WO2017107891A1 - 一种温度控制器 - Google Patents

一种温度控制器 Download PDF

Info

Publication number
WO2017107891A1
WO2017107891A1 PCT/CN2016/110951 CN2016110951W WO2017107891A1 WO 2017107891 A1 WO2017107891 A1 WO 2017107891A1 CN 2016110951 W CN2016110951 W CN 2016110951W WO 2017107891 A1 WO2017107891 A1 WO 2017107891A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heater
temperature controller
control
solid state
Prior art date
Application number
PCT/CN2016/110951
Other languages
English (en)
French (fr)
Inventor
顾幼范
谢龙
Original Assignee
江阴市辉龙电热电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江阴市辉龙电热电器有限公司 filed Critical 江阴市辉龙电热电器有限公司
Priority to JP2018532082A priority Critical patent/JP6619884B2/ja
Priority to KR1020187017881A priority patent/KR20180102075A/ko
Priority to US16/065,690 priority patent/US10809749B2/en
Publication of WO2017107891A1 publication Critical patent/WO2017107891A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1919Control of temperature characterised by the use of electric means characterised by the type of controller
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1927Control of temperature characterised by the use of electric means using a plurality of sensors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/22Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element being a thermocouple
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/22Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element being a thermocouple
    • G05D23/2236Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element being a thermocouple details of the regulator
    • G05D23/2239Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element being a thermocouple details of the regulator using photoelectric elements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/24Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor
    • G05D23/2401Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor using a heating element as a sensing element
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/24Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor
    • G05D23/2451Details of the regulator
    • G05D23/2454Details of the regulator using photoelectric elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications
    • H05B1/0233Industrial applications for semiconductors manufacturing

Definitions

  • the invention relates to the field of industrial temperature control, and in particular to a temperature controller.
  • Heating is widely used in the industry. Since heating requires a large amount of energy, proper and reliable temperature control must be provided to prevent overheating and to avoid serious safety hazards such as equipment damage and fire.
  • thermocouples for temperature control
  • RTDs passive temperature control method
  • the temperature sensing device or relay fails, the temperature control will fail.
  • the temperature sensing device or relay fails, the temperature control will fail.
  • a thermocouple is shorted at a location where the temperature is below the set point of the set temperature, the heater will overheat.
  • additional safety equipment such as a thermal fuse
  • the high temperature gas from the reaction chamber may heat the entire heating pipeline, especially when the gas flow rate is high.
  • the temperature is dependent on the feedback of the pure temperature detecting device, so high. Temperature can cause false alarms that can affect the process.
  • Temperature alarms and monitoring are usually for the entire process pipeline, not for individual The temperature controller performs. Need to be based on the temperature controller, the corresponding heater alarm and control module Thereby detecting the working state of the entire heating pipe and controlling a plurality of heaters.
  • the optocoupler solid state relay comprises a light emitting diode and a power switch
  • the photocoupler comprises a light emitting diode and a phototransistor
  • one end of the power switch of the optocoupler solid state relay is connected to the anode of the photodiode of the photocoupler, and the connection end constitutes a heater
  • the input end of the temperature controller, the other end of the power switch of the optocoupler solid state relay is the first output end of the heater temperature controller, and the negative pole of the light emitting diode of the photocoupler constitutes the second output end of the heater temperature controller
  • the anode of the LED of the coupled solid state relay is connected to the DC power source, and the cathode of the LED of the optocoupler solid state relay is connected with an I/O interface of the microprocessor;
  • the collector of the phototransistor of the photocoupler is connected to the DC power source, the emitter Ground is connected to both the CCP and analog signal inputs of the microprocessor
  • the microprocessor has a zero voltage detection function.
  • the temperature controller of the invention adds current measurement at the same time as the temperature measurement, so that the working state of the heater can be correctly judged, and the reliability of the temperature controller is greatly improved.
  • Figure 3 is an equivalent circuit of the normal alarm operating condition of the heater alarm and control module of the present invention.
  • Figure 5 is an equivalent circuit of the heater sleep control and activation of the heater alarm and control module of the present invention under the second temperature control condition.
  • the external interface is connected with an optocoupler solid state relay and an optocoupler.
  • the optocoupler solid state relay is used to provide an alarm signal. For example, when the heater reaches a set temperature value, the optocoupler solid state relay will work in an on state and send an alarm. Information, and when the heater temperature is lower than the temperature set value, the optocoupler solid state relay will work in an open state.
  • the optocoupler solid state relay is controlled by a microprocessor.
  • the optocoupler is used for remote control of the temperature controller, such as switching the heater control and operating mode, and changing the temperature setpoint. The mode of operation of the optocoupler is controlled by the strength of the external signal.
  • the optocoupler When the external signal is weak and its power is insufficient to drive the optocoupler (for example, by the microprocessor The PWM signal), the optocoupler does not operate; when the external signal is strong, the optocoupler is driven to illuminate the LED in the optocoupler, thereby transmitting the signal to the microprocessor for the temperature of the temperature controller Set or determine the operating mode of the temperature controller.
  • pipe heating requires a certain heating temperature.
  • the temperature of the heater can be appropriately lowered under certain conditions, and even the heater can be turned off.
  • two different temperatures can be set in advance, and the operating mode (temperature) of the heater can be quickly switched.
  • the control relay of the temperature controller of the present invention is connected with a solid-state two-way thyristor in parallel to eliminate the arc generated when the mechanical relay is operated, thereby achieving the purpose of increasing the life of the mechanical relay.
  • the solid triac is turned on first. In this way, the voltage of the mechanical relay contacts ( ⁇ 1V) is greatly reduced, and the arc generated when the high-voltage mechanical relay is operated is avoided.
  • the use of arcless relay technology can increase the working life by a hundredfold.
  • the present invention selects a microprocessor having a zero voltage detection function, such that the switching of the triac is performed when the alternating current is near zero voltage.
  • the heater alarm and control module of the present invention is further illustrated, including a heater alarm and control module main processor uP0, a heater alarm and control circuit and a heater temperature control module, and the heater temperature control module includes n heater temperature controller 102 as shown in Fig. 1, heater alarm and control module main processor uP0 is connected to the heater temperature control module through a heater alarm and control circuit.
  • Each heater temperature controller 102 in FIG. 2 only shows the components related to the alarm, and is composed of a temperature controller as shown in FIG. 1 and has the same circuit structure, mainly including an optocoupler solid state relay, a photoelectric The coupler and microprocessor uP1 (the microprocessor of the temperature controller in Figure 1), and the components used for heater control are omitted, see Figure 1.
  • the optocoupler solid state relay SSR includes a light emitting diode and a power switch to control the on and off of the power switch according to whether the LED has a signal input.
  • the Opto Coupler includes a light-emitting diode and a phototransistor to control the on and off of the phototransistor according to whether the LED has a signal input.
  • One end of the optocoupler solid state relay SSR power switch is connected to the anode of the photocoupler's LED, which constitutes the input of the heater temperature controller 102 (In n in Fig. 2), and the power switch of the optocoupler solid state relay SSR
  • the other end of the heater temperature controller 102 is the first output of the heater temperature controller 102 (Out n-1 in FIG. 2), and the cathode of the photocoupler's LED is the second output of the heater temperature controller 102 (FIG. 2) Out n-2);
  • the anode of the light-emitting diode of the photocoupled solid state relay SSR is connected to the 5V DC power supply, and the negative pole is connected to an I/O interface of the microprocessor uP1.
  • the optocoupler solid state relay SSR is controlled by the microprocessor uP1 through an I/O interface.
  • the heater alarm and control module main processor uP0 can provide three different control signals to the heater temperature control module through the heater alarm and control circuit - (5V) DC, weak power PWM1 signal and high power PWM2 signal, input to The input of the first heater temperature controller 102.
  • the high power PWM2 signal is boosted by the buffer operational amplifier and then output to the input of the first heater temperature controller 102.
  • the input of the second heater temperature controller 102 is coupled to the first output of the first heater temperature controller 102, as is the input of the subsequent heater temperature controller 102 to the preceding heater temperature controller.
  • the outputs of 102 are sequentially connected until the input of the nth heater temperature controller 102 is connected to the output of the n-1th heater temperature controller 102, and the output of the nth heater temperature controller 102 is connected.
  • the other end of the terminal loop capacitor C1 is connected to the second output of the n heater temperature controllers 102, and the terminal loop capacitor C1 and the n heater temperature controllers 102
  • One end of the two output terminals is connected to the heater alarm and control module main processor uP0.
  • the second output of the n heater temperature controllers 102 is connected to the analog signal input (AI) terminal of the heater alarm and control module main processor uP0 to measure the DC voltage, and is also connected to the first capacitor C3.
  • the 850 end of the heater alarm and control module main processor uP0 is used for frequency measurement; the end of the terminal loop capacitor C1 and the second output end of the n heater temperature controllers 102 is grounded through the AC voltage dividing capacitor C2, and also Connected to the collector of a transistor Q1; the base of the transistor Q1 is connected to an I/O terminal of the heater alarm and control module main processor uP0, and the emitter of the transistor Q1 is grounded.
  • the transistor Q1 is in an off state at the time of the alarm, and is turned on when the temperature controller is controlled.
  • the heater alarm and control module main processor uP0 provides three different control signals to the heater temperature controller 102 - (5V) DC, weak power PWM1 signal and high power PWM2 signal, which are used separately.
  • the temperature controller has three operating modes - control mode (5VDC), alarm mode (weak power PWM1), or temperature setting mode (strong power PWM2).
  • the input signal is a weak power PWM1 signal (alarm mode)
  • the signal is first output to the input of the first heater temperature controller 102. Since the signal of PMW1 is very weak, the Opto Coupler in the temperature controller is in an open state, so this is equivalent to the photocoupled solid state relay in n temperature controllers 102.
  • a series circuit composed of SSRs.
  • the state of the optocoupler solid state relay SSR is controlled by the microprocessor uP1, and the action of the SSR is performed by the built-in light emitting diode.
  • the I/O interface of the negative pole of the LED of the microprocessor uP1 connected to the photocoupler solid state relay SSR will output a high potential, so that the SSR is in an open state.
  • the output of the I/O interface of the negative electrode of the LED of the phototransistor solid state relay SSR connected to the microprocessor uP1 is low. The potential causes the SSR to be in a closed state.
  • the internal photocoupler solid state relay SSR is in a closed state, at this time, the weak power PWM1 input signal of the alarm will be from the first The first output of the heater temperature controller 102 is output, and then enters the second heater temperature controller 102 from the input of the second heater temperature controller 102, and proceeds to the nth heater temperature controller 102 in sequence.
  • the photocoupler solid state relay SSR in the heater temperature controller 102 is in an open state, at this time, the alarm is The weak power PWM1 signal input signal will not be output from the first output of the heater temperature controller 102, and the weak power PWM1 signal will not return to the heater alarm and control module main processor uP0.
  • the weak power PWM1 input signal of the alarm can be transmitted from the first heater temperature controller 102 to the nth heater temperature control only when all n heater temperature controllers 102 along the line enter the control range of the temperature controller.
  • the device 102 then forms a closed AC loop through the terminal termination loop capacitor C1, and transmits the weak power PWM1 input signal for the alarm issued by the heater alarm and control module to the heater alarm and control module.
  • the weak power PWM1 input signal of the alarm cannot be transmitted back to the heater alarm and control module main processor uP0. .
  • the heater alarm and control module main processor uP0 can receive the weak power PWM1 of the alarm issued by itself, it is proved that all the heaters along the line have entered the control range of the temperature controller and work normally. On the contrary, it means that at least one heater has not entered the control range of the temperature controller. At this time, the heater alarm and control module will issue an alarm.
  • the terminal loop capacitor C1 can be replaced by a short circuit. generation. Because the capacitor and the ordinary wire can ensure the smooth flow of the AC circuit. However, if a short circuit is used, the heater alarm and control module cannot be used to switch the heater temperature controller 102 mode of operation, and change the heater temperature controller 102 temperature setting (see below for details). .
  • the heater alarm and control module When all of the optocoupler solid state relays SSR in the heater temperature controller 102 are forcibly closed, the heater alarm and control module outputs a 5 VDC voltage to determine if the termination circuit is shorted. If the termination loop is in a DC short-circuit condition, the 5V voltage is measured by the analog input (AI) of the heater alarm and control module. At this time, the control operation of the heater temperature controller 102 will be stopped. Under this condition, when the transistor Q1 is closed, the entire circuit will be in a short circuit state. If the circuit is turned on, the loop current will be too large, which will affect the reliability of the control circuit.
  • the analog input (AI) of the heater alarm and control module will not measure the 5V voltage. At this time, the heater alarm and control module will close the transistor Q1.
  • the heater temperature controller 102 is controlled by starting to transmit 5 VDC or by boosting the power by the buffer operational amplifier and outputting a strong power PWM2 signal.
  • the microprocessor uP1 in all temperature controllers along the line performs related operations based on the received signals.
  • Figure 3 is an equivalent circuit of a normal alarm. Since the transistor Q1 is in an open state, it is omitted from the wiring diagram.
  • the heater alarm and control module main processor uP0 sends a weak power PWM1 signal. If all the heaters enter the control range of the temperature controller, the photocoupler solid state relays of the n heater temperature controllers 102 will be turned on, and the serial connection temperature
  • the optocoupler solid state relay SSR, terminal capacitor C1 (0.1uF), AC voltage dividing capacitor C2 (0.01uF) and capacitor C3 (0.1uF) in the controller form a capacitor circuit, heater alarm and control module main processor uP0
  • a PWM1 pulse representing the normal heater operating state can be received to determine that all heaters are operating normally. If any of these relays is open, it indicates that at least one of the heaters has not yet reached the set temperature of the heater, and thus the alarm is issued by the heater alarm and control module main processor uP0.
  • the alarm function cannot be implemented. However, the ability to change the temperature setting and operating mode can still be performed. If the terminal capacitor is short-circuited, the alarm function can still be implemented, but the function of changing the temperature setting and operation mode cannot be performed (system self-protection).
  • the temperature setting of the heater temperature controller 102 is performed by the following steps:
  • Test circuit is DC short circuit
  • a 5 VDC voltage is transmitted to the heater temperature controller 102 under the condition that the transistor Q1 is open. If the main controller uP0 of the temperature controller detects a voltage of 5V, it proves that the loop DC is short-circuited and the control command will not be issued. If the measured voltage is below 5V, Q1 is closed and the temperature controlled operation continues.
  • the temperature setting of the heater temperature controller 102 is implemented by the heater alarm and control module main processor uP0 transmitting a strong power PWM2 signal.
  • the power of PWM2 is increased, and PWM2 is capable of driving all of the optocouplers inside heater temperature controller 102.
  • Transistor Q1 is conductive. This will allow enough current to drive all of the optocouplers (up to dozens).
  • the microprocessor uP1 in the heater temperature controller 102 When the microprocessor uP1 in the heater temperature controller 102 receives the pulse signal of PWM2, the microprocessor uP1 inside the heater temperature controller 102 will monitor the frequency conversion of the PWM2 signal to the temperature set value and store it on the chip. in.
  • This temperature setting method can simultaneously set the temperature setting values of the plurality of heater temperature controllers 102. It is not necessary to set the address of the heater temperature controller 102 or to install a communication chip. Greatly reduced costs and convenient for users.
  • the heater alarm and control module can also perform sleep control/activation of the second temperature, which is accomplished by the 5V DC voltage provided by the heater alarm and control module.
  • the terminal capacitor is in an open state (the DC voltage cannot be turned on by the capacitor), and therefore, it is omitted in the equivalent circuit.
  • Transistor Q1 is turned on, all control optocouplers are activated, and all optocoupler solid state relays are in a forced closed state.
  • the figure below is the equivalent circuit for the heater temperature controller sleep control/activation of the second temperature control.
  • PWM1 in the alarm and control module 101 sends a PWM1' signal of a specific frequency before the 5V DC voltage is turned on to indicate that the microprocessor uP1 inside the heater temperature controller 102 is forcibly closed.
  • Solid state relay SSR in heater temperature controller 102 Whether the circuit is DC short-circuited is measured by sending a 5 VDC voltage to the control loop under the condition that the transistor Q1 is open. If the loop is DC shorted, the alarm and control module 101 will measure a voltage of 5V. Under these conditions, the heater sleep control instructions will not be executed. If the loop is DC open, the alarm and control module 101 will measure voltages below 5V. Only under these conditions will the heater sleep control command be issued.
  • the microprocessor inside the heater temperature controller 102 will monitor the DC voltage. This DC voltage will trigger secondary temperature control. If the secondary temperature setpoint is low enough, the heater will go to sleep. The temperature value of the secondary temperature control is pre-stored in the uP1. If the 5V DC voltage is not detected, the temperature controller uses the normal temperature setting value in the microprocessor. If the 5V DC voltage is detected, the temperature controller uses the micro-processing. The second temperature set value in the device is temperature controlled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • Control Of Temperature (AREA)

Abstract

一种温度控制器(102),包括微处理器(uP1)、温度检测装置、电流检测装置、控制继电器和外部接口,温度检测装置检测加热器的工作温度,电流检测装置检测通过加热元件的电流值,微处理器(uP1)根据从温度检测装置、电流检测装置接收到的温度和电流值,确定温度控制器(102)的工作状态,发送控制信号给控制继电器,从而控制加热器工作以调整温度。温度控制器(102)在温度测量的同时加入电流测量,从而可以正确地判断加热器的工作状态,极大地提高了温度控制器(102)的可靠性。

Description

一种温度控制器 技术领域
本发明涉及工业温度控制领域,具体涉及一种温度控制器。
背景技术
加热在工业界中得到广泛的应用。由于加热需要大量的能量,因此,必须有合适可靠的温度控制,以防止发生过热,避免导致设备损坏和火灾等严重的安全隐患。
传统的温度控制使用温度检测装置作为唯一的反馈信号(包括热电偶、热电阻,等)进行温度控制,这是一种被动的温度控制方法。如果温度检测装置或者继电器发生故障时,温度控制就会失灵。例如,如果热电偶在温度低于设定温度的测量点的位置短路,将导致加热器过热。即使使用额外的安全设备,如温度保险丝,因为它在高温下运行,可能会导致加热器的严重的老化。又如半导体下游管线加热,从反应室来的高温气体可能将加热整个加热管道,特别是当气体流量很高时,当用传统温度控制方法时,由于温度依赖纯粹温度检测装置反馈,如此高的温度可能会导致误警,从而影响工艺过程。
通常,单一的加热器用来达到控温的目的。因此,单个温度控制往往足够了。然而,在半导体工业中,经常需要对较长的泵线进行加热,而且需要确保统一和可靠的温度控制。此外,这些加热管道往往需要预防性维护,加热器必须便于装拆,因此,必须采用多个温度控制器以达到以上的要求。这就要求一种低成本,而且可靠的温度控制器。此外,由于加热管道往往很长,能耗成为一个严重的问题。另外,加热的温度要求取决于工艺过程的要求,因此,灵活方便的改变设定温度和功率控制对于半导体工艺管道的加热是非常重要的。
此外,在长管道加热的工作条件下(例如半导体工艺管道加热),需要同时使用多个温度控制器(有时可达几十个),温度报警和监测通常是针对整个工艺管道,而不是对单个温度控制器进行。需要在温度控制器的基础上,涉及相应的加热器报警与控制模块 从而检测整个加热管道的工作状态和控制多个加热器。
目前的报警装置功能都比较单一,通过串联温度控制器中的报警继电器,仅能提供低温报警和显示正常工作状态。另外,多点通信协议(如RS485、以太网、EtherCAT)可以用于对单个温度控制器的控制,但是,因为每个控制器中必须包括通信硬件,这导致温度控制器的成本增加和体积的增大。另外,每个温度控制器必须有相应的地址,使得加热器的安装和温度的设置变得非常复杂。
发明内容
为解决上述问题,本发明提供一种温度控制器,包括微处理器、温度检测装置、电流检测装置、控制继电器和外部接口,温度检测装置检测加热器的工作温度,电流检测装置检测通过加热元件的电流值,微处理器根据从温度检测装置、电流检测装置接收到的温度和电流值,确定温度控制器的工作状态,发送控制信号给控制继电器,从而控制加热器工作以调整温度。
还有,本发明的温度控制器包括安全继电器,其在微处理器确定温度控制器的工作状态为非正常时,控制控制继电器以切断加热器的供电。
更重要的是,微处理器外部接口连接有光耦固态继电器和光电耦合器,光耦固态继电器是用于提供报警信号,光电耦合器用于温度控制器的远程控制。
具体的,光耦固态继电器包括发光二极管和功率开关,光电耦合器包括发光二极管和光敏三极管,光耦固态继电器的功率开关的一端与光电耦合器的发光二极管的正极相连,该连接端构成加热器温度控制器的输入端,光耦固态继电器的功率开关的另一端为加热器温度控制器的第一输出端,光电耦合器的发光二极管的负极构成加热器温度控制器的第二输出端;光耦固态继电器的发光二极管的正极连接到直流电源,光耦固态继电器的发光二极管的负极与微处理器的一个I/O接口连接;光电耦合器的光敏三极管的集电极连接到直流电源,发射极接地的同时连接到微处理器的CCP和模拟信号输入端。
需要说明的是,前述直流电源均可为5V直流电源。
此外,控制继电器并联有固态双向可控硅。
优选的,微处理器具有零电压检测功能。
本发明的温度控制器在温度测量的同时加入电流测量,从而可以正确的判断加热器的工作状态,极大地提高了温度控制器的可靠性。
附图说明
图1是本发明温度控制器的方框图;
图2是本发明具有多个图1所示温度控制器的加热器报警及控制模块的电路图;
图3是本发明加热器报警及控制模块的正常报警操作工况下的等效电路;
图4是本发明加热器报警及控制模块的温度设定操作工况下的等效电路;
图5是本发明加热器报警及控制模块的加热器睡眠控制/激活第二个温度控制工况下的等效电路。
具体实施方式
如图1所示,本发明的温度控制器包括微处理器、温度检测装置、电流检测装置、安全继电器、控制继电器和外部接口,其中,温度检测装置检测加热器的工作温度,电流检测装置检测通过加热元件的电流值,微处理器根据从温度检测装置、电流检测装置接收到的温度和电流值,确定温度控制器的工作状态,发送控制信号给安全继电器和控制继电器,从而控制加热器工作状态以调整温度。安全继电器用于在微处理器确定温度控制器的工作状态为非正常时,切断加热器的供电。
外部接口连接有光耦固态继电器和光电耦合器,光耦固态继电器是用于提供报警信号,例如,当加热器达到设定温度值时,该光耦固态继电器会工作在导通状态,发送报警信息,而当加热器温度低于温度设定值时,该光耦固态继电器会工作在开路状态。该光耦固态继电器是由微处理器控制。光电耦合器用于温度控制器的远程控制,如切换加热器控制与工作模式,以及改变温度设定值,光电耦合器的工作模式由外部信号的强度来控制。当外部信号很弱、其功率不足于驱动该光电耦合器时,(例如,由微处理器发 出的PWM信号),光电耦合器不动作;当外部信号很强时,驱动该光电耦合器,点亮光电耦合器中的LED,从而将信号传给微处理器,用于温度控制器的温度设定,或者确定温度控制器的工作模式。
通常情况下,管道加热需要保证一定的加热温度。但是,为了达到节能或者工艺的目的,加热器的温度在一定条件下可以适当降低,甚至可以关闭加热器。本发明的温度控制器,可以预先设定两个不同的温度,并进行加热器的工作模式(温度)的快速切换。
总之,本发明中的温度控制,既可以在没有外部控制信号的条件下独立工作(温度控制),也可根据外部的连线,进行低温/高温报警,进入两种不同的工作模式,或者进行温度控制器的温度设定值的设置操作。
本发明的温度控制器中,温度检测装置检测加热器工作温度,电流检测装置还检测加热元件电流值,可以确定加热器运行状态。因为在正常工况下,加热器加热通电时,电流大于零。而当加热器关闭冷却时电流则为零。通过结合的电流和温度的测量,可以准确确定加热器的工作状态。
如果当前电流值大于零,而加热器空间温度不上升,则确定热电偶失灵。如果当前电流值大于零,而测量温度却在下降,则确定该热电偶被接反。在这些条件下加热器必须立即关闭,并发送报警信息,否则温度将持续升高,直到热保险丝被熔断。此外,如果温度正在上升,但电流等于零,这证明气体在沿管线向加热套反向加热。在此条件下,虽然可以发出温度过高的警告,但是,没有必要停止整个工艺进程,从而,避免不必要的停机损失。
由于高压机械继电器动作时会产生电弧,这种高压电弧所产生的热量,往往可以将触点溶化和氧化,从而大大缩短了机械继电器的工作寿命。在额定的最大工作电流条件下,普通机械继电器的寿命只有10万次。这对于温度控制来说是远远不够的。但是,如果单独使用固态双向可控硅继电器,由于较高的内阻,在大电流的工作状态下,会产生大量的热量。这不仅要求大体积的散热器,而且降低了元件的可靠性。为此,如图1所示,本发明温度控制器的控制继电器并联有固态双向可控硅,来达到消除机械继电器动作时所产生的电弧,从而达到增加机械继电器寿命的目的。在每次机械继电器动作之 前,先将固态双向可控硅导通。这样,极大的降低了机械继电器触点的电压(<1V),避免了高压机械继电器动作时所产生的电弧。无弧继电器技术的使用,可以将工作寿命提高成百倍。
为了减少电噪声和进一步提高可靠性的双向可控硅,本发明选用具有零电压检测功能的微处理器,这样,双向可控硅的开关切换是在交流电流是在零电压附近。
如图2所示,进一步说明本发明加热器报警及控制模块,包括加热器报警及控制模块主处理器uP0、加热器报警及控制电路和加热器温控模块,所述加热器温控模块包括n个如图1所示的加热器温度控制器102,加热器报警及控制模块主处理器uP0通过加热器报警及控制电路与加热器温控模块连接。
图2中的每个加热器温度控制器102仅显示了与报警相关的元器件,由如图1所示的温度控制器构成,具有相同的电路结构,主要包括一个光耦固态继电器、一个光电耦合器和微处理器uP1(图1中温度控制器的微处理器),而用于加热器控制的元器件均被省略,参见图1。
光耦固态继电器SSR包括发光二极管和功率开关,根据发光二极管有无信号输入来控制功率开关的通断。光电耦合器(Opto Coupler)包括发光二极管和光敏三极管,根据发光二极管有无信号输入来控制光敏三极管的导通和截止。
光耦固态继电器SSR功率开关的一端与光电耦合器的发光二极管的正极相连,该连接端构成加热器温度控制器102的输入端(图2中的In n),光耦固态继电器SSR的功率开关的另一端为加热器温度控制器102的第一输出端(图2中的Out n-1),光电耦合器的发光二极管的负极构成加热器温度控制器102的第二输出端(图2中的Out n-2);光耦固态继电器SSR的发光二极管的正极连接到5v的直流电源,负极与微处理器uP1的一个I/O接口连接。由微处理器uP1通过I/O接口来控制光耦固态继电器SSR。
光电耦合器的光敏三极管的集电极连接到5v的直流电源,发射极接地的同时连接到微处理器uP1的CCP(capture,compare,and PWM)和模拟信号输入端。光电耦合器(Opto Coupler)则是由加热器报警及控制模块的输出来控制,光电耦合器的内置发光二极管的正极(热器温度控制器102的输入端)和报警及加热器报警及控制模块的输 出相连。如果输入信号是直流电压,微处理器uP1则能够测量其电压值,而当输入信号时脉冲PWM信号时,微处理器uP1则可以测量到它的频率。
加热器报警及控制模块主处理器uP0能够通过加热器报警及控制电路给加热器温控模块提供三种不同的控制信号——(5V)DC、弱功率PWM1信号和强功率PWM2信号,输入到第一加热器温度控制器102的输入端。其中,强功率PWM2信号通过缓冲运算放大器提高功率后,再输出到第一加热器温度控制器102的输入端。第二加热器温度控制器102的输入端与第一加热器温度控制器102的第一输出端连接,同样,在后的加热器温度控制器102的输入端与在前的加热器温度控制器102的输出端顺序连接,直到第n个加热器温度控制器102的输入端与第n-1个加热器温度控制器102的输出端连接,第n个加热器温度控制器102的输出端连接到终端回路电容C1的一端(图3),终端回路电容C1的另一端与n个加热器温度控制器102的第二输出端连接,终端回路电容C1与n个加热器温度控制器102的第二输出端连接的一端接入到加热器报警及控制模块主处理器uP0。
具体的,n个加热器温度控制器102的第二输出端连接到加热器报警及控制模块主处理器uP0的模拟信号输入(AI)端来测量直流电压,同时还通过第一电容C3连接到加热器报警及控制模块主处理器uP0的CCP端来进行频率的测量;终端回路电容C1与n个加热器温度控制器102的第二输出端连接的一端通过AC分压电容C2接地,同时还与一个三极管Q1的集电极连接;所述三极管Q1的基极与加热器报警及控制模块主处理器uP0的一个I/O端连接,三极管Q1的发射极接地。该三极管Q1在报警时是处于截止状态,而在对温度控制器进行控制时则是导通的。
如前所述,加热器报警及控制模块主处理器uP0给加热器温度控制器102提供三种不同的控制信号——(5V)DC、弱功率PWM1信号和强功率PWM2信号,这些信号分别用于温度控制器三种工作模式——控制模式(5VDC)、报警模式(弱功率PWM1),或温度设定模式(强功率PWM2)。
当输入信号是弱功率PWM1信号时(报警模式),该信号首先输出到第一加热器温度控制器102的输入端。由于PMW1的信号非常弱,温度控制器中的光电耦合器(Opto Coupler)处于开路状态,因此,这相当于由n个温度控制器102中的光耦固态继电器 SSR组成的串联电路。
此时,光耦固态继电器SSR的状态是由微处理器uP1来控制,SSR的动作是由内置的发光二极管来完成。当加热器的温度低于温度控制器的设定值时,微处理器uP1连接光耦固态继电器SSR的发光二极管负极的I/O接口会输出高电位,使得SSR处于开路状态。而当加热器的温度进入温度控制器的控制范围时(在设定值附近,具体范围是预先设定),微处理器uP1连接光耦固态继电器SSR的发光二极管负极的I/O接口输出低电位,使得SSR处于闭合状态。这些串联连接的在加热器温度控制器102中的光耦固态继电器SSR,再加上终端回路电容C1,构成报警控制电路的回路。
如果第一加热器温度控制器102所控制的加热器已经进入温度控制器的控制范围时,内部的光耦固态继电器SSR则处于闭合状态,此时,报警的弱功率PWM1输入信号将会从第一加热器温度控制器102的第一输出端输出,再从第二加热器温度控制器102的输入端进入第二加热器温度控制器102,依次进行,直到第n加热器温度控制器102。但当其中某个加热器温度控制器102所控制的加热器尚未进入温度控制器的控制范围时,该加热器温度控制器102中的光耦固态继电器SSR则处于开路状态,此时,报警的弱功率PWM1信号输入信号将不会从该加热器温度控制器102的第一输出端输出,弱功率PWM1信号不会返回到加热器报警及控制模块主处理器uP0。
这样,只有当沿线所有n个加热器温度控制器102都进入温度控制器的控制范围时,报警的弱功率PWM1输入信号才能从第一加热器温度控制器102传到第n个加热器温度控制器102,再通过终端终端回路电容C1来形成闭合的AC回路,将由加热器报警及控制模块发出的报警用的弱功率PWM1输入信号传回到加热器报警及控制模块。反之,如果沿线n个加热器温度控制器102中只要有一个温度控制器未进入温度控制器的控制范围,报警的弱功率PWM1输入信号则无法传回到加热器报警及控制模块主处理器uP0。所以,当加热器报警及控制模块主处理器uP0能够接受到自己发出的报警的弱功率PWM1时,证明沿线所有的加热器都已经到进入温度控制器的控制范围,工作正常。反之,则说明最少有一个加热器未进入温度控制器的控制范围。这时,加热器报警及控制模块将会发出报警。
当加热器报警及控制模块仅用于报警时,终端回路电容器C1可以由短路电路来替 代。因为电容和普通电线都可以保证AC回路的畅通。但是,如果采用短路电路的话,加热器报警及控制模块就不能用来进行加热器温度控制器102工作模式的切换,和改变加热器温度控制器102的温度设定值(详见后面的说明)。
当加热器报警及控制模块要对加热器温度控制器102进行控制操作时,首先要发送一个特定的不同于温度报警频率的PWM1’信号。当该信号到达第一加热器温度控制器102的输入端时,第一加热器温度控制器102中的微处理器uP1会通过光电耦合器检测该信号的频率。如果确认是加热器报警及控制模块将发送控制的特定频率的信号时,加热器温度控制器102中的微处理器uP1将会发出指令将光耦固态继电器SSR强制闭合,这样可以让特定频率的PWM1’信号从第一温度控制器102的第一输出端输出,并传递到第二加热器温度控制器102的输入端。同样,以此类推,在后的加热器温度控制器102中的微处理器将会发出指令将光耦固态继电器SSR逐一强制闭合,直至n个加热器温度控制器102的光耦固态继电器SSR全部闭合。
当所有加热器温度控制器102中的光耦固态继电器SSR都强制闭合后,加热器报警及控制模块会输出一个5VDC电压,来判断终端回路是否短路。如果终端回路处于DC短路状态,加热器报警及控制模块的模拟输入(AI)会测量到该5V电压。此时,将停止对加热器温度控制器102的控制操作。在这种条件下,当三极管Q1闭合时,整个回路会处于短路状态。如果接通电路,回路电流将会过大,从而影响控制电路的可靠性。
如果证明终端回路处于开路状态,或者有回路电容,加热器报警及控制模块的模拟输入(AI)就不会测量到该5V电压,此时,加热器报警及控制模块会将三极管Q1闭合,并开始发送5VDC或通过缓冲运算放大器提高功率后输出强功率PWM2信号,进行对加热器温度控制器102的控制。沿线所有温度控制器中的微处理器uP1,根据所接收到的信号,进行相关的操作。
图3是正常的报警的等效电路。因为三极管Q1处于开路状态,所以,从线路图中省去。加热器报警及控制模块主处理器uP0发送弱功率PWM1信号,如果所有加热器都进入温度控制器的控制范围,则n个加热器温度控制器102的光耦固态继电器都会导通,串联连接温度控制器中的光耦固态继电器SSR、终端电容器C1(0.1uF)、AC分压电容C2(0.01uF)及电容C3(0.1uF)组成电容电路,加热器报警及控制模块主处理器uP0 可以接收到代表正常加热器运行状态的PWM1脉冲,从而确定所有加热器都在正常运行。如果这些继电器中的任何之一是开路的话,则表明至少有一个加热器尚未达到加热器的设定温度,从而,由加热器报警及控制模块主处理器uP0向外发出警报。
如果终端电容器C1没有连接,则报警功能不能实现。但是,改变温度设置及操作模式的功能仍可以执行。如果终端电容器被短路,报警功能仍能实现,但是改变温度设置及操作模式的功能却不能执行(系统自保护)。
加热器温度控制器102的温度设定时由以下步骤来执行的:
1.发送温度控制的预指令,将加热器温度控制器102中的固态继电器强制闭合。
这是通过加热器报警及控制模块主处理器uP0通过加热器报警及控制模块的PWM1信号线向加热器温度控制器102发送一个特定频率的PWM1’信号。当加热器温度控制器102的微处理器uP1检测到该信号后,立即发指令将加热器温度控制器102中的固态继电器SSR逐一强制闭合。
2.检测回路是否DC短路
这时在三极管Q1开路的条件下向加热器温度控制器102发送5VDC电压。如果温度控制器的主控制器uP0检测到5V电压,则证明回路DC短路,控制指令将不会发出。如果测量到的电压低于5V,则闭合Q1,并继续温度控制的操作。
3.温度设定
加热器温度控制器102的温度的设定是由加热器报警及控制模块主处理器uP0发送强功率PWM2信号实现的。通过缓冲运算放大器,PWM2的功率得到提高,PWM2能够驱动在加热器温度控制器102内部的所有光电耦合器。三极管Q1是导通的。这样才能有足够的电流来驱动所有的光电耦合器(可达几十个)。
当加热器温度控制器102中的微处理器uP1接收到PWM2的脉冲信号时,加热器温度控制器102内部的微处理器uP1将监测到PWM2信号频率转换为温度设定值,并存储在芯片中。
4.温度的显示
由于同时改变许多加热器温度控制器102的温度设定,本发明采用三色LED来显示 加热器温度控制器102的设定温度。例如,红灯每闪一下代表100℃,绿灯每闪一下代表10℃,兰灯每闪一下代表1℃,快闪代表0。这样的设计可以待到的简化电路的设计。而且非常直观。
这种温度设定方法可以同时设定多个加热器温度控制器102的温度设定值。既不需要设定加热器温度控制器102的地址,也不需要安装通讯芯片。极大地降低了成本,而且方便了用户。
加热器报警及控制模块还可以进行睡眠控制/激活第二个温度,其通过加热器报警及控制模块提供的5V直流电压来完成。这时,终端电容器处于开路状态(DC电压不能通过电容来导通),所以,在等效电路中省略掉。而三极管Q1是导通的,所有控制用光电耦合器被激活,所有的光耦固态继电器都处在强制闭合的状态。下图是加热器温度控制器睡眠控制/激活第二个温度控制的等效电路。
在这种工作条件下,报警及控制模块的101中的PWM1在5V DC电压开通前会发出一个特定频率的PWM1’信号,用来指示加热器温度控制器102内部的微处理器uP1去强制闭合加热器温度控制器102中的固态继电器SSR。回路是否DC短路是通过在三极管Q1开路的条件下,向控制回路发送5VDC电压测定的。如果回路是DC短路的,报警及控制模块的101就会测量到5V的电压。在这种条件下,加热器睡眠控制的指令将不会执行。如果回路是DC开路的,报警及控制模块的101就会测量到低于5V的电压。只有在这种条件下,加热器睡眠控制的指令才会发出。这时,加热器温度控制器102内部的微处理器将监测到直流电压。此直流电压将触发二次温度控制。如果二次温度设定值是足够低,加热器将进入睡眠状态。uP1中均预先存储有二次温度控制的温度值,如果没有监测到5V直流电压,则温度控制器用微处理器中的正常温度设定值,如果监测到5V直流电压,则温度控制器用微处理器中的第二温度设定值进行温度控制。
上述说明示出并描述了本发明的优选实施例,应当理解本发明并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述发明构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。

Claims (7)

  1. 一种温度控制器,其特征在于:包括微处理器、温度检测装置、电流检测装置、控制继电器和外部接口,其中,温度检测装置检测加热器的工作温度,电流检测装置检测通过加热元件的电流值,微处理器根据从温度检测装置、电流检测装置接收到的温度和电流值,确定温度控制器的工作状态,发送控制信号给控制继电器,从而控制加热器工作以调整温度。
  2. 如权利要求1所示的温度控制器,其特征在于:还包括安全继电器,其在微处理器确定温度控制器的工作状态为非正常时,控制控制继电器以切断加热器的供电。
  3. 如权利要求1所示的温度控制器,其特征在于:微处理器外部接口连接有光耦固态继电器和光电耦合器,光耦固态继电器是用于提供报警信号,光电耦合器用于温度控制器的远程控制。
  4. 如权利要求3所示的温度控制器,其特征在于:光耦固态继电器包括发光二极管和功率开关,光电耦合器包括发光二极管和光敏三极管,
    光耦固态继电器的功率开关的一端与光电耦合器的发光二极管的正极相连,该连接端构成加热器温度控制器的输入端,光耦固态继电器的功率开关的另一端为加热器温度控制器的第一输出端,光电耦合器的发光二极管的负极构成加热器温度控制器的第二输出端;
    光耦固态继电器的发光二极管的正极连接到直流电源,光耦固态继电器的发光二极管的负极与微处理器的一个I/O接口连接;
    光电耦合器的光敏三极管的集电极连接到直流电源,发射极接地的同时连接到微处理器的CCP和模拟信号输入端。
  5. 如权利要求4所示的温度控制器,其特征在于:所述直流电源为5V。
  6. 如权利要求1-5所示的温度控制器,其特征在于:控制继电器并联有固态双向可控硅。
  7. 如权利要求6所示的温度控制器,其特征在于:微处理器具有零电压检测功能。
PCT/CN2016/110951 2015-12-22 2016-12-20 一种温度控制器 WO2017107891A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018532082A JP6619884B2 (ja) 2015-12-22 2016-12-20 温度コントローラ
KR1020187017881A KR20180102075A (ko) 2015-12-22 2016-12-20 온도제어기
US16/065,690 US10809749B2 (en) 2015-12-22 2016-12-20 Temperature controller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510976880.0A CN105468051B (zh) 2015-12-22 2015-12-22 一种温度控制器
CN201510976880.0 2015-12-22

Publications (1)

Publication Number Publication Date
WO2017107891A1 true WO2017107891A1 (zh) 2017-06-29

Family

ID=55605854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/110951 WO2017107891A1 (zh) 2015-12-22 2016-12-20 一种温度控制器

Country Status (5)

Country Link
US (1) US10809749B2 (zh)
JP (1) JP6619884B2 (zh)
KR (1) KR20180102075A (zh)
CN (1) CN105468051B (zh)
WO (1) WO2017107891A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110081728A (zh) * 2019-03-07 2019-08-02 泰安磐然测控科技有限公司 一种高温炉控制装置及控温方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105468051B (zh) 2015-12-22 2018-10-19 江阴市辉龙电热电器有限公司 一种温度控制器
CN105589382B (zh) 2015-12-22 2019-02-26 江阴市辉龙电热电器有限公司 一种加热器报警及控制模块
TWI602042B (zh) * 2016-03-25 2017-10-11 智易科技股份有限公司 溫度控制器及包含溫度控制器之電子裝置及其控制方法
CN105922344A (zh) * 2016-06-17 2016-09-07 苏州威利仕塑胶电子有限公司 一种刀模加热控制系统
CN107874625B (zh) * 2016-09-29 2020-05-05 浙江绍兴苏泊尔生活电器有限公司 加热容器控制电路、加热容器控制方法及咖啡机
US20180270076A1 (en) * 2017-03-17 2018-09-20 Qualcomm Incorporated Smart networking of traditional appliances
CN107065974A (zh) * 2017-06-19 2017-08-18 无锡新辉龙科技有限公司 一种用于半导体管道加热器的温度控制器
CN107562088B (zh) * 2017-09-20 2023-06-13 惠州市日进科技有限公司 一种电阻测量的温度控制仪及温度控制方法
CN110167206B (zh) * 2018-02-12 2023-01-17 冯嘉俊 调节电流的发热系统及发热系统调节电流的方法
CN108514343A (zh) * 2018-06-20 2018-09-11 佛山市艾美皓电子科技有限公司 双保护温控电路和空气炸锅
KR102242309B1 (ko) * 2018-12-13 2021-04-20 주식회사 케이티앤지 오작동에 의한 히터의 발열을 차단하는 에어로졸 생성 장치 및 방법
CN110261666A (zh) * 2019-07-12 2019-09-20 江苏丰东热技术有限公司 一种多区电流测试方法以及多区电流测试系统
CN110794897A (zh) * 2019-11-28 2020-02-14 广东豹鼎厨具设备有限公司 一种炸锅的温度调节系统及其控制方法
KR102200838B1 (ko) 2020-10-07 2021-01-12 (주)팀원이엔티 온도 제어 장치
CN114253316B (zh) * 2021-12-21 2023-04-14 北京北方华创微电子装备有限公司 管路控温设备和管路控温方法
CN114625192B (zh) * 2022-05-17 2022-07-29 深圳市海泰微电子科技有限公司 一种基于单片机的空气炸锅控制电路
CN116700123B (zh) * 2023-08-01 2023-10-17 南京德克威尔自动化有限公司 一种一体式EtherCAT总线I/O模块

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2258677Y (zh) * 1995-10-22 1997-07-30 临沂电力设计室 变电站控制回路断线及开关位置信号装置
US7562830B2 (en) * 2005-09-15 2009-07-21 Crydom Technologies Temperature controller
CN201402417Y (zh) * 2008-12-25 2010-02-10 上海柯耐弗电气有限公司 带接地故障漏电保护的温控器
CN201876745U (zh) * 2010-11-24 2011-06-22 方彧 一种控制器
CN202135341U (zh) * 2011-05-31 2012-02-01 东莞市光为电器有限公司 电热控制器安全电路
CN203520185U (zh) * 2013-09-30 2014-04-02 南通新邦化工科技有限公司 一种二苯胺生产用加热器控制装置
CN105158548A (zh) * 2015-08-24 2015-12-16 国家电网公司 一种新型高压验电器
CN105468051A (zh) * 2015-12-22 2016-04-06 江阴市辉龙电热电器有限公司 一种温度控制器
CN105589382A (zh) * 2015-12-22 2016-05-18 江阴市辉龙电热电器有限公司 一种加热器报警及控制模块

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4677282A (en) * 1986-02-27 1987-06-30 Thermolyne Holdings Inc. Failure protection in temperature control
JPH0793180B2 (ja) * 1989-12-12 1995-10-09 リンナイ株式会社 ヒータ制御回路
CA2120277A1 (en) * 1993-04-05 1994-10-06 Ronald W. Holling Over temperature condition sensing method and apparatus for a domestic appliance
CN2187348Y (zh) * 1994-04-20 1995-01-11 谭锐 电机保护模块
US6455820B2 (en) * 1999-07-27 2002-09-24 Kenneth A. Bradenbaugh Method and apparatus for detecting a dry fire condition in a water heater
US7265323B2 (en) * 2001-10-26 2007-09-04 Engineered Glass Products, Llc Electrically conductive heated glass panel assembly, control system, and method for producing panels
US6427581B1 (en) * 2001-12-20 2002-08-06 Tsann Kuen Usa Inc. Waffle maker with cooking temperature control
JP2005092302A (ja) * 2003-09-12 2005-04-07 Fujitsu Ltd 高安定発振器
US7256372B2 (en) * 2005-12-07 2007-08-14 Aos Holding Company Fluid-heating apparatus, circuit for heating a fluid, and method of operating the same
US7932480B2 (en) * 2006-04-05 2011-04-26 Mks Instruments, Inc. Multiple heater control system with expandable modular functionality
US9040880B2 (en) * 2010-07-08 2015-05-26 Hendon Semiconductors Pty Ltd. Circuit arrangement for sustaining water in contact with a heating element at a set temperature or range within an instantaneous hot water heater unit
CN102566622B (zh) * 2010-12-30 2014-03-19 泰州乐金电子冷机有限公司 冰箱用温度调节装置
CN202600513U (zh) * 2012-03-30 2012-12-12 苏州苏海亚电气有限公司 一种温度自动控制器
CN105045306B (zh) * 2015-08-12 2017-10-13 佛山市川东磁电股份有限公司 一种温控器件智能检测装置及其检测方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2258677Y (zh) * 1995-10-22 1997-07-30 临沂电力设计室 变电站控制回路断线及开关位置信号装置
US7562830B2 (en) * 2005-09-15 2009-07-21 Crydom Technologies Temperature controller
CN201402417Y (zh) * 2008-12-25 2010-02-10 上海柯耐弗电气有限公司 带接地故障漏电保护的温控器
CN201876745U (zh) * 2010-11-24 2011-06-22 方彧 一种控制器
CN202135341U (zh) * 2011-05-31 2012-02-01 东莞市光为电器有限公司 电热控制器安全电路
CN203520185U (zh) * 2013-09-30 2014-04-02 南通新邦化工科技有限公司 一种二苯胺生产用加热器控制装置
CN105158548A (zh) * 2015-08-24 2015-12-16 国家电网公司 一种新型高压验电器
CN105468051A (zh) * 2015-12-22 2016-04-06 江阴市辉龙电热电器有限公司 一种温度控制器
CN105589382A (zh) * 2015-12-22 2016-05-18 江阴市辉龙电热电器有限公司 一种加热器报警及控制模块

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110081728A (zh) * 2019-03-07 2019-08-02 泰安磐然测控科技有限公司 一种高温炉控制装置及控温方法

Also Published As

Publication number Publication date
KR20180102075A (ko) 2018-09-14
JP2019503001A (ja) 2019-01-31
CN105468051A (zh) 2016-04-06
CN105468051B (zh) 2018-10-19
US20180373277A1 (en) 2018-12-27
JP6619884B2 (ja) 2019-12-11
US10809749B2 (en) 2020-10-20

Similar Documents

Publication Publication Date Title
WO2017107891A1 (zh) 一种温度控制器
WO2017107890A1 (zh) 一种加热器报警及控制模块
CN209882150U (zh) 用于控制从ac电源输送到电气装置的电力的负载控制装置
US20110148309A1 (en) Occupancy sensor with embedded signaling capability
CN103199506B (zh) 光源驱动模组的过流保护电路及背光模组
CN216118442U (zh) 多档负载驱动与检测电路及设备
CN106438320B (zh) 一种压缩机高压保护系统和方法
CN114466499A (zh) 一种智能家居中调光电路涉及到的多种保护线路
JP2012003864A (ja) Led灯器及びled点灯監視制御システム
CN109931288B (zh) 一种风机无级调速控制器
WO2018223329A1 (zh) 抑制浪涌电流的控制系统和装置及其应用方法
KR20010047784A (ko) 히트 펌프식 에어컨의 과열방지 장치
CN201355381Y (zh) 一种大功率电气元件工作状态实时监控系统
CN110531642A (zh) 一种烟草制丝设备的安全断电系统
KR101046204B1 (ko) 전기매트의 구동 제어회로
KR20100122591A (ko) 전기매트의 구동 제어회로
JP2010122082A (ja) 故障検出回路および電力調整器
CN215444496U (zh) 一种适用于工业电源的风扇调速电路
CN220509087U (zh) 一种温控器工作状态检测电路
CN219735638U (zh) 电热水器控温装置及电热水器
CN218866599U (zh) 一种用于局部退火结构的故障报警装置
CN109996361B (zh) 一种发热涂层组件的安全控制方法和系统
CN110391641B (zh) 电机过热保护器及电机过热保护控制方法
CN107018615B (zh) 一种微电流控制的电子开关
CN105140809A (zh) 一种基于风箱原理的配电柜冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877701

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018532082

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20187017881

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16877701

Country of ref document: EP

Kind code of ref document: A1