WO2017104795A1 - すべり軸受 - Google Patents

すべり軸受 Download PDF

Info

Publication number
WO2017104795A1
WO2017104795A1 PCT/JP2016/087534 JP2016087534W WO2017104795A1 WO 2017104795 A1 WO2017104795 A1 WO 2017104795A1 JP 2016087534 W JP2016087534 W JP 2016087534W WO 2017104795 A1 WO2017104795 A1 WO 2017104795A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
low wall
narrow groove
wall portion
sliding surface
Prior art date
Application number
PCT/JP2016/087534
Other languages
English (en)
French (fr)
Inventor
大輔 関
Original Assignee
大豊工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大豊工業株式会社 filed Critical 大豊工業株式会社
Publication of WO2017104795A1 publication Critical patent/WO2017104795A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C9/00Bearings for crankshafts or connecting-rods; Attachment of connecting-rods
    • F16C9/02Crankshaft bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only

Definitions

  • the present invention relates to a plain bearing.
  • Patent Document 1 describes a bearing in which relief portions are formed at both ends in the axial direction of the sliding surface in order to reduce the temperature of the bearing.
  • the present invention provides a plain bearing capable of obtaining a friction reducing effect.
  • the present invention provides a semi-cylindrical bearing body having a sliding surface that slides with an axially extending shaft, and is formed at least on one end side of the axial direction center in the sliding surface, and in the circumferential direction.
  • a plain bearing having an extending groove and a low wall portion which is an outer region in the axial direction of the groove and has a height from the bottom surface of the groove lower than that of the sliding surface.
  • the height from the bottom surface to the low wall portion may be 0.05 mm or more.
  • the length of the low wall portion may be shorter than the length of the groove.
  • the groove has only two grooves on the sliding surface: a first groove formed at least on one end side with respect to the axial center and a second groove formed on at least the other end side with respect to the center. It may consist of.
  • the front view of the sliding bearing 1 which concerns on one Embodiment.
  • FIG. 1 is a front view of a plain bearing 1 according to an embodiment.
  • the crankshaft 11 supported by the slide bearing 1 extends toward the front and back of the figure.
  • the crankshaft 11 rotates clockwise in FIG.
  • the direction in which the crankshaft 11 extends is referred to as the axial direction.
  • the direction going up and down in the drawing is called the up and down direction.
  • the vertical direction corresponds to upward and downward with respect to gravity in a state where the vertical direction is assembled to a housing (not shown), for example.
  • the sliding bearing 1 is a cylindrical member.
  • the slide bearing 1 supports a crankshaft 11 of the engine.
  • the plain bearing 1 is composed of two halved members 2U and 2L.
  • Each of the half members 2U and 2L has a shape obtained by dividing a cylinder into two in parallel to the axial direction.
  • the cross sections perpendicular to the axial direction of the half members 2U and 2L are semicircular.
  • the half members 2U and 2L are arranged up and down, and the mating surfaces are located on the left and right.
  • the half member 2U is an example of an upper half bearing
  • the half member 2L is an example of a lower half bearing.
  • the angle ⁇ is used to indicate the circumferential position.
  • the angle ⁇ is an angle viewed from the center C of the arc on the inner peripheral surface of the half member 2L.
  • the reference position is a position corresponding to the mating surface on the upstream side in the rotation direction of the half member 2L.
  • FIG. 2A is a diagram illustrating the structure of the inner peripheral surfaces of the half members 2U and 2L.
  • the rotation direction of the crankshaft 11 is a clockwise direction in a front view as shown by an arrow in FIG.
  • the half member 2U has an inner peripheral surface 21, a mating surface 22, and a mating surface 23.
  • the inner peripheral surface 21 is a surface that slides with the crankshaft 11.
  • a groove 211 extending in the circumferential direction is formed on the inner peripheral surface 21.
  • a circular hole 212 is formed at a specific position (in this example, the center in the circumferential direction) in the groove 211.
  • the hole 212 penetrates from the inner peripheral surface 21 to the outer peripheral surface of the half member 2U.
