元5~5吊挂外桶3,从而对应于从中心的位移e,产生使外桶3返回中心的恢复力k×e。此处,k是将由弹性支承单元5~5向中心方向作用的恢复力视为弹力的情况下(参照图4的(a))的弹簧常数。弹簧常数k也可以说是弹性地支承外桶3的弹性支承强度。
进而,在将外桶3的质量设为M,外桶3绕着离重心位置Cg距离(位移)e的旋转中心Cr进行抖动运动的情况下,产生朝向外径方向的惯性力(离心力)M×ω2×e。此处,ω是外桶3抖动时的角频率,与洗涤脱水桶4旋转时的角频率ω相等。此外,将洗涤脱水桶4(参照图2)那样的外桶3的内部的旋转部分的不平衡设为Δm,并将离旋转中心Cr的距离设为r时,因该不平衡而产生的惯性力(离心力)为Δm×r×ω2
因此,在根据这些情况而考虑到力的平衡的情况下,得到下式的关系。
M×ω2×e+Δm×r×ω2=k×e......式(1)
将其变形后,得到下式。
e=Δm×r×ω2/M×ω2-k......式(2)
根据式(2),在达到了满足M×ω2-k=0的旋转速度的情况下,位移e极大,即,成为振动增大的共振状态。
进而,如果将式(1)的左边产生的力设为惯性力Fi,并将右边产生的弹力设为Fk,则可以如下表示。
Fi=M×ω2×e+Δm×r×ω2......式(3)
Fk=k×e......式(4)
图5是将振幅(位移)e设为横轴,将包括惯性力Fi、弹力Fk的振动力F设为纵轴来表示上式的关系的图表。图中所示的直线L1~L10是表示式(3)的 关系的惯性特性直线,直线La是表示式(4)的关系的弹性特性直线,它们的交点表示角频率ω时的振幅(位移)e和振动力F。
就惯性特性直线L1~L10而言,斜率与角频率ω的平方成比例,与横轴的截距(交点)由Δm×r/M表示。惯性特性直线L1~L10分别是以使角频率ω的大小不同的方式进行记载的直线,示出了随着角频率ω增大,如直线L1至L2、L3...L10所示振幅e与惯性力Fi的关系发生变化的情况。因此,各惯性特性直线L1~L10与弹性特性直线La的交点表示每个角频率ω的振幅e与振动力F的关系。
在考量使洗涤脱水桶4(参照图1)起动而角频率ω逐渐增大的阶段的情况下,振幅e和振动力F如下发生变化。
首先,在角频率为与惯性直线L1相对应的角频率ω的情况下,产生对应于惯性特性直线L1与弹性特性直线La的交点P1的振幅e和振动力F。在角频率ω增大,变为与惯性特性直线L2对应的角频率的情况下,产生对应于惯性特性直线L2与弹性特性直线La的交点P2的振幅e和振动力F。进而,在角频率ω增大,变为与惯性特性直线L3对应的角频率的情况下,产生对应于惯性特性直线L3与弹性特性直线La的交点P3的振幅e和振动力F。在角频率ω从该状态进一步增大并处于将要向惯性直线L4转换的状态的情况下,与和惯性特性直线La的交点对应的振幅e非常大。
但是,如上所述,在本实施方式中,通过在外桶3与主体2之间隔着间隙E设置构成位移传递单元8的振动限制构件81,并经由挠性绳索82以及拉伸弹簧6将该振动限制构件81与主体2连接,从而通过拉伸弹簧6的作用,以更强的力将外桶3拉回中心方向。此时,由于对拉伸弹簧6预先赋予了初张力Fp,因此在稍稍伸长了的情况下,会追加初张力Fp的大小的力并作用于外桶3。即,在外桶3大幅振动并位移了间隙E以上的情况下,由于具有初张力Fp而急剧地作用较大的弹力,弹簧常数k表现为变大。即,弹性特性直线La在振幅e为间隙E以上的区域向斜率更大的弹性特性直线Lb迁移。
由此,振幅和振动力变为对应于惯性直线L4与弹性特性直线Lb的交点P4的振幅e和振动力F,振幅e急剧变小。这表示通过拉伸弹簧6的作用,外桶3的低阶固有振动数发生了变化,与角频率ω发生偏差,由此,振动减弱。
虽然外桶3的低阶固有振动数会由于振幅e变得比间隙E小而再次返回原状,但此时角频率ω变得比低阶固有振动数大,能在不会再次发生共振的状态下维持振幅e小的状态。即,即使角频率ω增大而转换至例如惯性直线L5、L6,如惯性直线与弹性特性直线La的交点P5、P6所示,振幅e也不会超过间隙E,能维持较小的水平。
需要说明的是,弹性特性直线Lb不一定要通过原点,只要表现出弹簧常数k急剧增大的关系即可。即,只要将初张力Fp设定地足够大,就可以适当地变更施加初张力Fp时的伸长量ΔL、间隙E(参照图2)的大小。
如上所述,由于在外桶3与主体2之间隔着间隙E设置构成位移传递单元8的振动限制构件81,并经由挠性绳索82以及拉伸弹簧6将该振动限制构件81与主体2连接,因此在使洗涤脱水桶4旋转并增速到规定的运转速度期间,在角频率ω即旋转速度接近外桶3的低阶固有振动数,振幅e大到超过间隙E的情况下,外桶3与振动限制构件81抵接。经由挠性绳索82与振动限制构件81连接的拉伸弹簧6由于超过初张力Fp而使低阶固有振动数变大,由此可减弱振动。进而,虽然在振幅e变得比间隙E小的情况下低阶固有振动数回到原状,但是洗涤脱水桶4的旋转速度会变大,呈已然远离低阶固有振动数的状态,因此能抑制振动的增大。
由此,能将振动以及噪音抑制得较小,能改善洗衣机1的设置场所周边的环境。进而,由于即使将主体2与外桶3的间隙设小,也能抑制因振动而导致它们激烈碰撞而受到损伤,因此能将主体2相对于外桶3设小,使洗衣机1整体小型化。此外,在保持主体2的尺寸并将外桶3设大的情况下,不需要改变洗衣机1整体的尺寸就可以使洗涤容量增大。
而且,在外桶3的位移增大时,由于除了弹性支承单元5~5之外,为了得到使外桶3返回中心方向的恢复力而使用的拉伸弹簧6利用了弹簧主体60本身的初张力,因此容易控制初张力,不需要弹簧主体之外的部件。进而,由于振动限制构件81和弹簧组件6A连接,因此能在不使拉伸弹簧6的弹簧构件发生超过自然长度的伸长的状态下更容易地进行组装。
而且,由于振动限制构件81构成为环状,因此即使在外桶3向与旋转轴Ra交叉的任意方向发生了位移的情况下,由于向水平方向的位移量超过间隙E,因 此外桶3能与振动限制构件81接触并位移。因此,通过与位移方向相反侧的一个拉伸弹簧6或多个拉伸弹簧6~6起作用,能改变支承外桶3的弹性支承强度,偏离固有振动数。
需要说明的是,在本实施方式中,虽然拉伸弹簧6的弹簧主体60采用了图3所示的只使用了弹簧构件60x的构造,但是也可以取而代之,使用在弹簧主体60上根据图9具备后述的衰减装置60y或根据图18具备后述的限制轴体72的弹簧主体。
(第二实施方式)
图6与上述的第一实施方式的图1对应,是表示本发明的第二实施方式的洗衣机201的纵剖图。图7表示外桶3向水平方向发生了位移的状态的图。进而,图8的(a)、(b)分别与上述的第一实施方式的图2的(a)、(b)对应。即,图8的(a)是图6的A-A位置处的剖视图,图6是图8的(a)的B-B位置处的剖视图。
由于这些图6以及图8的(a)所示的洗衣机201除了后述的结构之外都与第一实施方式(图1~图5)所示的洗衣机1相同,因此对于相同的部分赋予相同的附图标记并省略说明。
洗衣机201不具备相当于第一实施方式的振动限制构件81(参照图1)的构件,位移传递单元208由四根挠性绳索282~282构成。而且,各挠性绳索282~282的一端配置于外桶3的上部附近与角部2a1之间,并安装于一体地设置在构成外桶3的侧板32的外周面32a的上部四处位置的固定构件236~236。由于挠性绳索282~282用不容易拉伸的金属制等的绳索构成,具备挠性,因此只在拉伸方向进行力的传递,在压缩方向上基本不发生力的传递。
进而,挠性绳索282~282的另一端经由图9所示的拉伸弹簧6与主体2连接。拉伸弹簧6在包括具有预先设定的初张力的弹簧构件60x的弹簧主体60上,与构成位移传递单元的至少一根挠性绳索282连接,作为“弹簧组件”206A发挥作用。此时,由于各挠性绳索282~282的长度还有富余,因此各拉伸弹簧6~6不会发生超过自然长度的伸长。
同一图的(a)所示的拉伸弹簧构成为:在构成弹簧主体60的套管61内组 装有衰减装置60y并一体化。衰减装置60y在图示例中是以使活塞62b往复运动于气缸室62a内的方式构成的油阻尼器式的装置,弹簧构件60x的一端与套管外的安装部60b连接,构成衰减装置60y的活塞杆62c的另一端与套管61外的安装部60b连接,弹簧构件60x的另一端与活塞杆62c的一端由内部的连接部60a连接。而且,由采用这种结构的弹簧主体60和挠性绳索282构成的弹簧组件206A连接在主体2与外桶3之间,将通过作为位移传递单元的挠性绳索282传递来的位移衰减。
图7以及图8的(b)表示外桶3从上述的状态向与旋转轴Ra交叉的方向发生了位移的状态。在向外桶3的水平方向的位移e增大到预先设定的规定值以上时,与位移方向相反侧的挠性绳索282绷紧,将外桶3的位移传递给拉伸弹簧6。此时,安装于绷紧的挠性绳索282的相反侧的挠性绳索282虽然松弛增大,但不会对外桶3产生力的作用。需要说明的是,为了经由绷紧的挠性绳索282将外桶3的位移传递给拉伸弹簧6而作为必要的位移量设定的上述规定值相当于第一实施方式的间隙E(参照图2)。
通过采用上述的结构,首先,与上述第一实施方式的基本动作相同,在外桶3大幅抖动,其位移e达到规定值以上的情况下,该位移通过构成位移传递单元208的挠性绳索282传递给拉伸弹簧6,拉伸弹簧6能对外桶3作用将其向与位移相反的方向回拉的力。因此,与第一实施方式的情况相同,通过使外桶3的弹性支承强度急剧变化,从而能偏离固有振动数,减弱振动。
进而,由于位移传递单元208由挠性绳索282构成,因此与第一实施方式相比能进一步简化结构,实现制造成本的降低。
除此之外,衰减装置60y的功能也有助于抑制振动。即,根据图5,如上所述,振幅e和振动力F在惯性特性直线L1与弹性特性直线La的交点以P1→P2→P3的方式迁移之后,在外桶3大幅振动并位移了间隙E以上的情况下,由于具有初张力Fp而急剧地作用较大的弹力,弹簧常数k变现为增大,弹性特性直线La在振幅e为间隙E以上的区域向斜率更大的弹性特性直线Lb迁移。
由此,振幅和振动力变为对应于惯性直线L4与弹性特性直线Lb的交点P4的振幅e和振动力F,振幅e急剧变小。这表示通过拉伸弹簧6的作用,外桶3的低阶固有振动数发生了变化,与角频率ω发生偏差,由此,振动减弱。
此时,由于衰减装置60y同时工作,振动变成衰减振动并且共振的最大值变小,因此实际的振动振幅也随之进一步减小,能进一步提前平复外桶3的过度抖动。
需要说明的是,在本实施方式中,虽然拉伸弹簧采用了图9的(a)所示的构造,但是也可以采用根据图9的(b)如后所述将挠性绳索282内置于弹簧主体60的套管内的构造、图3所示只使用弹簧构件60x的初张力的构造。或者,也可以采用根据图18使用后述的加压设定单元7来设定初张力的结构。
(第三实施方式)
图10与上述第一实施方式的图1对应,是表示本发明的第三实施方式的洗衣机301的纵剖图。进而,图11与上述第一实施方式的图2的(a)对应。即,图11是图10的A-A位置处的剖视图,图10是图11的B-B位置处的剖视图。
由于这些图10以及图11所示的洗衣机301除了后述结构之外都与第一实施方式(图1~图5)所示的洗衣机1相同,因此对于相同部分赋予相同的附图标记并省略说明。需要说明的是,图10是将后述的位移传递单元308的一部分省略进行记载的图。
洗衣机301不具备相当于第一实施方式的振动限制构件81(参照图1)的构件,位移传递单元308由带状体381~381构成。外桶3的外周设置有构成拉伸弹簧6~6的四个弹簧主体60。虽然只采用图3所示的其本身具有初张力的弹簧构件60x的弹簧主体对此处的弹簧主体60进行了说明,但也可以采用一并使用图9的(a)所示的弹簧构件60x和衰减装置60y的弹簧主体,上述任意一种均可。构成这些拉伸弹簧6~6的弹簧主体60的两端分别连接有具有挠性的带状体381,构成弹簧组件206A。
图12的(a)是只使用一个设于图11的洗衣机301的拉伸弹簧6并简化表示的图。此外,图12的(b)是将图11的(a)的拉伸弹簧6的周边放大表示的图。
如图12的(a)、(b)所示,拉伸弹簧6配置在设于外桶3的外周面32a的底座336上,因此在上下方向上被限位。拉伸弹簧6的两端分别连接有带状体381、381的一端,各带状体381、381的另一端固定于主体2的角部2a1。
拉伸弹簧6以及与其串联连接的带状体381、381的长度还有富余,它们与外桶3的外周面32a之间设定有规定的间隙,覆盖外桶3的周围约2/3。在该状态下,拉伸弹簧6不会发生超过自然长度的伸长。
需要说明的是,不一定要通过拉伸弹簧6以及与其串联连接的带状体381、381来覆盖外桶3的2/3,只要能通过所有的拉伸弹簧6~6(参照图11)来完成与旋转轴Ra正交的所有方向的限制即可。
图13的(a)以及图13的(b)是表示外桶3从上述的状态向与旋转轴Ra交叉的方向(图中为左下方向)发生了位移的状态的图。在向外桶3的水平方向的位移e增大到预先设定的规定值以上的情况下,固定于与位移方向反向的角部2a1的带状体381绷紧,将外桶3的位移传递给拉伸弹簧6。需要说明的是,为了经由绷紧的带状体381将外桶3的位移传递给拉伸弹簧6而作为必要的位移量设定的上述规定值相当于第一实施方式的间隙E(参照图2)。
在拉伸弹簧6以自然长度为基准稍微伸长,两端的安装部60b的相对位置发生了位移的情况下,初张力Fp的大小的力会追加作用于两端的带状体381、381。
通过采用上述的结构,在外桶3大幅抖动,其位移量达到规定值以上的情况下,该位移通过构成位移传递单元308的带状体381传递给拉伸弹簧6,拉伸弹簧6能对外桶3作用将其向与位移相反的方向回拉的力。由于具备四组这样的带状体381以及拉伸弹簧6(参照图11)并以外桶3为中心均等地配置,因此无论是在外桶3向哪个方向发生了位移的情况下都能将该位移传递给拉伸弹簧6。因此,与第一实施方式的情况相同,通过使外桶3的弹性支承强度急剧变化,能偏离固有振动数,减弱振动。需要说明的是,通过最少设置两组带状体381以及拉伸弹簧6并以旋转轴Ra为中心对置配置,能得到与上述相同的效果。
此外,在通过位移传递单元308将外桶3的位移传递给拉伸弹簧6而使拉伸弹簧6伸长的过程中,进而,在拉伸弹簧6的全长随着外桶3向原位返回而变短的过程中,通过带状体381的内侧与外桶3的外周面32a滑动产生摩擦阻力,也能得到作为阻尼器的效果。因此,通过像本实施方式那样使用带状体381,能得到更好的振动抑制效果。
需要说明的是,在本实施方式中,虽然采用只具有图3所示的弹簧构件60x的构造的弹簧主体对拉伸弹簧6的弹簧主体60进行了说明,但是也可以采用一并使用根据图9进行说明了的弹簧构件60x和衰减装置60y的弹簧主体、根据图18使用后述的限制轴体来赋予初张力的弹簧主体。
(第四实施方式)
图14是表示上述第二实施方式的变形例的图。在上述第二实施方式中,将外装于图9的(a)所示的弹簧主体60的位移传递单元即挠性绳索282弯曲,并将弹簧组件206A连接于主体2与外桶3之间,而通过使作为位移传递单元的挠性绳索282内置在同一图的(b)所示的弹簧组件206A的构成弹簧主体60的弹簧构件60x与衰减装置60y之间并一体化,能将安装于两端的安装部60b的构件282x设为非挠性构件。即,如图14所示,能在看上去无松弛的状态下将该弹簧组件206A直线状地安装在主体2与外桶3之间。采用这样的结构时,在图9的(b)所示的内部的挠性绳索282不伸长的范围内,允许外桶3有一定的振动,拉伸弹簧6的弹簧构件60x和衰减装置60y从挠性绳索282伸长的阶段开始工作。
通过采用这样的结构,能促进弹簧组件206A的一体化,还能改善操作、安装程序。
(第五实施方式)
图15与上述的第一实施方式的图1对应,是表示本发明的第五实施方式的洗衣机501的纵剖图。进而,图16与上述的第一实施方式的图2的(a)对应。即,图16是图15的A-A位置处的剖视图,图15是图16的B-B位置处的剖视图。
这些图15以及图16所示的洗衣机501除了后述的结构之外都与第一、第二、第四实施方式所示的洗衣机1相同,因此对于相同的部分赋予相同的附图标记并省略说明。
洗衣机501不具备相当于第一实施方式的振动限制构件81(参照图1)的构件,包括拉伸弹簧6的弹簧主体60和挠性绳索282的弹簧组件206A与图14的弹簧组件相同。外桶3的外周的等距四处部位一体地设有凸缘536,这些凸缘 536与主体21的四角(角部2a1~2a1)当中最接近的两个角之间分别通过在其间夹有弹簧主体60的弹簧组件206A连接。拉伸弹簧6的弹簧主体60具备具有预先设定的初张力的弹簧构件60x,并由构成位移传递单元的至少一根挠性绳索282构成“弹簧组件”206A(参照图9的(b))。
而且,该弹簧组件206A的一端安装于主体2的角部2a1,另一端向大致切线方向延伸并安装于外桶3的凸缘536。即,两个弹簧组件206A从一个角部2a1相对于外桶3的外周向相互不同的大致切线方向成对延伸,一对该弹簧组件206A作为弹簧体206P还设置于位于旋转轴Ra的相反侧并位于所述角部2a1的对角的角部2a1侧,至少由这一组弹簧体206P、206P构成了拉伸弹簧6。在本实施方式中,一组弹簧体206P、206P还设置在位于另一个对角的主体2的角部2a1与外桶3的凸缘536之间,由共计两组弹簧体206P、206P构成所述拉伸弹簧6。
通过采用上述的结构,在外桶3如图17所示绕旋转轴Ra沿着旋转方向大幅抖动,其位移量达到规定值以上的情况下,该位移以如下方式被传递:使构成弹簧体206P的一对弹簧组件206A、206A当中位于旋转方向先行侧的弹簧组件206A伸长,并使位于旋转方向滞后侧的弹簧组件206A收缩。伸长侧的弹簧组件206A的弹簧主体60能对外桶3作用将其向位于位移的反向的原位回拉的力。通过在隔着旋转轴Ra的对角位置处成组地设置包括这样的一对弹簧组件206A的弹簧体206P,对于外桶3向左右任一方的旋转,都能施加将其抵消的反作用力来减弱振动,能使洗涤脱水桶4可靠地工作。
除此之外,对于这样的弹簧体206P的配置而言,由于在外桶3如第二实施方式所述向水平方向发生了位移时位移量达到规定值以上的情况下,位移以连接在外桶3的远离侧的构成弹簧体206P的一对弹簧组件206A伸长,连接在外桶3的靠近侧的构成弹簧体206P的一对弹簧组件206A收缩的方式被传递,因此伸长侧的弹簧组件206A的弹簧主体60能对外桶3作用将其向位于位移的反向的原位回拉的力,并且能进行避免了共振点的驱动。
进而,在本实施方式中,由于这样的弹簧体206P组在其他的对角位置也设置了共计两组,因此可望进一步增大减振效果。
需要说明的是,在本实施方式中,拉伸弹簧6虽然采用了图9所示的带有 衰减功能的构造的弹簧,特别是同一图地(b)所示的内置了限制绳索282的类型的弹簧,但是也可以采用同一图的(a)所示类型的弹簧,进而,还可以是只使用图3所示的弹簧构件60x来构成的弹簧。
进而,在上述各实施方式中,涉及构成拉伸弹簧的弹簧主体60的初张力,还能采用图18所示的限制轴体。在图示例的拉伸弹簧6的内部沿着拉伸弹簧6的长边方向设置有限制轴体72。
图18是表示为了赋予拉伸弹簧6的初张力而采用了加压设定单元7的例子的剖视图。具体而言,图18的(a)是表示拉伸弹簧6处于自然长度L的状态的情况的图。并且,图18的(b)是表示对拉伸弹簧6的两端施加构成初张力的加压Fp使其只伸长ΔL并保持该长度的状态的图。
通过在拉伸弹簧6的内部插入限制轴体72,从而通过该限制轴体72,弹簧端限制部71、71的圆板部71a、71a彼此之间的相对位置被限制。这样,能在经由弹簧端限制部71、71施加初张力Fp并使拉伸弹簧6只比自然长度L伸长ΔL的状态下保持拉伸弹簧6。即,弹簧端限制部71、71以及限制轴体72作为用于对拉伸弹簧6设定初张力Fp的加压设定单元7发挥功能。
图18的(c)是表示使拉伸弹簧6从图18的(b)的状态进一步伸长的状态的图。如该图所示,加压设定单元7在对拉伸弹簧6的两端施加了超过加压Fp的力的情况下,能使拉伸弹簧6伸长。即,加压设定单元7允许拉伸弹簧6向伸长方向变形的同时,限制向以设定了加压Fp的状态为基准变得更短的方向的变形。
在拉伸弹簧6由于被传递了外桶3的位移而稍稍产生了以加压设定时为基准的伸长时,加压设定单元7的限制被解除,由此,目前为止拉伸弹簧的弹簧构件本身所负担的初张力Fp大小的力作用于拉伸弹簧6的两端,并能经由振动限制构件81对外桶3施加将其向与位移反向的原位回拉的力。
以上,关于本发明的实施方式进行了说明,但各部分的具体结构不局限于上述的实施方式。
例如,虽然衰减装置60y在上述实施方式中设置于弹簧主体60内,但也能构成于弹簧主体60外。
此外,在上述的实施方式中,外桶3构成为将支承于内部的内桶作为洗涤脱水桶4,而本发明能在需要内桶进行高速旋转的情况下良好地适用,即使内桶只作为洗涤桶或脱水桶也能适用上述的结构。
此外,在上述的实施方式中,将外桶3的轴向设定为垂直方向,但即使是朝向斜上方的方式也同样能适用于本发明。此外,即使是在外桶3的轴向为水平方向的滚筒型洗衣机中利用本发明也可以得到与上述相同的效果。
其它的结构可以在不脱离本发明的技术精神的范围内进行各种变形。
附图标记说明
1:洗衣机;
2:主体;
2a:内部空间;
2a1:角部;
3:外桶;
4:洗涤脱水桶(内桶);
5:弹性支承单元;
6:拉伸弹簧;
6A:弹簧组件;
7:加压设定单元;
8、208、308:位移传递单元;
34:电机;
60:弹簧主体;
60x:弹簧构件;
60y:衰减装置;
82:挠性绳索;
101:洗衣机;
206A:弹簧组件;
206P:弹簧体;
282:挠性绳索;
301、401、501:洗衣机;
Fp:初张力;
Ra:旋转轴。

Claims (4)

  1. 一种洗衣机,具备:主体,形成有内部空间;外桶,配置于所述主体的内部空间;内桶,配置于所述外桶的内部并被自由旋转地支承;电机,设置于所述外桶并使所述内桶旋转;以及弹性支承单元,将所述外桶弹性支承于所述主体,
    其特征在于,包括:
    多个拉伸弹簧,配置于所述外桶与所述主体之间,由于被传递了所述外桶的位移而对所述外桶施加使其向原位返回的反作用力;以及
    位移传递单元,仅在所述外桶的位移大到规定值以上时,将所述外桶的位移传递给所述拉伸弹簧,
    所述拉伸弹簧具有预先设定的初张力。
  2. 根据权利要求1所述的洗衣机,其特征在于,
    所述拉伸弹簧包括以轴对称于所述内桶的旋转轴的方式配置的至少一组弹簧体,
    所述弹簧体分别由一对弹簧组件组合而成,所述弹簧组件包括具有预先设定的初张力的弹簧主体和至少一根构成所述位移传递单元的挠性绳索,
    所述弹簧体的各弹簧组件的一端安装于主体的角部,另一端固定于外桶的互不相同的大致切线方向。
  3. 一种洗衣机,具备:主体,形成有内部空间;外桶,配置于所述主体的内部空间;内桶,配置于所述外桶的内部并被自由旋转地支承;电机,设置于所述外桶并使所述内桶旋转;以及弹性支承单元,将所述外桶弹性支承于所述主体,
    其特征在于,包括:
    多个拉伸弹簧,配置于所述外桶与所述主体之间,由于被传递了所述外桶的位移而对所述外桶施加使其向原位返回的反作用力;
    位移传递单元,仅在所述外桶的位移大到规定值以上时,将所述外桶的位 移传递给所述拉伸弹簧;以及
    衰减装置,衰减由所述位移传递单元传递的位移,
    所述拉伸弹簧具有预先设定的初张力。
  4. 根据权利要求3所述的洗衣机,其特征在于,
    所述拉伸弹簧包括以轴对称于所述内桶的旋转轴的方式配置的至少一组弹簧体,
    所述弹簧体分别由一对弹簧组件组合而成,所述弹簧组件包括具有预先设定的初张力的弹簧主体和至少一根构成所述位移传递单元的挠性绳索,
    所述弹簧体的各弹簧组件的一端安装于主体的角部,另一端固定于外桶的互不相同的大致切线方向。
PCT/CN2016/111800 2015-12-24 2016-12-23 洗衣机 WO2017107988A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680075484.3A CN108431323B (zh) 2015-12-24 2016-12-23 洗衣机
KR1020187021319A KR20180093075A (ko) 2015-12-24 2016-12-23 세탁기
US16/065,109 US20190003099A1 (en) 2015-12-24 2016-12-23 Washing machine
EP16877798.5A EP3406783A4 (en) 2015-12-24 2016-12-23 WASHING MACHINE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015252202A JP2017113310A (ja) 2015-12-24 2015-12-24 洗濯機
JP2015-252202 2015-12-24

Publications (1)

Publication Number Publication Date
WO2017107988A1 true WO2017107988A1 (zh) 2017-06-29

Family

ID=59089115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/111800 WO2017107988A1 (zh) 2015-12-24 2016-12-23 洗衣机

Country Status (6)

Country Link
US (1) US20190003099A1 (zh)
EP (1) EP3406783A4 (zh)
JP (1) JP2017113310A (zh)
KR (1) KR20180093075A (zh)
CN (1) CN108431323B (zh)
WO (1) WO2017107988A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109385831A (zh) * 2017-08-04 2019-02-26 青岛海尔洗衣机有限公司 一种洗衣机
WO2019056672A1 (zh) * 2017-09-21 2019-03-28 无锡小天鹅股份有限公司 洗衣机

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109137396B (zh) * 2018-10-25 2023-01-24 青岛海尔洗衣机有限公司 一种洗衣机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10328479A (ja) * 1997-05-21 1998-12-15 Electrolux Zanushi Spa 洗濯機の洗濯用アセンブリの適正な動つりあいを確保する方法とその方法を用いた洗濯機
CN1683655A (zh) * 2004-04-12 2005-10-19 乐金电子(天津)电器有限公司 滚筒式洗衣机的减振装置
JP3984630B2 (ja) 2003-09-10 2007-10-03 新東工業株式会社 回転軸系の振動を制振する装置及び方法
CN101397735A (zh) * 2007-09-28 2009-04-01 松下电器产业株式会社 滚筒式洗衣干衣机
JP2011240041A (ja) 2010-05-20 2011-12-01 Sanyo Electric Co Ltd 洗濯機
WO2015180473A1 (zh) * 2014-05-27 2015-12-03 海尔亚洲国际株式会社 洗衣机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6315998A (ja) * 1986-07-04 1988-01-23 松下電器産業株式会社 洗濯機
US5613380A (en) * 1994-08-01 1997-03-25 General Electric Company Coil spring and snubber suspension system for a washer
BRPI0705172A2 (pt) * 2007-11-19 2009-07-21 Whirlpool Sa arranjo de suspensão para máquina lavadora de roupas
KR101286819B1 (ko) * 2010-03-24 2013-07-22 가부시끼가이샤 도시바 세탁기
KR101934735B1 (ko) * 2012-08-31 2019-01-03 엘지전자 주식회사 세탁기

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10328479A (ja) * 1997-05-21 1998-12-15 Electrolux Zanushi Spa 洗濯機の洗濯用アセンブリの適正な動つりあいを確保する方法とその方法を用いた洗濯機
JP3984630B2 (ja) 2003-09-10 2007-10-03 新東工業株式会社 回転軸系の振動を制振する装置及び方法
CN1683655A (zh) * 2004-04-12 2005-10-19 乐金电子(天津)电器有限公司 滚筒式洗衣机的减振装置
CN101397735A (zh) * 2007-09-28 2009-04-01 松下电器产业株式会社 滚筒式洗衣干衣机
JP2011240041A (ja) 2010-05-20 2011-12-01 Sanyo Electric Co Ltd 洗濯機
WO2015180473A1 (zh) * 2014-05-27 2015-12-03 海尔亚洲国际株式会社 洗衣机

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109385831A (zh) * 2017-08-04 2019-02-26 青岛海尔洗衣机有限公司 一种洗衣机
CN109385831B (zh) * 2017-08-04 2021-04-27 青岛海尔洗衣机有限公司 一种洗衣机
WO2019056672A1 (zh) * 2017-09-21 2019-03-28 无锡小天鹅股份有限公司 洗衣机

Also Published As

Publication number Publication date
CN108431323A (zh) 2018-08-21
EP3406783A1 (en) 2018-11-28
CN108431323B (zh) 2020-11-06
US20190003099A1 (en) 2019-01-03
KR20180093075A (ko) 2018-08-20
EP3406783A4 (en) 2019-01-09
JP2017113310A (ja) 2017-06-29

Similar Documents

Publication Publication Date Title
WO2017107988A1 (zh) 洗衣机
US20110031058A1 (en) Pendulum absorber system
KR102005167B1 (ko) 댐퍼 장치
WO2015180473A1 (zh) 洗衣机
RU2705393C2 (ru) Спиральная пружина для передачи крутящего момента в трансмиссии транспортного средства и для устранения колебаний и/или гашения крутильных колебаний
JP6341286B2 (ja) ダンパ装置
TWI258535B (en) A Stirling engine assembly
US11236801B2 (en) Crankshaft assembly comprising a torsional vibration damper
JP2014206237A (ja) 捩り振動減衰装置
US10408299B2 (en) Damping system of pendulum oscillator type
CN110998137B (zh) 用于内燃机曲轴的粘性扭振减振器或消振器
US6626276B2 (en) Clutch disk
JPH06506515A (ja) 内燃機関内の装置
WO2014147931A1 (ja) 洗濯機
JP6233647B2 (ja) エレベータ用動吸振器
JP2013124682A (ja) 捩り振動低減装置
JPH09140990A (ja) ドラム式洗濯機
JP2015203338A (ja) 圧縮機
JPS6315998A (ja) 洗濯機
US20190284993A1 (en) Engine
EP3369963B1 (en) Torsional vibration damper for automotive applications
JP2019051193A (ja) 洗濯機
JPH11244574A (ja) 脱水兼用洗濯機の防振装置
JPH078677A (ja) 自動洗濯機の防振装置
KR200142969Y1 (ko) 세탁기용 현가장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187021319

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187021319

Country of ref document: KR

Ref document number: 2016877798

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016877798

Country of ref document: EP

Effective date: 20180724