WO2017131450A1 - 교반-폭기용 상반회전 다층 프로펠러 유니트 - Google Patents

교반-폭기용 상반회전 다층 프로펠러 유니트 Download PDF

Info

Publication number
WO2017131450A1
WO2017131450A1 PCT/KR2017/000914 KR2017000914W WO2017131450A1 WO 2017131450 A1 WO2017131450 A1 WO 2017131450A1 KR 2017000914 W KR2017000914 W KR 2017000914W WO 2017131450 A1 WO2017131450 A1 WO 2017131450A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
propeller
layer structure
unit
abnormal
Prior art date
Application number
PCT/KR2017/000914
Other languages
English (en)
French (fr)
Inventor
문영준
김대한
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to US15/738,273 priority Critical patent/US10609910B2/en
Priority to EP17744571.5A priority patent/EP3311907A4/en
Publication of WO2017131450A1 publication Critical patent/WO2017131450A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • A01K63/042Introducing gases into the water, e.g. aerators, air pumps
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/113Propeller-shaped stirrers for producing an axial flow, e.g. shaped like a ship or aircraft propeller
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/71Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with propellers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F7/00Aeration of stretches of water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0027Varying behaviour or the very pump
    • F04D15/0044Varying behaviour or the very pump by introducing a gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/2261Rotors specially for centrifugal pumps with special measures
    • F04D29/2288Rotors specially for centrifugal pumps with special measures for comminuting, mixing or separating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D31/00Pumping liquids and elastic fluids at the same time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D7/00Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04D7/02Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type
    • F04D7/04Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type the fluids being viscous or non-homogenous
    • F04D7/045Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type the fluids being viscous or non-homogenous with means for comminuting, mixing stirring or otherwise treating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/305Treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/20Nature of the water, waste water, sewage or sludge to be treated from animal husbandry