  • the hole 212 is, for example, a hole for supplying lubricating oil from the outer peripheral surface side to the inner peripheral surface side, and the groove 211 is a groove serving as a path for supplying lubricating oil to the sliding surface.
  • the mating surface 22 and the mating surface 23 are surfaces that face the half member 2 ⁇ / b> L when the sliding bearing 1 is used.
  • the half member 2L has a sliding surface 24, a mating surface 25, and a mating surface 26.
  • the sliding surface 24 is a surface that slides with the crankshaft 11.
  • the mating surface 25 and the mating surface 26 are surfaces facing the half member 2U when the sliding bearing 1 is used.
  • a narrow groove 3 is formed on the sliding surface 24.
  • the narrow groove 3 is an example of a groove that is formed at least on one end side with respect to the axial center on the sliding surface of the half bearing and extends in the circumferential direction.
  • the “thin” of the narrow groove 3 is merely a label for distinguishing it from other grooves, and does not require that the groove be thinner than other grooves.
  • the narrow groove 3 is thinner than the groove 211.
  • the sliding surface 24 is formed with two grooves, a narrow groove 3F and a narrow groove 3B.
  • the narrow groove 3F and the narrow groove 3B extend in parallel to each other. Further, the narrow groove 3F and the narrow groove 3B extend substantially in parallel with the axial end surface of the half member 2L.
  • the fine groove 3 is formed with a predetermined width away from the axial end of the half member 2L.
  • the narrow groove 3F is formed at one end side (upper side in the figure) from the center in the axial direction, and more preferably at a region at one end side 1/4 at the center in the axial direction.
  • the narrow groove 3B has an end portion with respect to the other end side (lower side in the figure) from the center in the axial direction, more preferably a region on the other end side 1/4 in the center in the axial direction (relative to the full width Wb of the half member 2L). To a region within Wb / 4).
  • the axially outer region of the narrow groove 3 is one step lower than the sliding surface 24.
  • the region outside the narrow groove 3 when viewed from the direction perpendicular to the sliding surface 24 and one step lower than the sliding surface 24 is referred to as a low wall portion 27.
  • the low wall portion formed outside the narrow groove 3F is referred to as a low wall portion 27F
  • the low wall portion formed outside the narrow groove 3B is referred to as a low wall portion 27B.
  • a portion other than the narrow groove 3 and the low wall portion 27 is referred to as “contact surface”.
  • FIG. 2B is a diagram illustrating a structure of the AA cross section of the half member 2L.
  • the right side of the figure is the upstream in the rotational direction, and the left side is the downstream. That is, the mating surface 25 is an upstream mating surface, and the mating surface 26 is a downstream mating surface.
  • the downstream end 3a of the narrow groove 3 is positioned at an angle ⁇ 0, and the upstream end 3b is positioned at an angle ⁇ 1.
  • the narrow groove 3 is formed in the downstream half of the half member 2L. That is, ⁇ 0 ⁇ 1 ⁇ 270 ° (1) And Lg ⁇ 90 ° (2) It is.
  • the narrow groove 3 is close to the mating surface 26 but is not in communication with the mating surface 26. That is, ⁇ 0> 180 ° (3) It is.
  • an end 27a on the downstream side of the low wall portion 27 is located at an angle ⁇ 2, and an end 27b on the upstream side is located at an angle ⁇ 3 ( ⁇ 2 and ⁇ 3 are not shown).
  • the low wall portion 27 when viewed from the axial direction, the low wall portion 27 is within the range in which the narrow groove 3 is formed. That is, ⁇ 0 ⁇ 2 ⁇ 3 ⁇ 1 (4) It is. From equation (4) Lw ⁇ Lg (5) Obviously. Since the length of the low wall portion 27 is shorter than that of the narrow groove 3, it is possible to prevent the lubricating oil from leaking from the sliding surface 24 via the low wall portion 27.
  • FIG. 2C is a diagram illustrating a cross-sectional structure of the narrow groove 3.
  • FIG. 2C shows the structure of the narrow groove 3 in a cross section perpendicular to the circumferential direction and parallel to the axial direction.
  • the narrow groove 3 has a rectangular shape with a width wg and a depth d.
  • the width wg represents the width of the surface, that is, the opening, and the depth d represents the height difference between the contact surface of the sliding surface 24 and the deepest portion of the narrow groove 3.
  • the half member 2 has a thickness D.
  • the thickness D is the thickness of the half member 2, and is the length from the outer peripheral surface to the contact surface.
  • the depth d is shorter than the thickness D. That is, d ⁇ D.
  • the thickness D is 1 to 10 mm.
  • the low wall portion 27 has a width ww.
  • the width ww is approximately the same as the width wg of the narrow groove 3.
  • the difference between the width ww and the width wg being approximately the same means that, for example, the difference between the two is within a range of ⁇ 10%.
  • the width ww may be wider than the width wg.
  • the low wall portion 27 has a height h.
  • the height h is the length from the deepest part of the narrow groove 3 to the low wall part 27.
  • the low wall portion 27 is one step lower than the contact surface. That is, h ⁇ d (6) It is.
  • the crankshaft 11 When the low wall portion 27 is formed so as to be one step lower than the contact surface, the crankshaft 11 is inclined and comes into contact with only one end portion in the axial direction (so-called one-contact state). However, the possibility that the low wall portion 27 comes into contact with the crankshaft 11 can be reduced. Therefore, damage to the low wall portion 27 can be prevented. Further, since the low wall portion 27 is formed so as to be one step lower than the contact surface, a gap at the axial end portion of the slide bearing 1 is widened, and the amount of sucking back the lubricating oil is increased, and the net amount of the lubricating oil is increased. Outflow is reduced. The net outflow is the total outflow minus the suck back.
  • the low wall portion 27 is one step lower than the abutting surface, so that a decrease in sliding performance is suppressed.
  • FIG. 3 is a diagram showing the relationship between the outflow amount of the lubricating oil and the height h of the low wall portion 27.
  • the inventors of the present application evaluated the amount of net lubricating oil leaking from the sliding surface of the sliding bearings of the example and the comparative example by a rig test.
  • the embodiment is a plain bearing having the narrow groove 3 and the low wall portion 27 exemplified in FIGS. 1 and 2.
  • the comparative example is a plain bearing that does not have the narrow groove 3.
  • As the slide bearing of the example a bearing in which the height h of the low wall portion 27 was changed to various values was used.
  • the outflow amount of the lubricating oil in each example is expressed as a relative value based on the outflow amount of the comparative example (100%).
  • the relative outflow amount with respect to the comparative example exceeds 100%.
  • the net outflow amount increases compared to the case where no narrow groove is provided.
  • the relative outflow amount with respect to the comparative example is smaller than 100%. At least in the range where the height h is 0.05 to 0.10 mm, the net outflow amount is smaller than that of the comparative example. That is, the height h is preferably 0.05 mm or more.
  • the height h of the low wall portion 27 is 0.05 mm or more and lower than the contact surface, for example, recirculation of oil leaked from the bearing inner surface at the time of cold start (The net outflow rate is suppressed), and the oil film during cold is heated at an early stage to obtain a friction reduction effect.
  • the narrow groove 3 and the low wall portion 27 are formed, and the relative positional relationship between them are not limited to those exemplified in the embodiment.
  • the narrow groove 3 may communicate with the mating surface.
  • at least a part of the narrow groove 3 may be formed in the upstream half of the slide bearing.
  • the downstream end portion 27 a may be located at the same position as the end portion 3 a of the narrow groove 3 or more downstream, and the upstream end portion 27 b is the end of the narrow groove 3. It may be located at the same position as the part 3b or more upstream.
  • the cross-sectional shapes of the narrow groove 3 and the low wall portion 27 are not limited to those illustrated in FIG. 2C.
  • the cross section of the narrow groove 3 may be an arc shape or an elliptical arc shape, or may be a V shape.
  • the number of narrow grooves 3 is not limited to two. One groove may be formed only on one end side in the axial direction.
  • the half member 2U may not have oil grooves and oil holes.
  • the half member 2U may have the same shape as the half member 2L or may have a different shape.
  • the use of the slide bearing 1 is not limited to the bearing that supports the crankshaft of the engine. You may use for other uses, such as a connecting rod bearing.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

すべり軸受は、軸方向に延びるシャフトと摺動する摺動面を有する、半円筒形状の軸受本体と、前記摺動面において、前記軸方向の中心よりも少なくとも一端側に形成され、周方向に延びる溝と、前記溝の軸方向における外側の領域であって、前記溝の底面からの高さが前記摺動面よりも低い低壁部とを有する。

Description

すべり軸受
 本発明は、すべり軸受に関する。
 従来、エンジンのクランクシャフトを軸支するための軸受であって、円筒形状を二分割した二つの部材を合わせる半割り構造のすべり軸受が知られている。例えば特許文献1には、軸受の温度を低下させるため、摺動面の軸方向両端部に逃げ部分を形成した軸受が記載されている。
特表2003-532036号公報
 しかし、特許文献1に記載の軸受では、例えば冷間時に潤滑油の粘度が高いためフリクションが大きいという問題があった。
 これに対し本発明は、フリクション低減効果を得ることができるすべり軸受を提供する。
 本発明は、軸方向に延びるシャフトと摺動する摺動面を有する、半円筒形状の軸受本体と、前記摺動面において、前記軸方向の中心よりも少なくとも一端側に形成され、周方向に延びる溝と、前記溝の軸方向における外側の領域であって、前記溝の底面からの高さが前記摺動面よりも低い低壁部とを有するすべり軸受を提供する。
 前記底面から前記低壁部までの高さが0.05mm以上であってもよい。
 前記低壁部の長さが、前記溝の長さより短くてもよい。
 前記溝が、前記摺動面において、前記軸方向の中心よりも少なくとも一端側に形成された第1溝、および当該中心よりも少なくとも他端側に形成された第2溝の2本の溝のみからなってもよい。
 本発明によれば、フリクションを低減する軸受を得ることができる。
一実施形態に係るすべり軸受1の正面図。 半割部材2Uおよび2Lの内周面の構造を例示する図。 半割部材2LのA-A断面の構造を例示する図。 細溝3の断面構造を例示する図。 潤滑油の流出量と低壁部27の高さhとの関係を示す図。
1…すべり軸受
 2U、2L…半割部材
  21…摺動面
   211…溝
   212…孔
  22…合せ面
  23…合せ面
  24…摺動面
  25…合せ面
  26…合せ面
  27…低壁部
  3…細溝
11…クランクシャフト(軸)
 図1は、一実施形態に係るすべり軸受1の正面図である。図1において、すべり軸受1により支持されるクランクシャフト11は図の手前および奥に向かって延びている。クランクシャフト11は、図1において時計回りに回転する。クランクシャフト11が延びる方向を軸方向という。また、図面の上下に向かう方向を上下方向という。上下方向は、例えばハウジング(図示略)に組み付けられた状態において、重力に対し上向きおよび下向きに相当する。
 すべり軸受1は円筒状の部材である。すべり軸受1は、エンジンのクランクシャフト11を支持する。すべり軸受1は、二つの半割部材2Uおよび2Lで構成されている。半割部材2Uおよび2Lは、それぞれ、円筒を軸方向と平行に二分割した形状を有する。半割部材2Uおよび2Lの、軸方向に垂直な断面は半円状である。本実施形態において、半割部材2Uおよび2Lは上下に配置され、合せ面は左右に位置する。半割部材2Uは上側の半割軸受の一例であり、半割部材2Lは下側の半割軸受の一例である。クランクシャフト11をすべり軸受1で支持する場合、クランクシャフト11とすべり軸受1との間には隙間が形成さる。この隙間に対し図示せぬ油路から潤滑油が供給される。
 以下の説明において、周方向の位置を表記するために角度ωを用いる。角度ωは、半割部材2Lの内周面の円弧の中心Cから見た角度であり、この例で基準位置は半割部材2Lの回転方向上流側の合せ面に相当する位置である。この例では、角度ωは、正面視における反時計回りを正方向とする。この定義によれば、半割部材2Lの回転方向下流側の合せ面の位置はω=180°であり、半割部材2Lの周方向の中心位置はω=270°である。
 図2Aは、半割部材2Uおよび2Lの内周面の構造を例示する図である。なお、本実施形態においては、クランクシャフト11の回転方向は、図1の矢印に示すように正面視における時計回り方向である。
