WO2017107590A1 - 多元酚化合物、制备方法及用途 - Google Patents

多元酚化合物、制备方法及用途 Download PDF

Info

Publication number
WO2017107590A1
WO2017107590A1 PCT/CN2016/099135 CN2016099135W WO2017107590A1 WO 2017107590 A1 WO2017107590 A1 WO 2017107590A1 CN 2016099135 W CN2016099135 W CN 2016099135W WO 2017107590 A1 WO2017107590 A1 WO 2017107590A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
carbon atoms
formula
Prior art date
Application number
PCT/CN2016/099135
Other languages
English (en)
French (fr)
Inventor
袁婵娥
罗鸿运
林伟
范华勇
Original Assignee
广东生益科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东生益科技股份有限公司 filed Critical 广东生益科技股份有限公司
Publication of WO2017107590A1 publication Critical patent/WO2017107590A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/008Dyes containing a substituent, which contains a silicium atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/04Esters of silicic acids
    • C07F7/06Esters of silicic acids with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • C07F7/1872Preparation; Treatments not provided for in C07F7/20
    • C07F7/188Preparation; Treatments not provided for in C07F7/20 by reactions involving the formation of Si-O linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B11/00Diaryl- or thriarylmethane dyes
    • C09B11/04Diaryl- or thriarylmethane dyes derived from triarylmethanes, i.e. central C-atom is substituted by amino, cyano, alkyl
    • C09B11/06Hydroxy derivatives of triarylmethanes in which at least one OH group is bound to an aryl nucleus and their ethers or esters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0158Polyalkene or polyolefin, e.g. polyethylene [PE], polypropylene [PP]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0162Silicon containing polymer, e.g. silicone

Definitions

  • the invention relates to an unsaturated double bond silicone modified polyphenol, a preparation method, a thermosetting resin composition containing the compound, a cured product, a prepreg, a laminate and a printed circuit board.
  • the polyphenol structure contains a regular symmetrical benzene ring structure and no strong polar groups, which gives it excellent properties such as high glass transition temperature, good dimensional stability, small linear expansion coefficient, and especially excellent. Low dielectric constant, low dielectric loss.
  • the thermosetting polyhydric phenol compound having a double bond structure has become a preferred resin material for substrates of high-frequency printed circuit boards because of its good mechanical properties and excellent dielectric properties. It relies on the double bond of the terminal group and other resin containing double bond to prepare the laminate by addition reaction or self-curing, and has the characteristics of high glass transition temperature, high heat resistance and high heat and humidity resistance.
  • Silicone has excellent heat resistance, weather resistance, flame retardancy, dielectric properties and low water absorption. Simultaneous introduction of unsaturated double bonds and siloxy groups in the polyphenylene ether resin will further ensure the curing of the resin. Heat resistance, dielectric properties and hydrophobicity of the material.
  • Polyphenolic compound having an unsaturated double bond structure has good mechanical properties and excellent dielectric properties Performance is becoming the preferred resin material for substrates of high frequency printed circuit boards.
  • the prior art in the art proposes a thermosetting resin using a vinyl benzyl ether compound having various chemical structures, such as a divinyl benzyl ether of bisphenol or a vinyl benzyl ether such as a vinyl benzyl ether of a novolac.
  • the compound Japanese Patent Laid-Open Publication No. SHO63-68537, Japanese Patent Laid-Open No. Hei 64-65110).
  • the vinyl benzyl ether compound has high water absorbability, resulting in a large change in dielectric properties after moisture absorption, and the obtained cured resin product cannot be stably used at a high frequency, and divinyl benzyl bisphenol The heat resistance of the ether is also not high enough.
  • a method of modifying a polyhydric phenol with a vinyl benzyl ether dissolves a polyhydric phenol compound and a vinylbenzyl chloride in a solvent such as acetone, and heats the mixture to slowly add a potassium hydroxide solution. After the reaction of the mixture, potassium chloride precipitated by filtration or extraction is first separated from the reaction mixture, followed by separation of the vinylbenzyl ether compound from the reaction mixture remaining by precipitation in methanol. This method has a low yield and is difficult to purify.
  • CN201410101526.9 The presence of a polyphenylene ether having a phenolic hydroxyl group and a vinylbenzyl halide in the presence of a phase transfer catalyst in the presence of an aqueous solution of an alkali metal hydroxide in a solvent comprising an aromatic hydrocarbon and a fatty alcohol The reaction is carried out, and the reactant is washed successively with an aqueous alkali metal hydroxide solution and hydrochloric acid to obtain a vinylbenzyl-polyphenylene ether compound.
  • X is selected from a hydrocarbon group having 1 to 20 carbon atoms; and R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are each independently selected. From a hydrogen atom or a structure of formula (II), and at least 3 of said R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 are not hydrogen atoms;
  • R 10 , R 11 and R 12 are each independently selected from a substituted or unsubstituted aryl group, a substituted or unsubstituted aryloxy group, a substituted or unsubstituted branched chain or a linear chain containing 2 An unsaturated hydrocarbon group of up to 12 carbon atoms, a substituted or unsubstituted branched or straight chain saturated hydrocarbon group having 2 to 12 carbon atoms; and at least one unsaturated group of R 10 , R 11 and R 12 ;
  • R 13 is selected from H, an alkoxy group having 1 to 24 carbon atoms, an alkyl group having 1 to 24 carbon atoms or an aromatic group having 6 to 24 carbon atoms;
  • Ar is a substituted or unsubstituted aromatic group.
  • R 10 , R 11 , R 12 are each independently selected from -CH 3 , or
  • R 22 is selected from H, C 1 -C 14 substituted or unsubstituted linear or branched alkyl, C 5 -C 12 substituted or unsubstituted alicyclic or C 1 -C 14 alkoxy.
  • the dashed bond "-----" means a bond of an adjacent unit or group.
  • the structure of the formula (II) is linked to the X of the structure of the formula (I) by a chemical bond represented by a broken line.
  • the X is selected from the group consisting of a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 20 carbon atoms; preferably substituted or unsubstituted Any one of an alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aromatic group having 6 to 20 carbon atoms; further preferably or
  • R 10 , R 11 and R 12 are each independently selected from the group consisting of -----CH 3 , or Any one of the above; and at least three of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are not hydrogen atoms.
  • R 13 is selected from a hydrogen atom, an alkoxy group having 1 to 5 carbon atoms, an alkyl group having 1 to 5 carbon atoms or an aromatic group having 6 to 10 carbon atoms;
  • a hydrogen atom, a methoxy group, a methyl group or a phenyl group is preferred.
  • the Ar is a substituted or unsubstituted monophenyl ring group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted fused ring compound group, preferably a substituted or unsubstituted phenyl group, a substituted or An unsubstituted naphthyl group;
  • the substituent of the substituted monophenyl ring group, substituted biphenyl group or substituted fused ring compound group is a hydrocarbon group having 1 to 20 carbon atoms or a carbon having a hetero atom substitution The number is 1 to 20 hydrocarbon groups.
  • the polyhydric phenol compound containing an unsaturated double bond silicone modification is selected from the group consisting of or
  • a second object of the present invention is to provide a process for preparing a polyhydric phenol compound containing an unsaturated double bond organosilicon modified according to one of the objects, wherein R 10 and R 12 are each independently selected from a substituted or unsubstituted aromatic group. a substituted or unsubstituted branched or straight-chain unsaturated hydrocarbon group, a substituted or unsubstituted branched or straight-chain saturated hydrocarbon group, and R 10 and R 12 have at least one unsaturated group, and R 11 is a substituent.
  • the preparation method comprises the following steps:
  • R' 1 , R' 2 , R' 3 , R' 4 , R' 5 , R' 6 , R' 7 , R' 8 , R' 9 are each independently selected from a hydrogen atom or independently selected from the formula (V) structure, and at least three of R 1 ', R 2 ', R 3 ', R 4 ', R 5 ', R 6 ', R 7 ', R 8 ', R 9 ' are not A hydrogen atom;
  • R 13 has the same meaning as R 13 according to any one of claims 1 to 3;
  • R 10 , R 11 , R 12 are each independently selected from a substituted or unsubstituted aryl group, a substituted or unsubstituted branched or linear unsaturated hydrocarbon group, a substituted or unsubstituted branched or straight chain saturated
  • the preparation method comprises the following steps:
  • the reaction temperatures of step (1), step (2) and step (a) are each independently selected from 0 to 60 ° C, such as 5 ° C, 15 ° C, 20 ° C, 24 ° C, 25 ° C, 30 ° C. 35 ° C, 40 ° C, 45 ° C, 46 ° C, 50 ° C, 54 ° C, 55 ° C, 58 ° C, 60 ° C, etc., preferably 20 to 50 ° C, more preferably 30 to 40 ° C.
  • the reaction time of step (1), step (2) and step (a) are each independently selected from 2 to 24 h, such as 3 h, 4 h, 5 h, 8 h, 10 h, 13 h, 15 h, 20 h, 22 h, etc.
  • it is 3 to 22 hours, further preferably 4 to 20 hours, and particularly preferably 5 to 10 hours.
  • the anhydrous solvent of the step (1), the step (2) and the step (a) is selected from any one or a mixture of at least two of toluene, xylene, tetrahydrofuran, dichloromethane, acetone or methyl ethyl ketone.
  • An exemplary mixture of anhydrous solvents is selected from the group consisting of a mixture of toluene and xylene, a mixture of acetone and tetrahydrofuran, a mixture of tetrahydrofuran and dichloromethane, a mixture of dichloromethane and methyl ethyl ketone, a mixture of tetrahydrofuran and methyl ethyl ketone, acetone, tetrahydrofuran. Mixture with butanone, tetrahydrofuran, a mixture of dichloromethane and toluene, and the like.
  • the polyhydric phenol monomer of the structure of formula (IV) is selected from the group consisting of tris(4-hydroxyphenyl)methane, 1,1,1-tris(4-hydroxyphenyl)ethane, bis(4-hydroxy-) 3-methylphenyl)-4-hydroxy-3-methoxyphenylmethane, 4,4'-[(3-hydroxyphenyl)methylene]bis(2,6-dimethylphenol), 4,4'-[(3-hydroxyphenyl)methylene]bis(2,3,6-trimethylphenol), 4,4'-[(4-hydroxyphenyl)methylene] bis ( 2,6-dimethylphenol), 4,4'-[(4-hydroxyphenyl)methylene] Bis(2,3,6-trimethylphenol), 4,4'-[(4-hydroxy-3-ethoxyphenyl)methylene]bis(2,3,6-trimethylphenol) 4,4'-[4-(4-Hydroxyphenyl)cyclohexylene]bis(2,6-d
  • a third object of the present invention is to provide a resin composition containing an unsaturated double bond silicone-modified polyhydric phenol compound according to one of the objects.
  • the resin composition of the present invention may further contain a double bond-containing resin and an initiator other than the unsaturated double bond silicone-modified polyhydric phenol compound having the structure of the formula (I), and the reaction is a radical reaction.
  • the resin composition contains an unsaturated double bond silicone-modified polyhydric phenol compound preferably in an amount of 10 to 90 parts by weight, in addition to the unsaturated double bond silicone-modified polyhydric phenol compound described in one of the objects.
  • the resin of the double bond is preferably from 10 to 90 parts by weight, and an initiator is added as needed by those skilled in the art.
  • the "resin having a double bond other than the unsaturated double bond silicone-modified polyhydric phenol compound of the formula (I) structure” is preferably a polyolefin resin or a silicone resin.
  • the polyolefin resin is preferably any one or a mixture of at least two of a styrene-butadiene copolymer, a polybutadiene or a styrene-butadiene-divinylbenzene copolymer; the styrene - Butadiene copolymer, polybutadiene, styrene-butadiene-divinylbenzene copolymer can be independently modified by amino group, maleic anhydride, epoxy modified, acrylate modified Sex, hydroxyl modified or carboxyl modified.
  • An exemplary "resin having a double bond other than the unsaturated double bond silicone-modified polyhydric phenol compound according to one of the objects" is selected from Sartomer's styrene-butadiene copolymer R100, Japan Soda Polybutadiene B-1000 or Sartomer styrene-butadiene-divinylbenzene copolymer R250.
  • the silicone resin is selected from the following organosilicon compound structures containing an unsaturated double bond:
  • the silicone resin is selected from the following organosilicon compound structures containing an unsaturated double bond:
  • R 15 is selected from a substituted or unsubstituted C 1 -C 12 linear alkyl group or a substituted or unsubstituted C 1 -C 12 branched alkyl group; 2 ⁇ p ⁇ 10, and p is a natural number.
  • the initiator of the present invention is a free radical initiator, preferably an organic peroxide initiator.
  • the organic peroxide is exemplarily selected from the group consisting of di-tert-butyl peroxide, dilauroyl peroxide, dibenzoyl peroxide, cumene peroxy neodecanoate, and t-butyl peroxy neodecanoate.
  • the resin composition may further comprise a hydrosilycol resin and a hydrosilylation catalyst, and the reaction is a hydrosilylation reaction, and the resin composition contains an unsaturated double bond silicone-modified polyphenol compound and silicon hydrogen.
  • the parts by weight of the resin are calculated based on the equivalents of the silicon hydrogen bond and the double bond, and the hydrosilylation catalyst can be added according to actual needs by those skilled in the art.
  • the silicone hydrogen resin is selected from the following organosilicon compound structures containing silicon hydrogen bonds:
  • R 16 , R 17 and R 18 are each independently selected from substituted or unsubstituted C 1 -C 8 linear alkyl, substituted or unsubstituted C 1 -C 8 branched alkyl, substituted or unsubstituted benzene a group or a substituted or H atom; and at least one of R 16 , R 17 and R 18 is an H atom; 0 ⁇ i ⁇ 100.
  • the silicone hydrogen resin is selected from the following organosilicon compound structures containing silicon hydrogen bonds:
  • R 21 is selected from a substituted or unsubstituted linear alkyl group having 1 to 12 carbon atoms or a substituted or unsubstituted branched alkyl group having 1 to 12 carbon atoms; 2 ⁇ k ⁇ 10, and k is a natural number .
  • the hydrosilylation catalyst of the present invention is a platinum catalyst.
  • the resin composition may further comprise an inorganic filler or/and a flame retardant, and the amount of addition is in the field. Technicians add as needed.
  • the inorganic filler of the present invention is selected from the group consisting of aluminum hydroxide, boehmite, silica, talc, mica, barium sulfate, lithopone, calcium carbonate, wollastonite, kaolin, brucite, diatomaceous earth, bentonite Or one of the pumice powders or a mixture of at least two.
  • the flame retardant of the present invention is selected from any one or a combination of at least two of a halogen-based flame retardant, a phosphorus-based flame retardant, and an inorganic flame retardant.
  • the halogen-free flame retardant is tris(2,6-dimethylphenyl)phosphine, 10-(2,5-dihydroxyphenyl)-9,10-dihydro-9-oxa-10-phosphine Phenanthrene-10-oxide, 2,6-bis(2,6-dimethylphenyl)phosphinobenzene, 10-phenyl-9,10-dihydro-9-oxa-10-phosphinophen-10 - any one or at least two of an oxide, a phenoxyphosphazene compound, a zinc borate, a nitrogen-phosphorus expanded type, an organic polymer flame retardant, a phosphorus-containing phenol resin or a phosphorus-containing bismaleimide mixture.
  • the method for producing the resin composition according to the third object of the present invention may be a polyhydric phenol compound containing an unsaturated double bond, a resin, or a hydroquinone resin, which is one of the purposes of mixing, stirring, and mixing by a known method. , an initiator, a hydrosilylation catalyst, a filler, a flame retardant, etc. are obtained.
  • a fourth object of the present invention is to provide a resin glue obtained by dissolving or dispersing a resin composition according to the third object in a solvent.
  • the solvent may be exemplified by ethers such as ethyl cellosolve, butyl cellosolve, ethylene glycol-methyl ether, carbitol, butyl carbitol, acetone, methyl ethyl ketone, methyl ethyl ketone.
  • ethers such as ethyl cellosolve, butyl cellosolve, ethylene glycol-methyl ether, carbitol, butyl carbitol, acetone, methyl ethyl ketone, methyl ethyl ketone.
  • ketones such as methyl isobutyl ketone and cyclohexanone
  • aromatic hydrocarbons such as toluene, xylene, and mesitylene
  • esters such as ethoxyethyl acetate and ethyl acetate
  • N, N-II A nitrogen-containing solvent such as methylformamide, N,N-dimethylacetamide or N-methyl-2-pyrrolidone.
  • the solvent may be used singly or in combination of two or more kinds, and is preferably an aromatic hydrocarbon solvent such as toluene or xylene with acetone, methyl ethyl ketone, methyl ethyl ketone or methyl isobutyl ketone.
  • a ketone flux such as cyclohexanone is used in combination.
  • the amount of the solvent to be used can be selected by a person skilled in the art according to his own experience, so that the obtained resin glue can reach a viscosity suitable
  • an emulsifier may be added for dispersion, and the inorganic filler or the like may be uniformly dispersed in the glue.
  • a fifth object of the present invention is to provide a cured resin obtained by curing the resin composition of the third object.
  • a sixth object of the present invention is to provide a prepreg comprising a reinforcing material and a resin composition as described in the third object which is adhered thereto by dipping and drying.
  • Exemplary of the reinforcing material may be carbon fiber, glass fiber cloth, aramid fiber or nonwoven fabric.
  • the carbon fibers are, for example, T300, T700, T800 of Toray Industries, Japan, and the aramid fibers such as Kevlar fibers, such as 7628 fiberglass cloth and 2116 fiberglass cloth.
  • a seventh object of the present invention is to provide a copper clad laminate comprising at least one prepreg according to the sixth aspect.
  • An eighth object of the present invention is to provide a laminate comprising at least one prepreg as described in item 6.
  • the preparation of the copper clad laminate is prior art, and those skilled in the art are fully capable of preparing the copper clad laminate of the present invention according to the preparation technique of the copper clad laminate disclosed in the prior art.
  • the copper clad laminate When the copper clad laminate is applied to the preparation of a printed circuit board, it has superior electrical properties, which meets the requirements of high speed and high frequency.
  • a ninth object of the present invention is to provide a printed circuit board comprising at least one prepreg as described in item 6.
  • the present invention has the following beneficial effects:
  • the use of polyphenolic compounds in copper clad laminates provides excellent dielectric properties (dielectric constant 2.32 to 2.47, dielectric loss 0.0031 to 0.039), heat and humidity resistance, and heat resistance required for high-frequency high-speed copper clad laminates ( The glass transition temperature Tg is 168 to 219.8 ° C, and the thermal decomposition temperature is 462.6 to 489 ° C).
  • Figure 1 shows the NMR spectrum of the polyphenolic compound a: 1H NMR (DMSO-d6, ppm) nuclear magnetic spectrum: 2.29 ppm is the chemical shift of the H atom on the methyl group, and 6.79-6.81 ppm is the H atom on the silicon vinyl group. The chemical shift, 6.91-7.23 ppm, is the chemical shift of the H atom on the benzene ring.
  • the reaction was maintained at 20 ° C for 5 to 10 hours, and then the temperature was raised to 40 to 60 ° C for 10 to 22 hours. Subsequently, 28 parts by weight of phenol was added dropwise to the reaction vessel, and the reaction was carried out at 40 to 60 ° C for 10 to 22 hours. After completion of the reaction, tetrahydrofuran was removed by distillation under reduced pressure to obtain a polyhydric phenol compound containing an unsaturated double bond-modified silicone, which was designated as a polyphenol compound b.
  • Figure 2 shows the NMR spectrum of the polyphenol compound b: 1H NMR (DMSO-d6, ppm) nuclear magnetic spectrum: 0.19 ppm corresponds to the chemical shift of the methyl H atom on Si, and 4.15 ppm is the H atom on the methine group.
  • the chemical shift, 6.79-6.82 ppm is the chemical shift of the silicon vinyl group, and 6.90-7.25 ppm is the chemical shift of the H atom on the benzene ring.
  • Figure 3 shows the NMR spectrum of the polyphenolic compound c: 1H NMR (DMSO-d6, ppm) nuclear magnetic spectrum: 0.14 ppm is the chemical shift of the methyl H atom on Si, and 2.15 ppm is the methyl H atom on the benzene ring.
  • the chemical shift, 3.93ppm is the chemical shift of the H atom on the methoxy group
  • 5.41ppm is the chemical shift of the H atom on the methine group
  • 6.60-6.63ppm is the chemical shift of the H atom on the silicon vinyl group
  • 6.69-6.91ppm is Chemical shift of H atoms on the benzene ring.
  • Figure 4 shows the NMR spectrum of the polyphenolic compound d: 1H NMR (DMSO-d6, ppm) nuclear magnetic spectrum: 0.66 ppm is the chemical shift of the methyl H atom on Si, and 5.41 ppm is the H atom on the methine Chemical shifts, 6.79 and 6.80 ppm are the chemical shifts of the silicon vinyl H atom, and 6.93 - 7.27 ppm are the chemical shifts of the H atom on the benzene ring.
  • the dielectric constant and the dielectric loss factor at 23 ° C and 1 GHz were measured by a plate capacitance method.
  • the 5% weight loss temperature (Td 5%) under a nitrogen atmosphere was evaluated by TGA at a temperature increase rate of 10 ° C / min.
  • the glass transition temperature was tested using DMA. The performance test results are shown in Table 1.
  • the dielectric constant and the dielectric loss factor at 23 ° C and 1 GHz were measured by a plate capacitance method.
  • the 5% weight loss temperature (Td 5%) under a nitrogen atmosphere was evaluated by TGA at a temperature increase rate of 10 ° C / min.
  • the glass transition temperature was tested using DMA. The performance test results are shown in Table 1.
  • the dielectric constant and the dielectric loss factor at 23 ° C and 1 GHz were measured by a plate capacitance method.
  • the 5% weight loss temperature (Td 5%) under a nitrogen atmosphere was evaluated by TGA at a temperature increase rate of 10 ° C / min.
  • the glass transition temperature was tested using DMA. The performance test results are shown in Table 1.
  • the dielectric constant and the dielectric loss factor at 23 ° C and 1 GHz were measured by a plate capacitance method.
  • the 5% weight loss temperature (Td 5%) under a nitrogen atmosphere was evaluated by TGA at a temperature increase rate of 10 ° C / min.
  • the glass transition temperature was tested using DMA. The performance test results are shown in Table 1.
  • the dielectric constant and the dielectric loss factor at 23 ° C and 1 GHz were measured by a plate capacitance method.
  • the 5% weight loss temperature (Td 5%) under a nitrogen atmosphere was evaluated by TGA at a temperature increase rate of 10 ° C / min.
  • the glass transition temperature was tested using DMA. The performance test results are shown in Table 1.
  • the dielectric constant and the dielectric loss factor at 23 ° C and 1 GHz were measured by a plate capacitance method.
  • the 5% weight loss temperature (Td 5%) under a nitrogen atmosphere was evaluated by TGA at a temperature increase rate of 10 ° C / min.
  • the glass transition temperature was tested using DMA. The performance test results are shown in Table 1.
  • 77 parts by weight of methacrylate phenyl ether resin MX9000, 20 parts by weight of styrene-butadiene copolymer Ricon 100, and 3 parts by weight of dicumyl peroxide (DCP) are dissolved in an appropriate amount of methyl ethyl ketone solvent and adjusted to a suitable viscosity. Stir well. The gas was evacuated under vacuum for a period of time to remove bubbles and butanone from the gum system. Pour the treated glue into the mold and leave it at 120 °C for 2 hours. After molding, the mold is vacuum laminated and cured in the press for 90 min, the curing pressure is 32 kg/cm 2 , and the curing temperature is 200 ° C to obtain 0.5 to 2.0 mm thick. Sheet-like cured product.
  • DCP dicumyl peroxide
  • the dielectric constant and the dielectric loss factor at 23 ° C and 1 GHz were measured by a plate capacitance method.
  • the 5% weight loss temperature (Td 5%) under a nitrogen atmosphere was evaluated by TGA at a temperature increase rate of 10 ° C / min.
  • the glass transition temperature was tested using DMA. The performance test results are shown in Table 1.
  • Methacrylate-based polyphenylene ether resin MX9000, Sabic.
  • Styrene-butadiene copolymer Ricon 100, Sartomer.
  • Phenylsilicone resin SH303, Runhe Chemical.
  • Vinyl phenyl silicone resin SP606, Runhe Chemical.
  • test criteria or methods for the parameters involved in Table 1 are as follows:
  • Glass transition temperature (Tg) Measured according to the DMA test method specified in IPC-TM-650 2.4.24.4 using a DMA test.
  • Td 5% Thermal decomposition temperature
  • Application Examples 1 and 2 show a resin composition containing the unsaturated double bond silicone-modified polyhydric phenol compound synthesized by the present invention, and a general vinyl phenyl silicone resin (Application Comparative Example 1 Compared to its cured product, it has more excellent dielectric properties and a higher glass transition temperature.
  • the unsaturated double bond silicone-modified polyphenol compound synthesized by the present invention is combined with a methacrylate-based polyphenylene ether resin (Application Example 3) or a styrene-butadiene copolymer resin (Application Example 4), A cured product of a cured product of the cured product and a methacrylate-based polyphenylene ether resin (using Comparative Example 2) or a methacrylate-based polyphenylene ether resin and a styrene-butadiene copolymer (application comparative example) 3) Compared to the same, it has more excellent dielectric properties, higher glass transition temperature and higher thermal decomposition temperature. Therefore, the organosilicon modified polyphenol compound containing an unsaturated double bond is a resin having superior comprehensive properties, and can be used for preparation of a high frequency circuit substrate, and has great application value. .
  • the present invention illustrates the process of the present invention by the above-described embodiments, but the present invention is not limited to the above process steps, that is, it does not mean that the present invention must rely on the above process steps to be implemented. It will be apparent to those skilled in the art that any modifications of the present invention, equivalent substitutions of the materials selected for the present invention, and the addition of the auxiliary ingredients, the selection of the specific means, etc., are all within the scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

提供一种含有不饱和双键有机硅改性的多元酚化合物,制备方法,以及含有所述多元酚化合物的组合物、树脂胶液、树脂固化物、预浸料、覆铜板、层压板或印制电路板。其中,把C=C双键和硅氧基引入到多元酚中,同时结合了双键固化的低介电和硅氧基的耐热性、耐候性、阻燃性、介电性能及低吸水率,更大地发挥多元酚化合物在覆铜板中的应用,能够提供高频高速覆铜板所需的优良的介电性能、耐湿热性、耐热性,制备方法较更简单便捷,提纯容易。

Description

多元酚化合物、制备方法及用途 技术领域
本发明覆铜板技术领域,涉及一种不饱和双键有机硅改性的多元酚、制备方法及含有化合物的热固性树脂组合物、固化物、预浸料、层压板和印制电路板。
背景技术
随着近年来的信息通讯量的增加,高频印刷电路板的需求越来越高。为了减少高频带的传输损耗,电气特性优异的电气绝缘材成为覆铜板领域的研究重点。同时,使用这些电气绝缘材料的印刷基板或者电子零件为了在安装时能够应对高温的回流焊以及高多层组装,又需要材料具有高耐热性高玻璃化转变温度。
多元酚分子结构中含有规整对称的苯环结构,且无强极性基团,赋予了其固化物优异的性能,如玻璃化转变温度高、尺寸稳定性好、线性膨胀系数小,尤其是出色的低介电常数、低介电损耗。在高频高速领域,具有双键结构的热固性多元酚化合物由于具有良好的机械特性与优异介电性能,越来越成为高频印刷电路板的基板首选的树脂材料。其依靠端基的双键与其他含有双键的树脂通过加成反应或自固化来制备层压板,具有高玻璃化转变温度,高耐热性,高耐湿热性的特点。
硅氧烷具有优异的耐热性、耐候性、阻燃性、介电性能及低吸水率,在聚苯醚树脂中同时引入不饱和双键和硅氧基团将进一步保证含有其树脂的固化物的耐热性、介电性及疏水性。
具有不饱和双键结构的多元酚化合物由于具有良好的机械特性与优异介电 性能,越来越成为高频印刷电路板的基板首选的树脂材料。本领域现有技术提出了使用具有多种化学结构的乙烯基苄基醚化合物的热固性树脂,例如双酚的二乙烯基苄基醚、或者酚醛清漆的乙烯基苄基醚等乙烯基苄基醚化合物(日本专利特开昭63-68537号公报、日本专利特开昭64-65110号公报)。但是,现有技术中乙烯基苄基醚化合物吸水性较高,导致其在吸湿后介电特性变化大,所得的树脂固化物在高频下无法稳定地使用,并且双酚的二乙烯基苄基醚的耐热性也不够高。
目前,乙烯基苄基醚改性多元酚的方法,如US4116936所述使多元酚化合物以及乙烯基苄基氯溶解于溶剂,例如丙酮中,对该混合物进行加热,缓慢添加氢氧化钾溶液。该混合物的反应后,将通过过滤或者萃取而沉淀的氯化钾从反应混合物中首先分离,接着从通过在甲醇中的沉淀而残留的反应混合物中分离出乙烯基苄基醚化合。此法产率低并且难以提纯。
CN201410101526.9所述在碱金属氢氧化物水溶液的存在下,在包括芳香烃和脂肪醇的溶剂中,使得末端具有酚性羟基的聚苯醚与乙烯基苄基卤化物在相转移催化剂的存在下反应,把反应物先后经过碱金属氢氧化物水溶液和盐酸洗涤后,得到乙烯基苄基-聚苯醚化合物。
发明内容
本发明的目的在于提供一种含有不饱和双键有机硅改性的多元酚化合物,其特征在于,所述化合物具有式(I)的结构:
Figure PCTCN2016099135-appb-000001
式(I)中,X选自含有1~20个碳原子的烃基;R1、R2、R3、R4、R5、R6、R7、R8、R9均各自独立地选自氢原子或式(II)的结构,且所述R1、R2、R3、R4、R5、R6、R7、R8、R9中至少3个不为氢原子;
Figure PCTCN2016099135-appb-000002
式(II)中,R10、R11、R12均各自独立地选自取代或未取代的芳香基、取代或未取代的芳氧基、取代或未取代的支链或直链的含有2~12个碳原子的不饱和烃基、取代或未取代的支链或直链的含有2~12个碳原子的饱和烃基;且R10、R11、R12中至少含有1个不饱和基团;
R13选自H、含有1~24个碳原子的烷氧基、含有1~24个碳原子的烷基或含有6~24个碳原子的芳香基;
Ar为取代或未取代的芳香基团。
优选地,R10、R11、R12均各自独立地选自
Figure PCTCN2016099135-appb-000003
-CH3
Figure PCTCN2016099135-appb-000004
Figure PCTCN2016099135-appb-000005
Figure PCTCN2016099135-appb-000006
R22选自H、C1~C14取代或未取代的直链或支链烷基、C5~C12取代或未取代的脂环基或C1~C14的烷氧基。
本发明中虚线键“-----”表示相邻的单元或基团的连接键,例如式(II)的结构就是通过其中虚线表示的化学键与式(I)结构的X连接。
优选地,所述X选自取代或未取代的含有1~20个碳原子的烷基、取代或未取代的含有6~20个碳原子的芳香基中的任意1个;优选取代或未取代的含有1~20个碳原子的烷基、取代或未取代的含有6~20个碳原子的芳香基中的任意1 种;进一步优选
Figure PCTCN2016099135-appb-000007
Figure PCTCN2016099135-appb-000008
Figure PCTCN2016099135-appb-000009
优选地,式(II)中,R10、R11、R12均各自独立地选自
Figure PCTCN2016099135-appb-000010
-----CH3
Figure PCTCN2016099135-appb-000011
Figure PCTCN2016099135-appb-000012
Figure PCTCN2016099135-appb-000013
中的任意1种;且所述R1、R2、R3、R4、R5、R6、R7、R8、R9中至少3个不为氢原子。
优选地,式(II)中,R13选自氢原子、含有1~5个碳原子的烷氧基、含有1~5个碳原子的烷基或含有6~10个碳原子的芳香基;优选氢原子、甲氧基、甲基或苯基。
优选地,所述Ar为取代或未取代的单苯环基团、取代或未取代的联苯基团、取代或未取代的稠环化合物基团,优选取代或未取代的苯基、取代或未取代的萘基;所述取代的单苯环基团、取代的联苯基团或取代的稠环化合物基团的取代基为含有1~20个碳原子的烃基或有杂原子取代的碳数为1~20的烃基。
进一步优选地,所述含有不饱和双键有机硅改性的多元酚化合物选自
Figure PCTCN2016099135-appb-000014
Figure PCTCN2016099135-appb-000015
Figure PCTCN2016099135-appb-000016
本发明目的之二是提供一种如目的之一所述的含有不饱和双键有机硅改性的多元酚化合物的制备方法,当R10、R12各自独立地选自取代或未取代的芳香基、取代或未取代的支链或直链不饱和烃基、取代或未取代的支链或直链饱和烃基,且R10、R12中至少含有1个不饱和基团,且R11为取代或未取代的芳氧基时,所述制备方法包括如下步骤:
(1)将具有式(III)结构的二氯硅烷单体与具有式(IV)结构的多元酚单体在无水溶剂中进行反应;
Figure PCTCN2016099135-appb-000017
Figure PCTCN2016099135-appb-000018
(2)向步骤(1)的反应体系中加入具有单官能团的酚H-R11,继续进行反应,得到式(I)所述的多元酚化合物;
R′1、R′2、R′3、R′4、R′5、R′6、R′7、R′8、R′9均各自独立地选自氢原子或各自独立地选自式(V)的结构,且所述R1′、R2′、R3′、R4′、R5′、R6′、R7′、R8′、R9′中至少3个不为氢原子;
Figure PCTCN2016099135-appb-000019
所述R13具有与权利要求1~3任一项所述的R13相同的意义;
或者,当R10、R11、R12均各自独立地选自取代或未取代的芳香基、取代或未取代的支链或直链不饱和烃基、取代或未取代的支链或直链饱和烃基,且R10、R11、R12中至少含有1个不饱和基团时,所述制备方法包括如下步骤:
(a)将具有式(VI)的一氯硅烷单体与具有式(IV)结构的多元酚单体在无水溶剂中进行反应,得到式(I)所述的多元酚化合物;
Figure PCTCN2016099135-appb-000020
优选地,步骤(1)、步骤(2)和步骤(a)所述反应温度均各自独立地选自0~60℃,例如5℃、15℃、20℃、24℃、25℃、30℃、35℃、40℃、45℃、46℃、50℃、54℃、55℃、58℃、60℃等,优选20~50℃,进一步优选30~40℃。
优选地,步骤(1)、步骤(2)和步骤(a)所述反应时间均各自独立地选自2~24h,例如3h、4h、5h、8h、10h、13h、15h、20h、22h等,优选3~22h,进一步优选4~20h,特别优选5~10h。
优选地,步骤(1)、步骤(2)和步骤(a)的无水溶剂选自甲苯、二甲苯、四氢呋喃、二氯甲烷、丙酮或丁酮中的任意1种或者至少2种的混合物。示例性的无水溶剂的混合物选自甲苯和二甲苯的混合物,丙酮和四氢呋喃的混合物,四氢呋喃和二氯甲烷的混合物,二氯甲烷和丁酮的混合物,四氢呋喃和丁酮的混合物,丙酮、四氢呋喃和丁酮的混合物,四氢呋喃、二氯甲烷和甲苯的混合物等。
优选地,所述式(IV)结构的多元酚单体选自三(4-羟基苯基)甲烷、1,1,1-三(4-羟基苯基)乙烷、双(4-羟基-3-甲基苯基)-4-羟基-3-甲氧基苯基甲烷、4,4′-[(3-羟基苯基)亚甲基]双(2,6-二甲基苯酚)、4,4′-[(3-羟基苯基)亚甲基]双(2,3,6-三甲基苯酚)、4,4′-[(4-羟基苯基)亚甲基]双(2,6-二甲基苯酚)、4,4′-[(4-羟基苯基)亚甲基] 双(2,3,6-三甲基苯酚)、4,4′-[(4-羟基-3-乙氧基苯基)亚甲基]双(2,3,6-三甲基苯酚)、4,4′-[4-(4-羟基苯基)亚环己基]双(2,6-二甲基苯酚)、4,4′-[1-[4-[1-(4-羟基-3,5-二甲基苯基)-1-甲基乙基]苯基]亚乙基]双(2,6-二甲基苯酚)、4,4′-[1-[4-[1-(4-羟基-3-氟苯基)-1-甲基乙基]苯基]亚乙基]双(2,6-二甲基苯酚)、1,1,2,2-四(4-羟基苯基)乙烷、α,α,α′,α′-四(4-羟基苯基)-对二甲苯、2,2-双[4,4-双(4-羟基苯基)环己基]丙烷、4,4′,4″,4″′-(1,2-乙二亚基)四(2,6-二甲基苯酚)、4,4′,4″,4″′-(1,4-亚苯基二亚甲基)四(2,6-二甲基苯酚)或3,3′,5,5′,7,7′-六(4-羟基苯基)-1,1′-双金刚烷中的任意1种。
本发明目的之三是提供一种树脂组合物,所述树脂组合物含有目的之一所述的含有不饱和双键有机硅改性的多元酚化合物。
本发明所述树脂组合物中还可以含有除式(I)结构的不饱和双键有机硅改性的多元酚化合物以外的带有双键的树脂和引发剂,反应为自由基反应。所述树脂组合物中含有不饱和双键有机硅改性的多元酚化合物优选10-90重量份,除目的之一所述的含有不饱和双键有机硅改性的多元酚化合物以外的带有双键的树脂优选10-90重量份,引发剂本领域技术人员据需添加。
所述“除式(I)结构的不饱和双键有机硅改性的多元酚化合物以外的带有双键的树脂”优选聚烯烃树脂或有机硅树脂。
所述聚烯烃树脂优选自苯乙烯-丁二烯共聚物、聚丁二烯或苯乙烯-丁二烯-二乙烯基苯共聚物中的任意1种或者至少2种的混合物;所述苯乙烯-丁二烯共聚物、聚丁二烯、苯乙烯-丁二烯-二乙烯基苯共聚物均可各自独立地被氨基改性、马来酸酐改性、环氧基改性、丙烯酸酯改性、羟基改性或羧基改性。
示例性的“除目的之一所述的含有不饱和双键有机硅改性的多元酚化合物以外的带有双键的树脂”选自Sartomer的苯乙烯-丁二烯共聚物R100、日本曹达的聚丁二烯B-1000或Sartomer的苯乙烯-丁二烯-二乙烯基苯共聚物R250。
作为本发明的一个具体实施方式,所述有机硅树脂选自如下含有不饱和双键的有机硅化合物结构:
Figure PCTCN2016099135-appb-000021
其中,R12、R13和R14均独立地选自取代或未取代的C1~C8的直链烷基、取代或未取代的C1~C8支链烷基、取代或未取代的苯基或取代或未取代的C2~C10含C=C的基团;且R12、R13和R14三者至少有一个为取代或未取代的C2~C10含C=C的基团;0≤m≤100。
作为本发明的另一个具体实施方式,所述有机硅树脂选自如下含有不饱和双键的有机硅化合物结构:
Figure PCTCN2016099135-appb-000022
其中,R15选自取代或未取代的C1~C12直链烷基或取代或未取代的C1~C12支链烷基;2≤p≤10,且p为自然数。
本发明所述引发剂为自由基引发剂,优选自有机过氧化物引发剂。
所述有机过氧化物示例性的选自二叔丁基过氧化物、过氧化二月桂酰、过氧化二苯甲酰、过氧化新癸酸异丙苯酯、过氧化新癸酸叔丁酯、过氧化特戊酸特戊酯、过氧化特戊酸叔丁酯、叔丁基过氧化异丁酸酯、叔丁基过氧化-3,5,5-三甲基己酸酯、过氧化乙酸叔丁酯、过氧化苯甲酸叔丁酯、1,1-二叔丁基过氧化-3,5,5-三甲基环己烷、1,1-二叔丁基过氧化环己烷、2,2-二(叔丁基过氧化)丁烷、双(4-叔丁基环己基)过氧化二碳酸酯、过氧化二碳酸酯十六酯、过氧化二碳酸酯十四酯、二特戊己过氧化物、二异丙苯过氧化物、双(叔丁基过氧化异丙基)苯、2,5-二甲基-2,5-二叔丁基过氧化己烷、2,5-二甲基-2,5-二叔丁基过氧化己炔、二 异丙苯过氧化氢、异丙苯过氧化氢、特戊基过氧化氢、叔丁基过氧化氢、叔丁基过氧化异丙苯、二异丙苯过氧化氢、过氧化碳酸酯-2-乙基己酸叔丁酯、叔丁基过氧化碳酸-2-乙基己酯、4,4-二(叔丁基过氧化)戊酸正丁酯、过氧化甲乙酮、过氧化环己烷中的任意一种或者至少两种的混合物。
优选地,所述树脂组合物还可以包括硅氢树脂和硅氢加成催化剂,反应为硅氢加成反应,树脂组合物中,含有不饱和双键有机硅改性的多元酚化合物与硅氢树脂的重量份根据硅氢键和双键的当量来计算,硅氢加成催化剂本领域技术人员可以根据实际需求添加。
作为本发明的一个具体实施方式,所述硅氢树脂选自如下含有硅氢键的有机硅化合物结构:
Figure PCTCN2016099135-appb-000023
R16、R17和R18均独立地选自取代或未取代的C1~C8的直链烷基、取代或未取代的C1~C8支链烷基、取代或未取代的苯基或取代或H原子;且R16、R17和R18三者至少有一个为H原子;0≤i≤100。
作为本发明的再一个具体实施方式,所述硅氢树脂选自如下含有硅氢键的有机硅化合物结构:
Figure PCTCN2016099135-appb-000024
R21选自取代或未取代的碳原子数为1~12的直链烷基或取代或未取代的碳原子数为1~12的支链烷基;2≤k≤10,且k为自然数。
本发明所述硅氢加成催化剂为铂金催化剂。
优选地,所述树脂组合物还可以包括无机填料或/和阻燃剂,填加量本领域 技术人员根据需要添加。
本发明所述无机填料选自氢氧化铝、勃姆石、二氧化硅、滑石粉、云母、硫酸钡、立德粉、碳酸钙、硅灰石、高岭土、水镁石、硅藻土、膨润土、或浮石粉中的任意1种或者至少2种的混合物。
本发明所述阻燃剂选自卤系阻燃剂、磷系阻燃剂或无机阻燃剂中的任意1种或至少2种的组合。所述无卤阻燃剂为三(2,6-二甲基苯基)膦、10-(2,5-二羟基苯基)-9,10-二氢-9-氧杂-10-膦菲-10-氧化物、2,6-二(2,6-二甲基苯基)膦基苯、10-苯基-9,10-二氢-9-氧杂-10-膦菲-10-氧化物、苯氧基膦腈化合物、硼酸锌、氮磷系膨胀型、有机聚合物阻燃剂、含磷酚醛树脂或含磷双马来酰亚胺中的任意1种或者至少2种的混合物。
作为本发明目的之三所述树脂组合物的制备方法,可以通过公知的方法配合、搅拌、混合目的之一所述的含有不饱和双键有机硅改性的多元酚化合物、树脂、硅氢树脂、引发剂、硅氢加成催化剂、填料、阻燃剂等得到。
本发明目的之四是提供一种树脂胶液,所述树脂胶液为目的之三所述的树脂组合物溶解或分散在溶剂中得到。
示例性地,所述溶剂可以列举为乙基溶纤剂、丁基溶纤剂、乙二醇-甲醚、卡必醇、丁基卡必醇等醚类,丙酮、丁酮、甲基乙基酮、甲基异丁基酮、环己酮等酮类,甲苯、二甲苯、均三甲苯等芳香族烃类,乙氧基乙基乙酸酯、醋酸乙酯等酯类,N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基-2-吡咯烷酮等含氮类溶剂。所述溶剂可以单独使用一种,也可以两种或者两种以上混合使用,优选甲苯、二甲苯等芳香族烃类溶剂与丙酮、丁酮、甲基乙基甲酮、甲基异丁基甲酮、环己酮等酮类熔剂混合使用。所述溶剂的使用量本领域技术人员可以根据自己的经验来选择,使得到的树脂胶液达到适于使用的粘度即可。
在所述的树脂组合物溶解或分散在溶剂的过程中,可以添加乳化剂,用以进行分散,可以使无机填料等在胶液中分散均匀。
本发明目的之五是提供一种树脂固化物,所述树脂固化物通过固化目的之三所述的树脂组合物得到。
本发明目的之六是提供一种预浸料,所述预浸料包括增强材料,及通过浸渍干燥后附着在其上的目的之三所述的树脂组合物。
所述增强材料示例性的可以是碳纤维、玻璃纤维布、芳族聚酰胺纤维或无纺布。
所述碳纤维例如有日本东丽公司的T300、T700、T800,所述芳香族聚酰胺纤维如Kevlar纤维,所述玻璃纤维布示例性的如:7628玻纤布、2116玻纤布。
本发明目的之七是提供一种覆铜板,所述覆铜板含有至少一张目的之六所述的预浸料。
本发明目的之八是提供一种层压板,所述层压板含有至少一张目的之六所述的预浸料。
覆铜板的制备为已有技术,所属领域的技术人员完全有能力根据现有技术中所公开的覆铜板的制备技术,制备得到本发明所述覆铜板。将所述覆铜板应用于印刷电路板的制备时,具有优越的电气性质,其符合高速化和高频化的需求。
本发明目的之九是提供一种印制电路板,所述印制电路板含有至少一张目的之六所述的预浸料。
与现有技术相比,本发明具有以下有益效果:
(1)本发明把C=C双键和硅氧基引入到多元酚中,同时结合了双键固化的低介电和硅氧基的耐热性、耐候性、阻燃性、介电性能及低吸水率,更大地 发挥多元酚化合物在覆铜板中的应用,能够提供高频高速覆铜板所需的优良的介电性能(介电常数为2.32~2.47,介质损耗0.0031~0.039)、耐湿热性、耐热性(玻璃化转变温度Tg为168~219.8℃,热分解温度为462.6~489℃)。
(2)本发明提供的含有不饱和双键有机硅改性的多元酚化合物制备方法较更简单便捷,提纯容易。
附图说明
图1为制备实施例1提供的多元酚化合物a的核磁谱图;
图2为制备实施例2提供的多元酚化合物b的核磁谱图;
图3为制备实施例3提供的多元酚化合物c的核磁谱图;
图4为制备实施例4提供的多元酚化合物d的核磁谱图。
具体实施方式
下面通过具体实施方式来进一步说明本发明的技术方案。
本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。
制备实施例1
将29重量份三(4-羟基苯基)乙烷与1000mL无水四氢呋喃于装有搅拌器、滴液漏斗、温度计和导气管(通氮气)的反应釜中搅拌直至完全溶解成均匀的溶液,持续通氮气0.5~1小时除去反应釜中的水汽,并且整个反应过程中都保持通氮气。使反应釜内温度保持20℃以下,然后缓慢滴加44重量份二乙烯基二氯硅烷。滴加完毕后反应釜内保持20℃以下反应5~10小时,接着把温度升高到40~60℃反应10~22小时。随后滴加27重量份的苯酚于反应釜中,40~60℃下反应10~22小时。反应结束后通过减压蒸馏除去四氢呋喃,得到含有不饱和双键有机硅改性的多元酚化合物,记为多元酚化合物a。
图1给出了多元酚化合物a的核磁谱图:1H NMR(DMSO-d6,ppm)核磁图谱为:2.29ppm为甲基上H原子的化学位移,6.79-6.81ppm为硅乙烯基上H原子的化学位移,6.91-7.23ppm为苯环上H原子的化学位移。
制备实施例2
将29重量份1,1,2,2-四(4-羟基苯基)乙烷与1000mL无水四氢呋喃于装有搅拌器、滴液漏斗、温度计和导气管(通氮气)的反应釜中搅拌直至完全溶解成均匀的溶液,持续通氮气0.5~1小时除去反应釜中的水汽,并且整个反应过程中都保持通氮气。同时使反应釜内温度保持20℃以下,然后缓慢滴加43重量份甲基乙烯基二氯硅烷。滴加完毕后反应釜内保持20℃以下反应5~10小时,接着把温度升高到40~60℃反应10~22小时。随后滴加28重量份的苯酚于反应釜中,40~60℃下反应10~22小时。反应结束后通过减压蒸馏除去四氢呋喃,得到含有不饱和双键有机硅改性的多元酚化合物,记为多元酚化合物b。
图2给出了多元酚化合物b的核磁谱图:1H NMR(DMSO-d6,ppm)核磁图谱为:0.19ppm对应于Si上甲基H原子的化学位移,4.15ppm为次甲基上H原子的化学位移,6.79-6.82ppm为硅乙烯基的化学位移,6.90-7.25ppm为苯环上H原子的化学位移。
制备实施例3
将49重量份双(4-羟基-3甲基苯基)-4-羟基-3-甲氧基苯基甲烷与1000mL无水四氢呋喃于装有搅拌器、滴液漏斗、温度计和导气管(通氮气)的反应釜中搅拌直至完全溶解成均匀的溶液,持续通氮气0.5~1小时除去反应釜中的水汽,并且整个反应过程中都保持通氮气。同时使反应釜内温度保持20℃以下,然后 缓慢滴加51重量份二甲基乙烯基一氯硅烷。滴加完毕后反应釜内保持20℃以下反应5~10小时,接着把温度升高到40~60℃反应10~22小时。反应结束后通过减压蒸馏除去四氢呋喃,得到含有不饱和双键有机硅改性的多元酚化合物,记为多元酚化合物c。
图3给出了多元酚化合物c的核磁谱图:1H NMR(DMSO-d6,ppm)核磁图谱为:0.14ppm为Si上甲基H原子的化学位移,2.15ppm为苯环上甲基H原子的化学位移,3.93ppm为甲氧基上H原子的化学位移,5.41ppm为次甲基上H原子的化学位移,6.60-6.63ppm为硅乙烯基上H原子的化学位移,6.69-6.91ppm为苯环上H原子的化学位移。
制备实施例4
将39重量份α,α,α′,α′-四(4-羟基苯基)-对二甲苯与1000mL无水四氢呋喃于装有搅拌器、滴液漏斗、温度计和导气管(通氮气)的反应釜中搅拌直至完全溶解成均匀的溶液,持续通氮气0.5~1小时除去反应釜中的水汽,并且整个反应过程中都保持通氮气。同时使反应釜内温度保持20℃以下,然后缓慢滴加61重量份苯基甲基乙烯基一氯硅烷。滴加完毕后反应釜内保持20℃以下反应5~10小时,接着把温度升高到40~60℃反应10~22小时。反应结束后通过减压蒸馏除去四氢呋喃,得到含有不饱和双键有机硅改性的多元酚化合物,记为多元酚化合物d。
图4给出了多元酚化合物d的核磁谱图:1H NMR(DMSO-d6,ppm)核磁图谱为:0.66ppm为Si上甲基H原子的化学位移,5.41ppm为次甲基上H原子的化学位移,6.79和6.80ppm为硅乙烯基H原子的化学位移,6.93-7.27ppm为苯环上H原子的化学位移。
应用实施例1
将57重量份的实施例1中所制备的多元酚化合物a、43重量份的苯基硅氢树脂SH303溶解于适量丁酮溶剂中,并调节至适合粘度。加入总计10ppm的铂金催化剂,搅拌均匀。在真空下抽气一段时间以除去胶液体系中的气泡和丁酮。把处理完毕的胶液倒入模具中,50℃下放置5小时,成型后把模具在压机中真空层压固化90min,固化压力32kg/cm2,固化温度200℃,得到0.5~2.0mm厚的片状固化物。
对于所得到的固化物,利用平板电容法测定23℃、1GHz的介电常数和介电损耗因数。利用TGA在10℃/min的升温速度下评价氮气气氛下的5%重量减少温度(Td5%)。利用DMA测试其玻璃化转变温度。性能测试结果示于表1。
应用实施例2
将44重量份的实施例2中所制备的多元酚化合物b、56重量份的苯基硅氢树脂SH303溶解于适量丁酮溶剂中,并调节至适合粘度。加入总计10ppm的铂金催化剂,搅拌均匀。在真空下抽气一段时间以除去胶液体系中的气泡和丁酮。把处理完毕的胶液倒入模具中,50℃下放置5小时,成型后把模具在压机中真空层压固化90min,固化压力32kg/cm2,固化温度200℃,得到0.5~2.0mm厚的片状固化物。
对于所得到的固化物,利用平板电容法测定23℃、1GHz的介电常数和介电损耗因数。利用TGA在10℃/min的升温速度下评价氮气气氛下的5%重量减少温度(Td5%)。利用DMA测试其玻璃化转变温度。性能测试结果示于表1。
应用实施例7
将60重量份的实施例3中所制备的多元酚化合物c、37重量份甲基丙烯酸酯基聚苯醚树脂MX9000、3重量份的过氧化二异丙苯(DCP)溶解于适量丁酮溶剂中,并调节至适合粘度,搅拌均匀。在真空下抽气一段时间以除去胶液体系中的气泡和丁酮。把处理完毕的胶液倒入模具中,120℃下放置2小时,成型后把模具在压机中真空层压固化90min,固化压力32kg/cm2,固化温度200℃,得到0.5~2.0mm厚的片状固化物。
对于所得到的固化物,利用平板电容法测定23℃、1GHz的介电常数和介电损耗因数。利用TGA在10℃/min的升温速度下评价氮气气氛下的5%重量减少温度(Td5%)。利用DMA测试其玻璃化转变温度。性能测试结果示于表1。
应用实施例8
将60重量份的实施例4中所制备的多元酚化合物d、37重量份丁苯共聚物Ricon100、3重量份的过氧化二异丙苯(DCP)溶解于适量丁酮溶剂中,并调节至适合粘度,搅拌均匀。在真空下抽气一段时间以除去胶液体系中的气泡和丁酮。把处理完毕的胶液倒入模具中,120℃下放置2小时,成型后把模具在压机中真空层压固化90min,固化压力32kg/cm2,固化温度200℃,得到0.5-2.0mm厚的片状固化物。
对于所得到的固化物,利用平板电容法测定23℃、1GHz的介电常数和介电损耗因数。利用TGA在10℃/min的升温速度下评价氮气气氛下的5%重量减少温度(Td5%)。利用DMA测试其玻璃化转变温度。性能测试结果示于表1。
应用对比例1
将61重量份的乙烯基苯基硅树脂,39重量份的苯基硅氢树脂,加入总计10ppm的铂金催化剂,搅拌均匀。在真空下抽气一段时间以除去胶液体系中的气泡和丁酮。把处理完毕的胶液倒入模具中,50℃下放置5小时,成型后把模具在压机中真空层压固化90min,固化压力32kg/cm2,固化温度200℃,得到0.5~2.0mm厚的片状固化物。对于所得到的固化物,利用平板电容法测定23℃、1GHz的介电常数和介电损耗因数。利用TGA在10℃/min的升温速度下评价氮气气氛下的5%重量减少温度(Td5%)。利用DMA测试其玻璃化转变温度。性能测试结果示于表1。
应用对比例2
将97重量份的甲基丙烯酸酯基聚苯醚树脂MX9000、3重量份的过氧化二异丙苯(DCP)溶解于适量丁酮溶剂中,并调节至适合粘度,搅拌均匀。在真空下抽气一段时间以除去胶液体系中的气泡和丁酮。把处理完毕的胶液倒入模具中,120℃下放置2小时,成型后把模具在压机中真空层压固化90min,固化压力32kg/cm2,固化温度200℃,得到0.5-2.0mm厚的片状固化物。
对于所得到的固化物,利用平板电容法测定23℃、1GHz的介电常数和介电损耗因数。利用TGA在10℃/min的升温速度下评价氮气气氛下的5%重量减少温度(Td5%)。利用DMA测试其玻璃化转变温度。性能测试结果示于表1。
应用对比例3
将77重量份的甲基丙烯酸酯基苯醚树脂MX9000、20重量份丁苯共聚物Ricon100、3重量份的过氧化二异丙苯(DCP)溶解于适量丁酮溶剂中,并调节至适合粘度,搅拌均匀。在真空下抽气一段时间以除去胶液体系中的气泡和丁 酮。把处理完毕的胶液倒入模具中,120℃下放置2小时,成型后把模具在压机中真空层压固化90min,固化压力32kg/cm2,固化温度200℃,得到0.5~2.0mm厚的片状固化物。
对于所得到的固化物,利用平板电容法测定23℃、1GHz的介电常数和介电损耗因数。利用TGA在10℃/min的升温速度下评价氮气气氛下的5%重量减少温度(Td5%)。利用DMA测试其玻璃化转变温度。性能测试结果示于表1。
本发明实施例、应用实施例和应用对比例中所用的材料具体如下:
甲基丙烯酸酯基聚苯醚树脂:MX9000,Sabic。
丁苯共聚物:Ricon100,Sartomer。
过氧化二异丙苯:上海高桥。
苯基硅氢树脂:SH303,润禾化工。
乙烯基苯基硅树脂:SP606,润禾化工。
性能测试:
表1中所涉及参数的检测标准或方法如下:
(1)玻璃化转变温度(Tg):使用DMA测试,按照IPC-TM-650 2.4.24.4所规定的DMA测试方法进行测定。
(2)介电常数和介电损耗因子:按照IPC-TM-650 2.5.5.9的方法进行测试,测试频率为1GHz。
(3)热分解温度(Td5%):根据热重分析法(TGA),按照IPC-TM-650 2.4.24所规定的TGA方法进行测定。
表1应用实施例和应用对比例的性能测试结果
Figure PCTCN2016099135-appb-000025
从表1可以看出,应用实施例1和2表明含有本发明所合成的不饱和双键有机硅改性多元酚化合物的树脂组合物,与一般的乙烯基苯基硅树脂(应用对比例1)相比,其固化物具有更优异的介电特性,更高玻璃化转变温度。本发明所合成的不饱和双键有机硅改性多元酚化合物无论是与甲基丙烯酸酯基聚苯醚树脂组合(应用实施例3)还是与丁苯共聚物树脂组合(应用实施例4),其固化物与单独的甲基丙烯酸酯基聚苯醚树脂固化物(应用对比例2)或是甲基丙烯酸酯基聚苯醚树脂与丁苯共聚物的树脂组合物的固化物(应用对比例3)相比,都同样具有更优异的介电特性,更高玻璃化转变温度并且具有更高的热分解温度。因此该含有不饱和双键的有机硅改性多元酚化合物是一种综合性能更加优异的树脂,可用于高频电路基板的制备,具有较大应用价值。。
申请人声明,本发明通过上述实施例来说明本发明的工艺方法,但本发明并不局限于上述工艺步骤,即不意味着本发明必须依赖上述工艺步骤才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明所选用原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (12)

  1. 一种含有不饱和双键有机硅改性的多元酚化合物,其特征在于,所述化合物具有式(I)的结构:
    Figure PCTCN2016099135-appb-100001
    式(I)中,X选自含有1~20个碳原子的烃基;R1、R2、R3、R4、R5、R6、R7、R8、R9均各自独立地选自氢原子或式(II)的结构,且所述R1、R2、R3、R4、R5、R6、R7、R8、R9中至少3个不为氢原子;
    Figure PCTCN2016099135-appb-100002
    式(II)中,R10、R11、R12均各自独立地选自取代或未取代的芳香基、取代或未取代的芳氧基、取代或未取代的支链或直链的含有2~12个碳原子的不饱和烃基、取代或未取代的支链或直链的含有2~12个碳原子的饱和烃基;且R10、R11、R12中至少含有1个不饱和基团;
    R13选自H、含有1~24个碳原子的烷氧基、含有1~24个碳原子的烷基或含有6~24个碳原子的芳香基;
    Ar为取代或未取代的芳香基团。
  2. 如权利要求1所述的多元酚化合物,其特征在于,所述R10、R11、R12均各自独立地选自
    Figure PCTCN2016099135-appb-100003
    -CH3
    Figure PCTCN2016099135-appb-100004
    Figure PCTCN2016099135-appb-100005
    R22选自H、C1~C14取代或未取代的直链或支链烷基、C5~C12取代或未取代 的脂环基或C1~C14的烷氧基。
  3. 如权利要求1或2所述的多元酚化合物,其特征在于,所述X选自取代或未取代的含有1~20个碳原子的烷基、取代或未取代的含有6~20个碳原子的芳香基中的任意1种。
  4. 如权利要求1-3任一项所述的多元酚化合物,其特征在于,所述X选自
    优选地,式(II)中,R10、R11、R12均各自独立地选自
    Figure PCTCN2016099135-appb-100007
    Figure PCTCN2016099135-appb-100008
    中的任意1种;且所述R1、R2、R3、R4、R5、R6、R7、R8、R9中至少3个不为氢原子;
    优选地,式(II)中,R13选自氢原子、含有1~5个碳原子的烷氧基、含有1~5个碳原子的烷基或含有6~10个碳原子的芳香基;优选氢原子、甲氧基、甲基或苯基;
    优选地,所述Ar为取代或未取代的单苯环基团、取代或未取代的联苯基团、取代或未取代的稠环化合物基团,优选取代或未取代的苯基、取代或未取代的萘基;所述取代的单苯环基团、取代的联苯基团或取代的稠环化合物基团的取代基为含有1~20个碳原子的烃基或有杂原子取代的碳数为1~20的烃基;
    进一步优选地,所述含有不饱和双键有机硅改性的多元酚化合物选自
    Figure PCTCN2016099135-appb-100009
  5. 一种如权利要求1-4任一项所述的含有不饱和双键有机硅改性的多元酚化合物的制备方法,其特征在于,当R10、R12各自独立地选自取代或未取代的芳香基、取代或未取代的支链或直链的含有2~12个碳原子的不饱和烃基或取代或未取代的支链或直链的含有2~12个碳原子的饱和烃基,且R10、R12中至少含有1个不饱和基团,且R11为取代或未取代的芳氧基时,所述制备方法包括如下步骤:
    (1)将具有式(III)结构的二氯硅烷单体与具有式(IV)结构的多元酚单体在无水溶剂中进行反应;
    Figure PCTCN2016099135-appb-100010
    (2)向步骤(1)的反应体系中加入具有单官能团的酚H-R11,继续进行反应,得到式(I)所述的多元酚化合物;
    R′1、R′2、R′3、R′4、R′5、R′6、R′7、R′8、R′9均各自独立地选自氢原子或各自独立地选自式(V)的结构,且所述R1′、R2′、R3′、R4′、R5′、R6′、R7′、R8′、R9′中至少3个不为氢原子;
    Figure PCTCN2016099135-appb-100011
    所述R13具有与权利要求1~3任一项所述的R13相同的意义;
    或者,当R10、R11、R12均各自独立地选自取代或未取代的芳香基、取代或未取代的支链或直链的含有2~12个碳原子的不饱和烃基或取代或未取代的支链或直链的含有2~12个碳原子的饱和烃基,且R10、R11、R12中至少含有1个不饱和基团时,所述制备方法包括如下步骤:
    (a)将具有式(VI)的一氯硅烷单体与具有式(IV)结构的多元酚单体在无水溶剂中进行反应,得到式(I)所述的多元酚化合物;
    Figure PCTCN2016099135-appb-100012
    优选地,步骤(1)、步骤(2)和步骤(a)所述反应温度均各自独立地选自0~60℃,优选20~50℃,进一步优选30~40℃;
    优选地,步骤(1)、步骤(2)和步骤(a)所述反应时间均各自独立地选自2~24h,优选3~22h,进一步优选4~20h,特别优选5~10h;
    优选地,步骤(1)、步骤(2)和步骤(a)的无水溶剂选自甲苯、二甲苯、四氢呋喃、二氯甲烷、丙酮或丁酮中的任意1种或者至少2种的混合物;
    优选地,所述式(IV)结构的多元酚单体选自三(4-羟基苯基)甲烷、1,1,1-三(4-羟基苯基)乙烷、双(4-羟基-3-甲基苯基)-4-羟基-3-甲氧基苯基甲烷、4,4′-[(3-羟基苯基)亚甲基]双(2,6-二甲基苯酚)、4,4′-[(3-羟基苯基)亚甲基]双(2,3,6-三甲基 苯酚)、4,4′-[(4-羟基苯基)亚甲基]双(2,6-二甲基苯酚)、4,4′-[(4-羟基苯基)亚甲基]双(2,3,6-三甲基苯酚)、4,4′-[(4-羟基-3-乙氧基苯基)亚甲基]双(2,3,6-三甲基苯酚)、4,4′-[4-(4-羟基苯基)亚环己基]双(2,6-二甲基苯酚)、4,4′-[1-[4-[1-(4-羟基-3,5-二甲基苯基)-1-甲基乙基]苯基]亚乙基]双(2,6-二甲基苯酚)、4,4′-[1-[4-[1-(4-羟基-3-氟苯基)-1-甲基乙基]苯基]亚乙基]双(2,6-二甲基苯酚)、1,1,2,2-四(4-羟基苯基)乙烷、α,α,α′,α′-四(4-羟基苯基)-对二甲苯、2,2-双[4,4-双(4-羟基苯基)环己基]丙烷、4,4′,4″,4″′-(1,2-乙二亚基)四(2,6-二甲基苯酚)、4,4′,4″,4″′-(1,4-亚苯基二亚甲基)四(2,6-二甲基苯酚)或3,3′,5,5′,7,7′-六(4-羟基苯基)-1,1′-双金刚烷中的任意1种。
  6. 一种树脂组合物,其特征在于,所述树脂组合物含有权利要求1-4任一项所述的含有不饱和双键有机硅改性的多元酚化合物;
    优选地,所述树脂组合物还可以包括除式(I)结构的不饱和双键有机硅改性的多元酚化合物以外的带有双键的树脂和引发剂;
    优选地,所述除式(I)结构的不饱和双键有机硅改性的多元酚化合物以外的带有双键的树脂为聚烯烃树脂或有机硅树脂;
    优选地,所述聚烯烃树脂优选自苯乙烯-丁二烯共聚物、聚丁二烯或苯乙烯-丁二烯-二乙烯基苯共聚物中的任意1种或者至少2种的混合物;
    优选地,所述苯乙烯-丁二烯共聚物、聚丁二烯、苯乙烯-丁二烯-二乙烯基苯共聚物均可各自独立地被氨基改性、马来酸酐改性、环氧基改性、丙烯酸酯改性、羟基改性或羧基改性;
    优选地,所述有机硅树脂选自如下含有不饱和双键的有机硅化合物结构:
    Figure PCTCN2016099135-appb-100013
    其中,R12、R13和R14均独立地选自取代或未取代的C1~C8的直链烷基、取代 或未取代的C1~C8支链烷基、取代或未取代的苯基或取代或未取代的C2~C10含C=C的基团;且R12、R13和R14三者至少有一个为取代或未取代的C2~C10含C=C的基团;0≤m≤100,
    或,
    Figure PCTCN2016099135-appb-100014
    其中,R15选自取代或未取代的C1~C12直链烷基或取代或未取代的C1~C12支链烷基;2≤p≤10,且p为自然数;
    优选地,所述树脂组合物还可以包括硅氢树脂和硅氢加成催化剂;
    优选地,所述硅氢树脂选自如下含有硅氢键的有机硅化合物结构:
    Figure PCTCN2016099135-appb-100015
    R16、R17和R18均独立地选自取代或未取代的C1~C8的直链烷基、取代或未取代的C1~C8支链烷基、取代或未取代的苯基或取代或H原子;且R16、R17和R18三者至少有一个为H原子;0≤i≤100,
    或,
    Figure PCTCN2016099135-appb-100016
    R21选自取代或未取代的碳原子数为1~12的直链烷基或取代或未取代的碳原子数为1~12的支链烷基;2≤k≤10,且k为自然数;
    优选地,所述树脂组合物还可以包括无机填料或/和阻燃剂。
  7. 一种树脂胶液,其特征在于,所述树脂胶液为将权利要求6所述的树脂组合物溶解或分散在溶剂中得到。
  8. 一种树脂固化物,其特征在于,所述树脂固化物通过固化如权利要求6所述的树脂组合物得到。
  9. 一种预浸料,其特征在于,所述预浸料包括增强材料,及通过浸渍干燥后附着在其上的如权利要求6所述的树脂组合物。
  10. 一种覆铜板,其特征在于,所述覆铜板含有至少一张如权利要求9所述的预浸料。
  11. 一种层压板,其特征在于,所述层压板含有至少一张如权利要求9所述的预浸料。
  12. 一种印制电路板,其特征在于,所述印制电路板含有至少一张如权利要求9所述的预浸料。
PCT/CN2016/099135 2015-12-25 2016-09-14 多元酚化合物、制备方法及用途 WO2017107590A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511003718.7 2015-12-25
CN201511003718.7A CN106916180B (zh) 2015-12-25 2015-12-25 多元酚化合物、制备方法及用途

Publications (1)

Publication Number Publication Date
WO2017107590A1 true WO2017107590A1 (zh) 2017-06-29

Family

ID=59088947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099135 WO2017107590A1 (zh) 2015-12-25 2016-09-14 多元酚化合物、制备方法及用途

Country Status (2)

Country Link
CN (1) CN106916180B (zh)
WO (1) WO2017107590A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11720022B2 (en) 2019-02-12 2023-08-08 Samsung Electronics Co., Ltd. Resist compound, method of forming pattern using the same, and method of manufacturing semiconductor device using the same
KR102215511B1 (ko) * 2019-02-12 2021-02-17 인하대학교 산학협력단 레지스트 화합물, 이를 사용한 패턴 형성 방법, 및 이를 사용한 반도체 소자 제조 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134007A (ja) * 1994-11-04 1996-05-28 Shin Etsu Chem Co Ltd 1,4−ビス(ジフェニルヒドロキシメチル)ベンゼン誘導体及びレジスト組成物
JP2001151783A (ja) * 1999-09-17 2001-06-05 Nippon Soda Co Ltd 新規o−シリル化フェノール誘導体を成分化合物とするエポキシ樹脂硬化組成物
US20040096773A1 (en) * 2002-11-07 2004-05-20 Myung Sup Jung Soluble polyimide for photosensitive polyimide precursor and photosensitive polyimide precursor composition comprising the soluble polyimide

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011512441A (ja) * 2008-02-15 2011-04-21 ダウ グローバル テクノロジーズ リミティド ライアビリティ カンパニー シリコーンポリエーテルを含む熱硬化性組成物、その製造、および使用
US10030141B2 (en) * 2012-10-19 2018-07-24 Mitsubishi Gas Chemical Company, Inc. Resin composition, pre-preg, laminate, metal foil-clad laminate, and printed wiring board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134007A (ja) * 1994-11-04 1996-05-28 Shin Etsu Chem Co Ltd 1,4−ビス(ジフェニルヒドロキシメチル)ベンゼン誘導体及びレジスト組成物
JP2001151783A (ja) * 1999-09-17 2001-06-05 Nippon Soda Co Ltd 新規o−シリル化フェノール誘導体を成分化合物とするエポキシ樹脂硬化組成物
US20040096773A1 (en) * 2002-11-07 2004-05-20 Myung Sup Jung Soluble polyimide for photosensitive polyimide precursor and photosensitive polyimide precursor composition comprising the soluble polyimide

Also Published As

Publication number Publication date
CN106916180A (zh) 2017-07-04
CN106916180B (zh) 2019-04-30

Similar Documents

Publication Publication Date Title
WO2017107589A1 (zh) 一种有机硅改性的聚苯醚树脂、制备方法及用途
CN110423342B (zh) 一种有机硅改性的聚苯醚树脂及其制备方法和用途
CN110317541B (zh) 一种粘结片以及高速覆铜板的制备方法
KR20050023039A (ko) 수지조성물, 이를 이용한 라미네이트용 프리프렉 및 그프리프렉을 이용하여 제조한 금속-클래드 라미네이트
CN112080102A (zh) 树脂组合物及具有其的半固化片、绝缘薄膜、覆金属箔层压板、印制线路板
US9469757B2 (en) Low dissipation factor resin composition and product made thereby
CN108148196B (zh) 一种苯乙烯基硅氧基聚苯醚树脂及其制备方法和应用
CN109988299B (zh) 一种含环氧基的有机硅改性聚苯醚树脂及其制备方法和用途
TW201723019A (zh) 改質聚苯醚樹脂、其製備方法及樹脂組合物
WO2017107588A1 (zh) 有机硅改性的酚醛树脂、制备方法及用途
CN110527037B (zh) 一种无卤聚苯醚树脂组合物及使用其制作的半固化片和层压板
CN116003687B (zh) 马来酰亚胺树脂预聚物及其制备方法、树脂组合物和应用
TW201723020A (zh) 酚芴改質的聚苯醚
CN111393594A (zh) 一种活性酯树脂及其树脂组合物
CN110938234A (zh) 阻燃性化合物、其制造方法、树脂组合物及其制品
CN109971175B (zh) 改性马来酰亚胺树脂组合物及其制备的半固化片和层压板
WO2017107590A1 (zh) 多元酚化合物、制备方法及用途
CN108148202B (zh) 一种苯乙烯基聚硅苯醚树脂及其制备方法和应用
KR20220092394A (ko) 환상 이미드 수지 조성물, 프리프레그, 동장 적층판 및 프린트 배선판
WO2018098923A1 (zh) 一种苯乙烯基硅氧基酚醛树脂及其制备方法和应用
WO2020248501A1 (zh) 活性酯化合物、树脂组合物及具有其的半固化片、绝缘薄膜、覆金属箔层压板、印制线路板
WO2023032534A1 (ja) アリルエーテル化合物、樹脂組成物及びその硬化物
CN114230793B (zh) 改性双马来酰亚胺预聚物及制备方法、应用
JP7289902B2 (ja) 変性アリル化合物、変性ビスマレイミドプレポリマー及びそれらの使用
WO2014190529A1 (zh) 氰酸酯树脂组合物及其用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 31.08.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16877401

Country of ref document: EP

Kind code of ref document: A1