WO2017107552A1 - 一种具有电子阻挡与空穴调整层的外延结构及其制备方法 - Google Patents

一种具有电子阻挡与空穴调整层的外延结构及其制备方法 Download PDF

Info

Publication number
WO2017107552A1
WO2017107552A1 PCT/CN2016/097872 CN2016097872W WO2017107552A1 WO 2017107552 A1 WO2017107552 A1 WO 2017107552A1 CN 2016097872 W CN2016097872 W CN 2016097872W WO 2017107552 A1 WO2017107552 A1 WO 2017107552A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
hole
electron blocking
sub
epitaxial structure
Prior art date
Application number
PCT/CN2016/097872
Other languages
English (en)
French (fr)
Inventor
张胜佳
蔡吉明
黄文宾
蓝永凌
林兓兓
张家宏
Original Assignee
厦门市三安光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510978815.1A external-priority patent/CN105552176B/zh
Priority claimed from CN201510978761.9A external-priority patent/CN105428476B/zh
Application filed by 厦门市三安光电科技有限公司 filed Critical 厦门市三安光电科技有限公司
Publication of WO2017107552A1 publication Critical patent/WO2017107552A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Definitions

  • the present invention belongs to the technical field of semiconductor fabrication, and in particular, to an epitaxial structure having an electron blocking and hole adjusting layer.
  • LED Light Emitting Diode
  • gallium nitride-based epitaxy is the third-generation epitaxial material after Si and GaAs, and has developed rapidly in recent years.
  • problems For example, when the LED is in operation, a large amount of electrons will overflow from the active layer, which greatly reduces the luminous efficiency.
  • a commonly used solution is to grow a P-type aluminum gallium nitride electron blocking layer after the light-emitting layer to reduce electron overflow, and also significantly reduce the dislocation density of the P-type layer in the epitaxial wafer, and weaken the magnesium.
  • the self-compensation effect and the reduction or even suppression of the generation of non-radiative recombination centers improve the injection efficiency of holes.
  • the technical problem to be solved by the present invention is to provide an epitaxial structure having an electron blocking and hole adjusting layer and a preparation method thereof to solve the problems mentioned in the above background art.
  • the technical solution provided by the present invention is: an epitaxial structure having an electron blocking and hole adjusting layer, including a substrate, a buffer layer, an N-type impurity semiconductor layer, a light-emitting layer, and a P-type in order from bottom to top.
  • a multilayer structure formed by stacking a P-type impurity hole injection layer of N and a plurality of sub-combination layers; each of the sub-combination layers is made of an electron blocking layer of Al xl In yl Ga xl ⁇ and a material of Al x2 In y2 a hole adjustment layer composition of Ga, where y 0 ⁇ x 0 ⁇ 0, xi > yi > 0, x 2 ⁇ y 2 ⁇ 0, ⁇ 1 > ⁇ 2 ⁇ 0 , y 0 > y 2 > y ⁇ °
  • the sub-combination layer located in the lower part of the multi-layer structure is an unintentional P-type miscellaneous layer
  • the sub-combination layer located in the upper part is an intentional P-type miscellaneous layer
  • the unintentional P-type is miscellaneous
  • the number of sub-combination layers is greater than or equal to the number of sub-combination layers of the intentional P-type.
  • the P-type impurity concentration of the hole injection layer is larger than the P-type impurity concentration of the multilayer structure.
  • the P-type impurity in the formation of the hole injection layer enters the unintentional P-type miscellaneous sub-layer by the delay effect and the diffusion under the subsequent high-temperature condition.
  • the number of sub-combination layers of the intentional P-type is ⁇ 3.
  • At least two of the sub-combination layers in the multilayer structure have different A1 components.
  • the number of the sub-combination layers in the multi-layer structure is ⁇ 2.
  • each of the sub-combination layers has a total thickness of 10 angstroms to 200 angstroms.
  • the hole injection layer has a thickness of 50 angstroms to 1000 angstroms.
  • the A1 composition of the hole injection layer, the electron blocking layer and the hole adjustment layer is changed in a constant manner, parabolic, parabolic, incremental or declining.
  • the average concentration of the P-type impurity of the hole injection layer is ⁇ 10.
  • the average concentration of the P-type impurities of the multilayer structure is ⁇ 10
  • the present invention also proposes a method for preparing an epitaxial structure having an electron blocking and hole-adjusting layer, the method comprising the steps of:
  • depositing material is Al x0 In y0 Ga P-type impurity hole injection layer on the light-emitting layer;
  • a deposition structure of an electron blocking layer of Al xl In yl Ga xl — and a multilayer structure of a hole adjustment layer of Al x2 In y2 Ga x 2 — ⁇ are alternately stacked on the hole injection layer, Among them, y. ⁇ x. ⁇ 0, X l > yi > 0, x 2 ⁇ y 2> 0, xl > x 2 ⁇ xo, yo ⁇ y 2 ⁇ yi ;
  • the temperature at which the P-type doped hole injection layer is deposited in the reaction chamber is lower than the temperature at which the multilayer structure is deposited.
  • the temperature difference between the temperature at which the P-type impurity hole injecting layer is deposited and the reaction chamber in which the multilayer structure is deposited is 50 to 100 °C.
  • the pressure of the reaction chamber for depositing the P-type impurity hole injection layer is the same as the pressure of the reaction chamber for depositing the multilayer structure, and the pressure value is 50 to 500 torr.
  • the P-type impurity source is stopped, and the unintentional P-type miscellaneous combination layer located in the lower portion of the multi-layer structure is deposited, and the P in the hole injection layer formation process Type-type impurities enter the unintentional P-type miscellaneous combination layer by a delay effect and diffusion under subsequent high-temperature conditions; then, a P-type impurity source is again introduced, and deposition forms an intentional P-type misplacement located in the upper portion of the multi-layer structure.
  • Miscellaneous combination layer is stopped, and the unintentional P-type miscellaneous combination layer located in the lower portion of the multi-layer structure is deposited, and the P in the hole injection layer formation process
  • Type-type impurities enter the unintentional P-type miscellaneous combination layer by a delay effect and diffusion under subsequent high-temperature conditions; then, a P-type impurity source is again introduced, and deposition forms an intentional P-type misplacement located in the upper portion of the multi-layer structure.
  • the number of the unintentional P-type miscellaneous combination layers is greater than or equal to the number of the intentional P-type miscellaneous combination layers.
  • the impurity concentration of the P-type hole injection layer is greater than the impurity concentration of the P-type multilayer structure.
  • P-type impurity concentration of said multilayer structure mean ⁇ ⁇ 10 16.
  • the preferred a multilayer structure of at least two different sub-component A1 composition layer.
  • the preferred a multilayer structure of a combination of layers of neutron number ⁇ 2.
  • the total thickness of each of said sub-composition layer is 10 ⁇ to 200 ⁇ .
  • the thickness of the hole injection layer is 50 ⁇ to 1000 ⁇ .
  • the hole injection layer, an electron blocking layer and changes in the way the hole component A1 is constant adjustment layer uncomfortable heteroaryl, parabolic, heteroaryl incremented or decremented change badly.
  • the present invention inserts a P-type hole injection between the light-emitting layer and the P-type impurity semiconductor layer in the epitaxial structure In-layer, providing sufficient holes with high concentration and close to the light-emitting layer can effectively improve the luminous efficiency, and the same as the lattice difference between the buffer light-emitting layer and the subsequent multilayer structure and achieving low-energy characteristics, the hole injection
  • the layer is composed of a material having a low A1 composition and a high In composition.
  • the electron blocking layer of the high Al component and the hole adjustment layer of the low Al component are alternately laminated to form a multilayer structure, and the structure in which the high A1 component and the low A1 component are alternately distributed avoids the high A1 component.
  • the resulting material quality is reduced, and the low-energy characteristics of the In composition are combined with the A1 component to modulate the energy level of the multilayer structure to further improve the overall electronic barrier and hole adjustment of the multilayer structure.
  • the P-type impurity source is not introduced into the sub-combination layer of the multilayer structure adjacent to the hole injection layer, but enters the sub-combination layer by the retardation effect of the P-type impurity and the diffusion under the subsequent high-temperature condition. Then, P-type impurities are plunged into the sub-combination layer of the P-type miscellaneous semiconductor layer which continues to grow, and the crystal quality of the multilayer structure is improved without ensuring the voltage characteristics.
  • the hole injection layer and the multilayer structure are both aluminum indium gallium nitride material layers, and the composition content of aluminum and indium in the multilayer structure is adjusted to reduce the formation of good electron blocking performance. Its resistance value, combined with the effective hole source provided by the aforementioned hole injection layer, improves the antistatic property of the chip.
  • FIG. 1 is a schematic diagram of an epitaxial structure of a light emitting semiconductor according to Embodiment 1 of the present invention.
  • FIG. 2 is a first schematic view of a multilayer structure according to Embodiment 1 of the present invention.
  • FIG. 3 is a second schematic structural view of a multilayer structure according to Embodiment 1 of the present invention.
  • FIG. 4 is a flow chart of a method for fabricating an epitaxial structure of a light emitting semiconductor according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic diagram of an epitaxial structure of a light emitting semiconductor according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic diagram of a multilayer structure according to Embodiment 2 of the present invention.
  • substrate 10. buffer layer; 30. N-type miscellaneous semiconductor layer; 40. light-emitting layer; 50. P-type miscellaneous hole injection layer; 60. multi-layer structure; 61, 61 ', 62, 62'.
  • Sub-combination layer 611, 611, 621, 62 ⁇ . electron blocking layer; 612, 612, 622, 622'. The entire layer; 70. P type miscellaneous semiconductor layer.
  • an epitaxial structure having a current blocking and hole adjusting layer including a substrate 10, a buffer layer 20, an N-type impurity semiconductor layer 30, a light emitting layer 40, and a P.
  • a P-type doped hole injection layer 50 having a thickness of 50 angstroms to 1000 angstroms, and a plurality of sub-combination layers (61, 61' 62, and 62') stacked to form a multilayer structure 60; each sub-combination layer An electron blocking layer (611, 611, 621, 621) of Al xl In yl Ga x l - yl N and a hole adjusting layer (612, 612) of Al x2 In y2 Ga ⁇ x2 - y2 N , , 622, 622,) composition, where y. ⁇ x.
  • the main function of the P-type impurity hole injecting layer 50 is to provide a sufficient hole concentration to increase the electron hole recombination efficiency, in order to facilitate the better migration of holes into the light-emitting layer 40, the A1 component of the layer is designed. Too low, and in order to avoid excessive deposition temperature to destroy the quality of the luminescent layer 40, a lower deposition temperature is employed, so that the In miscellaneous component of the layer is too high, that is, in accordance with y. ⁇ x. ⁇ 0 relationship.
  • the layer preferably has a higher A1 composition, X l ⁇ yi ⁇ 0;
  • the subsequently deposited hole adjustment layer (612, 612', 622, 622') adopts a lower A1 component, and further optimizes the mismatch of A1 and In.
  • the present invention further defines the concentration of the A1 component and the In component in the two layers, X l ⁇ X 2 ⁇ XQ , yo> y 2> y ⁇ °
  • the A1 composition of at least two sub-combination layers (61, 61' and 62, 62') in the multilayer structure 60 is different;
  • the number of 60 neutron combination layers is ⁇ 2.
  • the total thickness of each sub-combination layer is from 10 angstroms to 200 angstroms.
  • the sub-combination layers 61 and 62 of the different A1 components adjacent to the hole injection layer 50 are unintentional P-type miscellaneous layers, and the sub-combination layer 61 of the different A1 components adjacent to the P-type impurity semiconductor layer 70 is adjacent.
  • the Al composition 61 is the same as the Al composition of 6 ⁇ , 62 and 62', and it is preferred that the electron blocking layer in each sub-combination layer is the same as the A1 composition in the hole adjustment layer, that is, layers 611 and 612, 611 ' and 612. ', 621 and 622, 621 ' and 622, the A1 component is the same.
  • the sub-combination layers 61 and 61', 62 and 62' are different layers of the A1 component, and are in a sequence of 61, 62, 61 ', 62' constant or Parabolic or incremental or decreasing variation, and x 2 varies from 0.01 to 0.25.
  • the composition of indium can be adjusted by adjusting the change in aluminum concentration. The range of 2 varies from 0.01 to 0.1.
  • the multilayer structure 60 has three sub-combination layers 6 1 , 61 ′ and 62 , wherein 61 and 6 ⁇ are undisturbed sub-combination layers, 62 It is a P-type miscellaneous combination layer; and the A1 components are different, and may be changed according to the order of 61, 61 ', 62, or according to a constant miscellaneous or parabolic shape, or the change range of ⁇ and ⁇ is: 0.01 ⁇ 0.25.
  • the present invention also proposes a preparation method comprising the following steps:
  • the SO provides a substrate 10, and the substrate 10 is selected from one of sapphire, silicon carbide, silicon, gallium nitride, and the like;
  • S02 depositing a buffer layer 20 on the substrate 10, and the buffer layer 20 is a non-disinfective nitride layer or a low-doped nitride layer;
  • S05 adjusting the temperature of the reaction chamber to 600 ⁇ 1000 ° C, the pressure is 50-500 torr, and the deposition material is Al ⁇ ⁇ ⁇ y0 G ai — x . — y .
  • a P-type impurity hole injecting layer 50 of N is over the light-emitting layer 40, wherein y. ⁇ x. ⁇ 0, the P-type impurity hole injecting layer 50 has a thickness of 50 ⁇ to 1000 ⁇ , and the P-type impurity concentration is ⁇ 1 ⁇ 10 18 , and the high-concentration P-type impurity provides sufficient holes to improve the luminescent layer 40.
  • the composite efficiency; and this impurity higher than the subsequent multi-layer structure 60 impurity concentration also provides a prerequisite for the migration of impurities in the subsequent deposition layer.
  • the deposition temperature of the layer is slightly higher than or equal to the temperature of the light-emitting layer 40, thereby preventing the light-emitting layer 40 from being destroyed due to the high temperature environment;
  • the multilayer structure 60 includes at least two sub-combination layers having different A1 components, and each sub-combination layer is composed of a pair of electron blocking layers of Al xl In yl Ga xl — ⁇ . It is composed of a hole-adjusting layer of Al x2 In y2 Ga !_ x2 _ y2 N , and the Al composition in the electron blocking layer and the hole-adjusting layer changes constantly, parabolically, parabolically, incrementally or diminishingly. miscellaneous;
  • the specific process of depositing the multilayer structure 60 in this embodiment is: after the deposition of the P-type impurity hole injection layer 50 is completed, the P-type impurity source is stopped, and the diffusion effect and the diffusion under the subsequent high-temperature conditions are passed.
  • An unintentionally P-type miscellaneous sub-combination layer 61 consisting of an electron blocking layer 611 of Al xl In yl Ga xl - yl N and a hole adjusting layer 612 of Al x2 In y2 G ai - x2 - y2 N
  • the deposition sub-combination layer 62 is further formed, which is also composed of an electron blocking layer 621 of Al xl In yl Ga xl - yl N and a hole adjustment layer 622 of Al x2 In y2 Ga , wherein x
  • the sub-combination layer in which 62 is a different aluminum component it is preferable that the sub-combination layer 61 has a higher A1 composition than the sub-combination layer 62, and the aluminum and indium components satisfy the relationship compared to the hole injection layer 50: X l > ⁇ 2 ⁇ ⁇ , y. ⁇ y 2 ⁇ y 1 .
  • the sub-combination layer 61' and the sub-combination layer 62' which are the same or different from the sub-combination layer 61 and the sub-combination layer 62, respectively, are deposited, and the material is Al xl In yl Ga xl — yl N electron blocking layers 61 ⁇ , 621 ' and the material is Al x2 In y2 Ga ⁇ 2
  • the hole adjustment layers 612' and 622' of N are composed.
  • the deposition temperature is high, and the P-type impurity source also has a diffusion effect under high temperature conditions.
  • the ⁇ P-type impurity source also has a memory delay effect, so that the high-concentration P-type impurity source in the hole injection layer 50 and the delayed P-type impurity source in the chamber can be brought into the adjacent unintentional P-type by using these two characteristics.
  • the resistance is also small, and the use voltage of the finally formed semiconductor element is reduced without affecting the crystal quality.
  • the sub-combination layers 61' and 62' adjacent to the P-type impurity semiconductor layer 70 have a P-type impurity source due to the miscellaneous, so that the average P-type impurity concentration in the formed multilayer structure is ⁇ 1> ⁇ 1016, further reducing the semiconductor.
  • Component voltage [0068]
  • the deposited multilayer structure 60 has two or three sub-combination layers, and one or two sub-combination layers adjacent to the hole-adjusting layer are undistracted layers, and adjacent to the P-type
  • the sub-combination layer of the hetero semiconductor layer 70 is a P-type miscellaneous layer.
  • the hole injection layer 50 and the multilayer structure 60 are both aluminum indium gallium nitride material layers.
  • the aluminum component is higher, the electron blocking effect is better, but the stress is also increased. The crystal quality is deteriorated. Therefore, in this embodiment, the method of changing the aluminum composition and the structure of the multi-layer stack are used to alleviate the stress of the layer, and the resistance value of the multi-layer structure 60 is adjusted in the same manner as the non-miscible/complex mode of the P-type impurity source. Further, a P-type structural layer having good electron blocking performance and low resistance characteristics is obtained, and the high-concentration hole injection layer 50 is used to provide an effective hole injection source, thereby improving the antistatic property of the chip.
  • this embodiment differs from Embodiment 1 in the unintentional P-type sub-combination layer (61, 62, . . . in the multilayer structure 60 adjacent to the hole injection layer 50. .)
  • the number is greater than 3, and then continue to deposit the deliberate P-type miscellaneous combination layer (6 ⁇ , 62' ...) on this unintentionally P-type sub-combination layer, and then this unintentional type is uncomfortable.
  • the sub-combination layer and the bismuth-type miscellaneous sub-layer are sequentially stacked to form a multi-layer structure 60.
  • the unintentional ⁇ -type sub-combination layer adjacent to the hole injection layer 50 and the number of deliberate ⁇ -type miscellaneous sub-layers deposited thereon are flexibly adjusted according to actual electrical performance requirements, and are not limited to the number of the embodiment. .
  • the number of sub-combination layers in the multilayer structure 60 is greater than 8 ⁇ , the number of sub-combination layers is preferably less than or equal to 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

一种具有电子阻挡与空穴调整层的外延结构及其制备方法,从下至上依次生长缓冲层(20)、N型掺杂外延层(30)、发光层(40)和P型掺杂外延层(70),其特征在于:所述发光层(40)与P型掺杂外延层(70)之间还包含材料为Al x0In y0Ga 1-x0-y0N的P型掺杂空穴注入层(50)和复数个子组合层堆叠形成的多层结构(60);所述每一个子组合层由材料为Al x1In y1Ga 1-x1-y1N的电子阻挡层与材料为Al x2In y2Ga 1-x2-y2N的空穴调整层组成,其中,y 0>x 0>0,x 1>y 1>0,x 2≥y 2>0,x 1>x 2≥x 0,y 0>y 2>y 1。所述空穴注入层(50)中的P型杂质通过延迟效果和在后续高温的条件下的扩散作用进入临近空穴注入层(50)的子组合层内。调整多层结构(60)中铝和铟的组分含量,形成良好的电子阻挡性能,并降低电阻值,提供有效空穴注入来源,改善芯片的抗静电性能。

Description

技术领域
[0001] 本发明属于半导体制备技术领域, 特别涉及一种具有电子阻挡与空穴调整层的 外延结构。
背景技术
[0002] 发光二极管 (LED, Light Emitting Diode) 是一种外延固体发光器件, 通过在 器件两端加载正向电压, 电子和空穴在有源区复合产生大量光子, 电能转化为 光能。 而氮化镓基外延是继 Si和 GaAs之后的第三代外延材料, 近年来发展较为 迅速。 但同样也面临着很多问题, 例如, 当 LED处于工作状态吋, 大量的电子会 从有源层溢出, 使得发光效率大大降低。 目前常采用的解决方法是在发光层之 后生长一层 P型氮化铝镓电子阻挡层, 用以减少电子的溢出, 同吋还可以显著降 低外延片中 P型层的位错密度, 减弱镁的自补偿效应以及减少甚至抑制非辐射复 合中心的产生, 提高空穴的注入效率。
技术问题
[0003] 目前大部分 P型氮化铝镓是铝组分是恒定不变的单层结构, 随着镁的增加, 氮 化铝镓中空穴浓度单调上升, 当空穴浓度达到最大后, 随着镁的继续增加, 镁 的自补偿效应, 使空穴浓度反而下降, 且材料劣化产生裂纹。 因此, P型电子阻 挡层结构的设计对氮化镓基 LED的内量子效率和发光效率有很重要的影响。 问题的解决方案
技术解决方案
[0004] 本发明所解决的技术问题在于提供一种具有电子阻挡与空穴调整层的外延结构 及制备方法, 以解决上述背景技术中所提及的问题。
[0005] 本发明提供的技术方案为: 一种具有电子阻挡与空穴调整层的外延结构, 从下 至上依次包括衬底、 缓冲层、 N型惨杂半导体层、 发光层和 P型惨杂半导体层, 其中, 所述发光层与 P型惨杂半导体层之间还包含材料为 Al x0In y0Ga x。— y。N的 P型 惨杂空穴注入层和复数个子组合层堆叠形成的多层结构; 所述每一个子组合层 由材料为 Al xlIn ylGa xl ^的电子阻挡层与材料为 Al x2In y2Ga 的空穴调整层 组成, 其中, y 0〉x 0〉0, x i > y i > 0, x 2≥y 2〉0, χ 1 > χ 2≥χ 0 , y 0> y 2> y ι°
[0006] 优选的, 所述多层结构中位于下部的子组合层为非故意 P型惨杂层, 位于上部 的子组合层为故意 P型惨杂层, 所述非故意 P型惨杂的子组合层个数大于或等于 所述故意 P型惨杂的子组合层个数。
[0007] 优选的, 所述空穴注入层的 P型杂质浓度大于多层结构的 P型杂质浓度。
[0008] 优选的, 所述空穴注入层形成过程中的 P型杂质通过延迟效应及后续高温条件 下的扩散作用进入非故意 P型惨杂子组合层内。
[0009] 优选的, 所述故意 P型惨杂的子组合层个数≤3。
[0010] 优选的, 所述多层结构中至少 2个子组合层的 A1组分不同。
[0011] 优选的, 所述多层结构中子组合层的个数≥2。
[0012] 优选的, 每一所述子组合层的总厚度为 10埃〜 200埃。
[0013] 优选的, 所述空穴注入层的厚度为 50埃〜 1000埃。
[0014] 优选的, 所述空穴注入层、 电子阻挡层与空穴调整层的 A1组分的变化方式为恒 定惨杂、 抛物线形、 递增或递减变化惨杂。
[0015] 优选的, 所述空穴注入层的 P型杂质平均浓度≥^10
[0016] 优选的, 所述多层结构的 P型杂质平均浓度≥^10
[0017] 为制备上述的外延结构, 本发明同吋提出一种具有电子阻挡与空穴调整层的外 延结构的制备方法, 所述方法包括以下步骤:
[0018] 提供一衬底;
[0019] 沉积缓冲层于所述衬底之上;
[0020] 沉积 N型惨杂半导体层于所述缓冲层之上;
[0021] 沉积发光层于所述 N型惨杂半导体层之上;
[0022] 沉积材料为 Al x0In y0Ga 的 P型惨杂空穴注入层于所述发光层之上;
[0023] 沉积材料为 Al xlIn ylGa xl— 的电子阻挡层与材料为 Al x2In y2Ga x2—^的空穴调 整层交替堆叠组成的多层结构于所述空穴注入层之上, 其中, y。〉x。〉0, X l > y i > 0, x 2≥y 2> 0, x l > x 2≥x o, y o〉y 2〉y i ;
[0024] 沉积 P型惨杂半导体层于所述多层结构之上, 形成外延结构。
[0025] 优选的, 沉积所述 P型惨杂空穴注入层吋反应室的温度低于沉积所述多层结构 吋反应室的温度。
[0026] 优选的, 沉积所述 P型惨杂空穴注入层吋反应室的温度与沉积所述多层结构吋 反应室的温度差值为 50~100°C。
[0027] 优选的, 沉积所述 P型惨杂空穴注入层吋反应室的压力与沉积所述多层结构吋 反应室的压力相同, 压力值为 50~500torr。
[0028] 优选的, 沉积多层结构过程中, 首先停止通入 P型杂质源, 沉积位于多层结构 下部的非故意 P型惨杂子组合层, 所述空穴注入层形成过程中的 P型杂质通过延 迟效应及后续高温条件下的扩散作用进入所述非故意 P型惨杂子组合层内; 然后 再次通入 P型杂质源, 沉积形成位于所述多层结构上部的故意 P型惨杂子组合层
[0029] 优选的, 所述非故意 P型惨杂子组合层的个数大于或等于所述故意 P型惨杂子组 合层的个数。
[0030] 优选的 : , 所述故意 P型惨杂子组合层的个数≤3。
[0031] 优选的 : , 所述空穴注入层的 P型杂质浓度大于多层结构的 P型杂质浓度。
[0032] 优选的 : , 所述空穴注入层的 P型杂质平均浓度≥^ 10 18。
[0033] 优选的 : , 所述多层结构的 P型杂质平均浓度≥^ 10 16。
[0034] 优选的 : , 所述多层结构中至少 2个子组合层的 A1组分不同。
[0035] 优选的 : , 所述多层结构中子组合层的个数≥2。
[0036] 优选的 : , 每一所述子组合层的总厚度为 10埃〜 200埃。
[0037] 优选的 : , 所述空穴注入层的厚度为 50埃〜 1000埃。
[0038] 优选的 : , 所述空穴注入层、 电子阻挡层与空穴调整层的 A1组分的变化方式为恒 定惨杂、 抛物线形、 递增或递减变化惨杂。
发明的有益效果
有益效果
[0039] 本发明通过在外延结构中的发光层与 P型惨杂半导体层之间插入一层 P型空穴注 入层, 以高浓度惨杂提供足够的空穴, 且临近发光层, 可有效提升发光效率, 同吋为缓冲发光层与后续多层结构的晶格差异及实现低能阶特性, 该空穴注入 层采用低 A1组分高 In组分的材料组成。
[0040] 随后生长高 A1组分的电子阻挡层和低 A1组分的空穴调整层交替层叠组成的多层 结构, 利用高 A1组分与低 A1组分交替分布的结构避免高 A1组分引起的材料质量 降低现象, 同吋利用 In组分低能阶的特性与 A1组分搭配调变多层结构的能阶变化 以进一步改善多层结构整体电子阻挡及空穴调整的作用。
[0041] 此外, 在沉积临近空穴注入层的多层结构的子组合层吋不通入 P型杂质源, 而 是通过 P型杂质的延迟效应及后续高温条件下的扩散作用进入该子组合层内; 然 后在继续生长的临近 P型惨杂半导体层的子组合层中惨入 P型杂质, 在保证不增 加电压特性的前提下, 提升多层结构的晶体质量。
[0042] 同吋, 所述空穴注入层和多层结构均为氮化铝铟镓材料层, 调整多层结构中铝 和铟的组分含量, 在形成良好的电子阻挡性能的同吋降低其阻值, 且结合前述 的空穴注入层提供的有效空穴来源改善芯片的抗静电性能。
对附图的简要说明
附图说明
[0043] 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本发明的 实施例一起用于解释本发明, 并不构成对本发明的限制。 此外, 附图数据是描 述概要, 不是按比例绘制。
[0044] 图 1为本发明实施例一之发光半导体外延结构示意图。
[0045] 图 2为本发明实施例一之多层结构示意图一。
[0046] 图 3为本发明实施例一之多层结构示意图二。
[0047] 图 4为本发明实施例一之发光半导体外延结构的制备方法流程图。
[0048] 图 5为本发明实施例二之发光半导体外延结构示意图。
[0049] 图 6为本发明实施例二之多层结构示意图。
[0050] 图中: 10.衬底; 20.缓冲层; 30. N型惨杂半导体层; 40.发光层; 50. P型惨杂 空穴注入层; 60.多层结构; 61、 61'、 62、 62'.
子组合层; 611、 611,、 621、 62Γ.电子阻挡层; 612、 612,、 622、 622'.空穴调 整层; 70. P型惨杂半导体层。 本发明的实施方式
[0051] 下面结合附图和实施例对本发明的具体实施方式进行详细说明。
[0052] 实施例 1
[0053] 参看附图 1和 2, 本发明提出的一种具有电流阻挡与空穴调整层的外延结构, 包 括衬底 10、 缓冲层 20、 N型惨杂半导体层 30、 发光层 40、 P型惨杂半导体层 70; 其中, 发光层 40与 P型惨杂半导体层 70之间还包含一材料为 Al x0In y0Ga x。— y。N、 厚度为 50埃〜 1000埃的 P型惨杂空穴注入层 50, 以及复数个子组合层 (61、 61' 62、 和 62') 堆叠形成的多层结构 60; 每一个子组合层均由材料为 Al xlIn ylGa xlylN的电子阻挡层 (611、 611,、 621、 621,) 与材料为 Al x2In y2Ga ^ x2y2N的空穴 调整层 (612、 612,、 622、 622,) 组成, 其中, y。〉x。〉0, x 1〉y 1〉0, x 2>y 2 〉0, Χ ι > χ 2>χ ο , y。〉y 2〉y 1。 由于 P型惨杂空穴注入层 50的主要作用是提供足 够的空穴浓度以增加电子空穴复合效率, 因此为了使空穴较好的迁移进入发光 层 40, 故设计该层的 A1组分偏低, 且为避免过高沉积温度破坏发光层 40质量, 则采用较低沉积温度, 从而使该层的 In惨杂组分偏高, 即符合 y。〉x。〉0的关系 。 而为了使多层结构 60中的电子阻挡层 (611、 611'、 621、 621') 具有更好的电 子阻挡效果, 该层优选较高的 A1组分, X ly i〉0; 同吋为缓解较高 Al组分所 引起的材料质量降低现象, 故随后沉积的空穴调整层 (612、 612'、 622、 622') 采用较低 A1组分, 且为进一步优化 A1与 In的惨杂比例, 得到更高的空穴调整作用 , 则该空穴调整层 (612、 612'、 622、 622') 的 In组分与该层 A1组分相近或略高 , 即X 2≥y 2〉0。 同吋, 为进一步提升 P型惨杂空穴注入层 50和多层结构 60各自的 功能作用, 本发明进一步限定此两层中 A1组分和 In组分的浓度, X lX 2X Q , y o> y 2> y ι°
[0054] 多层结构 60中至少 2个子组合层 (61、 61'和 62、 62') 的 A1组分不同; 多层结构
60中子组合层的个数≥2。 每一子组合层的总厚度为 10埃〜 200埃。 其中, 临近于 空穴注入层 50的不同 A1组分的子组合层 61和 62为非故意 P型惨杂层, 而临近于 P 型惨杂半导体层 70的不同 A1组分的子组合层 61 '和 62'为故意 P型惨杂层, 且子组 合层 61与 6Γ, 62与 62'的 Al组分相同, 同吋优选每一子组合层内电子阻挡层与空 穴调整层内的 A1组分相同, 即层 611和 612、 611 '和 612'、 621和 622、 621 '和 622, 的 A1组分相同。
[0055] 而作为此结构的一变形实施例, 子组合层 61与 61 ', 62与 62'为 A1组分不同层, 且按照 61、 62、 61 '、 62'的顺序为恒定惨杂或抛物线形或递增或递减变化, 其 , 和 x 2的变化范围为: 0.01〜0.25, 同吋为了得到更好的效果, 在调节铝浓度变化 吋亦可调节铟的组分, 使 y
Figure imgf000008_0001
2的变化范围为 0.01〜0.1。
[0056] 参看附图 3, 作为此结构的另一变形实施例, 此多层结构 60具有三个子组合层 6 1、 61 '和 62, 其中, 61、 6Γ为未惨杂子组合层, 62为 P型惨杂子组合层; 且 A1 组分不同, 并按照 61、 61 '、 62、 的顺序亦可依照恒定惨杂或抛物线形或递增或 递减变化, 其 ^和^的变化范围为: 0.01〜0.25。
[0057] 参看附图 4, 为制备上述外延结构, 本发明同吋提出一种制备方法, 其包括以 下步骤:
[0058] SO 提供一衬底 10, 衬底 10选用蓝宝石、 碳化硅、 硅、 氮化镓等材料中的一 种;
[0059] S02、 沉积缓冲层 20于衬底 10之上, 缓冲层 20为非惨杂氮化物层或低惨杂氮化 物层;
[0060] S03、 沉积 N型惨杂半导体层 30于缓冲层 20之上;
[0061] S04、 沉积发光层层 40于 N型半导体层 30之上;
[0062] S05、 调节反应室温度至 600~1000°C, 压力为 50~500torr, 沉积材料为 Al χΰΙη y0 Ga ix。— y。N的 P型惨杂空穴注入层 50于发光层 40之上, 其中, y。〉x。〉0, P型惨杂 空穴注入层 50的厚度为 50埃〜 1000埃, 其 P型杂质浓度≥1χ10 18, 利用此高浓度 P 型惨杂提供充足的空穴, 提高发光层 40中的复合效率; 且此高于后续多层结构 6 0惨杂浓度的杂质亦为后续沉积层中杂质的迁移提供先决条件。 同吋该层沉积温 度略高于或等同于发光层 40温度, 从而避免发光层 40因高温环境而被破坏;
[0063] S06、 保持压力不变, 调节反应室温度, 使温度高于空穴注入层 50的沉积温度 5 0~100°C , 沉积材料为 Al xlIn ylGa xl— 的电子阻挡层与材料为 Al x2In y2Ga !_x2_y2N 的空穴调整层交替堆叠组成的多层结构 60于空穴注入层 50之上; 与空穴注入层 5 0的沉积温度相比, 该多层结构 60的沉积温度较高, 利用此高温条件提升晶体质 量, 减少缺陷, 改善发光半导体的性能, 其中 yQ〉xQ〉0; X ly i〉0, x2>y2 〉0, x i >x 2>x o, yo〉y 2〉yi;
[0064] S07、 沉积 P型惨杂半导体层 70于多层结构 60之上形成外延结构。
[0065] 本发明中, 所述多层结构 60中至少包含 2个 A1组分不同的子组合层, 每一个子 组合层均由一对材料为 Al xlIn ylGa xl—^的电子阻挡层与材料为 Al x2In y2Ga !_x2_y2N 的空穴调整层组成, 且电子阻挡层和空穴调整层中 Al组分的变化方式为恒定惨 杂、 抛物线形、 递增或递减变化惨杂;
[0066] 本实施例中沉积多层结构 60的具体过程为: 在 P型惨杂的空穴注入层 50沉积结 束后, 停止通入 P型杂质源, 通过延迟效应及后续高温条件下的扩散作用生长非 故意 P型惨杂的子组合层 61, 其由 Al xlIn ylGa xlylN的电子阻挡层 611与 Al x2In y2 Ga ix2y2N的空穴调整层 612组成, 继续沉积子组合层 62, 其亦由材料为 AlxlInyl Ga xlylN的电子阻挡层 621与 Al x2In y2Ga 的空穴调整层 622组成, 其中 x ,
>y !>0, x2>y 2>0, 此处优选 χ F0.05~0.25, y !=0.01-0.1, x 2=0.05~0.25 , y 2 =0.01-0.1; 所述组合层 61和 62为铝组分不同的子组合层, 优选子组合层 61的 A1 组分高于子组合层 62, 且相比于空穴注入层 50, 其铝和铟组分满足关系式: X l2≥ ο, y。〉y2〉y1。 后通入 P型杂质源, 沉积铝组分和铟组分分别与子组合 层 61和子组合层 62相同或不同的子组合层 61 '和子组合层 62', 其均由材料为 Alxl In ylGa xlylN的电子阻挡层 61Γ、 621 '及材料为 Al x2In y2Ga ^2
N的空穴调整层 612'、 622'组成。
[0067] 虽然临近于空穴注入层 50的子组合层 61和 62在生长过程中未通入杂质源, 但其 沉积温度较高, 而 P型杂质源在高温条件下亦有扩散作用, 同吋 P型杂质源也具 有记忆延迟效应, 因此利用此两种特性可使空穴注入层 50中的高浓度 P型杂质源 及腔室中延迟遗留的 P型杂质源进入临近的非故意 P型惨杂层内, 在不影响晶体 质量的前提下, 也使得电阻较小, 减小最终形成的半导体元件的使用电压。 而 临近于 P型惨杂半导体层 70的子组合层 61 '和 62'因惨杂有 P型杂质源, 从而使得形 成的多层结构中 P型杂质浓度均值≥1><1016, 进一步降低半导体元件的使用电压 [0068] 作为本方法的变形例, 沉积的多层结构 60具有 2个或 3个子组合层, 临近于空穴 调整层的一个或 2个子组合层为未惨杂层, 而临近于 P型惨杂半导体层 70的子组 合层则为 P型惨杂层。
[0069] 同吋, 所述空穴注入层 50和多层结构 60均为氮化铝铟镓材料层, 当铝组分越高 , 其电子阻挡效果越好, 但其应力也随之增加造成晶体质量劣化, 因此本实施 例采用铝组分变化的方法及多层堆叠的结构缓解该层应力, 同吋配合 P型杂质源 非惨杂 /惨杂的模式调节该多层结构 60的电阻值, 进而获得具有良好的电子阻挡 性能及低阻值特性的 P型结构层, 同吋再利用高浓度空穴注入层 50提供有效空穴 注入来源, 改善芯片的抗静电性能。
[0070] 实施例 2
[0071] 参看附图 5和 6, 本实施例与实施例 1的区别在于多层结构 60中临近空穴注入层 5 0的非故意 P型惨杂的子组合层 (61、 62、 ...) 数目大于 3, 随后在此非故意 P型 惨杂的子组合层上继续沉积故意 P型惨杂子组合层 (6Γ、 62' ...) , 后将此非故 意 Ρ型惨杂的子组合层与 Ρ型惨杂子组合层依次堆叠最终形成多层结构 60。 其中 临近空穴注入层 50的非故意 Ρ型惨杂的子组合层及其上沉积的故意 Ρ型惨杂子组 合层数目根据实际生产的电性能需求灵活调节, 不局限于本实施例的数目。 而 为优化多层结构 60对于电流阻挡效果及抗静电性能, 当多层结构 60中子组合层 数目大于 8吋, 优选惨杂的子组合层数目小于等于 3。
[0072] 应当理解的是, 上述具体实施方案为本发明的优选实施例, 本发明的范围不限 于该实施例, 凡依本发明所做的任何变更, 皆属本发明的保护范围之内。

Claims

权利要求书
一种具有电子阻挡与空穴调整层的外延结构, 从下至上依次包括衬底 、 缓冲层、 N型惨杂半导体层、 发光层和 P型惨杂半导体层, 其特征 在于: 所述发光层与 P型惨杂半导体层之间还包含材料为 Al x0In y0Ga ^yoN的 P型惨杂空穴注入层和复数个子组合层堆叠形成的多层结构 ; 所述每一个子组合层由材料为 Al xlIn ylGa 的电子阻挡层与材 料为 Al x2In y2Ga ix2y2N的空穴调整层组成, 其中, y QX ()〉0, X l〉y i > 0, X 2≥y 2> 0, X 1 > χ 2≥χ o , y o〉y 2〉y i。
根据权利要求 1所述的一种具有电子阻挡与空穴调整层的外延结构, 其特征在于: 所述多层结构中位于下部的子组合层为非故意 P型惨杂 层, 位于上部的子组合层为故意 P型惨杂层, 所述非故意 P型惨杂的 子组合层个数大于或等于所述故意 P型惨杂的子组合层个数。
根据权利要求 1所述的一种具有电子阻挡与空穴调整层的外延结构, 其特征在于: 所述空穴注入层形成过程中的 P型杂质通过延迟效应及 后续高温条件下的扩散作用进入非故意 P型惨杂子组合层内。
根据权利要求 1所述的一种具有电子阻挡与空穴调整层的外延结构, 其特征在于: 所述空穴注入层的 P型杂质浓度大于多层结构的 P型杂 质浓度。
根据权利要求 4所述的一种具有电子阻挡与空穴调整层的外延结构, 其特征在于: 所述空穴注入层的 P型杂质平均浓度≥1><10 18。
根据权利要求 4所述的一种具有电子阻挡与空穴调整层的外延结构, 其特征在于: 所述多层结构的 P型杂质平均浓度≥^10
根据权利要求 2所述的一种具有电子阻挡与空穴调整层的外延结构, 其特征在于: 所述故意 P型惨杂的子组合层个数≤3。
根据权利要求 1所述的一种具有电子阻挡与空穴调整层的外延结构, 其特征在于: 所述多层结构中至少 2个子组合层的 A1组分不同。
根据权利要求 1所述的一种具有电子阻挡与空穴调整层的外延结构, 其特征在于: 所述多层结构中子组合层的个数≥2。 根据权利要求 1所述的一种具有电子阻挡与空穴调整层的外延结构, 其特征在于: 每一所述子组合层的总厚度为 10埃〜 200埃。
根据权利要求 1所述的一种具有电子阻挡与空穴调整层的外延结构, 其特征在于: 所述空穴注入层的厚度为 50埃〜 1000埃。
根据权利要求 1所述的一种具有电子阻挡与空穴调整层的外延结构, 其特征在于: 所述空穴注入层、 电子阻挡层与空穴调整层的 A1组分的 惨杂方式为恒定惨杂、 抛物线形、 递增或递减变化惨杂。
一种具有电子阻挡与空穴调整层的外延结构的制备方法, 其特征在于
, 所述方法包括以下步骤:
提供一衬底;
沉积缓冲层于所述衬底之上;
沉积 N型惨杂半导体层于所述缓冲层之上;
沉积发光层于所述 N型惨杂半导体层之上;
沉积材料为 Al x0In y0Ga 的 P型惨杂空穴注入层于所述发光层之上 沉积材料为 Al xlIn ylGa xl ^的电子阻挡层与材料为 Al x2In y2Ga ^ x2y2N 的空穴调整层交替堆叠组成的多层结构于所述空穴注入层之上, 其中 , y o> o>0, X i>y i>0, X 2>y 2>0, x i>x 2>x 0, y 0>y 2>y 1; 沉积 P型惨杂半导体层于所述多层结构之上, 形成外延结构。
根据权利要求 13所述的一种具有电子阻挡与空穴调整层的外延结构的 制备方法, 其特征在于: 沉积所述 P型惨杂空穴注入层吋反应室温度 低于沉积所述多层结构吋的反应室温度, 温度差值为 50~100°C。 根据权利要求 13所述的一种具有电子阻挡与空穴调整层的外延结构的 制备方法, 其特征在于: 沉积多层结构过程中, 首先停止通入 P型杂 质源, 沉积位于多层结构下部的非故意 P型惨杂子组合层, 利用空穴 注入层形成过程中的 P型杂质通过延迟效应及后续高温条件下的扩散 作用进入该子组合层内; 然后再次通入 P型杂质源, 沉积形成位于多 层结构上部的故意 P型惨杂子组合层。 根据权利要求 15所述的一种具有电子阻挡与空穴调整层的外延结构的 制备方法, 其特征在于: 所述非故意 P型惨杂子组合层的个数大于或 等于所述故意 P型惨杂子组合层的个数。
根据权利要求 15所述的一种具有电子阻挡与空穴调整层的外延结构的 制备方法, 其特征在于 所述故意 P型惨杂子组合层的个数≤3。
根据权利要求 13所述的 种具有电子阻挡与空穴调整层的外延结构的 制备方法, 其特征在于 所述空穴注入层的 P型杂质浓度大于多层结 构的 P型杂质浓度。
根据权利要求 18所述的 -种具有电子阻挡与空穴调整层的外延结构的 制备方法, 其特征在于 所述空穴注入层的 P型杂质平均浓度≥^10 18 根据权利要求 18所述的- -种具有电子阻挡与空穴调整层的外延结构的 制备方法, 其特征在于: 所述多层结构的 P型杂质平均浓度≥^10 根据权利要求 13所述的- -种具有电子阻挡与空穴调整层的外延结构的 制备方法, 其特征在于: 所述多层结构中至少 2个子组合层的 A1组分 不同。
根据权利要求 13所述的- -种具有电子阻挡与空穴调整层的外延结构的 制备方法, 其特征在于: 所述多层结构中子组合层的个数≥2。
根据权利要求 13所述的- -种具有电子阻挡与空穴调整层的外延结构的 制备方法, 其特征在于: 每一所述子组合层的总厚度为 10埃〜 200埃 根据权利要求 13所述的- -种具有电子阻挡与空穴调整层的外延结构的 制备方法, 其特征在于: 所述空穴注入层的厚度为 50埃〜 1000埃。 根据权利要求 13所述的- -种具有电子阻挡与空穴调整层的外延结构的 制备方法, 其特征在于: 所述空穴注入层、 电子阻挡层与空穴调整层 的 A1组分的变化方式为恒定惨杂、 抛物线形、 递增或递减变化惨杂。
PCT/CN2016/097872 2015-12-24 2016-09-02 一种具有电子阻挡与空穴调整层的外延结构及其制备方法 WO2017107552A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510978815.1 2015-12-24
CN201510978815.1A CN105552176B (zh) 2015-12-24 2015-12-24 一种具有电子阻挡与空穴调整层的外延结构的制备方法
CN201510978761.9A CN105428476B (zh) 2015-12-24 2015-12-24 一种具有电子阻挡与空穴调整层的外延结构
CN201510978761.9 2015-12-24

Publications (1)

Publication Number Publication Date
WO2017107552A1 true WO2017107552A1 (zh) 2017-06-29

Family

ID=59088990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/097872 WO2017107552A1 (zh) 2015-12-24 2016-09-02 一种具有电子阻挡与空穴调整层的外延结构及其制备方法

Country Status (1)

Country Link
WO (1) WO2017107552A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040169185A1 (en) * 2003-02-28 2004-09-02 Heng Liu High luminescent light emitting diode
US20100108985A1 (en) * 2008-10-31 2010-05-06 The Regents Of The University Of California Optoelectronic device based on non-polar and semi-polar aluminum indium nitride and aluminum indium gallium nitride alloys
CN103996765A (zh) * 2012-12-18 2014-08-20 大连路美芯片科技有限公司 一种提高内量子效率的led外延结构及生长方法
CN104465849A (zh) * 2013-09-25 2015-03-25 首尔伟傲世有限公司 半导体光检测装置
CN104716236A (zh) * 2013-12-16 2015-06-17 山东华光光电子有限公司 一种提高发光效率的GaN基LED外延结构及生长方法
CN105428476A (zh) * 2015-12-24 2016-03-23 安徽三安光电有限公司 一种具有电子阻挡与空穴调整层的外延结构
CN105552176A (zh) * 2015-12-24 2016-05-04 安徽三安光电有限公司 一种具有电子阻挡与空穴调整层的外延结构的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040169185A1 (en) * 2003-02-28 2004-09-02 Heng Liu High luminescent light emitting diode
US20100108985A1 (en) * 2008-10-31 2010-05-06 The Regents Of The University Of California Optoelectronic device based on non-polar and semi-polar aluminum indium nitride and aluminum indium gallium nitride alloys
CN103996765A (zh) * 2012-12-18 2014-08-20 大连路美芯片科技有限公司 一种提高内量子效率的led外延结构及生长方法
CN104465849A (zh) * 2013-09-25 2015-03-25 首尔伟傲世有限公司 半导体光检测装置
CN104716236A (zh) * 2013-12-16 2015-06-17 山东华光光电子有限公司 一种提高发光效率的GaN基LED外延结构及生长方法
CN105428476A (zh) * 2015-12-24 2016-03-23 安徽三安光电有限公司 一种具有电子阻挡与空穴调整层的外延结构
CN105552176A (zh) * 2015-12-24 2016-05-04 安徽三安光电有限公司 一种具有电子阻挡与空穴调整层的外延结构的制备方法

Similar Documents

Publication Publication Date Title
CN109802020B (zh) 一种GaN基发光二极管外延片及其制备方法
CN115188863B (zh) 发光二极管外延片及其制备方法
CN109524522B (zh) 一种GaN基发光二极管外延片及其制备方法
CN114649454B (zh) 一种发光二极管的外延片结构及其制备方法
CN116130569B (zh) 一种高效发光二极管及制备方法
CN105428476B (zh) 一种具有电子阻挡与空穴调整层的外延结构
CN116825913A (zh) 一种发光二极管外延片及制备方法、led
CN115911201A (zh) 发光二极管外延片及其制备方法、发光二极管
CN115295693A (zh) 一种发光二极管外延片及其制备方法
CN108447953A (zh) 一种氮化物发光二极管组件
CN117476827B (zh) 一种低接触电阻的发光二极管的外延片及其制备方法
CN116960248B (zh) 一种发光二极管外延片及制备方法
CN109103312B (zh) 一种氮化镓基发光二极管外延片及其制作方法
CN116364820B (zh) 发光二极管外延片及其制备方法、led
CN117153964A (zh) 深紫外发光二极管外延片及其制备方法、深紫外led
CN116845153A (zh) 一种高光效发光二极管外延片、制备方法及led
CN116598396A (zh) 发光二极管外延片及其制备方法、led
CN116387426A (zh) 一种发光二极管外延片及制备方法
CN105552176B (zh) 一种具有电子阻挡与空穴调整层的外延结构的制备方法
CN109860357B (zh) 一种氮化镓基发光二极管外延片及其生长方法
WO2017107552A1 (zh) 一种具有电子阻挡与空穴调整层的外延结构及其制备方法
CN109166950B (zh) 发光二极管的半导体芯片及其量子阱层和制造方法
CN117810332B (zh) 氮化镓基发光二极管外延片及其制备方法
CN116598395B (zh) 一种发光二极管及其制备方法
CN117691019B (zh) 一种P型GaN层发光二极管外延片及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16877364

Country of ref document: EP

Kind code of ref document: A1