 半割部材2Uは、内周面21、合せ面22、および合せ面23を有する。内周面21は、クランクシャフト11と摺動する面である。内周面21には、周方向に延びる溝211が形成される。溝211のうち特定の位置(この例では周方向の中心)には、円形の孔212が形成される。孔212は半割部材2Uの内周面21から外周面まで貫通する。孔212は、例えば外周面側から内周面側に潤滑油を供給するための孔であり、溝211は摺動面に潤滑油を供給するための経路となる溝である。合せ面22および合せ面23は、すべり軸受1の使用状態において半割部材2Lと対向する面である。
 半割部材2Lは、摺動面24、合せ面25、および合せ面26を有する。摺動面24は、クランクシャフト11と摺動する面である。合せ面25および合せ面26は、すべり軸受1の使用状態において半割部材2Uと対向する面である。摺動面24には、細溝3が形成されている。細溝3は、半割軸受の摺動面において、軸方向の中心よりも少なくとも一端側に形成され、周方向に延びる溝の一例である。なお、本実施形態において細溝3の「細」は他の溝と区別するための単なるラベルにすぎず、他の溝と比較して細い溝であることを必須要件とするものではない。なお、この例では、細溝3は、溝211より細い。
 この例で、摺動面24には、細溝3Fおよび細溝3Bの2本の溝が形成される。細溝3Fおよび細溝3Bは、互いに並行に延びる。さらに、細溝3Fおよび細溝3Bは、半割部材2Lの軸方向端面とほぼ並行に延びる。以下の説明において細溝3Fおよび細溝3Bを区別しないときは単に細溝3という。細溝3は、半割部材2Lの軸方向端部から所定の幅、離間して形成される。細溝3Fは、軸方向の中央より一端側(図の上側)、より好ましくは、軸方向の中央の一端側1/4の領域に形成される。細溝3Bは、軸方向の中央より他端側(図の下側)、より好ましくは、軸方向の中央の他端側1/4の領域(半割部材2Lの全幅Wbに対し、端部からWb/4以内の領域)に形成される。
 さらに、細溝3の軸方向の外側の領域の少なくとも一部は、摺動面24よりも一段低くなっている。この、摺動面24に垂直な方向から見たときに細溝3の外側の領域であって摺動面24よりも一段低い領域を低壁部27という。細溝3Fの外側に形成される低壁部を低壁部27Fといい、細溝3Bの外側に形成される低壁部を低壁部27Bという。両者を区別しないときは単に低壁部27という。
 摺動面24のうち、細溝3および低壁部27を他の部分と区別するときは、細溝3および低壁部27以外の部分を「当接面」という。
 図2Bは、半割部材2LのA-A断面の構造を例示する図である。図2Bにおいて、図の右側が回転方向の上流、左側が下流である。すなわち、合せ面25が上流側の合せ面であり、合せ面26が下流側の合せ面である。
 細溝3の下流側の端部3aは角度ω0に位置し、上流側の端部3bは角度ω1に位置する。ここでは、細溝3の長さLgを、角度ω1とω0との角度差で表す。すなわち、Lg=ω1-ω0である。この例では、細溝3は半割部材2Lの下流側半分に形成される。すなわち、
 ω0<ω1≦270°  …(1)
であり、
 Lg≦90°  …(2)
である。
 この例では、細溝3は、合せ面26と近接しているものの、合せ面26とは連通していない。すなわち、
 ω0>180°  …(3)
である。
 低壁部27の下流側の端部27aは角度ω2に位置し、上流側の端部27bは角度ω3に位置する(ω2およびω3は図示略)。ここでは、低壁部27の長さLwを、角度ω3とω2との角度差で表す。すなわち、Lw=ω3-ω2である。この例では、軸方向から見たときに、低壁部27は細溝3が形成される範囲に収まっている。すなわち、
 ω0<ω2<ω3<ω1  …(4)
である。式(4)から、
 Lw<Lg  …(5)
であることは明らかである。低壁部27の長さが細溝3よりも短いことにより、摺動面24から低壁部27を介して潤滑油が外部に漏れ出すことを抑制することができる。
 図2Cは、細溝3の断面構造を例示する図である。図2Cは、周方向に垂直かつ軸方向に平行な断面における細溝3の構造を示す。細溝3は、幅wgおよび深さdの矩形を有する。なお、幅wgは表面すなわち開口部における幅を表し、深さdは摺動面24のうち当接面と細溝3の最深部との高低差を表す。また、半割部材2は厚さDを有する。厚さDは、半割部材2の肉厚であり、外周面から当接面までの長さである。深さdは厚さDよりも短い。すなわちd<Dである。一例として、厚さDは1~10mmである。
 低壁部27は、幅wwを有する。この例で、幅wwは、細溝3の幅wgと同程度である。幅wwと幅wgとの差が同程度であるとは、例えば、両者の差が±10%の範囲に収まっていることをいう。あるいは、幅wwは、幅wgよりも広くてもよい。
 低壁部27は高さhを有する。高さhは、細溝3の最深部から低壁部27までの長さである。既に説明したように、図2Cの断面において、低壁部27は、当接面よりも一段低い。すなわち
 h<d  …(6)
である。
 低壁部27が当接面よりも一段低くなるように形成されていることにより、クランクシャフト11が傾いて軸方向の片側端部にのみ接触する状態(いわゆる片当りの状態)となった場合でも、低壁部27がクランクシャフト11と接触する可能性を低減することができる。そのため、低壁部27の損傷を防止することができる。また、低壁部27が当接面よりも一段低くなるように形成されていることにより、すべり軸受1の軸方向端部における隙間が広がり、潤滑油の吸い戻し量が増え、潤滑油の正味の流出量が低減される。正味の流出量とは、総流出量から吸い戻し量を差し引いた量である。
 さらに、細溝3の外側の領域(縁部)が当接面よりも高いと、摺動抵抗が増加し、摺動性能が低下してしまう。しかし、本実施形態において低壁部27は当接面よりも一段低くなっているので、摺動性能の低下が抑制される。
 図3は、潤滑油の流出量と低壁部27の高さhとの関係を示す図である。本願の発明者らは、実施例および比較例のすべり軸受について、摺動面から漏れ出る正味の潤滑油の量をリグテストにより評価した。実施例とは、図1および図2に例示した、細溝3および低壁部27を有するすべり軸受である。比較例とは、細溝3を有さないすべり軸受である。実施例のすべり軸受としては、低壁部27の高さhを種々の値に変化させたものを用いた。図においては、各実施例における潤滑油の流出量を、比較例の流出量を基準(100%)とした相対値で表したものである。
 ここで、高さhが0~0.025mmである例においては、比較例に対する相対流出量が100%を超える。言い換えれば、高さhが0~0.025mmである例において、細溝を設けない場合に比べて、正味の流出量が多くなってしまう。
 これに対して、低壁部27の高さhが0.05mm以上である例においては、比較例に対する相対流出量が100%よりも小さくなる。少なくとも高さhが0.05~0.10mmの範囲においては、正味の流出量が比較例よりも少ない。すなわち、高さhは、0.05mm以上であることが好ましい。
 このように、低壁部27の高さhを0.05mm以上であって、当接面よりも低くなるように構成することで、例えば冷間始動時において軸受内面より漏れた油の再循環を促進し(正味の流出量を抑制し)、冷間時油膜を早期昇温させることにより、フリクション低減効果を得ることができる。
 本発明は上述の実施形態に限定されるものではなく種々の変形実施が可能である。以下、変形例をいくつか説明する。以下の変形例のうち2つ以上のものが組み合わせて用いられてもよい。
 細溝3および低壁部27が形成される位置および長さ、並びに両者の相対的位置関係は実施形態において例示されたものに限定されない。例えば、細溝3は、合せ面と連通してもよい。また、細溝3は、少なくとも一部がすべり軸受の上流側半分に形成されてもよい。また、低壁部27において、下流側の端部27aは細溝3の端部3aと同じ位置か、より下流側に位置してもよいし、上流側の端部27bは細溝3の端部3bと同じ位置か、より上流側に位置してもよい。
 細溝3および低壁部27の断面形状は図2Cで例示したものに限定されない。例えば、細溝3の断面は円弧または楕円弧形状であってもよいし、V字形状であってもよい。また、細溝3の数は2本に限定されない。軸方向のいずれか一端側だけ1本の溝が形成されてもよい。
 すべり軸受1において、半割部材2Uは油溝および油孔を有さなくてもよい。半割部材2Uは半割部材2Lと同じ形状を有してもよいし、異なる形状を有してもよい。また、すべり軸受1の用途は、エンジンのクランクシャフトを支持する軸受に限定されない。コンロッド軸受等、他の用途に用いられてもよい。

Claims (4)

  1.  軸方向に延びるシャフトと摺動する摺動面を有する、半円筒形状の軸受本体と、
     前記摺動面において、前記軸方向の中心よりも少なくとも一端側に形成され、周方向に延びる溝と、
     前記溝の軸方向における外側の領域であって、前記溝の底面からの高さが前記摺動面よりも低い低壁部と
     を有するすべり軸受。
  2.  前記底面から前記低壁部までの高さが0.05mm以上である
     ことを特徴とする請求項1に記載のすべり軸受。
  3.  前記低壁部の長さが、前記溝の長さより短い
     ことを特徴とする請求項1または2に記載のすべり軸受。
  4.  前記溝が、前記摺動面において、前記軸方向の中心よりも少なくとも一端側に形成された第1溝、および当該中心よりも少なくとも他端側に形成された第2溝の2本の溝のみからなる
     請求項1または2に記載のすべり軸受。
PCT/JP2016/087534 2015-12-17 2016-12-16 すべり軸受 WO2017104795A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015246780A JP2019031981A (ja) 2015-12-17 2015-12-17 すべり軸受
JP2015-246780 2015-12-17

Publications (1)

Publication Number Publication Date
WO2017104795A1 true WO2017104795A1 (ja) 2017-06-22

Family

ID=59056737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087534 WO2017104795A1 (ja) 2015-12-17 2016-12-16 すべり軸受

Country Status (2)

Country Link
JP (1) JP2019031981A (ja)
WO (1) WO2017104795A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11408465B2 (en) * 2018-06-04 2022-08-09 Taiho Kogyo Co., Ltd. Sliding bearing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014224601A (ja) * 2013-04-26 2014-12-04 大豊工業株式会社 すべり軸受
JP2015137709A (ja) * 2014-01-22 2015-07-30 大豊工業株式会社 すべり軸受
JP2015197215A (ja) * 2014-04-03 2015-11-09 大豊工業株式会社 すべり軸受

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014224601A (ja) * 2013-04-26 2014-12-04 大豊工業株式会社 すべり軸受
JP2015137709A (ja) * 2014-01-22 2015-07-30 大豊工業株式会社 すべり軸受
JP2015197215A (ja) * 2014-04-03 2015-11-09 大豊工業株式会社 すべり軸受

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11408465B2 (en) * 2018-06-04 2022-08-09 Taiho Kogyo Co., Ltd. Sliding bearing

Also Published As

Publication number Publication date
JP2019031981A (ja) 2019-02-28

Similar Documents

Publication Publication Date Title
JP6096689B2 (ja) すべり軸受
JP5837896B2 (ja) すべり軸受
JP6185853B2 (ja) すべり軸受
JP6134636B2 (ja) すべり軸受
WO2017104795A1 (ja) すべり軸受
JP6266986B2 (ja) すべり軸受
KR20170118186A (ko) 미끄럼 베어링의 제조방법 및 미끄럼 베어링
JP6323833B2 (ja) すべり軸受
JP6536774B2 (ja) すべり軸受
JP6216226B2 (ja) すべり軸受
WO2016136995A1 (ja) すべり軸受
WO2016136993A1 (ja) すべり軸受
JP6390852B2 (ja) すべり軸受
JP2016161018A5 (ja)
JP6624559B2 (ja) すべり軸受
JP6724281B2 (ja) すべり軸受
JP6541144B2 (ja) すべり軸受
JP6399576B2 (ja) すべり軸受
EP3263923A1 (en) Manufacturing method for sliding bearing, and sliding bearing
JP2017110761A (ja) すべり軸受
JP2017110765A (ja) すべり軸受
JP2017110764A (ja) すべり軸受
JP2016161011A (ja) すべり軸受
JP2017040341A (ja) コンロッド軸受

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP