WO2017107336A1 - 一种潜水式涡轮增氧机 - Google Patents

一种潜水式涡轮增氧机 Download PDF

Info

Publication number
WO2017107336A1
WO2017107336A1 PCT/CN2016/078013 CN2016078013W WO2017107336A1 WO 2017107336 A1 WO2017107336 A1 WO 2017107336A1 CN 2016078013 W CN2016078013 W CN 2016078013W WO 2017107336 A1 WO2017107336 A1 WO 2017107336A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
submersible
water
assembly
impeller assembly
Prior art date
Application number
PCT/CN2016/078013
Other languages
English (en)
French (fr)
Inventor
舒锐
Original Assignee
广东英锐生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东英锐生物科技有限公司 filed Critical 广东英锐生物科技有限公司
Publication of WO2017107336A1 publication Critical patent/WO2017107336A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • A01K63/042Introducing gases into the water, e.g. aerators, air pumps

Definitions

  • the invention relates to the field of aquaculture devices, and in particular to a submersible turbo aerator.
  • Common circulating aquaculture devices usually use the filtration or adsorption of sand, sponge, activated carbon, etc. to remove suspended particulate pollutants from water bodies, but these do not remove some harmful substances that affect the health of the fry, in order to achieve healthy water, usually It is necessary to regularly change water or feed chemicals such as water quality improvers to improve the quality of circulating water. As a result, the cost of fry breeding is usually increased, and the survival risk of cultured objects is increased.
  • the method of aeration through water is also a conventional method of water treatment.
  • the aeration device used in aquaculture is usually an impeller aerator, a water tank aerator, an oxygenation by an oxygen pump or a micro-nano bubble aeration.
  • the generator is aerated.
  • the impeller aerator and the water tank aerator mainly increase the contact area between water and air by pushing water into the air and stirring water to achieve an oxygen-enhancing effect.
  • water is much heavier than air, it requires a lot of power to drive the above device, plus a series of transmissions of the power system, the power of the motor is transmitted to the impeller, and the bubbles that are stirred into the water are also Very big.
  • the above-mentioned device causes a lot of energy consumption, and the efficiency is low, which increases the cost of device production and maintenance.
  • the gas is in contact with water for a short period of time, the area in which the bubbles are in contact with water is small, and the amount of oxygen dissolved in the water is small. Even if microbubbles are generated by microporous or nano-scale gas blasting plates, the resistance of the gas is greatly increased, the total amount of gas is greatly reduced, and the total amount of oxygen dissolved in the water is not large, and the gas blasting plate is not large. The price is high, and it is easy to be blocked and difficult to maintain during use.
  • a submersible turbo aerator comprising an impeller assembly and a submersible motor coupled below the impeller assembly, the impeller assembly including an impeller housing and an impeller body disposed within the impeller housing and coupled to an output shaft of the submersible motor, the top connection of the impeller assembly There is an intake pipe, the top of the intake pipe extends out of the water surface, and the outer periphery of the impeller casing is provided with a plurality of exhaust ports.
  • the impeller assembly further includes an impeller seat disposed under the impeller housing and fixedly coupled to the impeller body.
  • the impeller body is vertically disposed in an inverted cone shape, and the impeller body includes a vertical arrangement around the impeller seat. Several impeller blades.
  • a plurality of grid pieces arranged at equal arc intervals are disposed around the outer circumference of the impeller casing, and two adjacent grid sheets are spaced apart to form an exhaust port.
  • each impeller piece is provided with a sloped downward oblique side.
  • the inner cavity of the impeller housing is cylindrical.
  • the top of the impeller casing is hermetically sealed from the bottom of the intake pipe.
  • the bottom of the submersible motor contacts the bottom of the water.
  • the submersible turbo aerator performs the fixing of the device by extending the submersible motor into the bottom of the water, the submersible motor drives the impeller body in the impeller assembly to rotate, and the top air is brought into the impeller body through the intake pipe, and the impeller The water in the casing mixes to form a water-gas mixture discharged through the exhaust port to aerate the water body.
  • a negative pressure is formed in the impeller casing, and gas is continuously drawn from the intake pipe to maintain the continuity of the device.
  • the device has a simple structure, and by injecting gas into the water body for aeration, the energy consumption in the aeration process can be reduced, thereby effectively increasing the oxygenation efficiency.
  • FIG. 1 is a schematic view showing the overall structure of an embodiment of the present invention.
  • FIG. 2 is a schematic view showing the overall structure of an impeller assembly according to an embodiment of the present invention.
  • Figure 3 is a cross-sectional view showing the internal structure of an impeller assembly in accordance with an embodiment of the present invention.
  • the present invention is a submersible turbo aerator comprising an impeller assembly 1 and a submersible motor 2 coupled below the impeller assembly 1.
  • the impeller assembly 1 includes an impeller housing 11 and an impeller housing 11 disposed therein.
  • An impeller body 12 connected to the output shaft of the submersible motor 2 is connected to the top of the impeller assembly 1 with an intake pipe 3, the top of which is extended from the water surface, and the outer periphery of the impeller casing 11 is provided with a plurality of exhaust ports.
  • the submersible turbo aerator performs the fixing of the device by extending the submersible motor 2 into the bottom of the water.
  • the submersible motor 2 drives the impeller body 12 in the impeller assembly 1 to rotate, and the top air is introduced into the impeller body 12 through the intake pipe 3, and the impeller
  • the water in the casing 11 is mixed to form a water-gas mixture discharged through the exhaust port to aerate the water body, and during the process of rotating the impeller assembly 1 to discharge the water-gas mixture, a negative pressure is formed in the impeller casing 11 to continuously draw in gas from the intake pipe 3.
  • the device can maintain the continuous operation.
  • the device has a simple structure. By injecting gas into the water body for oxygenation, the energy consumption in the aeration process can be reduced, thereby effectively increasing the oxygenation efficiency.
  • the impeller assembly 1 further includes an impeller seat 14 disposed under the impeller casing 11 and fixedly coupled to the impeller body 12, the impeller body 12 being vertically disposed in an inverted cone shape, and the impeller body 12 including the impeller wheel seat 14 A plurality of impeller blades 13 are vertically spaced apart from one another.
  • a plurality of grid pieces 15 arranged at equal arc intervals are provided around the outer circumference of the impeller casing 11, and two adjacent grid sheets 15 are spaced apart to form an exhaust port.
  • each of the impeller blades 13 is provided with obliquely downward oblique sides.
  • the inner cavity of the impeller housing 11 is cylindrical.
  • the top of the impeller casing 11 is watertightly sealed from the bottom of the intake pipe 3.
  • the bottom of the submersible motor 2 is in contact with the bottom of the water.
  • the aerator is formed by the impeller assembly 1 and the impeller body 12 in the impeller assembly 1 is rotated by the submersible motor 2, and the water-air mixture in each of the impeller blades 13 is taken out by the centrifugal force.
  • the exhaust port around the impeller casing 11 is continuously discharged, so that a negative pressure is generated in the impeller casing 11 of the cylindrical inner cavity, and air is continuously sucked into the impeller piece 13 of the impeller assembly 1 through the intake pipe 3, and pushed into the water. .
  • the impeller piece 13 rotating at a high speed can cut and disperse air to form extremely small microbubbles, so that the residence time of the bubbles in the water is longer, thereby greatly improving the oxygen transmission efficiency.
  • This turbo aerator subverts the traditional aeration device to push water into the air, and uses a mechanical structure that pushes air into the water. Because the air is much lighter than water, a small amount of power can be used. The air is pushed into the water. In addition, the impeller assembly 1 rotates and cuts the dispersed bubbles at a high speed, which greatly improves the oxygenation efficiency.
  • the aerator uses a submersible motor 2 to directly connect the submersible motor 2 to the impeller assembly 1 to reduce torque and motor load, thereby enabling greater oxygen transfer efficiency through a smaller power motor.
  • the aerator structure of the submersible motor 2 does not require a floating body, which can save the manufacturing cost of the device and save the installation labor.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

一种潜水式涡轮增氧机,包括叶轮组件(1)和连接在叶轮组件(1)下方的潜水电机(2),叶轮组件(1)包括叶轮壳体(11)和设置叶轮壳体(11)内与潜水电机(2)的输出端轴连接的叶轮主体(12),叶轮组件(1)的顶部连接有进气管(3),进气管(3)的顶部伸出水面,叶轮壳体(11)的外周设有若干排汽口。所述潜水式涡轮增氧机结构简单,通过将气体注入水体进行增氧,可减少增氧过程中的能耗,从而有效提高增氧效率,可用于水产养殖设备领域。

Description

一种潜水式涡轮增氧机
技术领域
本发明涉及水产养殖装置领域,特别是涉及一种潜水式涡轮增氧机。
背景技术
鱼苗的循环水养殖过程中会产生大量的有害有机物和无机物,并且造成水体酸碱不平衡,影响水质。因此,在鱼苗循环水养殖过程中,需要对循环水进行处理,以使得循环水能满足鱼苗生长的需要。
常见的循环水养殖装置通常利用沙砾、海绵、活性炭等的过滤或吸附作用来去除水体中的悬浮颗粒污染物质,但这些并不能去除一些影响鱼苗健康的有害物质,为了达到健康用水的目的,通常需要定期换水或投喂水质改良剂等化学药品来改良循环水水质,由此,通常会使得鱼苗养殖成本本增,同时又会增加养殖对象的生存风险。
通过水中增氧的方式也是水处理的一种常规手段,现在用于水产养殖的增氧装置通常为叶轮增氧机、水车式增氧机、通过增氧气泵增氧或者微纳米气泡增氧发生器增氧。
叶轮增氧机和水车式增氧机主要通过将水推入空气中,以及搅拌水等作用来增加水与空气的接触面积,达到增氧的效果。但由于水比空气重得多,需要很大的动力才能驱动上述装置,加上动力系统的一系列的传动装置,将电机的动力传递至叶轮过程中能量的消耗,且搅拌入水中的气泡也很大。导致上述装置造成很大耗能的同时,且效率低下,增加了装置生产和维护的成本。
上述增氧装置大多需要通过浮体把机体浮在水面上才能工作,这也增加了设备成本和安装成本。
且气体与水接触的时间短,气泡与水接触的面积也小,溶入水中的氧气含量较小。即使通过微孔或者纳米级的暴气板产生微气泡,但大大增加的出气的阻力,出气的总量也会大大减小,溶入水中的氧气总量也不大,而且微气暴气板的价格不菲,且使用过程中容易被堵塞,维护困难。
发明内容
本发明的目的在于提供一种结构简单且能有效提高增氧效率的潜水式涡轮增氧机。
本发明所采取的技术方案是:
一种潜水式涡轮增氧机,包括叶轮组件和连接在叶轮组件下方的潜水电机,叶轮组件包括叶轮壳体和设置叶轮壳体内与潜水电机的输出端轴连接的叶轮主体,叶轮组件的顶部连接有进气管,进气管的顶部伸出水面,叶轮壳体的外周设有若干排汽口。
进一步作为本发明技术方案的改进,叶轮组件还包括设置在叶轮壳体下方与叶轮主体固定连接的叶轮座,叶轮主体呈倒锥形竖直设置,叶轮主体包括环绕叶轮座彼此间隔竖直设置的若干叶轮片。
进一步作为本发明技术方案的改进,环绕叶轮壳体的外周设有若干等弧度间隔设置的格栅片,两相邻的格栅片间隔形成排汽口。
进一步作为本发明技术方案的改进,各叶轮片的外侧设有倾斜向下的斜边。
进一步作为本发明技术方案的改进,叶轮壳体的内腔为圆柱形。
进一步作为本发明技术方案的改进,叶轮壳体的顶部与进气管的底部间水密性密封。
进一步作为本发明技术方案的改进,潜水电机的底部接触至水底。
本发明的有益效果:此潜水式涡轮增氧机通过将潜水电机伸入水底进行装置的固定,潜水电机带动叶轮组件中的叶轮主体旋转,将顶部空气通过进气管带入叶轮主体,并与叶轮壳体内的水混合形成水气混合物经排汽口排出进行水体增氧,叶轮组件旋转排出水气混合物的过程中,叶轮壳体内形成负压,持续从进气管抽入气体,可维持装置的持续运行,此装置结构简单,通过将气注入水体进行增氧,可减少增氧过程中的能耗,从而有效提高增氧效率。
附图说明
下面结合附图对本发明作进一步说明:
图1是本发明实施例整体结构示意图;
图2是本发明实施例叶轮组件整体结构示意图;
图3是本发明实施例叶轮组件内部结构剖视图。
具体实施方式
参照图1~图3,本发明为一种潜水式涡轮增氧机,包括叶轮组件1和连接在叶轮组件1下方的潜水电机2,叶轮组件1包括叶轮壳体11和设置叶轮壳体11内与潜水电机2的输出端轴连接的叶轮主体12,叶轮组件1的顶部连接有进气管3,进气管3的顶部伸出水面,叶轮壳体11的外周设有若干排汽口。
此潜水式涡轮增氧机通过将潜水电机2伸入水底进行装置的固定,潜水电机2带动叶轮组件1中的叶轮主体12旋转,将顶部空气通过进气管3带入叶轮主体12,并与叶轮壳体11内的水混合形成水气混合物经排汽口排出进行水体增氧,叶轮组件1旋转排出水气混合物的过程中,叶轮壳体11内形成负压,持续从进气管3抽入气体,可维持装置的持续运行,此装置结构简单,通过将气注入水体进行增氧,可减少增氧过程中的能耗,从而有效提高增氧效率。
作为本发明优选的实施方式,叶轮组件1还包括设置在叶轮壳体11下方与叶轮主体12固定连接的叶轮座14,叶轮主体12呈倒锥形竖直设置,叶轮主体12包括环绕叶轮座14彼此间隔竖直设置的若干叶轮片13。
作为本发明优选的实施方式,环绕叶轮壳体11的外周设有若干等弧度间隔设置的格栅片15,两相邻的格栅片15间隔形成排汽口。
作为本发明优选的实施方式,各叶轮片13的外侧设有倾斜向下的斜边。
作为本发明优选的实施方式,叶轮壳体11的内腔为圆柱形。
作为本发明优选的实施方式,叶轮壳体11的顶部与进气管3的底部间水密性密封。
作为本发明优选的实施方式,潜水电机2的底部接触至水底。
此增氧机通过叶轮组件1形成涡轮,叶轮组件1内的叶轮主体12在潜水电机2的带动下转动时,在离心力的作用下,各叶轮片13内的水气混合物被甩出,并经过叶轮壳体11四周的排汽口不断排出,从而会在圆柱形内腔的叶轮壳体11内产生负压,不断通过进气管3把空气吸入叶轮组件1的叶轮片13内,并推入水中。
在离心力的作用下,高速旋转的叶轮片13能将空气切割分散形成极小的微气泡,使气泡在水中的停留时间更长,从而大大提高氧气的传递效率。
由于气泡是被360度水平推力推入水中的,气泡被推入水中后,扩散的范围大,提高了氧气的传递效率。
此涡轮式增氧机颠覆了传统的增氧装置将水推入空气的工艺,而采用将空气推入水中的机械构造,由于空气比水的质量轻很多,很小的动力就能将大量的空气推入水中。加上叶轮组件1高速旋转切割分散气泡,极大地提高了增氧效率。
本增氧机采用潜水电机2,把潜水电机2与叶轮组件1直接连起来,减小了扭矩和电机负荷,从而,能通过更小功率的电机达到更大的氧传递效率。
且潜水电机2的增氧机结构不需要浮体,可节省装置的制作成本,同时节省安装劳动力。
当然,本发明创造并不局限于上述实施方式,熟悉本领域的技术人员在不违背本发明精神的前提下还可作出等同变形或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。

Claims (7)

  1. 一种潜水式涡轮增氧机,其特征在于:包括叶轮组件和连接在所述叶轮组件下方的潜水电机,所述叶轮组件包括叶轮壳体和设置所述叶轮壳体内与潜水电机的输出端轴连接的叶轮主体,所述叶轮组件的顶部连接有进气管,所述进气管的顶部伸出水面,所述叶轮壳体的外周设有若干排汽口。
  2. 根据权利要求1所述的潜水式涡轮增氧机,其特征在于:所述叶轮组件还包括设置在叶轮壳体下方与叶轮主体固定连接的叶轮座,所述叶轮主体呈倒锥形竖直设置,所述叶轮主体包括环绕叶轮座彼此间隔竖直设置的若干叶轮片。
  3. 根据权利要求2所述的潜水式涡轮增氧机,其特征在于:环绕所述叶轮壳体的外周设有若干等弧度间隔设置的格栅片,两相邻的所述格栅片间隔形成排汽口。
  4. 根据权利要求2所述的潜水式涡轮增氧机,其特征在于:各所述叶轮片的外侧设有倾斜向下的斜边。
  5. 根据权利要求3或者4所述的潜水式涡轮增氧机,其特征在于:所述叶轮壳体的内腔为圆柱形。
  6. 根据权利要求3或者4所述的潜水式涡轮增氧机,其特征在于:所述叶轮壳体的顶部与进气管的底部间水密性密封。
  7. 根据权利要求3或者4所述的潜水式涡轮增氧机,其特征在于:所述潜水电机的底部接触至水底。
PCT/CN2016/078013 2015-12-25 2016-03-31 一种潜水式涡轮增氧机 WO2017107336A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511006219.3A CN105432548A (zh) 2015-12-25 2015-12-25 一种潜水式涡轮增氧机
CN201511006219.3 2015-12-25

Publications (1)

Publication Number Publication Date
WO2017107336A1 true WO2017107336A1 (zh) 2017-06-29

Family

ID=55543545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078013 WO2017107336A1 (zh) 2015-12-25 2016-03-31 一种潜水式涡轮增氧机

Country Status (2)

Country Link
CN (1) CN105432548A (zh)
WO (1) WO2017107336A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109673575A (zh) * 2019-01-25 2019-04-26 无锡洛康智能科技有限公司 一种水车型增氧机
CN109717128A (zh) * 2019-02-22 2019-05-07 珠海聚能精密工业有限公司 水车活水增氧机
CN111264458A (zh) * 2020-03-21 2020-06-12 郑卫兵 一种增氧机叶轮
CN113287563A (zh) * 2020-10-29 2021-08-24 阿里巴巴集团控股有限公司 增氧设备、水产品包、充电柜、服务器和相关方法
CN113349155A (zh) * 2021-07-19 2021-09-07 中国水产科学研究院东海水产研究所 一种用于大黄鱼接力养殖的活鱼增氧装置
CN113475453A (zh) * 2021-07-02 2021-10-08 浙江大学 一种射流倍增无叶式增氧机
CN113711985A (zh) * 2021-09-16 2021-11-30 秦涛 一种水产养殖气压式增氧装置
CN113996224A (zh) * 2021-12-16 2022-02-01 建湖县刘二刚水产养殖场 一种农业水产养殖的增氧投饲混料设备

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105432548A (zh) * 2015-12-25 2016-03-30 广东英锐生物科技有限公司 一种潜水式涡轮增氧机
CA2919280A1 (en) 2016-01-29 2017-07-29 Richard Ladouceur Rotary gas bubble ejector
CN105875487B (zh) * 2016-06-15 2020-04-03 张德福 具搅水作用的微孔增氧机
CN105918235A (zh) * 2016-06-24 2016-09-07 张立恒 潜水增氧活水装置
CN106242098B (zh) * 2016-11-04 2022-08-30 台州天渔增氧设备科技有限公司 一种曝气增氧机的叶轮
CN107683799B (zh) * 2017-10-20 2021-01-22 贵州省龙滩口农牧开发有限责任公司 七星鱼的养殖方法
CN108668987B (zh) * 2018-04-18 2020-05-15 蓝婷婷 一种水产养殖池增氧结构
CN108719175B (zh) * 2018-07-12 2023-12-22 上海博偕环境科技有限公司 一种可收集水体垃圾的水生态纳米呼吸机
CN109452219B (zh) * 2018-12-12 2024-05-07 陈勇达 一种旋涡产生器、旋涡产生系统及旋涡对流增氧方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2227404Y (zh) * 1994-12-07 1996-05-22 黄杰 多用高效立体增氧机
JP2000130410A (ja) * 1998-10-30 2000-05-12 Nikkiso Co Ltd 液体流揺動装置
CN2408678Y (zh) * 2000-03-01 2000-12-06 诸暨市宏宇环保设备有限公司 潜水曝气机
US20050232766A1 (en) * 2004-04-20 2005-10-20 Tsai Ting F Water aerating device for aquarium
CN200966261Y (zh) * 2006-11-10 2007-10-31 李观旋 水下增氧机
US20090127175A1 (en) * 2007-11-16 2009-05-21 Hsueh Lee Tsai Water aerating device for aquarium
CN105432548A (zh) * 2015-12-25 2016-03-30 广东英锐生物科技有限公司 一种潜水式涡轮增氧机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE7611981L (sv) * 1975-10-31 1977-05-01 Albert Blum Anordning for inforande av gaser, i synnerhet luft, i vetskor.
CN2354363Y (zh) * 1998-05-27 1999-12-22 侯建明 一种潜水增氧泵
CN2395541Y (zh) * 1999-07-03 2000-09-13 李俊国 潜水吸气式增氧机
CN2563929Y (zh) * 2002-09-10 2003-08-06 杜万新 鱼塘潜水增氧机
CN205320948U (zh) * 2015-12-25 2016-06-22 广东英锐生物科技有限公司 一种潜水式涡轮增氧机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2227404Y (zh) * 1994-12-07 1996-05-22 黄杰 多用高效立体增氧机
JP2000130410A (ja) * 1998-10-30 2000-05-12 Nikkiso Co Ltd 液体流揺動装置
CN2408678Y (zh) * 2000-03-01 2000-12-06 诸暨市宏宇环保设备有限公司 潜水曝气机
US20050232766A1 (en) * 2004-04-20 2005-10-20 Tsai Ting F Water aerating device for aquarium
CN200966261Y (zh) * 2006-11-10 2007-10-31 李观旋 水下增氧机
US20090127175A1 (en) * 2007-11-16 2009-05-21 Hsueh Lee Tsai Water aerating device for aquarium
CN105432548A (zh) * 2015-12-25 2016-03-30 广东英锐生物科技有限公司 一种潜水式涡轮增氧机

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109673575A (zh) * 2019-01-25 2019-04-26 无锡洛康智能科技有限公司 一种水车型增氧机
CN109673575B (zh) * 2019-01-25 2023-09-05 无锡洛康智能科技有限公司 一种水车型增氧机
CN109717128A (zh) * 2019-02-22 2019-05-07 珠海聚能精密工业有限公司 水车活水增氧机
CN111264458A (zh) * 2020-03-21 2020-06-12 郑卫兵 一种增氧机叶轮
CN113287563A (zh) * 2020-10-29 2021-08-24 阿里巴巴集团控股有限公司 增氧设备、水产品包、充电柜、服务器和相关方法
CN113475453A (zh) * 2021-07-02 2021-10-08 浙江大学 一种射流倍增无叶式增氧机
CN113349155A (zh) * 2021-07-19 2021-09-07 中国水产科学研究院东海水产研究所 一种用于大黄鱼接力养殖的活鱼增氧装置
CN113711985A (zh) * 2021-09-16 2021-11-30 秦涛 一种水产养殖气压式增氧装置
CN113996224A (zh) * 2021-12-16 2022-02-01 建湖县刘二刚水产养殖场 一种农业水产养殖的增氧投饲混料设备
CN113996224B (zh) * 2021-12-16 2024-03-22 建湖县刘二刚水产养殖场 一种农业水产养殖的增氧投饲混料设备

Also Published As

Publication number Publication date
CN105432548A (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
WO2017107336A1 (zh) 一种潜水式涡轮增氧机
WO2013182007A1 (zh) 一种高效增氧装置和方法
CN204490598U (zh) 高效的文丘里射流器
CN101367584A (zh) 漂浮式多层深水增氧机
CN102659240B (zh) 立式潜水曝气搅拌机
CN204661420U (zh) 带有碎泡设备的文丘里射流器
WO2018094621A1 (zh) 污水生化处理装置
CN210869444U (zh) 潜水式增氧机
CN203855461U (zh) 一种双叶轮表面曝气装置
CN210103574U (zh) 一种废水生化处理用曝气系统
WO2018094624A1 (zh) 一种单池循环污水生化处理装置
CN206828216U (zh) 射流式潜水曝气机
CN210620379U (zh) 一种降解污水有机物的生物曝气装置
CN204111406U (zh) 曝气搅拌一体机
CN204529444U (zh) 自吸式潜水曝气机
CN211999021U (zh) 一种高效好氧生物曝气池
CN1015167B (zh) 低能耗的深井曝气废水处理装置
WO2017131450A1 (ko) 교반-폭기용 상반회전 다층 프로펠러 유니트
WO2017133072A1 (zh) 一种鱼菜共养高效循环水养殖箱
CN211886101U (zh) 一种用于工业废气的净化设备
CN205320948U (zh) 一种潜水式涡轮增氧机
CN220976719U (zh) 一种污水曝气处理装置
CN112723533A (zh) 一种曝气装置及化工用废水处理设备
CN2598999Y (zh) 搅拌式水下曝气器
WO2018094622A1 (zh) 串联式污水生化处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 08.10.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16877150

Country of ref document: EP

Kind code of ref document: A1