Definitions

  • the present application relates to a half-rotating multilayer propeller unit for agitation-aeration.
  • the water agitation device is an essential element for water treatment, thereby increasing the oxygen contact area of the water and facilitating the oxygen supply, thereby maximizing the reprocessing performance or the water purification performance of the sewage.
  • the conventional water treatment apparatus has a difficulty in obtaining a predetermined effect because the stirring output, that is, the stirring performance is weak compared to the input energy by providing a simple stirring function.
  • Japanese Patent Laid-Open Publication No. 2006-062835 name of the propeller, agitator, and conveyor
  • tip part which precedes a helical direction about the axial center direction of a rotating shaft part is disclosed.
  • the conventional stirring-aeration apparatus is used in a form in which the aeration apparatus is additionally configured in the general stirring apparatus, and lacks consideration for aeration flow.
  • the propeller used in the stirrer is used as it is, which is not optimized because it is a propeller that does not consider a two-phase flow state in which liquid and gas are mixed.
  • the present invention is to solve the above-mentioned problems of the prior art, by varying the angle of the propeller blades located in the single-phase flow in which the liquid is present and the propeller blades located in the ideal flow of the liquid and gas, thereby improving aeration performance It is an object of the present invention to provide a counter-rotating multilayer propeller unit for stirring-aeration that can produce energy saving effects.
  • a propeller unit is a shaft portion; A front propeller having a front propeller hub connected to the shaft portion and a plurality of front propellers extending radially from the front propeller hub and being equally disposed; A rear propeller having a rear propeller hub connected to the shaft portion and a plurality of rear propeller blades radially extending from the rear propeller hub and equally arranged; A predetermined space is formed therein, and an air collecting unit in which a shaft part is located in the inner space; And an air supply pipe for supplying air to the inside of the air collecting unit, wherein the rear propeller rotates in the opposite direction of the front propeller, and each rear propeller blade is an ideal blade connected to the shaft portion; Layer structure that the inner surface is connected to the end of the ideal blade; And single-phase blades respectively positioned at positions corresponding to the abnormal blades on the outer surface of the layer structure.
  • the agitator-aeration multi-rotation multi-propeller unit according to the present invention having the configuration as described above has the following effects.
  • the half-turn multi-propeller unit for agitating-aeration can provide a propeller structure optimized for a water treatment stirring pump having high agitation capacity (flow rate) through the front and rear propellers of the upper half arrangement structure.
  • the agitator-aeration phase rotation multi-layer propeller unit according to the present invention is characterized by aeration performance by varying the angles of the propeller blades located in the single-phase flow in which the liquid is present and the propeller blades located in the ideal flow in which the liquid and gas are mixed. It is possible to provide an energy-saving propeller unit.
  • the multi-rotational propeller unit for agitating-aeration enables the development of an energy-saving device that can reduce power costs by contributing to the development of a water treatment process in which an energy-saving water treatment stirring pump is used. In some cases, this may entail a reduction in CO2 emissions.
  • the anti-rotating multi-layer propeller unit for agitating-aeration in one embodiment of the present invention may be expected to prevent coastal red tide and loss of coastal fishery production bases (coastal farms) by preventing eutrophication of water systems, Ecological soundness can be restored by improving water quality, which can lead to improved safety of public health.
  • FIG. 1 is a view capable of confirming a half-turn multi-layer propeller unit for stirring-aeration according to an embodiment of the present invention.
  • Figure 2 is a view showing the air volume portion of a conventional half-turn propeller unit and a half-turn multi-layer propeller unit for stirring-aeration according to an embodiment of the present invention.
  • FIG 3 is a perspective view of a rear propeller according to an embodiment of the present invention.
  • FIG. 4 is a partial cross-sectional view for explaining the shape of the abnormal blade and the single-phase blade of the rear propeller when the mixing ratio of liquid and gas is 2: 8.
  • 5 is a partial cross-sectional view for explaining the shape of the abnormal blade and the single-phase blade of the rear propeller when the mixing ratio of liquid and gas is 6: 4.
  • 6 is a front view for explaining the shape of the abnormal blade and the single-phase blade of the rear propeller when the mixing ratio of liquid and gas is 4: 6.
  • FIG. 7 is a front view for explaining the shape of the abnormal blade and the single-phase blade of the rear propeller when the mixing ratio of the liquid and gas is 2: 8.
  • FIG. 8 is a front view for explaining the shape of the abnormal blade and the single-phase blade of the rear propeller when the mixing ratio of the liquid and gas is 4: 6.
  • the present propeller unit 10 for stirring-aeration according to an embodiment of the present invention.
  • FIG. 1 is a view illustrating a multi-rotation propeller unit 10 for agitating-aeration according to an embodiment of the present invention
  • FIG. 2 illustrates a conventional half-rotation propeller unit 10 and an embodiment of the present invention
  • FIG. 3 is a perspective view of an air volume portion of the upper half-turn multi-propeller unit 10 for stirring-aeration
  • FIG. 3 is a perspective view of a rear propeller 300 according to an embodiment of the present invention
  • FIG. 4 is a mixing ratio of liquid and gas.
  • Is 2: 8 the partial cross-sectional view for explaining the form of the abnormal blade 321 and the single-phase blade 323 of the rear propeller 300
  • Figure 5 is a rear portion when the mixing ratio of liquid and gas is 6: 4
  • FIG. 1 is a view illustrating a multi-rotation propeller unit 10 for agitating-aeration according to an embodiment of the present invention
  • FIG. 2 illustrates a conventional half-rotation propeller unit 10 and an embodiment of the present invention
  • FIG. 6 is a partial cross-sectional view for describing the shapes of the abnormal blade 321 and the single-phase blade 323 of the propeller 300, and FIG. 6 illustrates an abnormal blade of the rear propeller 300 when the mixing ratio of liquid and gas is 4: 6.
  • 321 and the shape of the single-phase blade 323 7 is a front view for explaining the shape of the abnormal blade 321 and the single-phase blade 323 of the rear propeller 300 when the mixing ratio of liquid and gas is 2: 8, and FIG. 8
  • the mixing ratio of liquid and gas is 4: 6 it is a front view for demonstrating the form of the abnormal blade 321 and the single phase blade 323 of the rear propeller 300. As shown in FIG.
  • the propeller unit 10 includes a shaft part 100, a front propeller 200, and a rear propeller 300, and the front propeller 200 and the rear propeller 300 include a shaft part ( It is rotatably mounted or connected with respect to 100).
  • the shaft part 100 may be connected to a driving part such as a motor to form a rotation state.
  • the front propeller 200 has a front propeller hub 210 and a front propeller blade 220 which are connected to the shaft portion 100 to rotate.
  • the front propeller hub 210 is fixedly mounted to the shaft portion 100 to take a structure that is directly connected to the rotation of the shaft portion 100 may be connected via a separate transmission means.
  • the front propeller blade 220 is provided in a structure that is formed in the radial direction extending from the outer circumferential surface of the front propeller hub 210 and evenly disposed.
  • the front propeller 200 has a front propeller blade 220 extending radially from the front propeller hub 210 as described above, wherein the front propeller blade 220 is the front propeller hub 210.
  • the front propeller blade 220 is the front propeller hub 210.
  • a plurality of front propeller blades 220 is provided, and forms a structure that is conformally disposed with respect to the front propeller hub (210).
  • the rear propeller 300 includes a rear propeller hub 310 and a rear propeller blade 320 that are connected to the shaft portion 100 to rotate.
  • the rear propeller hub 310 is fixedly mounted to the shaft portion 100 to take a structure that is directly connected to the rotation of the shaft portion 100 may be connected via a separate transmission means.
  • the rear propeller hub 310 may be connected to the shaft part 100 to receive a driving force rotating from the shaft part 100.
  • the rear propeller hub 310 may be rotated in a direction opposite to the front propeller hub 210.
  • the rear propeller blade 320 is provided in a radially extending and evenly arranged from the outer circumferential surface of the rear propeller hub 310.
  • the rear propeller blade 320 includes an ideal blade 321, a layer structure 322, and a single phase blade 323. Detailed description of the rear propeller blade 320 will be described later.
  • FIG. 1 three front propeller blades 220 and three rear propeller blades 320 are provided.
  • the present invention is not limited thereto, but the front propeller blades 220 and the rear propellers are not limited thereto.
  • the blade 320 may have various configurations, such as having different numbers.
  • the propeller unit 10 supplies the microbubbles to one side of the rear propeller 300, that is, the air collecting unit 400 and the air collecting unit 400 located in the opposite direction to the direction in which the front propeller 200 is located. It includes an air supply pipe 500.
  • the air supply pipe 500 may have a honeycomb cross-section to generate microbubbles.
  • the air collecting unit 400 may have a predetermined space therein, and the shaft unit 100 may be located in the space therein.
  • the air collecting unit 400 may be formed in a cylindrical shape, but is not limited thereto.
  • the air discharged through the honeycomb air supply pipe 500 forms a micro bubble, and the microbubbles are supplied to a stirring liquid, thereby activating the self-cleaning effect of decomposing organic matter into microorganisms for a quick time for water purification. There is an effect that can be processed inside.
  • microbubble described above may refer to microbubbles that cannot be identified by eyes of 50 ⁇ m or less.
  • the microbubble can rise to a very slow rate of 0.1 cm / s to the surface and generate 400 Mhz of ultrasound, 140 dB of high sound pressure, and instantaneous ultra high heat of about 5,500 degrees.
  • the air supply pipe 500 may be a branch pipe having a Y shape, but is not limited thereto.
  • the air supply pipe 500 may be a branch pipe having a plurality of branch pipes.
  • a larger negative pressure difference may be generated to improve aeration performance.
  • this propeller unit 10 will be described by comparing the conventional propeller unit.
  • the propeller unit 10 (CRP Layer) has superior aeration performance compared to the conventional single propeller unit (Single) and the conventional upper half propeller unit (CRP).
  • [Table 1] is a value comparing a single propeller unit, a conventional upper propeller unit, and the present propeller unit 10, and 0.75 kw (1 horsepower) for verification of the propeller unit 10, The study was conducted on 2.2 kw (3 hp).
  • the conventional upper half propeller unit has an aeration increase of 14.1% compared to a single propeller unit, and the propeller unit 10 is 45.6%. You can see that it rose.
  • the aeration amount is increased by 144.0%, it can be seen that the propeller unit 10 is 234.4% increased.
  • FIG. 2 is a simulation result of the conventional upper half propeller unit and the present propeller unit 10, and represents an air volume fraction.
  • Case B of the propeller unit 10 is that the larger amount of air is discharged through the air distribution in the propeller downstream direction on the contour (Contour) You can check it.
  • the rear propeller 300 of the propeller unit 10 is not only applicable to the upper half-turn propeller unit (CRP), but also to a single propeller unit, and can play a big role in improving aeration performance for various powers. .
  • the propeller unit 10 increases the amount of aeration relative to the same power, it can play a big role in the water treatment situation that requires a larger amount of oxygen supply.
  • the rear propeller blade 320 may divide the operating region of the rear propeller 300 into two zones by using the layer structure 322 having the same size as the diameter of the air trap 400.
  • the layer structure 322 may distinguish the ideal flow region in which the liquid and gas are mixed and the single phase flow region in which only the liquid exists, thereby designing a propeller blade suitable for each condition.
  • the rear propeller blade 320 includes an abnormal blade 321, a layer structure 322, and a single phase blade 323.
  • the ideal blade 321 may be provided in a structure extending radially from the outer circumferential surface of the rear propeller hub 310.
  • the abnormal blade 321 may be formed to extend from the outer circumferential surface of the rear propeller hub 310 to the inner circumferential surface of the layer structure 322.
  • the layer structure 322 may have the same diameter as the air supply pipe 500, and one end of the abnormal blade 321 may be connected to an inner circumferential surface thereof.
  • the diameter of the layer structure 322 is not limited thereto, and may be slightly larger than the diameter of the air supply pipe 500.
  • the single-phase blades 323 may be located at positions corresponding to the abnormal blades 321 on the outer surface of the layer structure 322, respectively.
  • the shape contacting the layer structure 322 of the single-phase blade 323 and the shape contacting the layer structure of the abnormal blade 321 may be the same.
  • the above-described single-phase blade 323 and the abnormal blade 321 are located at a corresponding position means that the portion of the single-phase blade 323 in contact with the layer structure 322 and the layer structure 322 in the abnormal blade 321. This may mean that there is a part overlapping each other.
  • the single phase blade 323 may be provided in a structure extending radially from the outer circumferential surface of the layer structure 322.
  • the single phase blade 323 may be formed in a shape corresponding to the front propeller blade 220.
  • the abnormal blade 321 and the single-phase blade 323 may be positioned to have a predetermined angle to each other.
  • a straight line connecting the leading edge and the trailing edge of the surface on which the abnormal blade 321 is cut is called a first demonstration line L1
  • the surface of the single-phase blade 323 is cut off.
  • the straight line connecting the leading edge and the trailing edge of is called the second demonstration line L2.
  • the second demonstration line L2 may follow the first demonstration line L1. It can be formed to have a value greater than 0 degrees ⁇ is located in the clockwise direction as a reference.
  • FIG. 4 is a view showing the shape of the ideal blade 321 when the mixing ratio of liquid and gas is 2: 8, wherein the second demonstration line L2 of the single-phase blade 323 is the first of the abnormal blade 321. It can be seen that ⁇ has more than 0 degrees while being rotated in a clockwise direction from the demonstration line L1.
  • the second demonstration line L2 refers to the first demonstration line L1.
  • has a value less than 0 degrees.
  • FIG 5 is a view showing the shape of the ideal blade 321 when the mixing ratio of liquid and gas is 6: 4, wherein the second demonstration line L2 of the single-phase blade 323 is the first of the abnormal blade 321. It can be seen that ⁇ has less than 0 degrees while being rotated counterclockwise from the demonstration line L1.
  • may be 0 degrees when the mixing ratio of liquid and air is 4: 6.
  • the abnormal blade 321 may have different projection areas depending on the volume ratio of the liquid.
  • the above-described projection area A may mean an area in which the blade is projected on a plane perpendicular to the shaft part 100.
  • 6 is a view showing the shapes of the abnormal blade 321 and the single-phase blade 323 when the mixing ratio of the liquid and gas is 4: 6.
  • the abnormal blade 321 and the single-phase blade 323 may have the same projected area as the front propeller blade 220 when the mixing ratio of liquid and gas is 4: 6.
  • the abnormal blade 321 may have a projected area different according to the volume ratio of the liquid based on the volume ratio of the liquid 40%.
  • FIG. 7 is a diagram showing the shapes of the abnormal blade 321 and the single-phase blade 323 when the mixing ratio of liquid and gas is 2: 8.
  • the abnormal blade 321 when the volume ratio of the liquid located inside the layer structure 322 is less than 40%, the abnormal blade 321 has the volume ratio of 40%, that is, the ideal blade 321 having a ⁇ of 0 degrees. It may be formed to have a projection area smaller than the projection area of the).
  • the abnormal blade 321 may have an ideal blade having a volume ratio of 40%, that is, ⁇ being 0 degrees. It may be formed to have a projection area larger than the projection area of 321.
  • the propeller unit 10 adjusts the projection area of ⁇ and the ideal blade 321 as the rear propeller 300 is replaced according to the volume ratio of the liquid passing through the layer structure 322, thereby improving aeration performance. It can be effected.
  • the front propeller blade 220 and the rear propeller blade 320 may have a skewed shape.
  • abnormal blade 321 and the single-phase blade 322 may have a skewed shape.
  • the propeller unit 10 may use a blade to which skew is applied with improved stirring performance compared to a vertical blade.
  • the agitator-aeration multi-rotation multi-propeller unit 10 may be used as a stirring part of a water treatment device in that it provides a fluid flow force of a straight component, and for fluid transportation. It can be used as a driving force providing device is arranged in the opposite direction is possible to increase the straightness of the flow to various configurations in the range to maximize the stirring efficiency.
  • front propeller hub 220 front propeller blade

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Environmental Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Animal Husbandry (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

본 발명의 일 실시예에 따른 교반 폭기용 상반회전 다층 프로펠러 유니트는 샤프트부; 샤프트부에 연결되는 전방 프로펠러 및 후방 프로펠러; 및 내부에 소정의 공간이 형성되고, 내부의 공간에 샤프트부가 위치하는 공기 포집부; 및 공기 포집부의 내부에 공기를 공급하는 공기 공급관을 포함하되, 후방 프로펠러 블레이드는 후방 프로펠러 허브에 연결되는 이상 블레이드; 이상 블레이드의 단부에 내부면이 연결되는 층 구조물; 및 층 구조물의 외부면에 이상 블레이드와 대응되는 위치에 각각 위치하는 단상 블레이드를 포함한다.

Description

교반-폭기용 상반회전 다층 프로펠러 유니트
본원은 교반-폭기용 상반회전 다층 프로펠러 유니트에 관한 것이다.
수자원의 급격한 고갈로 인하여 오염된 물의 재처리 내지 정수 시설에 대한 연구가 활발하게 이루어지고 있다. 특히, 정수 시설 등의 수처리 장치에 있어 물을 교반하는 장치는 수처리에 필수적인 요소로서 물의 산소 접촉 면적을 증대시키고 산소공급을 원활하게 함으로써 하수의 재처리 성능 내지 정수 성능을 극대화시킬 수 있다.
또한, 부영양화로 인하여 녹조 내지 적조 현상이 발생하는 경우 양어장 내지 양식장 등에서 물 속 생물의 산소 공급 부족으로 인한 집단 폐사 등이 발생할 수 있는데, 물의 교반을 통한 산소 공급을 원활히 함으로써 이러한 위험을 방지 내지 저감시킬 수 있다.
하지만, 종래의 수처리 장치는 단순한 교반 기능을 제공하여 입력되는 에너지 대비 교반 출력, 즉 교반 성능이 약하여 소정의 효과를 얻는데 어려움이 수반되었다.
한편, 이와 관련하여 일본공개특허 제2006-062835호(발명의 명칭: 프로펠러, 교반기 및 컨베이어) 에서는, 회전 축부의 외주에 복수의 날개를 각각 이간한 배치로 나선형으로 줄지어 설치하고, 각 날개부의 나선 방향의 전단부를, 나선 방향으로 선행하는 옆의 날개부의 후단부와 회전 축부의 축심 방향에 관해 교차시키는 구성을 개시하고 있다.
또한, 종래의 교반-폭기 장치는 일반 교반 장치에 폭기 장치를 추가 구성한 형태로 사용하고 있으며, 폭기 유동에 대한 고려가 부족한 형태이다.
다시 말해, 기존 장치에서는 폭기 기능 사용시, 교반기에서 사용하던 프로펠러를 그대로 사용하고 있으며, 이는 액체와 기체가 혼합된 이상 유동(two-phase flow) 상태를 고려하지 않은 프로펠러이므로, 최적화되지 않은 프로펠러이다.
이에 따라, 종래의 교반-폭기 장치는, 교반기를 구동 시 작동유체가 액체만 존재하는 단상 유동(single-phase flow)과 교반-폭기 구동시 액체와 기체가 혼합된 이상 유동(two-phase flow)의 경우 밀도 등 구동 조건에 큰 차이가 있기 때문에 동일한 프로펠러의 사용은 폭기 성능의 감소를 초래하게 된다.
본원은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서, 액체가 존재하는 단상 유동에 위치하는 프로펠러 블레이드와 액체와 기체가 혼합된 이상 유동에 위치하는 프로펠러 블레이드의 각도를 달리하여, 폭기 성능을 향상시켜 에너지 절감의 효과를 낼 수 있는 교반-폭기용 상반회전 다층 프로펠러 유니트를 제공하는 것을 목적으로 한다.
상기한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본원의 일 측면에 따른 프로펠러 유니트는 샤프트부; 샤프트부에 연결되는 전방 프로펠러 허브와 전방 프로펠러 허브로부터 반경 방향으로 연장 현성되고 균등 배치되는 복수의 전방 프로펠러를 구비하는 전방 프로펠러; 샤프트부에 연결되는 후방 프로펠러 허브와 후방 프로펠러 허브로부터 반경 방향으로 연장 형성되고 균등배치되는 복수의 후방 프로펠러 블레이드를 구비하는 후방 프로펠러; 내부에 소정의 공간이 형성되고, 내부의 공간에 샤프트부가 위치하는 공기포집부; 및 공기 포집부의 내부에 공기를 공급하는 공기 공급관을 포함하되, 후방 프로펠러는 전방 프로펠러의 반대 방향으로 회동하고, 각각의 후방 프로펠러 블레이드는 샤프트부에 연결되는 이상 블레이드; 이상 블레이드의 단부에 내부면이 연결되는 층 구조물; 및 층 구조물의 외부면에 이상 블레이드와 대응되는 위치에 각각 위치하는 단상 블레이드를 포함한다.
상기한 바와 같은 구성을 갖는 본 발명에 따른 교반-폭기용 상반회전 다층 프로펠러 유니트는 다음과 같은 효과를 갖는다.
첫째, 본 발명에 따른 교반-폭기용 상반회전 다층 프로펠러 유니트는, 상반 배치 구조의 전방 및 후방 프로펠러를 통하여 높은 교반능(유량)을 가지는 수처리 교반 펌프에 최적화된 프로펠러 구조를 제공할 수 있다.
둘째, 본 발명에 따른 교반-폭기용 상반회전 다층 프로펠러 유니트는, 액체가 존재하는 단상 유동에 위치하는 프로펠러 블레이드와 액체와 기체가 혼합된 이상 유동에 위치하는 프로펠러 블레이드의 각도를 달리하여, 폭기 성능을 향상시켜 에너지 절감형 프로펠러 유닛을 제공할 수 있다.
셋째, 본 발명의 일실시예에 따른 교반-폭기용 상반회전 다층 프로펠러 유니트는 에너지 절감형 수처리 교반 펌프가 사용되는 수처리 공정개발에 기여함으로써 동력비를 줄일 수 있는 에너지 절감형 장치의 개발을 가능하게 하고, 이의 적용에 따른 CO2 배출량 감소 효과를 수반할 수도 있다.
넷째, 본 발명의 일실시예에 교반-폭기용 상반회전 다층 프로펠러 유니트는, 수계의 부영양화 방지를 통한 연안지역 적조현상 방지 및 연안 어업생산기지(연안 양식장)의 상실방지 효과 기대할 수도 있고, 수계의 수질개선에 의한 생태계 건전성이 회복되어 국민 건강의 안전성 향상을 이룰 수도 있다.
도 1은 본 발명의 일 실시예에 따른 교반-폭기용 상반회전 다층 프로펠러 유니트를 확인할 수 있는 도면이다.
도 2는 종래의 상반회전 프로펠러 유니트와 본 발명의 일 실시예에 따른 교반-폭기용 상반회전 다층 프로펠러 유니트의 공기 용적 부분을 나타내는 도면이다.
도 3은 본 발명의 일 실시예에 따른 후방 프로펠러의 사시도이다.
도 4는 액체와 기체의 혼합비가 2:8인 경우, 후방 프로펠러의 이상 블레이드 및 단상 블레이드의 형태를 설명하기 위한 부분 단면도이다.
도 5는 액체와 기체의 혼합비가 6:4인 경우, 후방 프로펠러의 이상 블레이드 및 단상 블레이드의 형태를 설명하기 위한 부분 단면도이다.
도 6은 액체와 기체의 혼합비가 4:6인 경우, 후방 프로펠러의 이상 블레이드 및 단상 블레이드의 형태를 설명하기 위한 정면도이다.
도 7은 액체와 기체의 혼합비가 2:8인 경우, 후방 프로펠러의 이상 블레이드 및 단상 블레이드의 형태를 설명하기 위한 정면도이다.
도 8은 액체와 기체의 혼합비가 4:6인 경우, 후방 프로펠러의 이상 블레이드 및 단상 블레이드의 형태를 설명하기 위한 정면도이다.
아래에서는 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부재가 다른 부재 “상에” 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. 본원 명세서 전체에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 본원 명세서 전체에서 사용되는 정도의 용어 "~(하는) 단계" 또는 "~의 단계"는 "~ 를 위한 단계"를 의미하지 않는다.
이하에서는 본 발명의 일 실시예에 따른 교반-폭기용 상반회전 다층 프로펠러 유니트(10)(이하, ‘본 프로펠러 유니트(10)’라 함)에 대하여 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 교반-폭기용 상반회전 다층 프로펠러 유니트(10)를 확인할 수 있는 도면이고, 도 2는 종래의 상반회전 프로펠러 유니트(10)와 본 발명의 일 실시예에 따른 교반-폭기용 상반회전 다층 프로펠러 유니트(10)의 공기 용적 부분을 나타내는 도면이며, 도 3은 본 발명의 일 실시예에 따른 후방 프로펠러(300)의 사시도이고, 도 4는 액체와 기체의 혼합비가 2:8인 경우, 후방 프로펠러(300)의 이상 블레이드(321) 및 단상 블레이드(323)의 형태를 설명하기 위한 부분 단면도이며, 도 5는 액체와 기체의 혼합비가 6:4인 경우, 후방 프로펠러(300)의 이상 블레이드(321) 및 단상 블레이드(323)의 형태를 설명하기 위한 부분 단면도이고, 도 6은 액체와 기체의 혼합비가 4:6인 경우, 후방 프로펠러(300)의 이상 블레이드(321) 및 단상 블레이드(323)의 형태를 설명하기 위한 정면도이며, 도 7은 액체와 기체의 혼합비가 2:8인 경우, 후방 프로펠러(300)의 이상 블레이드(321) 및 단상 블레이드(323)의 형태를 설명하기 위한 정면도이고, 도 8는 액체와 기체의 혼합비가 4:6인 경우, 후방 프로펠러(300)의 이상 블레이드(321) 및 단상 블레이드(323)의 형태를 설명하기 위한 정면도이다.
도 1을 참조하면, 본 프로펠러 유니트(10)는 샤프트부(100), 전방 프로펠러(200), 및 후방 프로펠러(300)를 포함하고, 전방 프로펠러(200)와 후방 프로펠러(300)는 샤프트부(100)에 대하여 회동 가능하게 장착 내지 연결된다.
샤프트부(100)는 모터 등의 구동부와 연결되어 회동 상태를 형성할 수 있다.
전방 프로펠러(200)는 샤프트부(100)에 연결되어 회동하는 전방 프로펠러 허브(210)와 전방 프로펠러 블레이드(220)를 구비한다.
전방 프로펠러 허브(210)는 샤프트부(100)에 고정장착되어 샤프트부(100)의 회동과 직결 연결되는 구조를 취하나 별개의 전달 수단을 통하여 연결될 수도 있다.
또한, 전방 프로펠러 블레이드(220)는 전방 프로펠러 허브(210)의 외주면으로부터 반경 방향으로 연장 형성되고 균등 배치되는 구조로 구비된다.
상세하게는, 전방 프로펠러(200)는 앞서 기술된 바와 같이 전방 프로펠러 허브(210)로부터 반경 방향으로 연장 형성되는 전방 프로펠러 블레이드(220)를 구비하는데, 전방 프로펠러 블레이드(220)는 전방 프로펠러 허브(210)에 대하여 균등 배치된다. 즉, 전방 프로펠러 블레이드(220)는 복수 개가 구비되되, 전방 프로펠러 허브(210)에 대하여 등각 배치되는 구조를 형성한다.
후방 프로펠러(300)는 샤프트부(100)에 연결되어 회동하는 후방 프로펠러 허브(310)와 후방 프로펠러 블레이드(320)를 구비한다.
후방 프로펠러 허브(310)는 샤프트부(100)에 고정장착되어 샤프트부(100)의 회동과 직결 연결되는 구조를 취하나 별개의 전달 수단을 통하여 연결될 수도 있다.
다시 말해, 후방 프로펠러 허브(310)는 샤프트부(100)에 연결되어, 샤프트부(100)로부터 회전하는 구동력을 전달 받을 수 있다. 또한, 후방 프로펠러 허브(310)는 전방 프로펠러 허브(210)와 반대방향으로 회전될 수 있다.
또한, 후방 프로펠러 블레이드(320)는 후방 프로펠러 허브(310)의 외주면으로부터 반경 방향으로 연장 형성되고 균등 배치되는 구조로 구비된다.
후방 프로펠러 블레이드(320)는 이상 블레이드(321), 층 구조물(322), 및 단상 블레이드(323)를 포함한다. 후방 프로펠러 블레이드(320)에 대한 상세한 설명은 후술하도록 한다.
도 1에서 본 발명의 일실시예에 따른 전방 프로펠러 블레이드(220) 및 후방 프로펠러 블레이드(320)는 세 개가 구비되는 경우를 도시하였으나, 본 발명은 이에 국한되지 않고 전방 프로펠러 블레이드(220)와 후방 프로펠러 블레이드(320)는 서로 상이한 개수를 구비할 수도 있는 등 다양한 구성이 가능하다.
본 프로펠러 유니트(10)는 후방 프로펠러(300)의 일측에, 즉 전방 프로펠러(200)가 위치하는 방향의 반대방향에 위치하는 공기 포집부(400) 및 공기 포집부(400)에 마이크로버플을 공급하는 공기 공급관(500)을 포함한다. 예시적으로, 공기 공급관(500)은 마이크로버블을 생성하기 위해 단면이 벌집구조일 수 있다.
공기 포집부(400)는 내부의 소정의 공간이 형성되고, 내부의 공간에 샤프트부(100)가 위치할 수 있다. 예시적으로, 도 1에 도시된 바와 같이, 공기 포집부(400)는 원통형으로 형성될 수 있으나 이에 한하지 않는다.
상세하게는, 벌집구조의 공기 공급관(500)을 통해 방출된 공기는 마이크로 버블을 형성하고, 마이크로버블은 교반하는 액체에 공급되어, 유기물을 미생물로 분해하는 자정작용을 활성화시켜 수질정화를 빠른 시간 내에 처리할 수 있는 효과가 있다.
상술한 마이크로 버블이란 50um이하의 눈으로 확인할 수 없는 미세기포를 의미할 수 있다. 또한, 마이크로 버블은 수면으로 0.1cm/s의 매우 느린 속도로 상승하고, 400Mhz의 초음파, 140dB의 높음 음압, 및 약 5,500도의 순간적인 초고열을 발생시킬 수 있다.
공기 공급관(500)은 도 1에 도시된 바와 같이, Y자 형태의 분기관일 수 있으나, 이에 한정되지 않고 복수의 지관이 구비된 분기관 형태일 수 있다.
마이크로버블이 복수의 지관을 통해 공기 포집부(400)로 공급됨에 따라, 더 큰 부압차이를 만들어 내어 폭기 성능을 향상 시킬 수 있다.
이하, 본 프로펠러 유니트(10)과 종래의 프로펠러 유니트를 비교하여 설명한다.
Power [kw] Type Air volumetric flow rate [L/min] Rate of increase
0.75 (1HP) Single 68.0
CRP 77.6 Single vs +14.1
CRP Layer 99.00 Single vs +45.6CRP vs +27.6
2.2 (3HP) Single 250
CRP 610 Single vs +144.0
CRP Layer 836 Single vs +234.4CRP vs +37.0
상기 [표 1]에 나타난 바와 같이, 종래의 싱글 프로펠러 유니트(Single) 및 종래의 상반 프로펠러 유니트 (CRP)에 비해 본 프로펠러 유니트(10, CRP Layer)이 폭기 성능이 월등히 뛰어난 것을 알 수 있다.
상세하게는, 상기 [표 1]은 싱글 프로펠러 유니트, 종래의 상반 프로펠러 유니트, 및 본 프로펠러 유니트(10)를 비교한 값이며, 본 프로펠러 유니트(10)의 검증을 위하여 0.75kw(1마력), 2.2kw(3마력)에 대하여 연구를 진행하였다.
상기 [표 1]에 나타난 바와 같이, 1마력의 동력을 각각의 프로펠러 유니트에 전달한 경우, 싱글 프로펠러 유니트 대비 종래의 상반 프로펠러 유니트는 폭기량이 14.1% 상승하였으며, 본 프로펠러 유니트(10)는 45.6% 상승한 것을 알 수 있다. 또한, 3마력의 동력을 각각의 프로펠러 유니트에 전달한 경우, 싱글 프로펠러 유니트 대비 종래의 상반 프로펠러 유니트는 폭기량이 144.0% 상승하였으며, 본 프로펠러 유니트(10)는 234.4% 상승한 것을 알 수 있다.
도 2는 종래의 상반 프로펠러 유니트와 본 프로펠러 유니트(10)의 시뮬레이션 결과로, 공기용적 부분(air volume fraction)을 표현한 것이다.
도 2를 참조하면, 종래의 상반 프로펠러 유니트인 Case A와 비교하여, 본 프로펠러 유니트(10)인 Case B는 컨투어(Contour) 상에서 프로펠러 하류 방향의 공기 분포를 통해 더 많은 양의 공기가 내보내지는 것을 확인할 수 있다.
본 프로펠러 유니트(10)의 후방 프로펠러(300)는 상반회전 프로펠러 유니트(CRP)에 적용이 가능할뿐만 아니라, 단일 프로펠러 유니트에도 적용이 가능하며, 다양한 동력에 대하여 폭기 성능 향상에 큰 역할을 할 수 있다.
또한, 본 프로펠러 유니트(10)는 동일 동력 대비 폭기량을 증가시켜, 보다 더 많은 양의 산소 공급이 필요한 수처리 상황에 대하여 큰역할을 할 수 있다.
도 3 내지 도 8을 참조하여, 본 발명의 일 실시예에 따른 후방 프로펠러 블레이드(320)에 대해서 설명한다.
도 3을 참조하면, 후방 프로펠러 블레이드(320)는 공기 포집부(400)의 직경과 동일한 크기의 층 구조물(322)을 이용하여, 후방 프로펠러(300)의 작동 영역을 두 구역으로 나눌 수 있다.
다시 말해, 층 구조물(322)은 액체와 기체가 혼합된 이상 유동 영역과 액체만 존재하는 단상 유동 영역을 구분하여, 각각의 조건에 맞는 프로펠러 블레이드를 설계할 수 있다.
이에 따라, 후방 프로펠러 블레이드(320)는 이상 블레이드(321), 층 구조물(322), 및 단상 블레이드(323)를 포함한다.
이상 블레이드(321)는 후방 프로펠러 허브(310)의 외주면으로부터 반경 방향으로 연장 형성되는 구조로 구비될 수 있다.
다시 말해, 이상 블레이드(321)는 후방 프로펠러 허브(310)의 외주면으로부터 층 구조물(322)의 내주면까지 연장 형성되어 형성될 수 있다.
층 구조물(322)은 공기 공급관(500)와 동일한 직경으로 형성되고, 내주면에 이상 블레이드(321)의 일단부가 연결될 수 있다. 하지만, 층 구조물(322)의 직경은 이에 한정되지 않고, 공기 공급관(500)의 직경보다 약간 크게 형성될 수도 있다.
단상 블레이드(323)는 층 구조물(322)의 외부면에 이상 블레이드(321)와 대응되는 위치에 각각 위치할 수 있다. 또한, 단상 블레이드(323)의 층 구조물(322)에 접촉되는 형상과 이상 블레이드(321)의 층구조물에 접촉되는 형상이 동일할 수 있다.
상술한 단상 블레이드(323)와 이상 블레이드(321)가 대응되는 위치에 위치한다는 것은 단상 블레이드(323) 중 층 구조물(322)에 접촉되는 부분과 이상 블레이드(321) 중 층 구조물(322)에 접촉되는 부분이 서로 중첩되는 부분이 있는 것을 의미할 수 있다.
단상 블레이드(323)는 층 구조물(322)의 외주면으로부터 반경 방향으로 연장 형성되는 구조로 구비될 수 있다. 예시적으로, 단상 블레이드(323)는 전방 프로펠러 블레이드(220)와 대응되는 형상으로 형성될 수 있다.
이상 블레이드(321)와 단상 블레이드(323)는 서로 소정의 각도를 가지도록 위치할 수 있다.
상세하게는, 도 4 및 도 5를 참조하면, 이상 블레이드(321)를 절단한 면의 전연과 후연을 연결한 직선을 제1 시위선(L1)이라 하고, 단상 블레이드(323)를 절단한 면의 전연과 후연을 연결한 직선을 제2 시위선(L2)이라 하며, 제1 시위선(L1)과 제2 시위선(L2)이 이루는 각을 θ라 할 때, θ는 소정의 각도를 가질 수 있다.
또한, 도 4를 참조하면, 이상 블레이드(321)는 층 구조물(322)의 내부에 위치하는 액체의 부피 비율이 40% 미만인 경우, 제2 시위선(L2)이 제1 시위선(L1)을 기준으로 시계방향에 위치하여 θ가 0도 초과값을 가지도록 형성될 수 있다.
도 4는 액체와 기체의 혼합비가 2:8인 경우에 이상적인 이상 블레이드(321)의 형상을 나타내는 도면으로서, 단상 블레이드(323)의 제2 시위선(L2)이 이상 블레이드(321)의 제1 시위선(L1)보다 시계방향으로 회전된 상태로 θ가 0도 이상을 가지는 것을 알 수 있다.
도 5를 참조하면, 이상 블레이드(321)는 층 구조물(322)의 내부에 위치하는 액체의 부피 비율이 40% 초과인 경우, 제2 시위선(L2)이 제1 시위선(L1)을 기준으로 반시계방향에 위치하여 θ가 0도 미만값을 가지도록 형성될 수 있다.
도 5는 액체와 기체의 혼합비가 6:4인 경우에 이상적인 이상 블레이드(321)의 형상을 나타내는 도면으로서, 단상 블레이드(323)의 제2 시위선(L2)이 이상 블레이드(321)의 제1 시위선(L1)보다 반시계방향으로 회전된 상태로 θ가 0도 미만을 가지는 것을 알 수 있다.
또한, θ는, 액체와 공기의 혼합비가 4:6인 경우, 0도일 수 있다.
도 6 내지 도 8을 참조하면, 이상 블레이드(321)는 투영 면적이 액체의 부피 비율에 따라 상이할 수 있다.
상술한 투영 면적(A)는 샤프트부(100)에서 수직한 평면 상에 블레이드가 투영되는 면적을 의미할 수 있다.
도 6은 액체와 기체의 혼합비가 4:6인 경우, 이상 블레이드(321) 및 단상 블레이드(323)의 형상을 나타내는 도면이다.
도 6을 참조하면, 이상 블레이드(321) 및 단상 블레이드(323)는 액체와 기체의 혼합비가 4:6인 경우, 전방 프로펠러 블레이드(220)와 투영면적이 동일할 수 있다.
또한, 이상 블레이드(321)는 액체의 부피 비율이 40%를 기준으로, 액체의 부피 비율에 따라 투영 면적이 상이할 수 있다.
도 7은 액체와 기체의 혼합비가 2:8인 경우, 이상 블레이드(321) 및 단상 블레이드(323)의 형상을 나타내는 도면이다.
도 7을 참조하면, 이상 블레이드(321)는 층 구조물(322)의 내부에 위치하는 액체의 부피 비율이 40% 미만인 경우, 액체의 부피 비율이 40%인 즉, θ가 0도인 이상 블레이드(321)의 투영 면적보다 작은 투영 면적을 가지도록 형성될 수 있다.
도 8은 액체와 기체의 혼합비가 6:4인 경우, 이상 블레이드(321) 및 단상 블레이드(323)의 형상을 나타내는 도면이다.
도 8을 참조하면, 이상 블레이드(321)는 층 구조물(322)의 내부에 위치하는 액체의 부피 비율이 40% 초과인 경우, 액체의 부피 비율이 40%인 즉, θ가 0도인 이상 블레이드(321)의 투영 면적보다 큰 투영 면적을 가지도록 형성될 수 있다.
즉, 본 프로펠러 유니트(10)는 층 구조물(322)을 통과하는 액체의 부피 비율에 따라 후방 프로펠러(300)를 교체함에 따라 θ 및 이상 블레이드(321)의 투영면적을 조절하여, 폭기 성능을 향상시킬 수 있는 효과가 있다.
전방 프로펠러 블레이드(220) 및 후방 프로펠러 블레이드(320)는 스큐드된 형상일 수 있다.
또한, 이상 블레이드(321) 및 단상 블레이드(322)는 스큐드된 형상일 수 있다.
다시 말해, 본 프로펠러 유니트(10)는 수직형 블레이드에 비해 교반 성능이 향상된 스큐가 적용된 블레이드를 사용할 수 있다.
상기한 바와 같이, 본 발명의 일 실시예에 따른 교반-폭기용 상반회전 다층 프로펠러 유니트(10)는 직진성분의 유체 유동력을 제공하는 점에서 수처리 장치의 교반부로 사용될 수도 있고, 유체 수송을 위한 구동력 제공장치로 사용될 수도 있는 등 상반 배치되어 직진 유동성을 증대시켜 교반효율을 최대화시키는 범위에서 다양한 구성이 가능하다.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.
[부호의 설명]
10 : 프로펠러 유니트
100 : 샤프트부
200 : 전방 프로펠러
210 : 전방 프로펠러 허브 220 : 전방 프로펠러 블레이드
300 : 후방 프로펠러
310 : 후방 프로펠러 허브 320 : 후방 프로펠러 블레이드
321 : 이상 블레이드 322 : 층 구조물
323 : 단상 블레이드
400 : 공기 포집부 500 : 공기 공급관

Claims (7)

  1. 교반 폭기용 상반회전 다층 프로펠러 유니트에 있어서,
    샤프트부;
    상기 샤프트부에 연결되는 전방 프로펠러 허브와 상기 전방 프로펠러 허브로부터 반경 방향으로 연장 형성되고 균등 배치되는 복수의 전방 프로펠러 블레이드를 구비하는 전방 프로펠러;
    상기 샤프트부에 연결되는 후방 프로펠러 허브와 상기 후방 프로펠러 허브로부터 반경 방향으로 연장 형성되고 균등배치되는 복수의 후방 프로펠러 블레이드를 구비하는 후방 프로펠러;
    내부에 소정의 공간이 형성되고, 상기 내부의 공간에 상기 샤프트부가 위치하는 공기 포집부; 및
    상기 공기 포집부의 내부에 공기를 공급하는 공기 공급관을 포함하되,
    상기 후방 프로펠러는 상기 전방 프로펠러의 반대 방향으로 회동하고,
    각각의 상기 후방 프로펠러 블레이드는
    상기 후방 프로펠러 허브에 연결되는 이상 블레이드;
    상기 이상 블레이드의 단부에 내부면이 연결되는 층 구조물; 및
    상기 층 구조물의 외부면에 상기 이상 블레이드와 대응되는 위치에 각각 위치하는 단상 블레이드를 포함하는 프로펠러 유니트.
  2. 제1항에 있어서,
    상기 이상 블레이드를 절단한 면의 전연과 후연을 연결한 직선을 제1 시위선이라 하고,
    상기 단상 블레이드를 절단한 면의 전연과 후연을 연결한 직선을 제2 시위선이라 하며,
    상기 제1 시위선과 제2 시위선이 이루는 각을 θ라 할 때,
    상기 θ는 소정의 각도를 가지는 것인 프로펠러 유니트.
  3. 제2항에 있어서,
    상기 이상 블레이드는
    상기 층 구조물의 내부에 위치하는 액체의 부피 비율이 40% 초과인 경우, 상기 제2 시위선이 상기 제1 시위선을 기준으로 반시계방향에 위치하여, 상기 θ가 0도 미만값을 가지도록 형성되고,
    상기 층 구조물의 내부에 위치하는 액체의 부피 비율이 40% 미만인 경우, 상기 제2 시위선이 상기 제1 시위선을 기준으로 시계방향에 위치하여 상기 θ가 0도 초과값를 가지도록 형성되는 것인 프로펠러 유니트.
  4. 제2항에 있어서,
    상기 샤프트부에서 수직한 평면 상에 블레이드가 투영되는 면적을 투영 면적(A)이라 할 때,
    상기 이상 블레이드는
    상기 층 구조물의 내부에 위치하는 액체의 부피 비율이 40% 초과인 경우, 상기 θ가 0도인 상기 이상 블레이드의 투영 면적보다 큰 투영 면적을 가지도록 형성되고,
    상기 층 구조물의 내부에 위치하는 액체의 부피 비율이 40% 미만인 경우, 상기 θ가 0도인 상기 이상 블레이드의 투영 면적보다 작은 투영 면적을 가지도록 형성되는 것인 프로펠러 유니트.
  5. 제1항에 있어서,
    상기 단상 블레이드의 상기 층 구조물에 접촉되는 형상과 상기 이상 블레이드의 상기 층 구조물에 접촉되는 형상이 동일한 것인 프로펠러 유니트.
  6. 제1항에 있어서,
    상기 공기 공급관은 복수의 지관이 구비된 분기관 형태이고, 단면이 벌집구조인 것인 프로펠러 유니트.
  7. 제1항에 있어서,
    상기 이상 블레이드 및 단상 블레이드는 스큐드된 형상인 것인 프로펠러 유니트.
PCT/KR2017/000914 2016-01-29 2017-01-25 교반-폭기용 상반회전 다층 프로펠러 유니트 WO2017131450A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/738,273 US10609910B2 (en) 2016-01-29 2017-01-25 Contra-rotating multi-layer propeller unit for multi-phase flow
EP17744571.5A EP3311907A4 (en) 2016-01-29 2017-01-25 CONTRAROTATIVE MULTILAYER PROPELLER UNIT FOR MIXING AND AERATION

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160011150 2016-01-29
KR10-2016-0011150 2016-01-29
KR1020160038322A KR101663246B1 (ko) 2016-01-29 2016-03-30 교반-폭기용 상반회전 다층 프로펠러 유니트
KR10-2016-0038322 2016-03-30

Publications (1)

Publication Number Publication Date
WO2017131450A1 true WO2017131450A1 (ko) 2017-08-03

Family

ID=57165128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000914 WO2017131450A1 (ko) 2016-01-29 2017-01-25 교반-폭기용 상반회전 다층 프로펠러 유니트

Country Status (4)

Country Link
US (1) US10609910B2 (ko)
EP (1) EP3311907A4 (ko)
KR (1) KR101663246B1 (ko)
WO (1) WO2017131450A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4088037A4 (en) * 2020-01-08 2024-04-24 Water Tech Llc LIQUID VACUUM PUMP
CN114146592B (zh) * 2021-10-26 2023-10-27 浙江长江搅拌设备有限公司 一种复合搅拌桨

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05104089A (ja) * 1991-10-18 1993-04-27 Kubota Corp 曝気装置を備えた水流発生装置
US20090108501A1 (en) * 2006-04-11 2009-04-30 Solvay Solexis S.P.A. Polymerization Process
KR101097197B1 (ko) * 2011-06-09 2011-12-21 제이에이건설주식회사 액이송 폭기,교반 장치
KR20130138917A (ko) * 2012-06-12 2013-12-20 윤광호 살수 폭기기
US20140078858A1 (en) * 2012-09-18 2014-03-20 John R. Regalbuto Method and Apparatus for Improved Mixing of Solid, Liquid, or Gaseous Materials and Combinations Thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2970605A (en) * 1958-02-05 1961-02-07 Albert M Sargent Pumping apparatus
WO1995007814A1 (en) * 1992-09-15 1995-03-23 Gerald Lagace Method and apparatus for processing organic waste material and the like
DE4307925A1 (de) * 1993-03-12 1994-09-22 Turbo Lightnin Mischtechnik Gm Vorrichtung zum Mischen von Gasen und Flüssigkeiten
KR100459671B1 (ko) * 2002-07-16 2004-12-03 제이에이건설주식회사 펌프 일체형 교반 폭기장치 및 그 제어방법
US8146894B2 (en) 2004-06-21 2012-04-03 Hills Blair H Apparatus for mixing gasses and liquids
US7398963B2 (en) * 2004-06-21 2008-07-15 Hills Blair H Apparatus and method for diffused aeration
JP2006062835A (ja) 2004-08-27 2006-03-09 Yasumitsu Kubo プロペラ、撹拌機、およびコンベア
US8506811B2 (en) * 2007-03-01 2013-08-13 Bradley Innovation Group, Llc Process and system for growing crustaceans and other fish
EP2457644B1 (en) * 2010-11-25 2015-09-09 Milton Roy Mixing Method for automatic elimination of fibers on the impeller of a mixer in wastewater treatment process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05104089A (ja) * 1991-10-18 1993-04-27 Kubota Corp 曝気装置を備えた水流発生装置
US20090108501A1 (en) * 2006-04-11 2009-04-30 Solvay Solexis S.P.A. Polymerization Process
KR101097197B1 (ko) * 2011-06-09 2011-12-21 제이에이건설주식회사 액이송 폭기,교반 장치
KR20130138917A (ko) * 2012-06-12 2013-12-20 윤광호 살수 폭기기
US20140078858A1 (en) * 2012-09-18 2014-03-20 John R. Regalbuto Method and Apparatus for Improved Mixing of Solid, Liquid, or Gaseous Materials and Combinations Thereof

Also Published As

Publication number Publication date
EP3311907A1 (en) 2018-04-25
KR101663246B1 (ko) 2016-10-06
US20180184626A1 (en) 2018-07-05
EP3311907A4 (en) 2019-04-10
US10609910B2 (en) 2020-04-07

Similar Documents

Publication Publication Date Title
WO2017107336A1 (zh) 一种潜水式涡轮增氧机
WO2017131450A1 (ko) 교반-폭기용 상반회전 다층 프로펠러 유니트
CN206285775U (zh) 一种纸浆搅拌装置
CN206328251U (zh) 一种智能污水处理装置
CN109798607B (zh) 空气净化器
WO2020116710A1 (ko) 수처리용 미세 버블 펌프 장치
FI88262B (fi) Luftningsanordning foer vaetskor
CN112624808A (zh) 一种粪便有机肥的生产方法
CN105060475B (zh) 一种射流混合布水搅拌装置
CN215627106U (zh) 一种环保型化工污水处理用曝气装置
CN216458213U (zh) 一种用于污泥脱水剂混合装置
CN210559617U (zh) 一种旋混式曝气装置
CN206008126U (zh) 一种斜管沉淀池自动控制装置
CN209005570U (zh) 一种喉部直径可变的文丘里管
CN211871407U (zh) 一种污水均质装置
CN202823265U (zh) 一种高效聚合物混合装置
CN207596545U (zh) 一种防止二次污染的曝气池
CN205865667U (zh) 一种鱼塘曝气式增氧机用连接头
CN220413035U (zh) 高效微孔曝气设备
CN210620376U (zh) 一种增压型潜水离心式曝气机
CN106986469A (zh) 一种减轻水体富营养化的供氧装置
CN1273395C (zh) 一种倒伞型复合叶轮表面曝气机
CN214032023U (zh) 一种丙烯酸正丁酯中和废水降cod处理装置
CN213707883U (zh) 一种水生态系统治理微污染源水体方法的微生物曝气装置
CN216191430U (zh) 一种河道污水生态治理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE