WO2017104623A1 - 異形表示装置 - Google Patents

異形表示装置 Download PDF

Info

Publication number
WO2017104623A1
WO2017104623A1 PCT/JP2016/086941 JP2016086941W WO2017104623A1 WO 2017104623 A1 WO2017104623 A1 WO 2017104623A1 JP 2016086941 W JP2016086941 W JP 2016086941W WO 2017104623 A1 WO2017104623 A1 WO 2017104623A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
acid
group
layer
compound
Prior art date
Application number
PCT/JP2016/086941
Other languages
English (en)
French (fr)
Inventor
啓史 別宮
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to KR1020187013405A priority Critical patent/KR102036468B1/ko
Priority to JP2017556048A priority patent/JPWO2017104623A1/ja
Priority to CN201680072672.0A priority patent/CN108369356A/zh
Publication of WO2017104623A1 publication Critical patent/WO2017104623A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device

Definitions

  • the present invention relates to an irregular display device whose display screen has a shape different from a rectangle and a square.
  • an IPS type (In Plane Switching) liquid crystal display device is known as a display device with a wide viewing angle and high-quality display (see, for example, Patent Document 1).
  • IPS type liquid crystal display device By making the display screen of the IPS type liquid crystal display device into a deformed shape, it is possible to realize a deformed display device with excellent visibility.
  • each polarizing plate is punched into a display screen shape, that is, a deformed shape.
  • the thickness of the polarizing plate is large, cracks are likely to be generated in the polarizing plate at the time of punching. Therefore, it is desirable that the polarizing plate is thin. That is, it is desirable to make the polarizing plate thinner from the viewpoint of improving the cutting property.
  • the durability of the polarizer is lowered.
  • the interior of the vehicle may be in a high-temperature and high-humidity condition. If it is light, the color of the dyed polarizer is likely to drop, and the polarizer is deteriorated.
  • the polarizer of the polarizing plate eg, polyvinyl alcohol film
  • the polarizer of the polarizing plate has a large change in viscosity due to temperature change.
  • the change of the viscosity by temperature is large, a crack may arise in a polarizing plate by a temperature change.
  • the present invention was made to solve the above problems, and its purpose is to suppress the occurrence of cracks in the polarizing plate due to temperature changes and cracks when punching the polarizing plate into an irregular shape,
  • An object of the present invention is to provide a deformed display device capable of avoiding a decrease in brightness of a display image by increasing the transmittance of an IPS cell even when the transmittance of a polarizer is decreased.
  • the deformed display device is a deformed display device whose display screen has a shape different from a rectangle and a square, An IPS cell, and each polarizing plate sandwiching the IPS cell from both sides,
  • the IPS cell is A pixel electrode positioned in a stripe shape within a display area of one pixel; A stripe-shaped common electrode arranged alternately with the pixel electrode;
  • Each polarizing plate has a thickness of 20 ⁇ m or more and 65 ⁇ m or less,
  • Each polarizing plate is It has a polarizer and each optical film that sandwiches the polarizer from both sides,
  • a Log (tan ⁇ ) value between ⁇ 40 ° C. and 100 ° C. is ⁇ 1.8 or more.
  • the IPS cell has a stripe-shaped pixel electrode and a stripe-shaped common electrode in a display area of one pixel, and these electrodes are alternately arranged.
  • an IPS cell having a high transmittance can be realized as compared with a configuration in which a common electrode is formed in a planar shape and overlapped with a stripe-shaped pixel electrode.
  • an IPS cell having a high transmittance can be used to avoid a decrease in the brightness of the display image.
  • the Log (tan ⁇ ) value between ⁇ 40 ° C. and 100 ° C. is ⁇ 1.8 or more, and the change in viscosity due to the temperature change is small. Generation of cracks in the plate can be suppressed.
  • FIG. 2 is a cross-sectional view taken along line A-A ′ in FIG. 1. It is sectional drawing which shows the detailed structure of the IPS cell which the said liquid crystal display device has. It is a top view which expands and shows the pixel electrode in the display area of 1 pixel of the said IPS cell. It is sectional drawing of the said pixel electrode and common electrode in the said display area. It is sectional drawing which shows the structure of the pixel electrode and common electrode in the display area of 1 pixel used as the reference example of this Embodiment. It is sectional drawing which shows the manufacturing process of the said IPS cell.
  • FIG. 1 is a plan view of a liquid crystal display device 1 which is an example of a deformed display device according to the present embodiment.
  • the display screen 1a of the liquid crystal display device 1 has a shape (an irregular shape) other than a rectangle and a square.
  • the shape of the display screen 1 a is a shape obtained by combining a plurality of figures, more specifically, a shape obtained by combining two convex shapes with a rectangle. Shapes such as a circle, an ellipse, a triangle, a diamond, a trapezoid, and a star are conceivable.
  • FIG. 2 is a cross-sectional view taken along line A-A ′ of FIG.
  • the liquid crystal display device 1 is configured by sandwiching an IPS cell 2 driven by the IPS system between two polarizing plates 3 and 4 and includes a backlight 5 that illuminates the IPS cell 2.
  • the detailed configuration of the IPS cell 2 will be described later.
  • the configuration of the present embodiment described below is applicable to all IPS liquid crystal display devices including the FFS (Fringe FieldeSwitching) method.
  • the polarizing plate 3 is located on the viewing side (the side opposite to the backlight 5) with respect to the IPS cell 2, and includes a polarizer 11, a protective film 12, and a counter film 13.
  • the polarizer 11 transmits predetermined linearly polarized light.
  • the protective film 12 is located on the opposite side (viewing side) from the IPS cell 2 with respect to the polarizer 11.
  • the counter film 13 is located on the IPS cell 2 side with respect to the polarizer 11. That is, the protective film 12 and the counter film 13 are optical films that sandwich the polarizer 11 from both sides.
  • the polarizing plate 3 is bonded to the IPS cell 2 via the adhesive layer 6 on the counter film 13 side.
  • the polarizing plate 3 may further have functional layers such as a hard coat layer, an antiglare layer, an antireflection layer, and an antistatic layer on the side opposite to the polarizer 11 with respect to the protective film 12.
  • the polarizing plate 4 is located on the backlight 5 side with respect to the IPS cell 2, and includes a polarizer 21, a protective film 22, and a counter film 23.
  • the polarizer 21 transmits predetermined linearly polarized light, and is arranged so that the transmission axis is orthogonal to the polarizer 11.
  • the protective film 22 is located on the opposite side (backlight 5 side) to the polarizer 21 from the IPS cell 2.
  • the counter film 23 is located on the IPS cell 2 side with respect to the polarizer 21. That is, the protective film 22 and the counter film 23 are optical films that sandwich the polarizer 21 from both sides.
  • the polarizing plate 4 is bonded to the IPS cell 2 via the adhesive layer 7 on the counter film 23 side.
  • FIG. 3 is a cross-sectional view showing a detailed configuration of the IPS cell 2.
  • the IPS cell 2 corresponds to a configuration in which the common electrode (counter electrode) is formed in a stripe shape in the configuration of Patent Document 1 described above. Details of the IPS cell 2 will be described below.
  • the IPS cell 2 is configured by sandwiching a liquid crystal layer 300 between a TFT (Thin Film Transistor) substrate 100 and a counter substrate 200.
  • the TFT substrate 100 and the counter substrate 200 are made of a transparent substrate such as glass or resin.
  • a gate electrode 101 is formed on the TFT substrate 100.
  • the gate electrode 101 is formed of the same metal layer as the scanning line.
  • the gate electrode 101 is covered with an insulating film 102 made of silicon nitride (SiN).
  • a semiconductor layer 103 is formed on the insulating film 102 at a position facing the gate electrode 101.
  • the semiconductor layer 103 includes a channel portion of the TFT.
  • a source electrode 104 and a drain electrode 105 are formed over the semiconductor layer 103 with a channel portion interposed therebetween.
  • the source electrode 104 is connected to the video signal line, and the drain electrode 105 is connected to the pixel electrode 110.
  • the source electrode 104 and the drain electrode 105 are formed of the same metal layer.
  • the TFT includes the gate electrode 101, the semiconductor layer 103, the source electrode 104, and the drain electrode 105 described above.
  • This TFT is covered with an inorganic passivation film 106 formed of SIN.
  • the inorganic passivation film 106 protects the channel portion of the TFT from impurities.
  • An organic passivation film 107 such as a polyimide resin is formed on the inorganic passivation film 106.
  • the organic passivation film 107 is formed thick because it has the role of flattening the surface simultaneously with protecting the TFT.
  • a common electrode 108 and a passivation film 109 made of, for example, SiN or polyimide resin are formed.
  • the common electrode 108 above the TFT is covered with a passivation film 109.
  • the pixel electrode 110 is formed on the passivation film 109 and is electrically connected to the drain electrode 105 of the TFT through a through hole 111 provided in the passivation film 109. As a result, the video signal is supplied to the pixel electrode 110.
  • the common electrode 108 and the pixel electrode 110 are formed of ITO (Indium Tin Oxide), which is a material of a transparent conductive film. In addition to this, for example, an In ⁇ Sn composite oxide described in JP2011-1000074A May be formed.
  • An alignment film 113 for aligning the liquid crystal molecules 301 of the liquid crystal layer 300 is formed so as to cover the pixel electrode 110.
  • FIG. 4 is an enlarged plan view showing the pixel electrode 110 in the display region P of one pixel (a region not shielded by a black matrix 202 described later on the counter substrate 200).
  • the common electrode 108 and the passivation film 109 are not shown.
  • One of two directions perpendicular to each other in a plane parallel to the display screen 1a (see FIG. 1) is defined as an X direction, and the other direction is defined as a Y direction.
  • the pixel electrode 110 electrically connected to the drain electrode 105 is branched into a plurality of areas outside the display area P of one pixel, and each extends in the X direction within the display area P.
  • the pixel electrode 110 is formed in a stripe shape (stripe shape). That is, the pixel electrodes 110 extend along the X direction and are arranged side by side with an interval in the Y direction.
  • FIG. 5 is a cross-sectional view of the pixel electrode 110 and the common electrode 108 in the display area P of one pixel.
  • the alignment film 113 is not shown for convenience.
  • the passivation film 109 is formed in a stripe shape in the display area P. That is, the passivation film 109 extends on the organic passivation film 107 along the X direction and is arranged side by side with an interval in the Y direction. Therefore, the organic passivation film 107 constitutes a base layer that supports each passivation film 109 from below.
  • the pixel electrode 110 described above is located on the passivation film 109 having a stripe shape.
  • the common electrode 108 described above is formed on the organic passivation film 107 between the adjacent passivation films 109 and extending in the X direction. Therefore, the common electrode 108 extends along the X direction and is positioned so as to be alternately arranged with the pixel electrode 110 in the Y direction. That is, in the display area P, the pixel electrode 110 and the common electrode 108 do not overlap and are shifted in the Y direction.
  • FIG. 6 is a cross-sectional view showing the configuration of the pixel electrode 110 and the common electrode 108 in the display area P of one pixel, which is a reference example of the present embodiment, and corresponds to the configuration of Patent Document 1.
  • the common electrode 108 is formed in a planar shape (solid shape) on the organic passivation film 107, the common electrode 108 is covered with the passivation film 109, and then the pixel electrode 110 is striped on the passivation film 109. Is formed. Therefore, the pixel electrode 110 overlaps with a part of the common electrode 108.
  • the configuration of the present embodiment and the configuration of Patent Document 1 are different from each other depending on whether or not the pixel electrode 110 and the common electrode 108 overlap in the display region P.
  • a color filter 201 of red (R), green (G), and blue (B) is formed for each pixel on the inner side (the liquid crystal layer 300 side) of the counter substrate 200 shown in FIG.
  • a black matrix 202 is formed between the adjacent color filters 201 and 201.
  • the black matrix 202 is a light shielding film that shields the TFT, and prevents a photocurrent from flowing through the TFT.
  • An overcoat film 203 is formed so as to cover the color filter 201 and the black matrix 202. Although the surface of the color filter 201 and the black matrix 202 is uneven, the surface is flattened by providing the overcoat film 203.
  • An alignment film 114 for determining the initial alignment of the liquid crystal is formed on the overcoat film 203. Since the liquid crystal display device 1 is an IPS system, the common electrode 108 is formed on the TFT substrate 100 side as described above, and is not formed on the counter substrate 200 side.
  • the conductive film is not formed inside the counter substrate 200, the potential of the counter substrate 200 becomes unstable. Further, external electromagnetic noise enters the liquid crystal layer 300 and affects the image. In order to avoid such influence, a surface conductive film 210 is formed outside the counter substrate 200.
  • a constant voltage is applied to the common electrode 108, and a voltage corresponding to the video signal is applied to the pixel electrode 110.
  • a voltage is applied to the pixel electrode 110, lines of electric force are generated, and the liquid crystal molecules 301 of the liquid crystal layer 300 rotate in the direction of the lines of electric force.
  • the transmission of light in the liquid crystal layer 300 (the transmission of light from the backlight 5) is controlled, and an image is displayed on the display screen 1a (see FIG. 1).
  • the IPS cell 2 includes the pixel electrodes 110 located in a stripe shape within the display area P of one pixel, and the stripe-shaped common electrodes 108 arranged alternately with the pixel electrodes 110. ing.
  • the light from the backlight 5 passes through either the pixel electrode 110 or the common electrode 108 and does not pass through both. That is, there is no overlapping portion between the pixel electrode 110 and the common electrode 108 in the display region P, and light does not pass through the overlapping portion. Accordingly, the light transmittance can be increased as compared with the configuration in FIG. 6 in which light is transmitted through the overlapping portion between the pixel electrode 110 and the common electrode 108.
  • the pixel electrode 110 and the common electrode 108 do not overlap in the display region P, it is possible to suppress the occurrence of alignment disorder of the liquid crystal molecules 301 when a voltage is applied to the pixel electrode 110 and the common electrode 108. Also by this, the transmittance of light transmitted through the liquid crystal layer 300 can be increased.
  • the IPS cell 2 of the present embodiment (1) there is no overlapping portion between the pixel electrode 110 and the common electrode 108 in the display region P, and light does not pass through the overlapping portion. (2) Since the alignment disorder of the liquid crystal molecules 301 can be suppressed, the IPS cell 2 having a high transmittance can be realized.
  • the pixel electrode 110 is positioned on the stripe-shaped passivation film 109 and the common electrode 108 is positioned between the adjacent passivation films 109 and 109, the pixel electrode 110 is displayed in the display area P of one pixel.
  • a configuration in which 110 and the common electrode 108 are shifted (in the Y direction) (a configuration in which they do not overlap) can be reliably realized.
  • both the inorganic passivation film 106 and the organic passivation film 107 are provided. However, either one may be omitted.
  • the above-described base layer is one of the inorganic passivation film 106 and the organic passivation film 107.
  • 3 illustrates a bottom gate configuration in which the semiconductor layer 103 is provided over the gate electrode 101 in the TFT substrate 100, but a top gate configuration in which the gate electrode 101 is provided over the semiconductor layer 103 is also possible. Good.
  • the IPS cell 2 can be manufactured by employing the same manufacturing method as in Patent Document 1 described above except that the common electrode 108 is formed in a stripe shape as described above. Therefore, in the following, a method for manufacturing the IPS cell 2 will be described by focusing on a portion different from that in Patent Document 1, that is, a portion of the display area P of one pixel.
  • FIG. 7 is a cross-sectional view showing the manufacturing process of the IPS cell 2.
  • a gate electrode 101 to an organic passivation film 107 are formed in a desired shape on a TFT substrate 100 (see FIG. 3) made of a transparent substrate such as glass, and then a passivation film 109 is formed on the organic passivation film 107.
  • an ITO layer 110a for forming the pixel electrode 110 is solid-coated on the passivation film 109, and then a photoresist 401 is formed in a stripe shape on the ITO layer 110a.
  • the ITO layer 110a is wet-etched using the striped photoresist 401 as a mask to form the pixel electrode 110 made of striped ITO. Thereafter, the passivation layer 109 is dry-etched into a stripe shape.
  • ITO for forming the common electrode 108 is sputtered to form an ITO layer 108a on the organic passivation film 107, and then a photoresist 402 is applied on the ITO layer 108a.
  • the photoresist 402 is decomposed and removed by ashing, and then the ITO layer 108a on the photoresist 401 and a part of the ITO constituting the pixel electrode 110 are removed by wet etching. Finally, the photoresists 401 and 402 are decomposed and removed by an ashing process. As a result, the IPS cell 2 having the striped pixel electrode 110 and the striped common electrode 108 is obtained.
  • the polarizer 11 is obtained, for example, by dyeing a PVA (polyvinyl alcohol) film with a dichroic dye and stretching the film at a high magnification, and the thickness thereof is 15 ⁇ m or less, preferably 5 to 7 ⁇ m.
  • PVA polyvinyl alcohol
  • the protective film 12 and the counter film 13 include, for example, at least one of cellulose ester resin, cyclic polyolefin resin (COP), polyethylene terephthalate (PET) resin, and acrylic resin.
  • the thickness of the polarizing plate 3 is 20 ⁇ m or more and 65 ⁇ m or less (the thickness of the polarizing plate 4 is the same). Thereby, since the thin polarizing plate 3 is comprised, even when the polarizing plate 3 is punched into an irregular shape in accordance with the shape of the display screen 1a (see FIG. 1), the occurrence of cracks in the polarizing plate 3 is suppressed. be able to.
  • the cellulose ester resin has higher mechanical strength than COP or the like.
  • the protective film 12 and the counter film 13 are comprised including a cellulose-ester-type resin, it can suppress reliably that a crack generate
  • the IPS cell 2 having a high transmittance can be realized by the configuration of the IPS cell 2 described above, the polarizer 11 is dyed in order to avoid a decrease in durability of the polarizer 11 that occurs when the polarizing plate 3 is thin. Even when the value is made darker, it is possible to avoid a decrease in the brightness of the display image. That is, when the staining of the polarizer 11 is darkened, the transmittance of the polarizer 11 is reduced.
  • the high transmittance of the IPS cell 2 can be realized, even if the transmittance of the polarizer 11 is reduced, the transmittance of the IPS cell 2 is reduced. A decrease in brightness of the display image can be avoided by the high transmittance.
  • the loss tangent indicating the ratio A / B of the loss elastic modulus A and the storage elastic modulus B is tan ⁇
  • the value of Log (tan ⁇ ) between 40 ° C. and 100 ° C. is ⁇ 1.8 or more (the same applies to the optical film (protective film 22, counter film 23) of the polarizing plate 4).
  • corresponds to the phase delay of the strain with respect to the stress when the stress is applied to the object and the object is distorted.
  • the optical film (protective film 12, counter film 13) of the polarizing plate 3 contains the end-capped polyester as a plasticizer (the optical film of the polarizing plate 4 (protective film 22, counter film 23)). the same).
  • the change in phase difference and the change in viscosity due to the temperature change of the optical film can be reduced, and the optical characteristics (phase difference, viscosity) can be stabilized.
  • Cellulose ester-based resins that can be used as the film substrate of the optical film of the present embodiment are cellulose (di, tri) acetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, cellulose acetate butyrate, and cellulose. It is preferably at least one selected from acetate phthalate and cellulose phthalate. By forming an optical film using at least one of these resins, an optical film having a Log (tan ⁇ ) value of ⁇ 1.8 or more between ⁇ 40 ° C. and 100 ° C. can be easily realized. be able to.
  • particularly preferred cellulose esters include cellulose triacetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, and cellulose acetate butyrate.
  • cellulose acetate propionate or lower acetate of cellulose acetate butyrate as a mixed fatty acid ester has an acyl group having 2 to 4 carbon atoms as a substituent, the substitution degree of acetyl group is X, and a propionyl group Or when the substitution degree of a butyryl group is set to Y, it is preferable that it is a cellulose resin containing the cellulose ester which satisfy
  • cellulose acetate propionate is particularly preferably used. Among them, 1.9 ⁇ X ⁇ 2.5 and 0.1 ⁇ Y ⁇ 0.9 are preferable.
  • the portion not substituted with the acyl group usually exists as a hydroxyl group.
  • the cellulose ester used in the present embodiment is preferably one having a ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn of 1.5 to 5.5. More preferably, a cellulose ester of 2.0 to 5.0, more preferably 2.5 to 5.0, particularly preferably 3.0 to 5.0 is used.
  • the raw material cellulose of the cellulose ester used in this embodiment may be wood pulp or cotton linter.
  • the wood pulp may be a conifer or a hardwood, but a conifer is more preferable.
  • a cotton linter is preferably used from the viewpoint of releasability during film formation.
  • the cellulose ester made from these can be mixed suitably or can be used independently.
  • the ratios of cellulose ester derived cellulose ester: wood pulp (coniferous) cellulose ester: wood pulp (hardwood) derived cellulose ester are 100: 0: 0, 90: 10: 0, 85: 15: 0, 50:50. : 0, 20: 80: 0, 10: 90: 0, 0: 100: 0, 0: 0: 100, 80:10:10, 85: 0: 15, 40:30:30 A cellulose ester can be mixed and used.
  • 1 g of cellulose ester-based resin is added to 20 ml of pure water (electric conductivity of 0.1 ⁇ S / cm or less, pH 6.8), and the pH when stirred in a nitrogen atmosphere at 25 ° C. for 1 hr. Is preferably 6 to 7, and the electric conductivity is preferably 1 to 100 ⁇ S / cm.
  • an alicyclic olefin polymer resin As the film substrate of the optical film of the present embodiment, an alicyclic olefin polymer resin (COP) may be used.
  • the alicyclic olefin polymer resin is a polymer having an alicyclic structure such as a saturated alicyclic hydrocarbon (cycloalkane) structure or an unsaturated alicyclic hydrocarbon (cycloalkene) structure.
  • the number of carbon atoms constituting the alicyclic structure is not particularly limited, but when it is usually in the range of 4 to 30, preferably 5 to 20, more preferably 5 to 15, the mechanical strength, The properties of heat resistance and moldability are highly balanced and suitable.
  • the value of Log (tan ⁇ ) between ⁇ 40 ° C. and 100 ° C. is ⁇ 1.8 or more from the viewpoint of suppressing the occurrence of cracks in the polarizing plate due to temperature change. It is necessary.
  • Arton (G7810) manufactured by JSR is a polymer having a polar group attached to the side chain of COP, but the minimum value of Log (tan ⁇ ) in the above temperature range is ⁇ 1.7. It is suitable for the optical film.
  • the value of Log (tan ⁇ ) in the above temperature range can be increased, and the change in viscosity due to the temperature change can be further reduced.
  • SRB215 manufactured by Asahi Kasei Chemicals Corporation can be used.
  • each polarizing plate the optical film on the IPS cell side with respect to the polarizer, that is, the counter film, from the viewpoint of improving the display performance, Ro represented by the following formula (i) is 0 nm or more and 10 nm or less, A zero retardation film in which Rt represented by the following formula (ii) is ⁇ 10 nm to +10 nm is desirable.
  • Ro (nx ⁇ ny) ⁇ d
  • Rt ⁇ (nx + ny) / 2 ⁇ nz ⁇ ⁇ d
  • Ro is the retardation value in the in-plane direction of the film
  • Rt is the retardation value in the thickness direction of the film
  • nx is the refractive index in the slow axis direction in the film plane
  • ny is the fast axis direction in the film plane
  • nz is the refractive index in the thickness direction of the film (refractive index is measured at a wavelength of 590 nm in an environment of 23 ° C. and 55% RH)
  • d is the thickness (nm) of the film.
  • the counter film since the liquid crystal cell itself is configured to exhibit good display performance, the counter film has a zero position that hardly imparts a phase difference compared to a phase difference film that imparts a phase difference to transmitted light. This is because the use of the phase difference film facilitates the advantages of liquid crystal cells (improved display performance).
  • the above-mentioned zero retardation film can be realized by adding a retardation reducing agent to the counter film.
  • the retardation reducing agent include, for example, in a compound (A) having one furanose structure or one pyranose structure, or in a compound (B) in which 2 or more and 12 or less furanose structures or pyranose structures are bonded.
  • a sugar ester obtained by esterifying all or part of the OH group with an aliphatic acyl group can be used.
  • the sugar ester as a retardation reducing agent has a furanose structure or a pyranose structure
  • the chemical structure is similar to that of a cellulose ester.
  • said sugar ester has a strong interaction with a cellulose ester. Therefore, by realizing a zero retardation film containing the above sugar ester and cellulose ester, the mechanical strength of the zero retardation film can be prevented from being lowered even if the zero retardation film is thinned.
  • the sugar ester is an OH in the compound (B) in which at least one of the furanose structure or the pyranose structure is bonded to 12 or less.
  • a compound in which all or part of the group is esterified with an aliphatic acyl group is desirable.
  • the sugar ester is more preferably a compound obtained by esterifying all or part of the OH groups in the compound (B) in which at least one kind of furanose structure or pyranose structure is bonded to each other with an acetyl group. Examples of such sugar esters include acetyl sucrose.
  • an optical film can be formed by sequentially performing the following steps.
  • Dissolution step dissolves the thermoplastic resin, heat-shrinkable material, and other additives in an organic solvent mainly composed of a good solvent for the thermoplastic resin while stirring to form a dope. It is a process.
  • a method carried out at normal pressure a method carried out below the boiling point of the main solvent, a method carried out under pressure above the boiling point of the main solvent, JP-A-9-95544, JP-A-9-95557
  • various dissolution methods such as a method using a cooling dissolution method as described in JP-A-9-95538 and a method using a high pressure as described in JP-A-11-21379 can be used.
  • the method of pressurizing at a boiling point or higher is preferred.
  • ⁇ Recycle material may be mixed in the dope.
  • the return material refers to a material obtained by finely pulverizing a film, which is generated when a film is formed, a material obtained by cutting off both side portions of the film, or a film raw material that is speculated out due to scratches or the like.
  • the dope is fed to a casting die through a liquid feeding pump (for example, a pressurized metering gear pump), and then from the slit of the casting die to the casting position on the metal support.
  • a liquid feeding pump for example, a pressurized metering gear pump
  • the metal support an endless metal belt (for example, a stainless steel belt), a rotating metal drum, or the like can be used.
  • the casting die it is preferable to use a pressure die because the slit shape of the die base portion can be adjusted and the film thickness can be made uniform easily.
  • the pressure die include a coat hanger die and a T die, and any of them is preferably used.
  • the surface of the metal support is a mirror surface.
  • two or more pressure dies may be provided on the metal support, and the dope amount may be divided and stacked. Or it is also preferable to obtain the film of a laminated structure by the co-casting method which casts several dope simultaneously.
  • Solvent evaporation step This step is a step of heating the web (a cast film (dope film) formed by casting a dope on a metal support) on the metal support to evaporate the solvent. .
  • the web after casting is preferably dried on a metal support in an atmosphere of 40 to 100 ° C. In order to maintain the above temperature range, it is preferable to apply hot air in the above temperature range to the upper surface of the web or to heat the web by means such as infrared rays.
  • This process is a process of peeling the web from which the solvent has evaporated on the metal support at the peeling position.
  • the peeled web is sent to the next process. From the viewpoint of web surface quality, moisture permeability, and peelability, it is preferable to peel the web from the metal support within 30 to 120 seconds after casting.
  • the temperature (peeling temperature) at the peeling position on the metal support is preferably 10 to 40 ° C., more preferably 11 to 30 ° C.
  • the amount of residual solvent of the web on the metal support at the time of peeling is preferably in the range of 50 to 120% by mass depending on the strength of drying conditions, the length of the metal support, and the like.
  • the residual solvent amount at the time of peeling is determined in view of the above.
  • the heat treatment for measuring the residual solvent amount means a heat treatment at 115 ° C. for 1 hour.
  • the peeling tension at the time of peeling the web from the metal support is usually 196 to 245 N / m. However, when wrinkles easily occur at the time of peeling, it is preferable to peel with a tension of 190 N / m or less. It is preferable that peeling is performed at a minimum tension capable of peeling to 166.6 N / m and then at a minimum tension of 137.2 N / m. Particularly preferred is peeling with a minimum tension of 100 N / m.
  • the temperature at the peeling position on the metal support is preferably ⁇ 50 to 40 ° C., more preferably 10 to 40 ° C., and most preferably 15 to 30 ° C.
  • Drying and stretching step This step is a step of peeling the web from the metal support and then drying the peeled web in a drying device and / or stretching using a tenter stretching device.
  • a drying device a plurality of rolls are arranged, and the web is dried by conveying the web through each roll alternately.
  • tenter stretching apparatus both ends of the web are clipped and conveyed by a clip, and the web is stretched.
  • drying the web in the drying apparatus As a means for drying the web in the drying apparatus, it is common to blow hot air on both sides of the web, but there is also a means for heating by applying microwaves instead of wind. Too rapid drying tends to impair the flatness of the finished film. Drying at a high temperature is preferably performed from a residual solvent amount of about 8% by mass or less. Throughout, drying is generally performed at 40-250 ° C. In particular, drying at 40 to 160 ° C. is preferable.
  • a tenter stretching apparatus When using a tenter stretching apparatus, it is preferable to use an apparatus capable of independently controlling the film gripping length (distance from the start of gripping to the end of gripping) left and right by the left and right gripping means of the tenter. In the stretching step, it is also preferable to intentionally create zones (zones) having different temperatures in order to improve planarity.
  • stretching operation may be divided
  • biaxial stretching stretching of a casting direction and a width direction.
  • simultaneous biaxial stretching may be performed and you may implement in steps.
  • the stepwise stretching may be, for example, sequentially performing stretching in different stretching directions, or dividing stretching in the same direction into multiple stages and adding stretching in different directions to any of the stages. It may be. That is, for example, the following stretching steps are possible.
  • simultaneous biaxial stretching includes stretching in one direction and contracting the other while relaxing the tension.
  • the preferred draw ratio of simultaneous biaxial stretching can be set in the range of 1.01 to 1.5 times in both the width direction and the longitudinal direction.
  • the residual solvent amount of the web is preferably 20 to 100% by mass at the start of the stretching, and is stretched until the residual solvent amount of the web is 10% by mass or less (more preferably 5% by mass or less). It is preferable to perform drying while applying.
  • the drying temperature when stretching is preferably 30 to 160 ° C, more preferably 50 to 150 ° C, and most preferably 70 to 140 ° C.
  • the temperature distribution in the width direction of the atmosphere is less uneven from the viewpoint of improving the uniformity of the film.
  • the temperature unevenness in the width direction in the stretching step is preferably within ⁇ 5 ° C., more preferably within ⁇ 2 ° C., and most preferably within ⁇ 1 ° C.
  • Winding step This step is a step of winding the film as a film by a winder after the residual solvent amount in the web is 2% by mass or less. By setting the residual solvent amount to 0.4% by mass or less, a film having good dimensional stability can be obtained. In particular, the film is preferably wound at 0.00 to 0.10% by mass.
  • a generally used method may be used, and there are a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, and the like.
  • the optical film in the present embodiment is preferably a long film.
  • the optical film has a thickness of about 100 m to 5000 m and is usually provided in a roll shape.
  • the film width is preferably 1.3 to 4 m, more preferably 1.4 to 2 m.
  • melt casting method In the melt casting film forming method, an optical film can be formed by sequentially performing the following steps.
  • the composition containing a resin used for melt extrusion is usually preferably kneaded in advance and pelletized.
  • Pelletization may be performed by a known method.
  • an additive comprising a dried thermoplastic resin and a heat-shrinkable material is supplied to an extruder with a feeder and kneaded using a single-screw or twin-screw extruder. It is possible to extrude into a strand form from a die, and then perform water cooling or air cooling and cutting.
  • cellulose ester easily absorbs moisture, it is preferable to dry it at 70 to 140 ° C. for 3 hours or more with a dehumidifying hot air dryer or a vacuum dryer so that the moisture content is 200 ppm or less, and further 100 ppm or less.
  • Additives may be mixed before being supplied to the extruder, or may be supplied by individual feeders. A small amount of additives such as particles and antioxidants are preferably mixed in advance in order to mix uniformly.
  • the antioxidant may be mixed with each other, and if necessary, the antioxidant may be dissolved in a solvent, impregnated with a thermoplastic resin and mixed, or mixed by spraying. May be.
  • a vacuum nauter mixer because drying and mixing can be performed simultaneously.
  • the extruder is preferably processed at a temperature as low as possible so that it can be pelletized so that the shear force is suppressed and the resin does not deteriorate (molecular weight reduction, coloring, gel formation, etc.).
  • a temperature as low as possible so that it can be pelletized so that the shear force is suppressed and the resin does not deteriorate (molecular weight reduction, coloring, gel formation, etc.).
  • the resin does not deteriorate (molecular weight reduction, coloring, gel formation, etc.).
  • a twin screw extruder it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
  • Film formation is performed using the pellets obtained as described above. It is also possible to feed the raw material powder directly to the extruder with a feeder and form a film as it is without pelletization.
  • the melt temperature Tm when extruding the pellet is about 200 to 300 ° C., filtered through a leaf disk type filter or the like to remove foreign matter,
  • the film is extruded from a die into a film, solidified on a cooling roll, and cast while being pressed with an elastic touch roll.
  • Tm is the temperature of the die exit portion of the extruder.
  • a defect is also called a die line.
  • the piping from the extruder to the die has a structure in which the resin retention portion is minimized. It is preferable to use a die that has as few scratches as possible inside the lip.
  • the inner surface that comes into contact with the molten resin is preferably subjected to surface treatment that makes it difficult for the molten resin to adhere to the surface by reducing the surface roughness or using a material with low surface energy.
  • a hard chrome plated or ceramic sprayed material is polished so that the surface roughness is 0.2 S or less.
  • the cooling roll is not particularly limited, and may be a roll having a structure in which a heat medium or a cooling medium capable of temperature control flows through a highly rigid metal roll. Further, the size of the cooling roll is not limited, but may be a size sufficient to cool the melt-extruded film. Usually, the diameter of the cooling roll is about 100 mm to 1 m.
  • the surface material of the cooling roll includes carbon steel, stainless steel, aluminum, titanium and the like. Further, in order to increase the hardness of the surface or improve the releasability from the resin, it is preferable to perform a surface treatment such as hard chrome plating, nickel plating, amorphous chrome plating, or ceramic spraying.
  • the surface roughness of the cooling roll surface is preferably 0.1 ⁇ m or less in terms of Ra, and more preferably 0.05 ⁇ m or less.
  • the smoother the roll surface the smoother the surface of the resulting film.
  • the surface processed surface may be further polished to further reduce the surface roughness.
  • Examples of the elastic touch roll include JP-A-03-124425, JP-A-08-224772, JP-A-07-1000096, JP-A-10-272676, WO97 / 028950, JP-A-11-235747, JP2002-2002.
  • the optical film of this embodiment may be composed of a composite resin film.
  • a method for producing the composite resin film a co-flow method or a co-extrusion method can be employed.
  • the metal support in the casting (casting) step preferably has a mirror-finished surface.
  • a stainless steel belt or a drum whose surface is plated with a casting is preferably used as the metal support.
  • the cast width can be 1 to 4 m.
  • the surface temperature of the metal support in the casting process is set to ⁇ 50 ° C. to a temperature at which the solvent boils and does not foam.
  • a higher temperature is preferable because the web can be dried faster, but if it is too high, the web may foam or the flatness may deteriorate.
  • a preferable support temperature is appropriately determined at 0 to 100 ° C., and more preferably 5 to 30 ° C.
  • the method for controlling the temperature of the metal support is not particularly limited, but there are a method of blowing hot air or cold air, and a method of contacting hot water with the back side of the metal support. It is preferable to use warm water because heat transfer is performed efficiently, so that the time until the temperature of the metal support becomes constant is short.
  • warm air considering the temperature drop of the web due to the latent heat of vaporization of the solvent, while using warm air above the boiling point of the solvent, there may be cases where wind at a temperature higher than the target temperature is used while preventing foaming. .
  • the prepared dope A is cast on a stainless steel belt with a die, and the prepared dope B is laminated and cast on the cast web through the die.
  • the laminated web is peeled at the peeling point, and then dried and wound up in a drying zone.
  • composition of dope A and dope B there is no restriction
  • the composition ratio of acetylated cellulose, a cellulose nanofiber, and other additives and a solvent can be taken in any way.
  • the cast film thickness of the dope A and dope B is not particularly limited. Three or more split casts are possible.
  • a film having a laminated structure can also be produced by a coextrusion method.
  • a film having a structure of skin layer / core layer / skin layer can be produced.
  • the matting agent can be contained in the skin layer in a large amount or only in the skin layer.
  • the plasticizer and the ultraviolet absorber can be contained in the core layer more than the skin layer, and may be contained only in the core layer.
  • the type of plasticizer and ultraviolet absorber can be changed between the core layer and the skin layer.
  • the skin layer contains a low-volatile plasticizer and / or an ultraviolet absorber, and the core layer has excellent plasticity.
  • the glass transition temperature of the skin layer and the core layer may be different, and the glass transition temperature of the core layer is preferably lower than the glass transition temperature of the skin layer. At this time, the glass transition temperatures of both the skin and the core can be measured, and an average value calculated from these volume fractions can be defined as the glass transition temperature Tg and similarly handled. Also, the viscosity of the melt containing the cellulose ester during melt casting may be different between the skin layer and the core layer, and the viscosity of the skin layer> the viscosity of the core layer or the viscosity of the core layer ⁇ the viscosity of the skin layer may be used.
  • the above-mentioned co-extrusion method uses a plurality of extruders to heat and melt the resin to be laminated from each other, and after the respective resins are merged, co-extrusion is performed from the slit-shaped discharge port of the T die.
  • a feed block method in which the molten resin is joined and then the manifold is widened
  • a multi-manifold method in which the molten resin is spread by the manifold and then joined together. Either of them can be used.
  • the optical film (film substrate) of this embodiment preferably contains an antioxidant.
  • Preferred antioxidants are phosphorous or phenolic, and it is more preferred to combine phosphorous and phenolic simultaneously.
  • the antioxidant that can be suitably used in the present embodiment will be described.
  • a phenolic antioxidant is preferably used, and a hindered phenol compound is particularly preferably used.
  • hindered phenol compounds include n-octadecyl 3- (3,5-di-t-butyl-4-hydroxyphenyl) -propionate, n-octadecyl 3- (3,5-di-t-butyl- 4-hydroxyphenyl) -acetate, n-octadecyl 3,5-di-t-butyl-4-hydroxybenzoate, n-hexyl 3,5-di-t-butyl-4-hydroxyphenylbenzoate, n-dodecyl 3, 5-di-t-butyl-4-hydroxyphenylbenzoate, neo-dodecyl 3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, dodecyl ⁇ (3,5-di-t-butyl- 4-hydroxyphenyl) propionate, ethyl ⁇ - (4-hydroxy-3,5-di-t-butyl)
  • phosphorus antioxidant phosphorus compounds such as phosphite, phosphonite, phosphinite, or tertiary phosphane can be used.
  • a conventionally known compound can be used as the phosphorus compound.
  • Japanese Patent Application Laid-Open Nos. 2002-138188, 2005-344444, paragraph numbers 0022 to 0027, Japanese Patent Application Laid-Open No. 2004-182979, paragraphs 0023 to 0039 Japanese Patent Application Laid-Open No. 10-306175, Japanese Patent Application Laid-Open No. -270892, JP-A-5-202078, JP-A-5-178870, JP-T-2004-504435, JP-T-2004-530759, and JP-A-2005-353229 Is preferred.
  • the addition amount of the phosphorus compound is usually 0.01 to 10 parts by mass, preferably 0.05 to 5 parts by mass, and more preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the resin.
  • phosphorus compounds in addition to the compounds represented by the above general formula, triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonylphenyl) phosphite, tris (dinonylphenyl) phosphite Tris (2,4-di-t-butylphenyl) phosphite, 10- (3,5-di-t-butyl-4-hydroxybenzyl) -9,10-dihydro-9-oxa-10-phosphat Phenanthrene-10-oxide, 6- [3- (3-t-butyl-4-hydroxy-5-methylphenyl) propoxy] -2,4,8,10-tetra-t-butyldibenz [d, f] [1 3.2] monophosphite compounds such as dioxaphosphine and tridecyl phosphite;
  • Phosphorus compounds of the above types are, for example, from Sumitomo Chemical Co., Ltd., “Sumilizer GP”, from ADEKA Co., Ltd., “ADK STAB PEP-24G”, “ADK STAB PEP-36” and “ADK STAB 3010”, Ciba Japan Co., Ltd. It is commercially available under the trade name “IRGAFOS P-EPQ” from the company and “GSY-P101” from Sakai Chemical Industry Co., Ltd.
  • ⁇ Other antioxidants Dilauryl-3,3′-thiodipropionate, dimyristyl-3,3′-thiodipropionate, distearyl-3,3′-thiodipropionate, pentaerythrityltetrakis (3-laurylthiopropionate) Nate) and other sulfur-based antioxidants, 2-tert-butyl-6- (3-tert-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate, 2- [1- (2-hydroxy -3,5-di-tert-pentylphenyl) ethyl] -4,6-di-tert-pentylphenyl acrylate, a heat resistant processing stabilizer such as 3,4-dihydro-2H-1 described in JP-B-08-27508 -Benzopyran compounds, 3,3'-spirodichroman compounds, 1,1-spiroindane compounds, morpholine, thi
  • the film substrate according to the present embodiment can contain various compounds as additives depending on the purpose.
  • the acid scavenger preferably comprises an epoxy compound as an acid scavenger described in US Pat. No. 4,137,201.
  • Epoxy compounds as such acid scavengers are known in the art and are derived by condensation of diglycidyl ethers of various polyglycols, particularly about 8-40 moles of ethylene oxide per mole of polyglycol.
  • Metal glycol compounds such as polyglycols, diglycidyl ethers of glycerol (eg, those conventionally used in and together with vinyl chloride polymer compositions), epoxidized ether condensation products, bisphenol A Diglycidyl ethers (ie, 4,4'-dihydroxydiphenyldimethylmethane), epoxidized unsaturated fatty acid esters (especially esters of alkyls of about 2 to 2 carbon atoms of fatty acids of 2 to 22 carbon atoms (eg Butyl epoxy stealey ), And various epoxidized long chain fatty acid triglycerides, etc.
  • polyglycols diglycidyl ethers of glycerol (eg, those conventionally used in and together with vinyl chloride polymer compositions), epoxidized ether condensation products, bisphenol A Diglycidyl ethers (ie, 4,4'-dihydroxydiphenyldimethylmethane), epoxidized
  • epoxidized vegetable oils and other unsaturated natural oils which are sometimes epoxidized, which can be represented and exemplified by compositions such as epoxidized soybean oil
  • these are referred to as natural glycerides or unsaturated fatty acids and these fatty acids generally contain 12 to 22 carbon atoms
  • Light stabilizers include hindered amine light stabilizer (HALS) compounds, which are known compounds, such as US Pat. No. 4,619,956, columns 5-11 and US Pat. , 839, 405, as described in columns 3 to 5, including 2,2,6,6-tetraalkylpiperidine compounds, or acid addition salts thereof, or complexes of these with metal compounds It is. Furthermore, the light stabilizer described in JP 2007-63311 A can be used.
  • HALS hindered amine light stabilizer
  • UV absorber from the viewpoint of preventing deterioration due to ultraviolet rays, those having excellent absorption ability of ultraviolet rays having a wavelength of 370 nm or less and those having little absorption of visible light having a wavelength of 400 nm or more are preferable from the viewpoint of liquid crystal display properties.
  • examples include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, nickel complex compounds, etc., but benzophenone compounds and less colored benzotriazole compounds preferable.
  • ultraviolet absorbers described in JP-A-10-182621 and JP-A-8-337574, and polymer ultraviolet absorbers described in JP-A-6-148430 may be used.
  • benzotriazole compound examples include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) -5-chlorobenzo Triazole, 2- (2′-hydroxy-3 ′-(3 ′′, 4 ′′, 5 ′′, 6 ′′ -tetrahydrophthalimidomethyl) -5′-methylphenyl) benzotriazole, 2,2-methylenebis (4- (1 , 1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol), 2- (2'-hydroxy-3 ' tert-butyl-5'-methylphenyl) -5-chlorobenzotriazole,
  • TINUVIN 326, TINUVIN 109, TINUVIN 171, TINUVIN 900, TINUVIN 928, TINUVIN 928, TINUVIN 360 (all manufactured by Ciba Japan) LA31 (manufactured by ADEKA), Sumisorb 250 (manufactured by Sumitomo Chemical Co., Ltd.), and RUVA-100 (manufactured by Otsuka Chemical).
  • benzophenone compounds include 2,4-dihydroxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone, bis (2-methoxy-4-hydroxy-) 5-benzoylphenylmethane) and the like, but are not limited thereto.
  • the ultraviolet absorber in an amount of 0.1 to 20% by mass, more preferably 0.5 to 10% by mass, and further preferably 1 to 5% by mass. Two or more of these may be used in combination.
  • Fine particles such as a matting agent can be added to the film substrate of the present embodiment, and examples of the fine particles include inorganic compound fine particles and organic compound fine particles.
  • the fine particles include inorganic fine particles such as silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, kaolin, talc, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate, and calcium phosphate.
  • Crosslinked polymer fine particles can be mentioned.
  • silicon dioxide is preferable because it can reduce the haze of the resin substrate.
  • fine particles such as silicon dioxide are surface-treated with an organic material, but such particles are preferable because they can reduce the haze of the resin substrate.
  • Preferred organic materials for the surface treatment include halosilanes, alkoxysilanes, silazanes, siloxanes, and the like. The larger the average particle size of the fine particles, the greater the sliding effect, and the smaller the average particle size, the better the transparency.
  • the average particle size of the secondary particles of the fine particles is in the range of 0.05 to 1.0 ⁇ m.
  • the average particle size of secondary particles of the fine particles is preferably 5 to 50 nm, more preferably 7 to 14 nm.
  • These fine particles are preferably used in the cellulose ester film in order to produce an unevenness of 0.01 to 1.0 ⁇ m on the surface of the cellulose ester film.
  • the content of the fine particles in the cellulose ester is preferably 0.005 to 0.3% by mass with respect to the cellulose ester.
  • silicon dioxide fine particles examples include Aerosil 200, 200V, 300, R972, R972V, R974, R202, R812, OX50, TT600, etc. manufactured by Nippon Aerosil Co., Ltd., preferably Aerosil 200V, R972. , R972V, R974, R202, R812. Two or more kinds of these fine particles may be used in combination. When using 2 or more types together, it can mix and use in arbitrary ratios. In this case, fine particles having different average particle sizes and materials, for example, Aerosil 200V and R972V can be used in a mass ratio of 0.1: 99.9 to 99.9: 0.1.
  • the presence of fine particles in the base material used as the matting agent can be used for another purpose to improve the strength of the base material.
  • the optical film preferably contains a plasticizer.
  • a plasticizer a polyester compound is preferable.
  • polyester polyol the polymer obtained by the condensation reaction of dicarboxylic acid or these ester-forming derivatives, and glycol, and a terminal becomes a hydroxyl group (hydroxyl group).
  • a polymer in which the terminal hydroxyl group of the polyester polyol is sealed with a monocarboxylic acid hereinafter, also referred to as “end-capped polyester” or simply “end-capped polyester” can be used.
  • the ester-forming derivative is an esterified product of dicarboxylic acid, dicarboxylic acid chloride, or anhydride of dicarboxylic acid.
  • the optical film of this embodiment contains the end-capped polyester as a plasticizer, fluctuations in retardation and viscosity (tan ⁇ ) due to temperature changes of the film are suppressed, and optical characteristics (retardation and viscosity) are stable. To do.
  • polyester compound examples include ester compounds represented by the following general formula (A).
  • B- (GA) n-GB (A) (Wherein B is a hydroxy group, benzene monocarboxylic acid residue or aliphatic monocarboxylic acid residue, and G is an alkylene glycol residue having 2 to 18 carbon atoms or an aryl glycol residue having 6 to 12 carbon atoms, or An oxyalkylene glycol residue having 4 to 12 carbon atoms, A is an alkylene dicarboxylic acid residue having 4 to 12 carbon atoms or an aryl dicarboxylic acid residue having 6 to 16 carbon atoms, and n is an integer of 1 or more is there.)
  • a compound in which B is a hydroxy group corresponds to a polyester polyol
  • a compound in which B is a benzene monocarboxylic acid residue or an aliphatic monocarboxylic acid residue corresponds to an end-capped polyester.
  • the polyester compound represented by the general formula (A) is obtained by the same reaction as a normal polyester plasticizer.
  • an aliphatic monocarboxylic acid having 3 or less carbon atoms is preferable, and examples include acetic acid, propionic acid, and butanoic acid (butyric acid). Each of these can be used as one kind or a mixture of two or more kinds.
  • Examples of the benzene monocarboxylic acid component of the polyester compound represented by the general formula (A) include benzoic acid, para-tert-butylbenzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethylbenzoic acid, ethylbenzoic acid, normal There are propylbenzoic acid, aminobenzoic acid, acetoxybenzoic acid, aliphatic acid and the like, and these can be used as one kind or a mixture of two or more kinds, respectively. In particular, it is preferable to contain benzoic acid or p-toluic acid.
  • alkylene glycol component having 2 to 18 carbon atoms of the polyester compound represented by the general formula (A) examples include ethylene glycol, 1,2-propanediol (1,2-propylene glycol), 1,3-propanediol (1 , 3-propylene glycol), 1,2-butanediol, 1,3-butanediol, 1,2-propanediol, 2-methyl 1,3-propanediol, 1,4-butanediol, 2,3-butane Diol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol), 1,2-cyclopentanediol, 1,3-cyclopentanediol, 1,4-cyclohexanediol, 2,2-diethyl-1,3-propanediol (3,3-dimethylolpentane), 2-n-butyl 2-ethyl
  • ethylene glycol, diethylene glycol, 1,2-propylene glycol, and 2-methyl 1,3-propanediol are preferable, and ethylene glycol, diethylene glycol, and 1,2-propylene glycol are more preferable.
  • an alkylene glycol having 2 to 12 carbon atoms is preferable because of excellent compatibility with a cellulose ester. More preferred are alkylene glycols having 2 to 6 carbon atoms, and still more preferred are alkylene glycols having 2 to 4 carbon atoms.
  • Examples of the oxyalkylene glycol component having 4 to 12 carbon atoms of the polyester compound represented by the general formula (A) include diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, and tripropylene glycol. Glycols can be used as one or a mixture of two or more.
  • Examples of the aryl glycol having 6 to 12 carbon atoms of the polyester compound represented by the general formula (A) include 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, cyclohexanediethanol, and 1,4-benzenedimethanol. And these glycols can be used as one kind or a mixture of two or more kinds.
  • alkylene dicarboxylic acid component having 4 to 12 carbon atoms of the polyester compound represented by the general formula (A) examples include succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, and dodecanedicarboxylic acid. There are acids and the like, and these are used as one kind or a mixture of two or more kinds, respectively.
  • Examples of the aryl dicarboxylic acid component having 6 to 16 carbon atoms of the polyester compound represented by the general formula (A) include phthalic acid, terephthalic acid, isophthalic acid, 1,5-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, There are 2,3-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 2,6-anthracenedicarboxylic acid and the like.
  • the aryl dicarboxylic acid may have a substituent on the aromatic ring. Examples of the substituent include a linear or branched alkyl group having 1 to 6 carbon atoms, an alkoxy group, and an aryl group having 6 to 12 carbon atoms.
  • A when B is a hydroxy group, that is, when the polyester compound is a polyester polyol, A is preferably an aryl dicarboxylic acid residue having 10 to 16 carbon atoms.
  • a dicarboxylic acid having an aromatic cyclic structure such as a benzene ring structure, a naphthalene ring structure, or an anthracene ring structure can be used.
  • aryl dicarboxylic acid component examples include orthophthalic acid, isophthalic acid, terephthalic acid, Examples include 1,4-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, and 2,6-anthracene dicarboxylic acid. Can do.
  • 1,4-naphthalenedicarboxylic acid 2,3-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, and more preferred is 2 1,3-naphthalenedicarboxylic acid and 2,6-naphthalenedicarboxylic acid, particularly preferably 2,6-naphthalenedicarboxylic acid. These can be used alone or in combination of two or more.
  • the polyester polyol preferably has an average carbon number of 10 to 16 in the dicarboxylic acid used as a raw material. If the carbon number average of the dicarboxylic acid is 10 or more, the dimensional stability of the cellulose ester film is excellent. If the carbon number average is 16 or less, the compatibility with the cellulose ester is excellent, and the transparency of the cellulose ester film. Is remarkably superior.
  • the dicarboxylic acid preferably has an average carbon number of 10 to 14, and more preferably has an average carbon number of 10 to 12.
  • the average carbon number of the dicarboxylic acid of the polyester polyol means the carbon number of the dicarboxylic acid when the polyester polyol is polymerized using a single dicarboxylic acid, but the polyester using two or more kinds of dicarboxylic acids.
  • polymerizing a polyol it means the sum of the products of the carbon number of each dicarboxylic acid and the molar fraction of the dicarboxylic acid.
  • the above-mentioned aryl dicarboxylic acid having 10 to 16 carbon atoms and other dicarboxylic acids can be used in combination.
  • the dicarboxylic acid that can be used in combination is preferably a dicarboxylic acid having 4 to 9 carbon atoms.
  • succinic acid, glutaric acid, adipic acid, maleic acid, orthophthalic acid, isophthalic acid, terephthalic acid, esterified products thereof, acid A chloride and an acid anhydride can be mentioned.
  • dicarboxylic acid in which the polyester polyol has 10 to 16 carbon atoms are shown below, but the present embodiment is not limited thereto.
  • 2,6-naphthalenedicarboxylic acid (2) 2,3-naphthalenedicarboxylic acid (3) 2,6-anthracene dicarboxylic acid (4) 2,6-naphthalenedicarboxylic acid: succinic acid (75:25 to 99: 1 molar ratio) (5)
  • 2,3-naphthalenedicarboxylic acid: terephthalic acid 50:50 to 99: 1 molar ratio
  • (8) 2,6-anthracene dicarboxylic acid succinic acid (50:50 to 99: 1 molar ratio) (9)
  • polyester compound examples include compounds having an octanol-water partition coefficient (logP (B)) of 0 or more and less than 7 from the viewpoint of water solubility and orientation of the compound, in addition to the polyester polyol described above. It is also preferable to use it.
  • logP (B) octanol-water partition coefficient
  • the polyester polyol is a dicarboxylic acid or an ester-forming derivative thereof (a component corresponding to A in the general formula (A)) and a glycol (a component corresponding to G in the general formula (A)).
  • it can be produced by an esterification reaction in a well-known and conventional manner for 10 to 25 hours in the temperature range of 180 to 250 ° C., for example.
  • a solvent such as toluene or xylene may be used, but a method using no solvent or glycol used as a raw material as a solvent is preferable.
  • esterification catalyst for example, tetraisopropyl titanate, tetrabutyl titanate, p-toluenesulfonic acid, dibutyltin oxide and the like can be used.
  • the esterification catalyst is preferably used in an amount of 0.01 to 0.5 parts by mass based on 100 parts by mass of the total amount of dicarboxylic acids or their ester-forming derivatives.
  • the molar ratio when the dicarboxylic acid or their ester-forming derivative is reacted with the glycol must be a molar ratio in which the terminal group of the polyester becomes a hydroxy group (hydroxyl group). Therefore, the dicarboxylic acid or their ester-forming derivative
  • the glycol is 1.1 to 10 moles per mole.
  • the glycol is 1.5 to 7 moles per mole of the dicarboxylic acid or their ester-forming derivatives, and more preferably, the glycol is moles per mole of the dicarboxylic acid or their ester-forming derivatives. 2 to 5 moles.
  • the terminal group of the polyester polyol is a hydroxy group (hydroxyl group), but the polyester polyol may contain a carboxy group-terminated compound as a by-product. However, the carboxy group terminal in the polyester polyol lowers the humidity stability, so that the content is preferably low.
  • the acid value is preferably 5.0 mgKOH / g or less, more preferably 1.0 mgKOH / g or less, and still more preferably 0.5 mgKOH / g or less.
  • the “acid value” refers to the number of milligrams of potassium hydroxide necessary to neutralize the acid (carboxy group present in the sample) contained in 1 g of the sample. The acid value can be measured according to JIS K0070: 1992.
  • the polyester polyol preferably has a hydroxy (hydroxyl group) value (OHV) in the range of 35 mg / g to 220 mg / g.
  • the hydroxy (hydroxyl group) value here means the number of milligrams of potassium hydroxide required to neutralize acetic acid bonded to a hydroxy group (hydroxyl group) when OH group contained in 1 g of a sample is acetylated. .
  • the hydroxy (hydroxyl group) value is obtained by acetylating OH groups in a sample with acetic anhydride, titrating acetic acid that has not been used with a potassium hydroxide solution, and determining the difference from the initial titration value of acetic anhydride.
  • the content of hydroxy group (hydroxyl group) in the polyester polyol is preferably 70% or more.
  • the hydroxy group (hydroxyl group) content is preferably 70% or more, more preferably 90% or more, and still more preferably 99% or more.
  • a compound having a hydroxy group (hydroxyl group) content of 50% or less is not included in the polyester polyol because one of the end groups is substituted with a group other than the hydroxy group (hydroxyl group).
  • the polyester polyol preferably has a number average molecular weight within a range of 300 to 3,000, and more preferably a number average molecular weight of 350 to 2,000.
  • the degree of dispersion of the molecular weight of the polyester polyol of this embodiment is preferably 1.0 to 3.0, more preferably 1.0 to 2.0.
  • the degree of dispersion is within the above range, a polyester polyol excellent in compatibility with the cellulose ester is easily obtained.
  • the polyester polyol preferably contains 50% or more of a component having a molecular weight of 300 to 1800. By setting the number average molecular weight within the above range, the compatibility can be greatly improved.
  • the end-capped polyester may be such that at least one of the two end groups B is a monocarboxylic acid residue. That is, one of the two terminal groups B may be a hydroxy group and the other may be a monocarboxylic acid residue. However, it is preferable that both of the two terminal groups B are monocarboxylic acid residues.
  • the above-mentioned benzene monocarboxylic acid residue and aliphatic monocarboxylic acid residue can be used, and preferably a benzene monocarboxylic acid residue can be used. That is, the end-capped polyester is preferably an aromatic terminal polyester.
  • the end-capped polyester is composed of glycol (a component corresponding to G in the general formula (A)), a dicarboxylic acid or an ester-forming derivative thereof (a component corresponding to A in the general formula (A)) and a monocarboxylic acid or
  • ester-forming derivatives components corresponding to B in the general formula (A)
  • the ester compound of the present embodiment is a mixture having a distribution in molecular weight and molecular structure at the time of its synthesis.
  • preferred components for the present embodiment for example, phthalic acid residues as A in the general formula (A) and It is preferable to contain at least one polyester compound having an adipic acid residue.
  • the end-capped polyester has a number average molecular weight of preferably 300-1500, more preferably 400-1000.
  • the acid value is 0.5 mg KOH / g or less, the hydroxy (hydroxyl group) value is 25 mg KOH / g or less, more preferably the acid value is 0.3 mg KOH / g or less, and the hydroxy (hydroxyl group) value is 15 mg KOH / g or less.
  • polyester ester compound
  • the sugar ester is an ester other than cellulose ester, and is a compound obtained by esterifying all or part of the OH group of a sugar such as the following monosaccharide, disaccharide, trisaccharide, or oligosaccharide. More specific examples include compounds represented by the general formula (1).
  • R 1 to R 8 represent a hydrogen atom, a substituted or unsubstituted alkylcarbonyl group having 2 to 22 carbon atoms, or a substituted or unsubstituted arylcarbonyl group having 2 to 22 carbon atoms.
  • R 1 to R8 may be the same or different.
  • plasticizers are preferably added in an amount of 0.5 to 30 parts by mass with respect to 100 parts by mass of the cellulose ester film.
  • a hard coat layer as a functional layer may be formed on the surface of the optical film.
  • the hard coat layer is preferably composed of, for example, an active energy ray curable resin.
  • the active energy ray-curable resin refers to a resin that cures through a crosslinking reaction or the like by irradiation with active rays such as ultraviolet rays or electron beams, and specifically, a resin having an ethylenically unsaturated group. More specifically, an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, an ultraviolet curable epoxy resin, or the like is preferably used. Of these, ultraviolet curable acrylate resins are preferred.
  • polyfunctional acrylate is preferable.
  • the polyfunctional acrylate is preferably selected from the group consisting of pentaerythritol polyfunctional acrylate, dipentaerythritol polyfunctional acrylate, pentaerythritol polyfunctional methacrylate, and dipentaerythritol polyfunctional methacrylate.
  • the polyfunctional acrylate is a compound having two or more acryloyloxy groups or methacryloyloxy groups in the molecule.
  • polyfunctional acrylate monomer examples include ethylene glycol diacrylate, diethylene glycol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, trimethylolpropane triacrylate, trimethylolethane triacrylate, and tetramethylolmethane triacrylate.
  • Tetramethylolmethane tetraacrylate pentaglycerol triacrylate, pentaerythritol diacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, glycerol triacrylate, dipentaerythritol triacrylate, dipentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaeth Thritol hexaacrylate, tris (acryloyloxyethyl) isocyanurate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, 1,6-hexanediol dimethacrylate, neopentyl glycol dimethacrylate, trimethylolpropane trimethacrylate, trimethylolethane trimethacrylate, Tetramethylol methane trimethacrylate, tetramethylol
  • isocyanurate derivatives of the active energy ray-curable are preferably exemplified.
  • Commercially available products may be used as these polyfunctional acrylates, such as pentaerythritol tri / tetraacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., A-TMM-3L), pentaerythritol triacrylate (manufactured by Kyoeisha Chemical Co., Ltd., PE-3A). Etc. can be obtained.
  • these compounds are used individually or in mixture of 2 or more types, respectively.
  • the isocyanurate derivative of the active energy ray-curable resin is not particularly limited as long as it has a structure in which one or more ethylenically unsaturated groups are bonded to the isocyanuric acid skeleton, but there are three in the same molecule. Compounds having the above ethylenically unsaturated groups and one or more isocyanurate rings are preferred.
  • an isocyanuric acid triacrylate compound a commercially available product can be used, for example, A-9300 manufactured by Shin-Nakamura Chemical Co., Ltd.
  • Examples of commercially available isocyanuric acid diacrylate compounds include Aronix M-215 manufactured by Toagosei Co., Ltd.
  • Examples of the mixture of the isocyanuric acid triacrylate compound and the isocyanuric acid diacrylate compound include Aronix M-315 and Aronix M-313 manufactured by Toagosei Co., Ltd.
  • ⁇ -Caprolactone-modified active energy ray-curable isocyanurate derivatives include ⁇ -caprolactone-modified tris- (acryloxyethyl) isocyanurate, Shin-Nakamura Chemical Co., Ltd. A-9300-1CL, Toagosei Co., Ltd. Examples include, but are not limited to, Aronix M-327.
  • a monofunctional acrylate may be used as the active energy ray curable resin.
  • Monofunctional acrylates include isobornyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, isostearyl acrylate, benzyl acrylate, ethyl carbitol acrylate, phenoxyethyl acrylate, lauryl acrylate, isooctyl acrylate, tetrahydrofurfuryl acrylate, behenyl Examples thereof include acrylate, 4-hydroxybutyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, and cyclohexyl acrylate.
  • Monofunctional acrylates can be obtained from Shin Nakamura Chemical Co., Ltd., Osaka Organic Chemical Industry Co., Ltd., and the like. These compounds are used alone or in admixture of two or more. Moreover, oligomers, such as a dimer and a trimer of the said monomer, may be sufficient.
  • urethane acrylate may be used as the active energy ray curable resin.
  • the urethane acrylate for example, commercially available products such as Beam Set 575CB manufactured by Arakawa Chemical Industry Co., Ltd. and UA-306H manufactured by Kyoeisha Chemical Co., Ltd. can be used.
  • the viscosity of the polyfunctional acrylate as described above is preferably 3000 mPa ⁇ s or less, more preferably 1500 mPa ⁇ s or less, at 25 ° C. Particularly preferably, it is 1000 mPa ⁇ s or less.
  • a low viscosity resin include glycerin triacrylate, pentaerythritol triacrylate, and pentaerythritol tetraacrylate.
  • the said viscosity is the value measured on 25 degreeC conditions using the E-type viscosity meter.
  • the compounding amount of the active energy ray-curable resin in the hard coat layer composition is usually 10 to 99 parts by mass, preferably 35 to 99 parts by mass when the entire composition is 100 parts by mass.
  • the blending amount of the active energy ray-curable resin is small, it is difficult to sufficiently obtain the film strength of the hard coat layer.
  • malfunctions such as a film thickness uniformity at the time of apply
  • the hard coat layer may further contain a cationically polymerizable compound.
  • the cationically polymerizable compound is a resin that undergoes cationic polymerization by energy active ray irradiation or heat.
  • Specific examples include an epoxy group, a cyclic ether group, a cyclic acetal group, a cyclic lactone group, a cyclic thioether group, a spiro orthoester compound, and a vinyloxo group.
  • a compound having a functional group such as an epoxy group or a vinyl ether group is preferably used in the present embodiment.
  • Examples of the cationically polymerizable compound having an epoxy group or a vinyl ether group include phenyl glycidyl ether, ethylene glycol diglycidyl ether, glycerin diglycidyl ether, vinylcyclohexene dioxide, limonene dioxide, 3,4-epoxycyclohexylmethyl-3 ′.
  • 4'-epoxycyclohexanecarboxylate bis- (6-methyl-3,4-epoxycyclohexyl) adipate, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, diethylene glycol divinyl ether, polyethylene glycol divinyl ether, 1 , 4-cyclohexanedimethanol divinyl ether and the like.
  • a polymer compound can also be used as an epoxy compound.
  • the amount of the cation polymerizable compound in the hard coat layer composition is usually 1 to 90 parts by mass when the entire composition is 100 parts by mass.
  • the amount is preferably 1 to 50 parts by mass.
  • the hard coat layer may contain fine particles.
  • the fine particles include inorganic fine particles and organic fine particles.
  • polymethacrylic acid methyl acrylate resin powder acrylic styrene resin powder, polymethyl methacrylate resin powder, silicon resin powder, polystyrene resin powder, polycarbonate resin powder, benzoguanamine resin powder, melamine resin powder
  • examples thereof include polyolefin resin powder, polyester resin powder, polyamide resin powder, polyimide resin powder, and polyfluorinated ethylene resin powder.
  • the average particle diameter of these fine particles is preferably 30 nm to 200 nm in view of the stability and clearness of the hard coat layer coating composition.
  • the hard coat layer may contain two or more kinds of fine particles having different particle sizes. From the viewpoint of easily achieving the desired pencil hardness, the hard coat layer preferably contains silica fine particles.
  • the hard coat layer contains reactive silica fine particles (Xa) surface-treated with an organic compound having a polymerizable unsaturated group.
  • reactive silica fine particles (Xa) surface-treated with an organic compound having a polymerizable unsaturated group will be described.
  • Reactive Silica Fine Particles (Xa)
  • Known silica fine particles can be used.
  • the shape may be spherical or irregular, and is not limited to ordinary colloidal silica, and may be hollow particles, porous particles, core / shell particles, etc., but the pH is 2.0 to 6 .5 colloidal silica is preferred.
  • the dispersion medium of the silica fine particles is preferably water or an organic solvent.
  • organic solvents include alcohols such as methanol, isopropyl alcohol, ethylene glycol, butanol and ethylene glycol monopropyl ether; ketones such as methyl ethyl ketone and methyl isobutyl ketone; aromatic hydrocarbons such as toluene and xylene; dimethylformamide and dimethyl
  • alcohols and ketones are preferred.
  • These organic solvents can be used alone or in combination as a dispersion medium.
  • Examples of commercially available products include, for example, MEK-ST-L, MEK-ST-MS, IPA-ST-L, and IPA-ST-ZL manufactured by Nissan Chemical Industries, Ltd. as colloidal silica.
  • the reactive silica fine particles (Xa) can be obtained by surface-treating colloidal silica as described above with an organic compound having a polymerizable unsaturated group (hereinafter referred to as “organic compound (X)”).
  • organic compound (X) has a polymerizable unsaturated group, preferably an ethylenically unsaturated group, and further has a group represented by the following general formula (a) and a compound having a silanol group in the molecule or a silanol group by hydrolysis. It is preferable that it is a compound to be formed.
  • [—UC ( ⁇ V) —NH—] is specifically represented by [—O—C ( ⁇ O) —NH—], [—O—C ( ⁇ S) —NH—], [— S—C ( ⁇ O) —NH—], [—NH—C ( ⁇ O) —NH—], [—NH—C ( ⁇ S) —NH—], and [—S—C ( ⁇ S) -NH-]. These groups can be used alone or in combination of two or more.
  • a [—O—C ( ⁇ O) —NH—] group a [—O—C ( ⁇ S) —NH—] group or a [—S—C ( ⁇ O) — It is preferable to use in combination with at least one of the NH— groups.
  • organic compound (X) For example, an acryloyl group, a methacryloyl group, and a vinyl group can be mentioned as a suitable example.
  • This ethylenically unsaturated group is a structural unit that undergoes addition polymerization with active radical species.
  • Examples of the compound that generates a silanol group include compounds in which an alkoxy group, an aryloxy group, an acetoxy group, an amino group, a halogen atom, and the like are bonded to a silicon atom, but an alkoxy group or an aryloxy group is bonded to a silicon atom.
  • the compound thus obtained that is, an alkoxysilyl group-containing compound or an aryloxysilyl group-containing compound is preferred.
  • Specific examples include compounds represented by the following general formula (b).
  • R 21 and R 22 may be the same or different and each represents a hydrogen atom or an alkyl group or aryl group having 1 to 8 carbon atoms, such as methyl, ethyl, propyl, butyl, octyl , Phenyl, xylyl group and the like.
  • j is an integer of 1 to 3.
  • Examples of the group represented by [(R 21 O) j R 22 3-j Si—] include a trimethoxysilyl group, a triethoxysilyl group, a triphenoxysilyl group, a methyldimethoxysilyl group, a dimethylmethoxysilyl group, and the like. Can be mentioned. Of these groups, a trimethoxysilyl group or a triethoxysilyl group is preferable.
  • R 23 is a divalent organic group having an aliphatic or aromatic structure having 1 to 12 carbon atoms and may contain a chain, branched or cyclic structure. Specific examples include methylene, ethylene, propylene, butylene, hexamethylene, cyclohexylene, phenylene, xylylene, dodecamethylene and the like.
  • R 24 is a divalent organic group, and is usually selected from divalent organic groups having a molecular weight of 14 to 10,000, preferably a molecular weight of 76 to 500.
  • divalent organic groups having a molecular weight of 14 to 10,000, preferably a molecular weight of 76 to 500.
  • Specific examples include a chain polyalkylene group such as hexamethylene, octamethylene, and dodecamethylene; an alicyclic or polycyclic divalent organic group such as cyclohexylene and norbornylene; and 2 such as phenylene, naphthylene, biphenylene, and polyphenylene. Valent aromatic group; and these alkyl group-substituted and aryl group-substituted products.
  • These divalent organic groups may contain an atomic group containing an element other than carbon and hydrogen atoms, and may contain a polyether bond, a polyester bond, a polyamide bond, and a polycarbonate bond.
  • R 25 is a (k + 1) -valent organic group, preferably selected from a chain, branched or cyclic saturated hydrocarbon group and unsaturated hydrocarbon group.
  • Z represents a monovalent organic group having a polymerizable unsaturated group in the molecule that undergoes an intermolecular crosslinking reaction in the presence of an active radical species.
  • K is preferably an integer of 1 to 20, more preferably an integer of 1 to 10, and particularly preferably an integer of 1 to 5.
  • the organic compound (X) is, for example, one or more compounds selected from hydrolyzable silanes, polyisocyanate compounds, polythioisocyanate compounds, and compounds having both isocyanate groups and thioisocyanate groups And an active hydrogen-containing polymerizable unsaturated compound having an active hydrogen atom that causes an addition reaction with an isocyanate group or a thioisocyanate group can be directly added.
  • mercaptopropyltrimethoxysilane and isophorone diisocyanate are mixed in the presence of dibutyltin dilaurate and reacted at 60 to 70 ° C. for several hours, then pentaerythritol triacrylate is added, and further at 60 to 70 ° C. for several hours. React to a certain extent.
  • the obtained organic compound (X) is mixed with silica fine particles, hydrolyzed, and the two are combined to produce reactive silica fine particles (Xa).
  • the amount of the organic compound (X) bonded to the silica fine particles is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, particularly preferably 1% by mass or more, based on 100% by mass of the silica fine particles. It is.
  • the dispersibility of the reactive silica fine particles (Xa) in the composition is good.
  • the mixing ratio of the silica fine particles in the raw material during the production of the reactive silica fine particles (Xa) is preferably 5 to 99% by mass, more preferably 10 to 98% by mass.
  • the content of the reactive silica fine particles (Xa) in the coating composition for the hard coat layer is preferably 5 to 80% by mass when the total solid content in the composition is 100% by mass, and preferably 10 to 80% by mass. % Is more preferable. By using in such a range, the reactive silica fine particles (Xa) are stably present in the hard coat coating composition.
  • the hard coat layer preferably further contains a photopolymerization initiator in order to accelerate the curing of the active energy ray-curable resin.
  • the photopolymerization initiator examples include alkylphenone series, acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, ⁇ -amyloxime ester, thioxanthone, and derivatives thereof, but are not particularly limited thereto. It is not a thing.
  • Commercially available products may be used, and preferred examples include Irgacure 184, Irgacure 907, and Irgacure 651 manufactured by BASF Japan.
  • the hard coat layer may contain an ultraviolet absorber similar to the above-described ultraviolet absorber.
  • the hard coat layer is composed of two or more layers, and containing the ultraviolet absorber in the hard coat layer in contact with the base film exhibits the object effect of this embodiment well, and the hard coat layer
  • the film strength (abrasion resistance) and the pencil hardness are preferred from the viewpoint of obtaining good results.
  • the thickness of the hard coat layer in contact with the base film is preferably in the range of 0.05 to 2 ⁇ m.
  • Two or more layers may be formed as a simultaneous multilayer.
  • the simultaneous multi-layering is to form a hard coat layer by applying two or more hard coat layers on a base material without going through a drying step.
  • the layers are stacked one after another with an extrusion coater or simultaneously with a slot die having a plurality of slits. Can be done.
  • a hard coat layer coating composition diluted with a solvent that swells or partially dissolves a cellulose acetate film is applied to the cellulose acetate film by the following method, dried, and cured.
  • the method of providing is preferable from the viewpoint that interlayer adhesion between the hard coat layer and the cellulose acetate film is easily obtained.
  • a solvent containing a ketone and / or acetate is preferable.
  • the ketone include methyl ethyl ketone, acetone, and cyclohexanone.
  • the acetate ester include ethyl acetate, methyl acetate, and butyl acetate.
  • the hard coat layer coating composition may contain an alcohol solvent as the other solvent.
  • the coating amount of the hard coat layer coating composition is preferably 0.1 to 40 ⁇ m, more preferably 0.5 to 30 ⁇ m as a wet film thickness.
  • the dry film thickness is preferably about 5 to 20 ⁇ m, preferably 7 to 12 ⁇ m.
  • the hard coat layer is a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die (extrusion) coater, a hard coat coating composition that forms a hard coat layer is applied using a known coating method such as an inkjet method, After application, the film can be dried, irradiated with actinic radiation (also referred to as UV curing treatment), and further subjected to heat treatment after UV curing as necessary.
  • the heat treatment temperature after UV curing is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and particularly preferably 120 ° C. or higher. By performing the heat treatment after UV curing at such a high temperature, the mechanical strength (rubbing resistance, pencil hardness) of the hard coat layer becomes better.
  • Drying is preferably performed at a high temperature of 80 ° C. or higher in the decreasing rate drying section. More preferably, the temperature in the decreasing rate drying section is 95 ° C. or higher and 130 ° C. or lower.
  • the drying process changes from a constant state to a gradually decreasing state when drying starts.
  • the interval in which the value decreases is called the rate-of-drying interval.
  • the rate-of-drying interval In the constant rate drying section, the amount of heat flowing in is all consumed for solvent evaporation on the coating film surface, and when the solvent on the coating film surface decreases, the evaporation surface moves from the surface to the inside and enters the decreasing rate drying section. Thereafter, the temperature of the coating film surface rises and approaches the hot air temperature, so that the temperature of the ultraviolet curable resin composition rises, the resin viscosity decreases, and the fluidity increases.
  • any light source that generates ultraviolet rays can be used without limitation.
  • a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
  • Irradiation conditions vary depending on each lamp, but the irradiation amount of active rays is usually 50 to 1000 mJ / cm 2 , preferably 50 to 300 mJ / cm 2 .
  • irradiating active rays it is preferably performed while applying tension in the film transport direction, more preferably while applying tension in the width direction.
  • the tension to be applied is usually 30 to 500 N / m, preferably 30 to 300 N / m.
  • the method for applying tension is not particularly limited, and tension may be applied in the transport direction on the back roll, or tension may be applied in the width direction or biaxial direction by a tenter. Thereby, a film having further excellent flatness can be obtained.
  • the hard coat layer may contain a conductive agent in order to impart antistatic properties, and preferred conductive agents include metal oxide particles or ⁇ -conjugated conductive polymers.
  • An ionic liquid is also preferably used as the conductive compound.
  • the hard coat layer may contain a fluorine-siloxane graft polymer or a silicone surfactant.
  • the fluorine-siloxane graft polymer refers to a copolymer polymer obtained by grafting polysiloxane containing siloxane and / or organosiloxane alone and / or organopolysiloxane to at least a fluorine resin.
  • Examples of commercially available products include ZX-022H, ZX-007C, ZX-049, ZX-047-D manufactured by Fuji Kasei Kogyo Co., Ltd.
  • the silicone-based surfactant is a surfactant obtained by substituting a part of the methyl group of the silicone oil with a hydrophilic group.
  • hydrophilic group include polyether, polyglycerin, pyrrolidone, betaine, sulfate, phosphate, and quaternary salt.
  • silicone surfactants include, for example, SH200, BY16-873, PRX413 (dimethylsilicone oil; manufactured by Toray Dow Corning Silicone Co., Ltd.), SH203, SH230, SF8416 (alkyl-modified silicone oil; Toray Dow Corning Silicone Co., Ltd.), SF8417, BY16-208, BY16-209, BY16-849, BY16-872, FZ-2222, FZ-2207 (dimethylpolysiloxane / polyethylene oxide linear block copolymer; Japan) FZ series manufactured by Unicar Co., Ltd.), KF-101, KF-102, KF-105 (epoxy-modified silicone oil; manufactured by Shin-Etsu Chemical Co., Ltd.), BYK-UV3500, BYK-UV3510, BYK-333, BYK- 31, BYK-337 (polyether-modified silicone oil, Bikkukemi - Japan Ltd.), but like without limitation
  • these components are preferably added in the range of 0.01 to 5% by mass with respect to the solid component in the coating solution.
  • the arithmetic average roughness Ra of the surface of the hard coat layer in this embodiment is preferably 4 to 20 nm from the viewpoint of excellent anti-blocking effect when wound with a long film and excellent adhesion to a cellulose acetate film.
  • the arithmetic average roughness Ra is a value measured with an optical interference type surface roughness meter (RST / PLUS, manufactured by WYKO) based on the provisions of JIS B0601: 1994.
  • the average irregularity interval Sm on the surface of the hard coat layer is preferably 3 to 40 ⁇ m.
  • the ratio (Ra / Sm) between the arithmetic average roughness Ra of the surface of the hard coat layer and the uneven average interval Sm of the hard coat layer coating surface of the cellulose ester film (film substrate) is 2 ⁇ 10 ⁇ 4. It is preferably ⁇ 6 ⁇ 10 ⁇ 3 .
  • Sm can be measured with an optical interference surface roughness meter (RST / PLUS, manufactured by WYKO) based on the provisions of JIS B0601: 1994, similarly to the arithmetic average roughness Ra.
  • a method of forming protrusions on the surface by pressing a mold or a resin having a different SP value (solubility parameter) is mixed to form surface irregularities
  • a method of forming protrusions by spinodal decomposition or nucleation can be used.
  • the mold roll used for forming the protrusion it is possible to select and apply appropriately from fine to rough unevenness, and use a mat-like, lenticular lens-like, or spherical irregularity regularly or randomly arranged it can.
  • the haze value of the hard coat film of the present embodiment is preferably 1% or less from the viewpoint of obtaining sufficient luminance and high contrast.
  • a back coat layer may be provided on the surface of the film substrate of the present embodiment opposite to the side on which the hard coat layer is provided to prevent curling and blocking.
  • the back coat layer includes silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, tin oxide, indium oxide, Particles such as zinc oxide, ITO, hydrated calcium silicate, aluminum silicate, magnesium silicate and calcium phosphate can be added.
  • the particles contained in the backcoat layer are preferably 0.1 to 50% by mass with respect to the binder.
  • the increase in haze is preferably 0.5% or less, and particularly preferably 0.1% or less.
  • the binder a cellulose ester resin is preferable.
  • the coating composition for forming the backcoat layer preferably contains a solvent for alcohols, ketones and / or acetate ester sugars.
  • a hard coat layer can be formed on a film substrate, and an antireflection layer can be coated on the hard coat layer to be used as an antireflection film having an external light antireflection function.
  • the antireflection layer is preferably laminated in consideration of the refractive index, the film thickness, the number of layers, the layer order, and the like so that the reflectance is reduced by optical interference.
  • the antireflection layer is composed of a low refractive index layer having a refractive index lower than that of the film substrate as a support, or a combination of a high refractive index layer having a refractive index higher than that of the support and a low refractive index layer. Is preferred.
  • it is an antireflection layer composed of three or more refractive index layers, and three layers having different refractive indexes from the support side are divided into medium refractive index layers (high refractive index layers having a higher refractive index than the support).
  • an antireflection layer having a layer structure of four or more layers in which two or more high refractive index layers and two or more low refractive index layers are alternately laminated is also preferably used.
  • the layer structure of a film having an antireflection layer the following structure is conceivable, but is not limited thereto.
  • Cellulose acetate film / hard coat layer / low refractive index layer Cellulose acetate film / hard coat layer / medium refractive index layer / low refractive index layer Cellulose acetate film / hard coat layer / medium refractive index layer / high refractive index layer / low refractive index Layer Cellulose acetate film / hard coat layer / high refractive index layer (conductive layer) / low refractive index layer Cellulose acetate film / hard coat layer / antiglare layer / low refractive index layer
  • the low refractive index layer preferably contains silica-based fine particles, and the refractive index is preferably in the range of 1.30 to 1.45 when measured at 23 ° C. and wavelength of 550 nm.
  • the film thickness of the low refractive index layer is preferably 5 nm to 0.5 ⁇ m, more preferably 10 nm to 0.3 ⁇ m, and most preferably 30 nm to 0.2 ⁇ m.
  • the composition for forming a low refractive index layer preferably contains at least one kind of particles having an outer shell layer and porous or hollow inside as silica-based fine particles.
  • the particles having the outer shell layer and having a porous or hollow interior are preferably hollow silica-based fine particles.
  • composition for forming a low refractive index layer may contain an organosilicon compound represented by the following general formula (OSi-1), a hydrolyzate thereof, or a polycondensate thereof.
  • OSi-1 organosilicon compound represented by the following general formula (OSi-1)
  • hydrolyzate thereof a hydrolyzate thereof
  • polycondensate thereof a polycondensate thereof.
  • R represents an alkyl group having 1 to 4 carbon atoms. Specifically, tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane and the like are preferably used.
  • a solvent and if necessary, a silane coupling agent, a curing agent, a surfactant and the like may be added. Further, it may contain a compound having a thermosetting property and / or a photocurable property mainly containing a fluorine-containing compound containing a fluorine atom in a range of 35 to 80% by mass and containing a crosslinkable or polymerizable functional group. . Specifically, a fluorine-containing polymer or a fluorine-containing sol-gel compound is used.
  • fluorine-containing polymer examples include hydrolysates and dehydration condensates of perfluoroalkyl group-containing silane compounds [eg (heptadecafluoro-1,1,2,2-tetrahydrodecyl) triethoxysilane], and fluorine-containing monomers. Examples thereof include fluorine-containing copolymers having units and cross-linking reactive units as constituent units.
  • the refractive index of the high refractive index layer is preferably adjusted to a range of 1.4 to 2.2 by measuring at 23 ° C. and a wavelength of 550 nm.
  • the thickness of the high refractive index layer is preferably 5 nm to 1 ⁇ m, more preferably 10 nm to 0.2 ⁇ m, and most preferably 30 nm to 0.1 ⁇ m.
  • the refractive index can be adjusted by adding metal oxide fine particles and the like.
  • the metal oxide fine particles to be used preferably have a refractive index of 1.80 to 2.60, more preferably 1.85 to 2.50.
  • the kind of metal oxide fine particles is not particularly limited, and Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P and S
  • a metal oxide having at least one element selected from can be used.
  • These metal oxide fine particles may be doped with a trace amount of atoms such as Al, In, Sn, Sb, Nb, a halogen element, and Ta. A mixture of these may also be used.
  • at least one metal oxide selected from zirconium oxide, antimony oxide, tin oxide, zinc oxide, indium-tin oxide (ITO), antimony-doped tin oxide (ATO), and zinc antimonate It is particularly preferable to use fine particles as the main component. In particular, it is preferable to contain zinc antimonate particles.
  • the average particle diameter of the primary particles of these metal oxide fine particles is in the range of 10 nm to 200 nm, and is particularly preferably 10 to 150 nm.
  • the average particle diameter of the metal oxide fine particles can be measured from an electron micrograph taken with a scanning electron microscope (SEM) or the like. You may measure by the particle size distribution meter etc. which utilize a dynamic light scattering method, a static light scattering method, etc. If the particle size is too small, aggregation tends to occur and the dispersibility deteriorates. If the particle size is too large, the haze is remarkably increased, which is not preferable.
  • the shape of the metal oxide fine particles is preferably a rice grain shape, a spherical shape, a cubic shape, a spindle shape, a needle shape, or an indefinite shape.
  • the metal oxide fine particles may be surface-treated with an organic compound.
  • an organic compound By modifying the surface of the metal oxide fine particles with an organic compound, the dispersion stability in an organic solvent is improved, the dispersion particle size can be easily controlled, and aggregation and sedimentation over time can be suppressed. . Therefore, the amount of surface modification with a preferable organic compound is 0.1% by mass to 5% by mass, more preferably 0.5% by mass to 3% by mass with respect to the metal oxide particles.
  • the organic compound used for the surface treatment include polyols, alkanolamines, stearic acid, silane coupling agents, and titanate coupling agents. Of these, silane coupling agents are preferred. Two or more kinds of surface treatments may be combined.
  • the high refractive index layer may contain a ⁇ -conjugated conductive polymer.
  • the ⁇ -conjugated conductive polymer can be used as long as it is an organic polymer having a main chain composed of a ⁇ -conjugated system. Examples thereof include polythiophenes, polypyrroles, polyanilines, polyphenylenes, polyacetylenes, polyphenylene vinylenes, polyacenes, polythiophene vinylenes, and copolymers thereof. From the viewpoint of ease of polymerization and stability, polythiophenes, polyanilines, and polyacetylenes are preferable.
  • the ⁇ -conjugated conductive polymer can provide sufficient conductivity and solubility in a binder resin even if it is not substituted, but in order to further improve conductivity and solubility, an alkyl group, a carboxy group, a sulfo group, an alkoxy group.
  • a functional group such as a group, a hydroxy group, or a cyano group may be introduced.
  • the high refractive index layer may contain an ionic compound.
  • the ionic compound include imidazolium-based, pyridium-based, alicyclic amine-based, aliphatic amine-based, aliphatic phosphonium-based cations and inorganic ion-based compounds such as BF 4 -and PF 6- , CF 3 SO 2-, and the like. , (CF 3 SO 2 ) 2 N—, CF 3 CO 2 —, etc.
  • the ratio of the polymer to the binder is preferably 10 to 400 parts by mass with respect to 100 parts by mass of the polymer, and particularly preferably 100 to 200 parts by mass of the binder with respect to 100 parts by mass of the polymer.
  • an antiglare layer can be provided as a functional layer.
  • the antiglare layer reduces the visibility of the reflected image by blurring the outline of the image reflected on the film surface, so that the reflected image is reflected when using an image display device such as a liquid crystal display, an organic EL display, or a plasma display. It is a layer that keeps you from worrying.
  • the antiglare layer has an arithmetic average roughness Ra of 0.1 to 0.1 on the surface of the layer by adding fine particles or the like to the hard coat layer and pressing the mold to form protrusions on the surface. A layer adjusted to 1 ⁇ m is preferable.
  • the ratio of the scattering reflectance (scattering reflectance ratio) to the integrated reflectance of the antiglare layer is preferably 2 to 60%.
  • the scattering reflection ratio within the above range using fine particles or the like, the interlayer adhesion between the cellulose acetate film having a high acetylation degree as described above and the antiglare layer can be improved. More preferably, if the ratio of the scattering reflection ratio is in the range of 20 to 50%, the adhesion can be improved.
  • the scattering reflection ratio is SCI (integrated reflectance) and SCE (scattering reflectance) under the conditions of a measuring diameter of 8 mm and an observation field of view of 2 ° using a spectrocolorimeter CM-2500d manufactured by Konica Minolta. Can be determined by measuring.
  • a conductive layer may be formed on the outermost surface of the optical film (for example, on the hard coat layer).
  • the conductive layer preferably contains at least conductive fibers, and further contains a binder, a photosensitive compound, and, if necessary, other components.
  • solid structure fibers may be referred to as wires
  • hollow structure fibers may be referred to as tubes.
  • conductive fibers having an average minor axis length of 5 nm to 1,000 nm and an average major axis length of 1 ⁇ m to 100 ⁇ m may be referred to as “nanowires”.
  • a conductive fiber having an average minor axis length of 1 nm to 1,000 nm and an average major axis length of 0.1 ⁇ m to 1,000 ⁇ m and having a hollow structure may be referred to as “nanotube”.
  • the material of the conductive fiber is not particularly limited as long as it has conductivity, and can be appropriately selected according to the purpose, but is preferably at least one of metal and carbon.
  • the conductive fibers are preferably at least one of metal nanowires, metal nanotubes, and carbon nanotubes.
  • a material of metal nanowire there is no restriction
  • at least one metal selected from the group consisting of the fourth period, the fifth period, and the sixth period of the Long Periodic Table (IUPAC 1991) is preferred, and at least one kind selected from Group 2 to Group 14 is preferred.
  • Metal is more preferable, and at least one metal selected from Group 2, Group 8, Group 9, Group 10, Group 11, Group 12, Group 13, and Group 14 is more preferable. It is particularly preferable to include it as a component.
  • the metal examples include copper, silver, gold, platinum, palladium, nickel, tin, cobalt, rhodium, iridium, iron, ruthenium, osmium, manganese, molybdenum, tungsten, niobium, tantel, titanium, bismuth, antimony, and lead. Or alloys thereof. Among these, silver and an alloy with silver are preferable in terms of excellent conductivity.
  • Examples of the metal used in the alloy with silver include platinum, osmium, palladium, iridium and the like. These may be used alone or in combination of two or more.
  • a shape of metal nanowire there is no restriction
  • it can take an arbitrary shape such as a columnar shape, a rectangular parallelepiped shape, or a columnar shape having a polygonal cross section.
  • a cylindrical shape or a cross-sectional shape with rounded polygonal corners is preferable.
  • the cross-sectional shape of the metal nanowire can be examined by applying a metal nanowire aqueous dispersion on the substrate and observing the cross-section with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the average minor axis length (sometimes referred to as “average minor axis diameter” or “average diameter”) of the metal nanowires is preferably 1 nm to 50 nm.
  • the average minor axis length is more preferably 10 nm to 40 nm, and further preferably 15 nm to 35 nm.
  • the average minor axis length of the metal nanowires was determined by observing 300 metal nanowires using a transmission electron microscope (TEM; manufactured by JEOL Ltd., JEM-2000FX) and calculating the average of the metal nanowires from the average value.
  • the short axis length was determined.
  • the short axis length when the short axis of the metal nanowire is not circular was the shortest axis.
  • the average major axis length of the metal nanowire (sometimes referred to as “average length”) is preferably 1 ⁇ m to 40 ⁇ m. If the average major axis length is less than 1 ⁇ m, it may be difficult to form a dense network and sufficient conductivity may not be obtained. If it exceeds 40 ⁇ m, the metal nanowires are too long and manufactured. Sometimes entangled and agglomerates may occur during the manufacturing process.
  • the average major axis length is more preferably 3 ⁇ m to 35 ⁇ m, and still more preferably 5 ⁇ m to 30 ⁇ m.
  • the average major axis length of the metal nanowire is, for example, observed with 300 metal nanowires using a transmission electron microscope (TEM; manufactured by JEOL Ltd., JEM-2000FX). The average major axis length was determined. In addition, when the metal nanowire was bent, the circle
  • TEM transmission electron microscope
  • Examples of the method for producing metal nanowires include, for example, JP 2009-215594 A, JP 2009-242880 A, JP 2009-299162 A, JP 2010-84173 A, and JP 2010-86714 A.
  • the described method can be used.
  • the method for producing the metal nanowire is not particularly limited and may be produced by any method. By reducing metal ions while heating in a solvent in which a halogen compound and a dispersion additive are dissolved as follows, It is preferable to manufacture.
  • the solvent is preferably a hydrophilic solvent, and examples thereof include water, alcohols, ethers, and ketones. These may be used alone or in combination of two or more.
  • the alcohols include methanol, ethanol, propanol, isopropanol, butanol, and ethylene glycol.
  • the ethers include dioxane and tetrahydrofuran.
  • the ketones include acetone.
  • the heating temperature during the heating is preferably 250 ° C. or less, and more preferably 20 ° C. to 200 ° C.
  • the lower the heating temperature the lower the probability of nucleation, and if the heating temperature is less than 20 ° C., the metal nanowires become too long and become easily entangled, and the dispersion stability may deteriorate.
  • the heating temperature exceeds 250 ° C., the corner of the cross section of the metal nanowire becomes steep, and the transmittance in the evaluation of the coating film may be lowered.
  • the heating temperature is more preferably 30 ° C. to 180 ° C., and further preferably 40 ° C. to 170 ° C.
  • a reducing agent there is no restriction
  • reducing sugars, sugar alcohols as derivatives thereof, and ethylene glycol are particularly preferable.
  • metal borohydride examples include sodium borohydride and potassium borohydride.
  • Examples of the aluminum hydride salt include lithium aluminum hydride, potassium aluminum hydride, cesium aluminum hydride, aluminum beryllium hydride, magnesium magnesium hydride, and calcium aluminum hydride.
  • alkanolamine examples include diethylaminoethanol, ethanolamine, propanolamine, triethanolamine, and dimethylaminopropanol.
  • Examples of the aliphatic amine include propylamine, butylamine, dipropyleneamine, ethylenediamine, and triethylenepentamine.
  • heterocyclic amine examples include piperidine, pyrrolidine, N-methylpyrrolidine, and morpholine.
  • aromatic amine examples include aniline, N-methylaniline, toluidine, anisidine, and phenetidine.
  • aralkylamine examples include benzylamine, xylenediamine, N-methylbenzylamine and the like.
  • Examples of the alcohol include methanol, ethanol, 2-propanol and the like.
  • organic acids examples include citric acid, malic acid, tartaric acid, citric acid, succinic acid, ascorbic acid, and salts thereof.
  • Examples of the reducing saccharide include glucose, galactose, mannose, fructose, sucrose, maltose, raffinose, stachyose and the like.
  • sugar alcohols examples include sorbitol.
  • the above reducing agent may function as a dispersion additive or a solvent as a function, and can be preferably used in the same manner.
  • a dispersion additive and a halogen compound or metal halide fine particles are preferable to add.
  • the timing of the addition of the dispersion additive and the halogen compound may be before or after the addition of the reducing agent, and may be before or after the addition of the metal ions or metal halide fine particles.
  • the addition of the halogen compound is preferably divided into two or more steps.
  • the dispersion additive is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include amino group-containing compounds, thiol group-containing compounds, sulfide group-containing compounds, amino acids or derivatives thereof, peptide compounds, polysaccharides, synthetic polymers, and gels derived from these. Among these, gelatin, polyvinyl alcohol, methyl cellulose, hydroxypropyl cellulose, polyalkyleneamine, partial alkyl ester of polyacrylic acid, polyvinyl pyrrolidone, and polyvinyl pyrrolidone copolymer are particularly preferable.
  • the shape of the obtained metal nanowire can be changed depending on the type of the dispersion additive used.
  • the halogen compound is not particularly limited as long as it is a compound containing bromine, chlorine, and iodine, and can be appropriately selected according to the purpose.
  • alkali halides such as sodium bromide, sodium chloride, sodium iodide, potassium iodide, potassium bromide, potassium chloride, potassium iodide, and compounds that can be used in combination with the following dispersion additives.
  • Some of the halogen compounds may function as a dispersion additive, but can be preferably used in the same manner.
  • silver halide fine particles may be used, or both a halogen compound and silver halide fine particles may be used.
  • the above dispersant and halogen compound may be used in the same substance.
  • the compound in which the dispersant and the halogen compound are used in combination include HTAB (hexadecyl-trimethylammonium bromide) containing an amino group and a bromide ion, HTAC (hexadecyl-trimethylammonium chloride) containing an amino group and a chloride ion, and an amino group.
  • desalting may be performed by techniques such as ultrafiltration, dialysis, gel filtration, decantation, and centrifugation.
  • a material of a metal nanotube What kind of metal may be sufficient,
  • the material of the above-mentioned metal nanowire etc. can be used.
  • the shape of the metal nanotube may be a single layer or a multilayer, but is preferably a single layer from the viewpoint of excellent conductivity and thermal conductivity.
  • the thickness of the metal nanotube (difference between the outer diameter and the inner diameter) is preferably 3 nm to 80 nm. When the thickness is less than 3 nm, the oxidation resistance may be deteriorated and the durability may be deteriorated. When the thickness is more than 80 nm, scattering due to the metal nanotube may occur. The thickness is more preferably 3 nm to 30 nm.
  • the average long axis length of the metal nanotube is preferably 1 ⁇ m to 40 ⁇ m, more preferably 3 ⁇ m to 35 ⁇ m, and still more preferably 5 ⁇ m to 30 ⁇ m.
  • the method for producing the metal nanotube is not particularly limited and may be appropriately selected depending on the purpose.
  • the method described in US Patent Application Publication No. 2005/0056118 and the like can be used.
  • a carbon nanotube is a substance in which a graphite-like carbon atomic surface (graphene sheet) is a single-layer or multilayer coaxial tube.
  • Single-walled carbon nanotubes are called single-walled nanotubes (SWNT)
  • multi-walled carbon nanotubes are called multi-walled nanotubes (MWNT)
  • MWNT multi-walled nanotubes
  • DWNT double-walled carbon nanotubes
  • the carbon nanotube may be a single layer or a multilayer, but is preferably a single layer in terms of excellent conductivity and thermal conductivity.
  • the method for producing the carbon nanotube is not particularly limited and can be appropriately selected depending on the purpose.
  • catalytic hydrogen reduction of carbon dioxide arc discharge method, laser evaporation method, thermal CVD method, plasma CVD method, vapor phase growth method, HiPco in which carbon monoxide is reacted with iron catalyst at high temperature and high pressure to grow in the vapor phase
  • Known means such as the method (high-pressure carbon monoxide process) can be used.
  • the carbon nanotubes obtained by these methods have been highly purified to remove residues such as by-products and catalytic metals by methods such as washing, centrifugation, filtration, oxidation, and chromatography. It is preferable at the point which can obtain a carbon nanotube.
  • the aspect ratio of the conductive fiber is preferably 10 or more.
  • the aspect ratio generally means the ratio between the long side and the short side of the fibrous material (ratio of average major axis length / average minor axis length).
  • the aspect ratio measurement method is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a method of measuring with an electron microscope.
  • the aspect ratio of the conductive fiber When measuring the aspect ratio of the conductive fiber with an electron microscope, it is only necessary to confirm whether the aspect ratio of the conductive fiber is 10 or more with one field of view of the electron microscope. Moreover, the aspect ratio of the whole conductive fiber can be estimated by measuring the major axis length and the minor axis length of the conductive fiber separately.
  • the outer diameter of the tube is used as the diameter for calculating the aspect ratio.
  • the aspect ratio of the conductive fiber is not particularly limited as long as it is 10 or more, and can be appropriately selected according to the purpose, but is preferably 50 to 1,000,000. When the aspect ratio is less than 10, network formation with conductive fibers may not be performed, and sufficient conductivity may not be obtained. When the aspect ratio exceeds 1,000,000, the conductive fibers may be formed or in subsequent handling. Since the conductive fibers are entangled and aggregate before film formation, a stable liquid may not be obtained.
  • the aspect ratio is more preferably 100 to 1,000,000.
  • the ratio (ratio) of the conductive fibers having an aspect ratio of 10 or more in the total conductive composition is preferably 50% or more by volume ratio. If the ratio is less than 50%, the conductive material that contributes to conductivity may decrease and conductivity may decrease. At the same time, a dense network cannot be formed, resulting in voltage concentration and durability. May fall. In addition, particles having a shape other than conductive fibers do not contribute greatly to conductivity and have absorption, which is not preferable. Especially in the case of metal, when plasmon absorption such as a sphere is strong, transparency is deteriorated. May end up.
  • the ratio is more preferably 60% or more, and particularly preferably 75% or more.
  • the ratio is, for example, when the conductive fiber is silver nanowire, the silver nanowire aqueous dispersion is filtered to separate the silver nanowire and the other particles, and the ICP emission analysis
  • the ratio of conductive fibers can be determined.
  • the conductive fibers remaining on the filter paper with a TEM, observing the short axis lengths of 300 conductive fibers and examining their distribution, the short axis length is 200 nm or less and the long axis length is It confirms that it is an electroconductive fiber whose length is 1 micrometer or more.
  • the filter paper measures the longest axis of particles other than the conductive fibers of the above size, and passes particles having a length not less than twice the longest axis and not more than the shortest length of the long axis of the conductive fibers. It is preferable to use one.
  • the average minor axis length and the average major axis length of the conductive fiber can be obtained by observing a TEM image or an optical microscope image using, for example, a transmission electron microscope (TEM) or an optical microscope. it can.
  • the average minor axis length and the average major axis length of the conductive fibers are obtained by observing 300 conductive fibers with a transmission electron microscope (TEM) and calculating the average value. .
  • TEM transmission electron microscope
  • the binder is an organic high molecular polymer, and at least one group (for example, carboxyl group, phosphate group) that promotes alkali solubility in a molecule (preferably a molecule having an acrylic copolymer as a main chain). , Sulfonic acid groups, etc.) can be selected appropriately from alkali-soluble resins.
  • an acid dissociable group represents the functional group which can dissociate in presence of an acid.
  • a known radical polymerization method For the production of the binder, for example, a known radical polymerization method can be applied. Polymerization conditions such as temperature, pressure, type and amount of radical initiator, type of solvent, etc. when producing an alkali-soluble resin by the above radical polymerization method can be easily set by those skilled in the art, and the conditions are determined experimentally. Can be determined.
  • linear organic polymer a polymer having a carboxylic acid in the side chain (photosensitive resin having an acidic group) is preferable.
  • Examples of the polymer having a carboxylic acid in the side chain include, for example, JP-A-59-44615, JP-B-54-34327, JP-B-58-12777, JP-B-54-25957, JP-A-59-53836, A methacrylic acid copolymer, an acrylic acid copolymer, an itaconic acid copolymer, a crotonic acid copolymer, a maleic acid copolymer, and a partial esterification as described in each publication of Japanese Utility Model Publication No. 59-71048.
  • a maleic acid copolymer, etc., an acidic cellulose derivative having a carboxylic acid in the side chain, an acid anhydride added to a polymer having a hydroxyl group, and a polymer weight having a (meth) acryloyl group in the side chain Coalescence is also preferred.
  • benzyl (meth) acrylate / (meth) acrylic acid copolymers and multi-component copolymers composed of benzyl (meth) acrylate / (meth) acrylic acid / other monomers are particularly preferable.
  • a high molecular polymer having a (meth) acryloyl group in the side chain and a multi-component copolymer composed of (meth) acrylic acid / glycidyl (meth) acrylate / other monomers are also useful.
  • the polymer can be used by mixing in an arbitrary amount.
  • 2-hydroxypropyl (meth) acrylate / polystyrene macromonomer / benzyl methacrylate / methacrylic acid copolymer 2-hydroxy-3-phenoxypropyl acrylate / polymethyl described in JP-A-7-140654 Methacrylate macromonomer / benzyl methacrylate / methacrylic acid copolymer, 2-hydroxyethyl methacrylate / polystyrene macromonomer / methyl methacrylate / methacrylic acid copolymer, 2-hydroxyethyl methacrylate / polystyrene macromonomer / benzyl methacrylate / methacrylic acid copolymer Coalescence, etc.
  • (meth) acrylic acid and other monomers copolymerizable with the (meth) acrylic acid are suitable.
  • examples of other monomers copolymerizable with the (meth) acrylic acid include alkyl (meth) acrylates, aryl (meth) acrylates, vinyl compounds, and the like.
  • the hydrogen atom of the alkyl group and aryl group may be substituted with a substituent.
  • alkyl (meth) acrylate or aryl (meth) acrylate examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, and pentyl (meth).
  • vinyl compound examples include styrene, ⁇ -methylstyrene, vinyl toluene, glycidyl methacrylate, acrylonitrile, vinyl acetate, N-vinyl pyrrolidone, tetrahydrofurfuryl methacrylate, polystyrene macromonomer, polymethyl methacrylate macromonomer, and CH 2 ⁇ CR. 1 R 2 , CH 2 ⁇ C (R 1 ) (COOR 3 ), and the like.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • R 2 represents an aromatic hydrocarbon ring having 6 to 10 carbon atoms
  • R 3 represents an alkyl group having 1 to 8 carbon atoms or a carbon number Represents 6 to 12 aralkyl groups. These may be used individually by 1 type and may use 2 or more types together.
  • the weight average molecular weight of the binder is preferably from 1,000 to 500,000, more preferably from 3,000 to 300,000, and even more preferably from 5,000 to 200,000, from the viewpoints of alkali dissolution rate, film physical properties and the like.
  • the said weight average molecular weight can be measured using a gel permeation chromatography method, and can be calculated
  • the content of the binder is preferably 25% by mass to 80% by mass with respect to the entire conductive layer, more preferably 30% by mass to 75% by mass, and still more preferably 40% by mass to 70% by mass. When the content is within the above range, both developability and conductivity of the metal nanowire can be achieved.
  • the said photosensitive compound means the compound which provides the function which forms an image by exposure, or gives the trigger to the conductive layer.
  • Specific examples include (1) a compound that generates acid upon exposure (photoacid generator), (2) a photosensitive quinonediazide compound, and (3) a photoradical generator. These may be used individually by 1 type and may use 2 or more types together. Moreover, a sensitizer etc. can also be used together for sensitivity adjustment.
  • Photoacid generator includes photoinitiator for photocationic polymerization, photoinitiator for photoradical polymerization, photodecoloring agent for dyes, photochromic agent, irradiation of actinic ray or radiation used for micro resist, etc.
  • photoinitiator for photocationic polymerization includes photoinitiator for photocationic polymerization, photoinitiator for photoradical polymerization, photodecoloring agent for dyes, photochromic agent, irradiation of actinic ray or radiation used for micro resist, etc.
  • the known compounds that generate an acid and mixtures thereof can be appropriately selected and used.
  • the photoacid generator is not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include diazonium salt, phosphonium salt, sulfonium salt, iodonium salt, imide sulfonate, oxime sulfonate, diazodisulfone, disulfone, o-nitrobenzyl sulfonate, and the like. Among these, imide sulfonate, oxime sulfonate, and o-nitrobenzyl sulfonate, which are compounds that generate sulfonic acid, are particularly preferable.
  • a group capable of generating an acid upon irradiation with actinic rays or radiation, or a compound in which a compound is introduced into the main chain or side chain of the resin such as US Pat. No. 3,849,137, German Patent No. 3914407.
  • JP-A-63-26653, JP-A-55-164824, JP-A-62-69263, JP-A-63-146038, JP-A-63-163452, JP-A-62-153853 The compounds described in JP-A-63-146029, etc. can be used.
  • compounds capable of generating an acid by light described in each specification such as US Pat. No. 3,779,778 and European Patent 126,712 can also be used.
  • the quinonediazide compound can be obtained, for example, by subjecting 1,2-quinonediazidesulfonyl chlorides, hydroxy compounds, amino compounds and the like to a condensation reaction in the presence of a dehydrochlorinating agent.
  • the compounding amount of the photoacid generator and the quinonediazide compound is from 1 part by mass to 100 parts by mass of the total amount of the binder in terms of the difference in dissolution rate between the exposed part and the unexposed part and the allowable range of sensitivity.
  • the amount is preferably 100 parts by mass, and more preferably 3 parts by mass to 80 parts by mass.
  • the photoacid generator and the quinonediazide compound may be used in combination.
  • the photoacid generators compounds that generate sulfonic acid are preferable, and the following oxime sulfonate compounds are particularly preferable from the viewpoint of high sensitivity.
  • a touch panel display device can also be configured by adhering the touch panel to the outermost surface of the polarizing plate on the viewing side of the present embodiment (for example, on the hard coat layer) via an adhesive layer.
  • an adhesive layer There is no restriction
  • acrylic adhesives, silicone adhesives, urethane adhesives, rubber adhesives, polyester adhesives, etc. can be used, but acrylic adhesives with relatively easy control of adhesive strength and storage modulus can be used. It is particularly preferred to use it.
  • Acrylic adhesives include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, n-hexyl (meth) acrylate, (meth) acrylic 1 or 2 or more kinds of alkyl esters of 1 to 20 carbon atoms such as 2-ethylbutyl acid, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, decyl (meth) acrylate, and the alkyl acrylate Copolymerization with functional monomers such as (meth) acrylic acid, itaconic acid, maleic acid, maleic anhydride, 2-hydroxyethyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate that can be copolymerized with esters Combined with isocyanate crosslinker, epoxy crosslinker, aziridine crosslinker, metal
  • the thickness of the pressure-sensitive adhesive layer is preferably 1 ⁇ m to 13 ⁇ m.
  • the thickness of the pressure-sensitive adhesive layer is 1 ⁇ m or more, sufficient adhesive strength can be obtained, and when the thickness is 13 ⁇ m or less, it is possible to suppress the protrusion of glue during punching or cutting, and high pencil hardness is maintained.
  • a more preferable thickness of the pressure-sensitive adhesive layer is 3 to 12 ⁇ m.
  • the storage elastic modulus of the pressure-sensitive adhesive layer is preferably 1.0 ⁇ 10 6 to 1.0 ⁇ 10 8 Pa.
  • the storage elastic modulus of the pressure-sensitive adhesive layer is 1.0 ⁇ 10 6 Pa or more, sufficient punching processability, cutting processability and high pencil hardness can be obtained, and when it is 1.0 ⁇ 10 8 Pa or less, sufficient adhesion Power is obtained.
  • the storage elastic modulus of the preferred pressure-sensitive adhesive layer is 1.5 ⁇ 10 6 to 1.0 ⁇ 10 7 Pa.
  • a hard coat film (film base material + hard coat layer) is separately applied to the pressure-sensitive adhesive layer prepared by applying a pressure-sensitive adhesive-containing composition to a release sheet and drying it.
  • the method of laminating is mentioned.
  • Examples of the method for applying the pressure-sensitive adhesive-containing composition include conventionally known methods such as bar coating, knife coating, roll coating, blade coating, die coating, gravure coating, and curtain coating.
  • the release sheet is typically composed of a base sheet having peelability on the surface.
  • the base sheet include films such as polyester resin, polyethylene resin, polypropylene resin, polystyrene resin, and polycarbonate resin, films in which fillers such as fillers are blended with these films, and synthetic paper.
  • paper base materials such as glassine paper, clay coat paper, and quality paper, are mentioned.
  • a release agent such as a thermosetting silicone resin or an ultraviolet curable silicone resin may be attached to the surface by coating or the like.
  • the coating amount of the release agent is preferably 0.03 to 3.0 g / m 2 .
  • the release sheet is laminated with the surface having the release agent in contact with the pressure-sensitive adhesive layer.
  • Fine particle additive solution 1 was slowly added to the dissolution tank containing methylene chloride with sufficient stirring. Further, the particles were dispersed by an attritor so that the secondary particles had a predetermined particle size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution 1. 99 parts by mass of methylene chloride 5 parts by mass of fine particle dispersion 1
  • ⁇ Preparation of dope> First, methylene chloride and ethanol were added to the pressure dissolution tank. Next, cellulose acetate was added to the pressurized dissolution tank containing the solvent while stirring. This was completely dissolved with heating and stirring. This was designated as Azumi Filter Paper No.
  • the main dope was prepared by filtration using 244. Methylene chloride 340 parts by mass Ethanol 64 parts by mass Cellulose diacetate (average degree of acetyl group substitution 2.41, Mw 300,000) 100 parts by mass Polyester compound AP-16 6 parts by mass Sugar ester compound 1-3 6 parts by mass Particulate additive solution 1 1 part by mass Then, the main dope and each material are put into a sealed container so that the above ratio is obtained. The dope was prepared by dissolving with stirring.
  • the dope was cast uniformly on a stainless steel belt support at a temperature of 33 ° C. and a width of 1500 mm.
  • the temperature of the stainless steel belt was controlled at 30 ° C.
  • the solvent was evaporated until the residual solvent amount in the cast (cast) film reached 75% on the stainless steel belt, and then the web was peeled off from the stainless steel belt with a peeling tension of 130 N / m.
  • the peeled web (cellulose ester film) was stretched 10% in the width direction using a tenter while applying heat at 160 ° C. The residual solvent at the start of stretching was 15%.
  • drying was terminated while the drying zone was conveyed by a number of rolls.
  • the drying temperature was 130 ° C. and the transport tension was 100 N / m.
  • the film was slit to a width of 1.5 m, a knurling process having a width of 10 mm and a height of 10 ⁇ m was applied to both ends of the film, wound into a roll, and a cellulose ester film CE1 having a dry film thickness of 30 ⁇ m was obtained.
  • the winding length of the cellulose ester film CE1 was 5200 m.
  • cellulose ester film CE4 having a film thickness of 13 ⁇ m was prepared by additionally stretching a commercially available cellulose ester film (KC2CT1, film thickness 20 ⁇ m) manufactured by Konica Minolta Co., Ltd.
  • Methylaluminoxane manufactured by Albemarle, MAO 20% toluene solution
  • methylene cyclopentadienyl
  • tetramethylcyclopentadienyl zirconium dichloride
  • COP1 had a weight average molecular weight of 142,000 and a glass transition temperature of 140 ° C.
  • the polymer resin COP1 having an alicyclic structure synthesized above is dried for 2 hours at 70 ° C. using a hot air dryer in which air is circulated to remove moisture, and then resin melt kneaded with a 65 mm ⁇ screw
  • a COP film having a film thickness of 100 ⁇ m was extruded using a T-die film melt extrusion molding machine (T-die width 500 mm) having a machine under molding conditions of a molten resin temperature of 240 ° C. and a T-die temperature of 240 ° C.
  • the peeled COP film was stretched 90% in the width direction using a tenter while applying heat at 200 ° C.
  • drying was completed while the drying zone was conveyed by a number of rollers.
  • the drying temperature was 130 ° C. and the transport tension was 100 N / m.
  • After drying it was slit to a width of 1.5 m, a knurling process having a width of 10 mm and a height of 10 ⁇ m was applied to both ends of the film, wound into a roll, and a COP film 1 having a dry film thickness of 8 ⁇ m was obtained.
  • the winding length of the COP film 1 was 5000 m.
  • COP film 2 was produced in the same manner as cellulose ester film CE1, except that Arton (G7810) manufactured by JSR Corporation was used and polyester compound AP-15 was added as an additive.
  • Arton G7810 manufactured by JSR Corporation was used and polyester compound AP-15 was added as an additive.
  • a Kuraray PVA film (thickness 20 ⁇ m) was stretched and dyed at a draw ratio of 2 times in a dyeing bath (35 ° C.) containing iodine concentration of 0.3 wt% and KI, followed by a crosslinking bath containing boric acid ( The film was stretched 2.5 times at 50 ° C. and stretched at a total stretch ratio of 5 times (thickness 7 ⁇ m). Then, the said PVA film was dried with 60 degreeC drying machine, and the polarizer 1 was produced. A polarizer 2 having a thickness of 5 ⁇ m was also produced in the same manner as described above except that the film was stretched at a total stretching ratio of 5.7 times.
  • IPS liquid crystal display device (Luminance) ⁇ Production of IPS liquid crystal display device> An IPS cell having a striped pixel electrode and a striped common electrode was manufactured by the manufacturing method shown in FIG. Thereafter, the polarizing plates 1 to 6 shown in Table 1 were bonded to the viewing side and the backlight side of the IPS cell with an adhesive to produce IPS liquid crystal display devices 1 to 6.
  • the luminance of the IPS type liquid crystal display device produced above was measured and evaluated based on the following criteria.
  • Evaluation criteria ⁇ : The luminance value is greater than or equal to the reference value.
  • X The luminance value is less than 90% of the reference value.
  • Table 1 shows the evaluation results for the polarizing plates 1 to 6
  • Table 2 shows the evaluation results for the liquid crystal display devices 1 to 6.
  • the polarizing plates 1 to 4 have no cracks, whereas the polarizing plates 5 and 6 have cracks. This is because, unlike the polarizing plates 5 and 6, the polarizing plates 1 to 4 are thin with a thickness of 20 ⁇ m or more and 65 ⁇ m or less, so that cracks hardly occur due to punching, and the value of Log (tan ⁇ ) is low. This is considered to be because it is less than ⁇ 1.8 and the change in viscosity due to temperature change is small, so that cracks are less likely to occur due to temperature change.
  • the deformed display device of the present embodiment described above can be expressed as follows.
  • the display screen is a deformed display device having a shape different from a rectangle and a square, An IPS cell, and each polarizing plate sandwiching the IPS cell from both sides,
  • the IPS cell is A pixel electrode positioned in a stripe shape within a display area of one pixel; A stripe-shaped common electrode arranged alternately with the pixel electrode;
  • Each polarizing plate has a thickness of 20 ⁇ m or more and 65 ⁇ m or less,
  • Each polarizing plate is It has a polarizer and each optical film that sandwiches the polarizer from both sides,
  • the loss tangent indicating the ratio between the loss elastic modulus and the storage elastic modulus is tan ⁇
  • Each of the optical films of the polarizing plates has a Log (tan ⁇ ) value of ⁇ 1.8 or more between ⁇ 40 ° C. and 100 ° C.
  • each optical film of each polarizing plate contains a cellulose ester resin.
  • each optical film of each polarizing plate contains terminal-capped polyester as a plasticizer.
  • the IPS cell is A passivation film positioned in stripes within a display area of one pixel; An underlayer that supports the passivation film; The pixel electrode is located on the passivation film; 4.
  • the present invention can be used for a display device having a deformed display screen.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

表示画面が長方形および正方形とは異なる形状である液晶表示装置は、IPSセルと、上記IPSセルを両側から挟み込む各偏光板とを備えている。IPSセルは、1画素の表示領域P内でストライプ状に位置する画素電極(110)と、画素電極(110)と交互に並ぶストライプ状の共通電極(108)とを有している。各偏光板の厚みは、それぞれ20μm以上65μm以下である。各偏光板は、偏光子と、上記偏光子を両側から挟み込む各光学フィルムとを有している。各偏光板の各光学フィルムにおいて、-40℃から100℃の間でのLog(tanδ)の値が、-1.8以上である。

Description

異形表示装置
 本発明は、表示画面が長方形および正方形とは異なる形状である異形表示装置に関するものである。
 近年、モバイル端末やデジタルサイネージなどの各種電子機器が高機能化および多様化されるに伴い、電子機器への新たな価値の導入において、表示画面の狭額縁化が注目を浴びている。狭額縁化技術を推進していくと、電子機器のデザイン性を向上させることができるだけでなく、表示画面の形状を、長方形および正方形以外の形状(以下では、異形形状とも称する)に容易に変更することができる。これは、例えば表示に必要な回路や配線を表示画面内に配置する(表示画面の外側の額縁領域には配置しない)ことで狭額縁化が達成されるため、表示画面を異形形状にしても、表示画面の端部まで、画素の駆動に必要な信号を表示画面内の回路等から供給できることによる。このように表示画面を異形形状にした表示装置のことを、ここでは異形表示装置と呼ぶ。異形表示装置は、特に、車両の計器盤(インスツルメントパネル)や、デザイン性に特徴を出したい分野において、その適用が検討されている。
 一方で、視野角が広く、高画質な表示を行う表示装置として、IPS型(In Plane  Switching)の液晶表示装置が知られている(例えば特許文献1参照)。IPS型の液晶表示装置の表示画面を異形形状にすることで、視認性に優れた異形表示装置の実現が期待できる。
特開2015-114377号公報(請求項1、段落〔0011〕、図1等参照)
 ところで、IPSセルを両側から2枚の偏光板で挟んで異形表示装置を構成する場合、各偏光板は、表示画面の形状、すなわち、異形形状に打ち抜かれる。このとき、偏光板の厚みが厚いと、打ち抜き時に偏光板にクラックが生じやすくなるため、偏光板は薄いことが望ましい。つまり、カッティング性を向上させる観点からは、偏光板を薄くすることが望ましい。
 しかし、偏光板を薄くすると、偏光子の耐久性が低下する。つまり、上述した車両の計器盤などの車載用途では、車内が高温高湿の条件になることがあり得るが、このような使用環境を想定して湿熱耐久試験を行ったときに、偏光板が薄いと、染色された偏光子の色が落ちやすくなり、偏光子が劣化する。
 このような偏光子の耐久性低下を回避するためには、偏光子の染色を濃くすることが必要となる。しかし、偏光子の染色を濃くすると、偏光子の透過率が下がり、表示画像の明るさが低下する。このため、表示画像の明るさの低下を、IPSセルの構成を工夫することによってカバーすることが望まれる。
 また、偏光板の偏光子(例えばポリビニルアルコールフィルム)は、温度変化による粘性の変化が大きい。このため、偏光子を挟み込む2枚の光学フィルムについても、温度による粘性の変化が大きいと、温度変化によって偏光板にクラックが生じる場合がある。
 本発明は、上記の問題を解決するためになされたものであって、その目的は、偏光板を異形形状に打ち抜くときのクラックおよび温度変化による偏光板のクラックの発生を抑えることができるとともに、偏光子の透過率が低下する場合でも、IPSセルの透過率を上げることによって表示画像の明るさの低下を回避することができる異形表示装置を提供することにある。
 本発明の上記目的は、以下の構成により達成される。
 本発明の一側面に係る異形表示装置は、表示画面が、長方形および正方形とは異なる形状である異形表示装置であって、
 IPSセルと、前記IPSセルを両側から挟み込む各偏光板とを備え、
 前記IPSセルは、
 1画素の表示領域内でストライプ状に位置する画素電極と、
 前記画素電極と交互に並ぶストライプ状の共通電極とを有しており、
 前記各偏光板の厚みは、それぞれ20μm以上65μm以下であり、
 前記各偏光板は、
 偏光子と、前記偏光子を両側から挟み込む各光学フィルムとを有しており、
 損失弾性率と貯蔵弾性率との比を示す損失正接をtanδとしたとき、
 前記各偏光板の各光学フィルムにおいて、-40℃から100℃の間でのLog(tanδ)の値が、-1.8以上である。
 上記の構成によれば、偏光板が、厚み20μm以上65μm以下の薄型であるので、偏光板を異形形状に打ち抜く場合でも、クラックの発生を抑えることができる。また、IPSセルは、1画素の表示領域内に、ストライプ状の画素電極とストライプ状の共通電極とを有しており、これらの電極が交互に並んで位置している。これにより、例えば共通電極を平面状に形成してストライプ状の画素電極とオーバーラップさせる構成に比べて、高透過率のIPSセルを実現することができる。したがって、偏光板が薄型であり、偏光子の耐久性の低下を回避すべく、偏光子の染色を濃くした場合でも、つまり、偏光子の透過率が低下する場合でも、高透過率のIPSセルを用いて、表示画像の明るさの低下を回避することができる。また、各偏光板の各光学フィルムにおいて、-40℃から100℃の間でのLog(tanδ)の値が-1.8以上であり、温度変化による粘性の変化が小さいので、温度変化による偏光板のクラックの発生を抑えることができる。
本発明の実施の形態に係る異形表示装置の一例である液晶表示装置の平面図である。 図1のA-A’線矢視断面図である。 上記液晶表示装置が有するIPSセルの詳細な構成を示す断面図である。 上記IPSセルの1画素の表示領域における画素電極を拡大して示す平面図である。 上記表示領域における上記画素電極および共通電極の断面図である。 本実施の形態の参考例となる、1画素の表示領域における画素電極および共通電極の構成を示す断面図である。 上記IPSセルの製造工程を示す断面図である。
 本発明の実施の一形態について、図面に基づいて説明すれば以下の通りである。なお、本明細書において、数値範囲をA~Bと表記した場合、その数値範囲に下限Aおよび上限Bの値は含まれるものとする。なお、本発明は、以下の内容に限定されるものではない。
 〔液晶表示装置〕
 図1は、本実施形態に係る異形表示装置の一例である液晶表示装置1の平面図である。液晶表示装置1の表示画面1aは、長方形および正方形以外の形状(異形形状)となっている。図1では、表示画面1aの形状は、複数の図形を組み合わせた形状、より具体的には、長方形に2つの凸形状を組み合わせた形状となっているが、このような形状の他にも、円形、楕円形、三角形、菱形、台形、星形などの形状が考えられる。
 図2は、図1のA-A’線矢視断面図である。液晶表示装置1は、IPS方式で駆動されるIPSセル2を、2枚の偏光板3・4で挟んで構成されているとともに、IPSセル2を照明するバックライト5を備えている。なお、IPSセル2の詳細な構成については後述する。また、以下で示す本実施形態の構成は、FFS(Fringe Field  Switching)方式を含む全てのIPS方式の液晶表示装置に適用可能である。
 偏光板3は、IPSセル2に対して視認側(バックライト5とは反対側)に位置しており、偏光子11と、保護フィルム12と、対向フィルム13とを含んでいる。偏光子11は、所定の直線偏光を透過する。保護フィルム12は、偏光子11に対してIPSセル2とは反対側(視認側)に位置している。対向フィルム13は、偏光子11に対してIPSセル2側に位置している。すなわち、保護フィルム12および対向フィルム13は、偏光子11を両側から挟み込む光学フィルムである。偏光板3は、対向フィルム13側において、粘着層6を介してIPSセル2と接着されている。なお、偏光板3は、保護フィルム12に対して偏光子11とは反対側に、ハードコート層、防眩層、反射防止層、帯電防止層などの機能層をさらに有していてもよい。
 偏光板4は、IPSセル2に対してバックライト5側に位置しており、偏光子21と、保護フィルム22と、対向フィルム23とを含んでいる。偏光子21は、所定の直線偏光を透過するものであり、透過軸が偏光子11と直交するように配置されている。保護フィルム22は、偏光子21に対してIPSセル2とは反対側(バックライト5側)に位置している。対向フィルム23は、偏光子21に対してIPSセル2側に位置している。すなわち、保護フィルム22および対向フィルム23は、偏光子21を両側から挟み込む光学フィルムである。偏光板4は、対向フィルム23側において、粘着層7を介してIPSセル2と接着されている。
 〔IPSセルについて〕
 図3は、IPSセル2の詳細な構成を示す断面図である。IPSセル2は、前述の特許文献1の構成において、共通電極(対向電極)をストライプ状に形成したものに相当する。以下、IPSセル2の詳細について説明する。
 IPSセル2は、TFT(Thin Film Transistor)基板100と対向基板200とで液晶層300を挟持して構成されている。TFT基板100および対向基板200は、例えばガラスや樹脂などの透明基板で構成されている。
 まず、TFT基板100側の構成について説明する。TFT基板100の上には、ゲート電極101が形成されている。ゲート電極101は走査線と同層の金属層で形成されている。ゲート電極101は、窒化シリコン(SiN)からなる絶縁膜102で覆われている。絶縁膜102の上において、ゲート電極101と対向する位置には、半導体層103が形成されている。半導体層103は、TFTのチャネル部を含む。半導体層103上には、チャネル部を挟んでソース電極104とドレイン電極105とが形成されている。ソース電極104は映像信号線と接続され、ドレイン電極105は画素電極110と接続される。ソース電極104およびドレイン電極105は、同層の金属層で形成されている。
 TFTは、上記のゲート電極101、半導体層103、ソース電極104、ドレイン電極105を含んで構成されている。このTFTは、SINで形成される無機パッシベーション膜106で覆われている。無機パッシベーション膜106は、TFTの特にチャネル部を不純物から保護する。無機パッシベーション膜106の上には、ポリイミド樹脂等の有機パッシベーション膜107が形成されている。有機パッシベーション膜107は、TFTの保護と同時に表面を平坦化する役割も有するため、厚く形成されている。有機パッシベーション膜107の上には、共通電極108と、例えばSiNやポリイミド樹脂等で形成されるパッシベーション膜109とが形成されている。TFTの上方の共通電極108は、パッシベーション膜109で覆われている。
 画素電極110は、パッシベーション膜109上に形成されているとともに、パッシベーション膜109に設けられたスルーホール111を介して、TFTのドレイン電極105と導通している。これにより、映像信号が画素電極110に供給される。共通電極108および画素電極110は、透明導電膜の材料であるITO(Indium Tin  Oxide)で形成されるが、この他にも、例えば特開2011-100749号公報に記載のIn・Sn複合酸化物で形成されてもよい。液晶層300の液晶分子301を配向させるための配向膜113は、画素電極110を覆うように形成されている。
 図4は、1画素の表示領域P(対向基板200の後述するブラックマトリクス202で遮光されていない領域)における画素電極110を拡大して示す平面図である。なお、同図では、便宜上、共通電極108およびパッシベーション膜109の図示を省略している。表示画面1a(図1参照)に平行な面内で互いに垂直な2方向のうちの一方向をX方向とし、他方向をY方向とする。ドレイン電極105と導通する画素電極110は、1画素の表示領域Pの外側で複数に枝分かれし、それぞれが表示領域P内でX方向に沿って延びている。この結果、表示領域P内では、画素電極110は、ストライプ状(縞状)に形成されている。すなわち、画素電極110は、X方向に沿って延び、かつ、Y方向に間隔をあけて並んで位置している。
 図5は、1画素の表示領域Pにおける画素電極110および共通電極108の断面図である。なお、図5では、便宜上、配向膜113の図示を省略している。同図に示すように、表示領域Pにおいて、パッシベーション膜109は、表示領域P内でストライプ状に形成されている。すなわち、パッシベーション膜109は、有機パッシベーション膜107上で、X方向に沿って延び、かつ、Y方向に間隔をあけて並んで位置している。したがって、有機パッシベーション膜107は、各パッシベーション膜109を下方から支持する下地層を構成している。
 上記した画素電極110は、ストライプ状のパッシベーション膜109の上に位置している。また、上記した共通電極108は、有機パッシベーション膜107上で、隣り合うパッシベーション膜109の間に位置して、X方向に延びて形成されている。したがって、共通電極108は、X方向に沿って延び、かつ、Y方向において画素電極110と交互に並ぶように位置していることになる。つまり、表示領域P内では、画素電極110と共通電極108とはオーバーラップせず、Y方向にずれて位置している。
 図6は、本実施形態の参考例となる、1画素の表示領域Pにおける画素電極110および共通電極108の構成を示す断面図であり、特許文献1の構成に対応している。特許文献1では、有機パッシベーション膜107上に、共通電極108を平面状(ベタ状)に形成し、共通電極108をパッシベーション膜109で覆った後、パッシベーション膜109の上に画素電極110をストライプ状に形成している。したがって、画素電極110は、共通電極108の一部とオーバーラップしている。このように、表示領域P内で画素電極110と共通電極108とがオーバーラップしているか否かで、本実施形態の構成と特許文献1の構成とは互いに相違している。
 次に、対向基板200側の構成について説明する。図3で示す対向基板200の内側(液晶層300側)には、画素毎に、赤(R)、緑(G)、青(B)のカラーフィルタ201が形成されている。そして、隣り合うカラーフィルタ201・201の間には、ブラックマトリクス202が形成されている。ブラックマトリクス202は、TFTを遮光する遮光膜であり、TFTに光電流が流れることを防止している。
 カラーフィルタ201およびブラックマトリクス202を覆うように、オーバーコート膜203が形成されている。カラーフィルタ201およびブラックマトリクス202の表面は凹凸となっているが、オーバーコート膜203を設けることにより、表面が平坦化される。
 オーバーコート膜203上には、液晶の初期配向を決めるための配向膜114が形成されている。なお、液晶表示装置1はIPS方式であるから、共通電極108は上述のようにTFT基板100側に形成されており、対向基板200側には形成されていない。
 IPSセル2では、対向基板200の内側には導電膜が形成されていないため、対向基板200の電位が不安定になる。また、外部からの電磁ノイズが液晶層300に侵入し、画像に対して影響を与える。このような影響を回避するため、対向基板200の外側に表面導電膜210が形成されている。
 上記したIPSセル2の構成において、共通電極108には一定の電圧が印加され、画素電極110には映像信号に応じた電圧が印加される。画素電極110に電圧が印加されると、電気力線が発生し、液晶層300の液晶分子301が電気力線の方向に回転する。このように液晶分子301の向きを制御することで、液晶層300における光の透過(バックライト5からの光の透過)が制御され、これによって表示画面1a(図1参照)に画像が表示される。
 上述したように、本実施形態では、IPSセル2は、1画素の表示領域P内でストライプ状に位置する画素電極110と、画素電極110と交互に並ぶストライプ状の共通電極108とを有している。この構成では、表示領域P内において、バックライト5からの光は、画素電極110および共通電極108のいずれか一方を透過し、両方を透過することがない。つまり、表示領域P内において、画素電極110と共通電極108との重複部分がなく、その重複部分を光が透過するということがない。これにより、画素電極110と共通電極108との重複部分を光が透過する図6の構成に比べて、光の透過率を上げることができる。
 また、表示領域P内で、画素電極110と共通電極108とがオーバーラップしないため、画素電極110および共通電極108への電圧印加時に、液晶分子301の配向乱れが生じるのを抑えることができ、これによっても、液晶層300を透過する光の透過率を上げることができる。
 つまり、本実施形態のIPSセル2の構成によれば、(1)表示領域P内において、画素電極110と共通電極108との重複部分がなく、その重複部分を光が透過することがないこと、(2)液晶分子301の配向乱れを抑えることができること、から、高透過率のIPSセル2を実現することができる。
 また、ストライプ状のパッシベーション膜109の上に画素電極110が位置し、共通電極108は、隣り合うパッシベーション膜109・109の間に位置しているため、1画素の表示領域P内で、画素電極110と共通電極108とを(Y方向に)ずらす構成(両者がオーバーラップしない構成)を確実に実現することができる。
 なお、図3では、無機パッシベーション膜106と有機パッシベーション膜107とを両方設けているが、どちらか一方を省略した構成であってもよい。この場合、上述した下地層は、無機パッシベーション膜106と有機パッシベーション膜107とのどちらか一方となる。また、図3では、TFT基板100において、ゲート電極101上に半導体層103を設けたボトムゲートの構成を示しているが、半導体層103上にゲート電極101を設けるトップゲートの構成であってもよい。
 〔IPSセルの製造方法〕
 本実施形態では、上記のように共通電極108をストライプ状で形成する以外は、前述した特許文献1と同様の製造方法を採用してIPSセル2を製造することができる。そこで、以下では、IPSセル2の製造方法について、特許文献1と異なる部分、つまり、1画素の表示領域Pの部分に特化して説明する。
 図7は、IPSセル2の製造工程を示す断面図である。まず、ガラスなどの透明基板からなるTFT基板100(図3参照)上に、ゲート電極101から有機パッシベーション膜107まで所望の形状で形成した後、有機パッシベーション膜107上にパッシベーション膜109を形成する。続いて、パッシベーション膜109上に、画素電極110を形成するためのITO層110aをベタ塗りし、その後、ITO層110a上にフォトレジスト401をストライプ状に形成する。
 次に、ストライプ状のフォトレジスト401をマスクとして、ITO層110aをウェットエッチングすることにより、ストライプ状のITOからなる画素電極110を形成する。その後、パッシベーション層109をドライエッチングしてストライプ状にする。
 続いて、共通電極108を形成するためのITOをスパッタし、有機パッシベーション膜107上にITO層108aを形成し、その後、ITO層108a上にフォトレジスト402を塗布する。
 次に、アッシング処理により、フォトレジスト402の一部を分解、除去し、その後、ウェットエッチングにより、フォトレジスト401上のITO層108aおよび画素電極110を構成するITOの一部を除去する。最後に、アッシング処理により、フォトレジスト401・402を分解、除去する。これにより、ストライプ状の画素電極110と、ストライプ状の共通電極108とを有するIPSセル2が得られる。
 〔偏光板の詳細について〕
 次に、IPSセル2を両側から挟み込む偏光板3・4の詳細について説明する。なお、偏光板4の偏光子21、保護フィルム22、対向フィルム23は、偏光板3の偏光子11、保護フィルム12、対向フィルム13と同様の構成であるため、以下では、偏光板3を例に挙げてその詳細について説明し、偏光板4の詳細な説明を省略する。
 偏光子11は、例えばPVA(ポリビニルアルコール)フィルムを二色性色素で染色し、高倍率延伸することで得られるものであり、その厚さは15μm以下であり、望ましくは5~7μmである。
 保護フィルム12および対向フィルム13は、例えばセルロースエステル系樹脂、環状ポリオレフィン樹脂(COP)、ポリエチレンテレフタレート(PET)樹脂、アクリル樹脂の少なくともいずれかを含んで構成される。偏光板3の厚みは、20μm以上65μm以下である(偏光板4の厚みも同じ)。これにより、薄型の偏光板3が構成されるため、表示画面1a(図1参照)の形状に合わせて、偏光板3を異形形状に打ち抜く場合でも、偏光板3にクラックが発生するのを抑えることができる。
 特に、セルロースエステル系樹脂は、機械的強度がCOP等よりも高い。このため、保護フィルム12および対向フィルム13がセルロースエステル系樹脂を含んで構成される場合は、偏光板3の打ち抜き時にクラックが発生するのを確実に抑えることができる。
 また、上述したIPSセル2の構成により、高透過率のIPSセル2を実現できるため、偏光板3が薄型の場合に生じる偏光子11の耐久性の低下を回避すべく、偏光子11の染色を濃くした場合でも、表示画像の明るさの低下を回避することができる。つまり、偏光子11の染色を濃くすると、偏光子11の透過率が低下するが、IPSセル2の高透過率を実現できるため、偏光子11の透過率が低下しても、IPSセル2の高透過率によって表示画像の明るさの低下を回避することができる。
 また、本実施形態では、損失弾性率Aと貯蔵弾性率Bとの比A/Bを示す損失正接をtanδとしたとき、偏光板3の光学フィルム(保護フィルム12、対向フィルム13)において、-40℃から100℃の間でのLog(tanδ)の値が、-1.8以上である(偏光板4の光学フィルム(保護フィルム22、対向フィルム23)についても同じ)。なお、δは、物体に応力が付与されて、物体に歪みが生じたときに、応力に対する歪みの位相遅れに相当する。
 上記温度範囲において、Log(tanδ)の値が-1.8以上であれば、光学フィルムの温度変化による粘性(粘弾性)の変化が小さいと言える。このため、偏光子11として、温度変化による粘性の変化の大きいPVAフィルムを用いた場合でも、温度変化による粘性の変化の小さい保護フィルム12および対向フィルム13で偏光子11を挟んでいることにより、温度変化による偏光板のクラックの発生を抑えることができる。
 また、偏光板3の光学フィルム(保護フィルム12、対向フィルム13)は、末端封止したポリエステルを可塑剤として含むことが望ましい(偏光板4の光学フィルム(保護フィルム22、対向フィルム23)についても同じ)。この場合、上記光学フィルムの温度変化による位相差変動および粘性の変化を小さくでき、光学特性(位相差、粘性)を安定させることができる。
 以下、偏光板3・4を構成する各光学フィルムの詳細について説明する。
 〔フィルム基材〕
 (セルロースエステル系樹脂)
 本実施形態の光学フィルムのフィルム基材として用いることができるセルロースエステル系樹脂は、セルロース(ジ、トリ)アセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートフタレート、及びセルロースフタレートから選ばれる少なくとも1種であることが好ましい。これらの少なくとも1種の樹脂を用いて光学フィルムを製膜することにより、-40℃から100℃の間でのLog(tanδ)の値が-1.8以上となる光学フィルムを容易に実現することができる。
 これらの中で特に好ましいセルロースエステルとしては、セルローストリアセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネートやセルロースアセテートブチレートが挙げられる。
 混合脂肪酸エステルとして、更に好ましいセルロースアセテートプロピオネートやセルロースアセテートブチレートの低級脂肪酸エステルは、炭素原子数2~4のアシル基を置換基として有し、アセチル基の置換度をXとし、プロピオニル基又はブチリル基の置換度をYとした時、下記式(I)及び(II)を同時に満たすセルロースエステルを含むセルロース樹脂であることが好ましい。
 式(I)  2.6≦X+Y≦3.0
 式(II)  1.0≦X≦2.5
 このうち、特にセルロースアセテートプロピオネートが好ましく用いられ、中でも1.9≦X≦2.5であり、0.1≦Y≦0.9であることが好ましい。上記アシル基で置換されていない部分は、通常水酸基として存在している。これらは公知の方法で合成することができる。
 更に、本実施形態で用いられるセルロースエステルは、重量平均分子量Mwと数平均分子量Mnとの比Mw/Mnが1.5~5.5のものが好ましく用いられる。より好ましくは2.0~5.0、更に好ましくは2.5~5.0、特に好ましくは3.0~5.0のセルロースエステルが用いられる。
 本実施形態で用いられるセルロースエステルの原料セルロースは、木材パルプでも綿花リンターでもよい。また、木材パルプは針葉樹でも広葉樹でもよいが、針葉樹の方がより好ましい。製膜の際の剥離性の点からは、綿花リンターが好ましく用いられる。これらから作られたセルロースエステルは、適宜混合して、或いは単独で使用することができる。
 例えば、綿花リンター由来セルロースエステル:木材パルプ(針葉樹)由来セルロースエステル:木材パルプ(広葉樹)由来セルロースエステルの比率が、100:0:0、90:10:0、85:15:0、50:50:0、20:80:0、10:90:0、0:100:0、0:0:100、80:10:10、85:0:15、40:30:30となるように、各セルロースエステルを混合して用いることができる。
 本実施形態において、セルロースエステル系樹脂は、20mlの純水(電気伝導度0.1μS/cm以下、pH6.8)に1g投入し、25℃、1hr、窒素雰囲気下にて攪拌したときのpHが6~7、電気伝導度が1~100μS/cmであることが好ましい。
 (脂環式オレフィンポリマー系樹脂)
 本実施形態の光学フィルムのフィルム基材としては、脂環式オレフィンポリマー系樹脂(COP)を用いてもよい。脂環式オレフィンポリマー系樹脂は、飽和脂環炭化水素(シクロアルカン)構造や不飽和脂環炭化水素(シクロアルケン)構造のごとき脂環式構造を有するポリマーである。脂環式構造を構成する炭素原子数には、格別な制限はないが、通常4~30個、好ましくは5~20個、より好ましくは5~15個の範囲であるときに、機械強度、耐熱性および成形性の特性が高度にバランスされ、好適である。
 ただし、本実施形態では、上述したように、温度変化による偏光板のクラックの発生を抑える観点から、-40℃から100℃の間でのLog(tanδ)の値が-1.8以上であることが必要である。例えばJSR社製のアートン(G7810)は、COPの側鎖に極性基が付いたポリマーであるが、上記温度範囲でのLog(tanδ)の最小値が-1.7であるため、本実施形態の光学フィルムに好適となる。なお、上記のアートンにゴム粒子を添加することにより、上記温度範囲でのLog(tanδ)の値を増大させて、温度変化による粘性の変化をさらに小さくすることができる。このようなゴム粒子としては、例えば旭化成ケミカルズ社製のSRB215を用いることができる。
 (ゼロ位相差フィルム)
 各偏光板において、偏光子に対してIPSセル側の光学フィルム、すなわち、対向フィルムは、表示性能の向上の観点から、下記式(i)で表されるRoが、0nm以上10nm以下であり、下記式(ii)で表されるRtが、-10nm以上+10nm以下であるゼロ位相差フィルムであることが望ましい。
   式(i) Ro=(nx-ny)×d
   式(ii) Rt={(nx+ny)/2-nz}×d
 (式中、Roはフィルムの面内方向のリタデーション値、Rtはフィルムの厚み方向のリタデーション値、nxはフィルム面内の遅相軸方向の屈折率、nyはフィルム面内の進相軸方向の屈折率、nzはフィルムの厚み方向の屈折率(屈折率は23℃、55%RHの環境下、波長590nmで測定)、dはフィルムの厚さ(nm)を表す。)
 IPS方式では、液晶セル自体が良好な表示性能を発揮するように構成されているため、対向フィルムとしては、透過光に位相差を付与する位相差フィルムよりも、位相差をほとんど付与しないゼロ位相差フィルムを用いるほうが、液晶セルの利点(表示性能の向上)を発揮しやすいからである。
 上記のゼロ位相差フィルムは、対向フィルムにリタデーション低下剤を含有させることによって実現することができる。リタデーション低下剤としては、例えば、フラノース構造もしくはピラノース構造を1個有する化合物(A)中の、またはフラノース構造もしくはピラノース構造の少なくとも1種を2個以上12個以下結合した化合物(B)中の、OH基の全てもしくは一部を脂肪族アシル基によりエステル化した糖エステルを用いることができる。
 ここで、リタデーション低下剤としての上記糖エステルは、フラノース構造またはピラノース構造を有していることから、セルロースエステルと化学構造が類似している。このため、上記の糖エステルは、セルロースエステルとの相互作用が強い。したがって、上記の糖エステルとセルロースエステルとを含むゼロ位相差フィルムを実現することにより、ゼロ位相差フィルムを薄型化しても、ゼロ位相差フィルムの機械的強度が低下するのを抑えることができる。
 面内方向のリタデーションRoおよび厚さ方向のリタデーションRtを確実に小さく観点から、前記糖エステルは、フラノース構造もしくはピラノース構造の少なくとも1種を2個以上12個以下結合した化合物(B)中のOH基の全てもしくは一部を脂肪族アシル基によりエステル化した化合物であることが望ましい。また、上記糖エステルは、フラノース構造もしくはピラノース構造の少なくとも1種を2個結合した化合物(B)中のOH基の全てもしくは一部をアセチル基によりエステル化した化合物であることがより望ましい。このような糖エステルとしては、例えばアセチルスクロースを挙げることができる。
 〔光学フィルムの製造方法〕
 次に、本実施形態の光学フィルムの製造方法について説明する。本実施形態では、通常のインフレーション法、T-ダイ法、カレンダー法、切削法、流延法、エマルジョン法、ホットプレス法等の製造方法が使用できるが、流延法(溶液流延製膜法または溶融流延製膜法)が好ましく用いられる。
 (溶液流延製膜法)
 溶液流延製膜法では、以下の工程を順に経ることによって光学フィルムを製膜することができる。
 (1)溶解工程
 この工程は、熱可塑性樹脂に対する良溶媒を主とする有機溶媒に、溶解釜中で熱可塑性樹脂、熱収縮材料、その他の添加剤を攪拌しながら溶解し、ドープを形成する工程である。熱可塑性樹脂の溶解には、常圧で行う方法、主溶媒の沸点以下で行う方法、主溶媒の沸点以上で加圧して行う方法、特開平9-95544号公報、特開平9-95557号公報、または特開平9-95538号公報に記載の如き冷却溶解法で行う方法、特開平11-21379号公報に記載の如き高圧で行う方法等種々の溶解方法を用いることができるが、特に主溶媒の沸点以上で加圧して行う方法が好ましい。
 上記ドープには、返材を混ぜてもよい。返材とは、フィルムを細かく粉砕した物で、フィルムを製膜するときに発生する、フィルムの両サイド部分を切り落とした物や、擦り傷などでスペックアウトしたフィルム原反のことを言う。返材をドープに混ぜることで、フィルムの製造に返材を再利用することができる。
 (2)流延工程
 この工程は、上記のドープを、送液ポンプ(例えば、加圧型定量ギヤポンプ)を通して流延ダイに送液し、流延ダイのスリットから金属支持体上の流延位置に上記ドープを流延する工程である。金属支持体としては、無端の金属ベルト(例えばステンレスベルト)や、回転する金属ドラム等を用いることができる。
 流延ダイとしては、ダイの口金部分のスリット形状を調整でき、膜厚を均一にし易い点で、加圧ダイを用いることが好ましい。加圧ダイには、コートハンガーダイやTダイ等があり、いずれも好ましく用いられる。
 金属支持体の表面は鏡面となっている。製膜速度を上げるために加圧ダイを金属支持体上に2基以上設け、ドープ量を分割して重層してもよい。あるいは複数のドープを同時に流延する共流延法によって積層構造のフィルムを得ることも好ましい。
 (3)溶媒蒸発工程
 この工程は、ウェブ(金属支持体上にドープを流延して形成された流延膜(ドープ膜))を金属支持体上で加熱し、溶媒を蒸発させる工程である。
 溶媒を蒸発させるには、ウェブ側から風を吹かせる方法および/または支持体の裏面から液体により伝熱させる方法、輻射熱により表裏から伝熱する方法等があるが、裏面液体伝熱方法の乾燥効率が良く好ましい。又、それらを組み合わせる方法も好ましく用いられる。流延後のウェブについては、金属支持体上で40~100℃の雰囲気下で乾燥させることが好ましい。上記温度範囲を維持するには、上記温度範囲の温風をウェブ上面に当てるか、赤外線等の手段によりウェブを加熱することが好ましい。
 (4)剥離工程
 この工程は、金属支持体上で溶媒が蒸発したウェブを、剥離位置で剥離する工程である。剥離されたウェブは次工程に送られる。ウェブの面品質、透湿性、剥離性の観点から、流延から30~120秒以内でウェブを金属支持体から剥離することが好ましい。
 金属支持体上の剥離位置における温度(剥離温度)は、好ましくは10~40℃であり、さらに好ましくは11~30℃である。
 剥離する時点での金属支持体上でのウェブの残留溶媒量は、乾燥の条件の強弱、金属支持体の長さ等により、50~120質量%の範囲であることが好ましい。残留溶媒量がより多い時点でウェブを剥離する場合、ウェブが柔らか過ぎると、剥離時に平面性を損ね、剥離張力によるツレ(線状の傷)や縦スジが発生し易いため、経済速度と品質との兼ね合いで剥離時の残留溶媒量が決められる。
 なお、ウェブの残留溶媒量は、下記式で定義される。
 残留溶媒量(%)=(ウェブの加熱処理前の質量(g)-ウェブの加熱処理後の質量(g))/(ウェブの加熱処理後の質量(g))×100
 ここで、残留溶媒量を測定する際の加熱処理とは、115℃で1時間の加熱処理のことを指す。
 金属支持体からウェブを剥離する際の剥離張力は、通常、196~245N/mであるが、剥離の際に皺が入り易い場合、190N/m以下の張力で剥離することが好ましく、さらには、剥離できる最低張力~166.6N/m、次いで、最低張力~137.2N/mで剥離することが好ましい。特に好ましくは、最低張力~100N/mで剥離することである。
 本実施形態では、金属支持体上の剥離位置における温度を-50~40℃とするのが好ましく、10~40℃がより好ましく、15~30℃とするのが最も好ましい。
 (5)乾燥および延伸工程
 この工程は、ウェブを金属支持体から剥離した後、剥離したウェブを乾燥装置内で乾燥させる、および/またはテンター延伸装置を用いて延伸する工程である。乾燥装置内には、複数のロールが配置されており、各ロールを交互に通してウェブを搬送することで、ウェブを乾燥させる。また、テンター延伸装置では、クリップでウェブの両端をクリップして搬送し、ウェブを延伸する。
 乾燥装置内でウェブを乾燥させる手段としては、ウェブの両面に熱風を吹かせるのが一般的であるが、風の代わりにマイクロウェーブを当てて加熱する手段もある。余り急激な乾燥は、でき上がりのフィルムの平面性を損ね易い。高温による乾燥は、残留溶媒量が8質量%以下くらいから行うのがよい。全体を通し、乾燥は概ね40~250℃で行われる。特に40~160℃で乾燥させることが好ましい。
 テンター延伸装置を用いる場合、テンターの左右把持手段によってフィルムの把持長(把持開始から把持終了までの距離)を左右で独立に制御できる装置を用いることが好ましい。また、延伸工程において、平面性を改善するため、意図的に異なる温度を持つ区画(ゾーン)を作ることも好ましい。
 また、異なる温度区画の間にそれぞれの区画が干渉を起こさないように、ニュートラルゾーンを設けることも好ましい。
 なお、延伸操作は多段階に分割して実施してもよく、二軸延伸(流延方向および幅手方向の延伸)を実施することも好ましい。また、二軸延伸を行う場合には、同時二軸延伸を行ってもよいし、段階的に実施してもよい。段階的な延伸とは、例えば、延伸方向の異なる延伸を順次行うことであってもよいし、同一方向の延伸を多段階に分割し、かつ異なる方向の延伸をそのいずれかの段階に加えることであってもよい。即ち、例えば、次のような延伸ステップが可能である。
 ・流延方向に延伸-幅手方向に延伸-流延方向に延伸-流延方向に延伸
 ・幅手方向に延伸-幅手方向に延伸-流延方向に延伸-流延方向に延伸
 また、同時2軸延伸には、一方向に延伸し、もう一方を、張力を緩和して収縮させる場合も含まれる。同時2軸延伸の好ましい延伸倍率は、幅手方向、長手方向ともに、1.01倍~1.5倍の範囲で設定することができる。
 延伸を行う場合のウェブの残留溶媒量は、延伸開始時に20~100質量%であるのが好ましく、かつウェブの残留溶媒量が10質量%以下(さらに好ましくは5質量%以下)になるまで延伸を掛けながら乾燥を行うことが好ましい。
 延伸を行う場合の乾燥温度は、30~160℃が好ましく、50~150℃がさらに好ましく、70~140℃が最も好ましい。
 延伸工程において、雰囲気の幅手方向の温度分布にムラが少ないことが、フィルムの均一性を高める観点から好ましい。具体的には、延伸工程での幅手方向の温度ムラは、±5℃以内が好ましく、±2℃以内がより好ましく、±1℃以内が最も好ましい。
 (6)巻き取り工程
 この工程は、ウェブ中の残留溶媒量が2質量%以下となってからフィルムとして巻き取り機によって巻き取る工程である。残留溶媒量を0.4質量%以下にすることにより、寸法安定性の良好なフィルムを得ることができる。特に0.00~0.10質量%でフィルムを巻き取ることが好ましい。
 巻き取り方法としては、一般に使用されている方法を用いればよく、定トルク法、定テンション法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等があり、それらを使い分ければよい。
 本実施形態における光学フィルムは、長尺フィルムであることが好ましく、具体的には、100m~5000m程度のものを示し、通常、ロール状で提供される形態のものである。また、フィルムの幅は1.3~4mであることが好ましく、1.4~2mであることがより好ましい。
 (溶融流延製膜法)
 溶融流延製膜法では、以下の工程を順に経ることによって光学フィルムを製膜することができる。
 〈溶融ペレット製造工程〉
 溶融押出に用いる、樹脂を含む組成物は、通常あらかじめ混錬してペレット化しておくことが好ましい。
 ペレット化は、公知の方法でよく、例えば、乾燥した熱可塑性樹脂と熱収縮材料等からなる添加剤を、フィーダーで押出機に供給し、1軸や2軸の押出機を用いて混錬し、ダイからストランド状に押出し、水冷または空冷し、カッティングすることでできる。
 原材料は、押出する前に乾燥しておくことが原材料の分解を防止する上で重要である。特にセルロースエステルは吸湿しやすいので、除湿熱風乾燥機や真空乾燥機で70~140℃で3時間以上乾燥し、水分率を200ppm以下、さらに100ppm以下にしておくことが好ましい。
 添加剤は、押出し機に供給する前に混合しておいてもよいし、それぞれ個別のフィーダーで供給してもよい。粒子や酸化防止剤等の少量の添加剤は、均一に混合するため、事前に混合しておくことが好ましい。
 酸化防止剤の混合は、固体同士で混合してもよいし、必要により、酸化防止剤を溶剤に溶解しておき、熱可塑性樹脂に含浸させて混合してもよく、あるいは噴霧して混合してもよい。
 真空ナウターミキサーなどを用いることが、乾燥と混合を同時にできるので好ましい。また、フィーダー部やダイからの出口などの空気と触れる部分は、除湿空気や除湿したN2ガスなどの雰囲気下にすることが好ましい。
 押出機は、せん断力を抑え、樹脂が劣化(分子量低下、着色、ゲル生成等)しないように、ペレット化できる程度になるべく低温で加工することが好ましい。例えば、2軸押出機の場合、深溝タイプのスクリューを用いて、同方向に回転させることが好ましい。混錬の均一性から、噛み合いタイプが好ましい。
 以上のようにして得られたペレットを用いてフィルム製膜を行う。ペレット化せず、原材料の粉末をそのままフィーダーで押出機に供給し、そのままフィルム製膜することも可能である。
 〈溶融混合物をダイから冷却ロールへ押し出す工程〉
 まず、作製したペレットを1軸や2軸タイプの押出機を用いて、押し出す際の溶融温度Tmを200~300℃程度とし、リーフディスクタイプのフィルターなどでろ過して異物を除去した後、Tダイからフィルム状に押出し、冷却ロール上で固化し、弾性タッチロールと押圧しながら流延する。
 供給ホッパーから押出機へ導入する際は、真空下または減圧下や、不活性ガス雰囲気下にして酸化分解等を防止することが好ましい。なお、Tmは、押出機のダイ出口部分の温度である。
 ダイに傷や可塑剤の凝結物等の異物が付着すると、スジ状の欠陥が発生する場合がある。このような欠陥のことをダイラインとも呼ぶ。ダイライン等の表面の欠陥を小さくするためには、押出機からダイまでの配管には、樹脂の滞留部が極力少なくなるような構造にすることが好ましい。ダイの内部やリップにキズ等が極力無いものを用いることが好ましい。
 押出機やダイなどの溶融樹脂と接触する内面は、表面粗さを小さくしたり、表面エネルギーの低い材質を用いるなどして、溶融樹脂が付着し難い表面加工が施されていることが好ましい。具体的には、ハードクロムメッキやセラミック溶射したものを表面粗さ0.2S以下となるように研磨したものが挙げられる。
 冷却ロールには特に制限はないが、高剛性の金属ロールで内部に温度制御可能な熱媒体または冷媒体が流れるような構造を備えるロールであればよい。また、冷却ロールの大きさは限定されないが、溶融押し出されたフィルムを冷却するのに十分な大きさであればよい。通常、冷却ロールの直径は、100mmから1m程度である。
 冷却ロールの表面材質は、炭素鋼、ステンレス、アルミニウム、チタンなどが挙げられる。さらに表面の硬度を上げたり、樹脂との剥離性を改良するため、ハードクロムメッキや、ニッケルメッキ、非晶質クロムメッキなどや、セラミック溶射等の表面処理を施すことが好ましい。
 冷却ロール表面の表面粗さは、Raで0.1μm以下とすることが好ましく、さらに0.05μm以下とすることが好ましい。ロール表面が平滑であるほど、得られるフィルムの表面も平滑にできる。もちろん、表面加工した表面をさらに研磨して、表面粗さをさらに小さくしてもよい。
 弾性タッチロールとしては、特開平03-124425号、特開平08-224772号、特開平07-100960号、特開平10-272676号、WO97/028950号、特開平11-235747号、特開2002-36332号、特開2005-172940号や特開2005-280217号公報に記載されているような表面が薄膜金属スリーブ被覆シリコンゴムロールを使用することができる。
 冷却ロールからフィルムを剥離する際は、張力を制御してフィルムの変形を防止することが好ましい。
 〔複合樹脂フィルムの製造方法〕
 本実施形態の光学フィルムは、複合樹脂フィルムで構成されてもよい。複合樹脂フィルムを製造する方法としては、共流涎法または共押し出し法を採用することができる。
 (共流涎法:ダブルキャスト法)
 流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススティールベルトもしくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。キャストの幅は1~4mとすることができる。
 流延工程の金属支持体の表面温度は、-50℃~溶剤が沸騰して発泡しない温度、に設定される。温度が高い方がウェブの乾燥速度が速くできるので好ましいが、余り高過ぎるとウェブが発泡したり、平面性が劣化する場合がある。好ましい支持体温度としては、0~100℃で適宜決定され、5~30℃がさらに好ましい。または、冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。
 金属支持体の温度を制御する方法は特に制限されないが、温風または冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。温風を用いる場合は溶媒の蒸発潜熱によるウェブの温度低下を考慮して、溶媒の沸点以上の温風を使用しつつ、発泡も防ぎながら目的の温度よりも高い温度の風を使う場合がある。特に、流延から剥離するまでの間で支持体の温度及び乾燥風の温度を変更し、効率的に乾燥を行うことが好ましい。
 本実施形態では、アセチル化セルロースの溶液を2回以上に分割してキャストすることも好ましい。
 調製されたドープAをダイによりステンレススティールベルトに流延し、流延されたウェブ上に、更に調製されたドープBを、ダイを通して積層流延する。積層されたウェブは、剥離点において剥離され、その後乾燥ゾーンにて乾燥され巻き取られる。
 ドープA、ドープBの組成物としての構成に特に制限はなく、アセチル化セルロース、セルロースナノファイバー、及びその他添加剤や溶媒の組成比率はどのようにも採り得る。また、ドープA、ドープBの流延膜厚も特に制限はない。3回以上の分割キャストも可能である。
 (共押し出し法)
 本実施形態においては、共押し出し法により、積層構造のフィルムを作製することもできる。例えば、スキン層/コア層/スキン層といった構成のフィルムを作ることができる。例えば、マット剤は、スキン層に多く、またはスキン層のみに入れることができる。可塑剤、紫外線吸収剤はスキン層よりもコア層に多く入れることができ、コア層のみに入れてもよい。また、コア層とスキン層で可塑剤、紫外線吸収剤の種類を変更することもでき、例えば、スキン層に低揮発性の可塑剤及び/または紫外線吸収剤を含ませ、コア層に可塑性に優れた可塑剤、或いは紫外線吸収性に優れた紫外線吸収剤を添加することもできる。スキン層とコア層のガラス転移温度が異なっていてもよく、スキン層のガラス転移温度よりコア層のガラス転移温度が低いことが好ましい。このとき、スキンとコアの両者のガラス転移温度を測定し、これらの体積分率より算出した平均値を上記ガラス転移温度Tgと定義して同様に扱うこともできる。また、溶融流延時のセルロースエステルを含む溶融物の粘度もスキン層とコア層で異なっていてもよく、スキン層の粘度>コア層の粘度でも、コア層の粘度≧スキン層の粘度でもよい。
 なお、上記の共押し出し法とは、複数の押出機を用いて、それぞれから積層する樹脂を加熱溶融し、それぞれの樹脂を合流させた後にTダイのスリット状の吐出口から共押出し、チルドロールで冷却固化させてキャストシート(未延伸状態)を形成する方法である。溶融樹脂を合流させて、Tダイよりシートを押出する方法としては、溶融樹脂を合流させてからマニュホールドを広げるフィードブロック法と、溶融樹脂をそれぞれマニュホールドで広げてから合流させるマルチマニュホールド法があるが、そのどちらを用いても良い。
 〔添加剤〕
 本実施形態の光学フィルム(フィルム基材)は、酸化防止剤を含むことが好ましい。好ましい酸化防止剤は、リン系またはフェノール系であり、リン系とフェノール系を同時に組み合わせるとより好ましい。以下、本実施形態において好適に用いることができる酸化防止剤について説明する。
 〈フェノール系酸化防止剤〉
 本実施形態においては、フェノール系の酸化防止剤が好ましく用いられ、特にヒンダードフェノール化合物が好ましく用いられる。
 ヒンダードフェノール化合物の具体例には、n-オクタデシル3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)-プロピオネート、n-オクタデシル3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)-アセテート、n-オクタデシル3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート、n-ヘキシル3,5-ジ-t-ブチル-4-ヒドロキシフェニルベンゾエート、n-ドデシル3,5-ジ-t-ブチル-4-ヒドロキシフェニルベンゾエート、ネオ-ドデシル3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、ドデシルβ(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、エチルα-(4-ヒドロキシ-3,5-ジ-t-ブチルフェニル)イソブチレート、オクタデシルα-(4-ヒドロキシ-3,5-ジ-t-ブチルフェニル)イソブチレート、オクタデシルα-(4-ヒドロキシ-3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2-(n-オクチルチオ)エチル3,5-ジ-t-ブチル-4-ヒドロキシ-ベンゾエート、2-(n-オクチルチオ)エチル3,5-ジ-t-ブチル-4-ヒドロキシ-フェニルアセテート、2-(n-オクタデシルチオ)エチル3,5-ジ-t-ブチル-4-ヒドロキシフェニルアセテート、2-(n-オクタデシルチオ)エチル3,5-ジ-t-ブチル-4-ヒドロキシ-ベンゾエート、2-(2-ヒドロキシエチルチオ)エチル3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート、ジエチルグリコールビス-(3,5-ジ-t-ブチル-4-ヒドロキシ-フェニル)プロピオネート、2-(n-オクタデシルチオ)エチル3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、ステアルアミド-N,N-ビス-[エチレン3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、n-ブチルイミノ-N,N-ビス-[エチレン3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2-(2-ステアロイルオキシエチルチオ)エチル3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート、2-(2-ステアロイルオキシエチルチオ)エチル7-(3-メチル-5-t-ブチル-4-ヒドロキシフェニル)ヘプタノエート、1,2-プロピレングリコールビス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、エチレングリコールビス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、ネオペンチルグリコールビス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、エチレングリコールビス-(3,5-ジ-t-ブチル-4-ヒドロキシフェニルアセテート)、グリセリン-l-n-オクタデカノエート-2,3-ビス-(3,5-ジ-t-ブチル-4-ヒドロキシフェニルアセテート)、ペンタエリトリトール-テトラキス-[3-(3′,5′-ジ-t-ブチル-4′-ヒドロキシフェニル)プロピオネート]、1,1,1-トリメチロールエタン-トリス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、ソルビトールヘキサ-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2-ヒドロキシエチル7-(3-メチル-5-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2-ステアロイルオキシエチル7-(3-メチル-5-t-ブチル-4-ヒドロキシフェニル)ヘプタノエート、1,6-n-ヘキサンジオール-ビス[(3′,5′-ジ-t-ブチル-4-ヒドロキシフェ
ニル)プロピオネート]、ペンタエリトリトール-テトラキス(3,5-ジ-t-ブチル-4-ヒドロキシヒドロシンナメート)が含まれる。上記タイプのヒンダードフェノール化合物は、例えば、チバ・ジャパン(株)から、”Irganox1076”及び”Irganox1010”という商品名で市販されている。
 〈リン系酸化防止剤〉
 リン系酸化防止剤としては、ホスファイト(phosphite)、ホスホナイト(phosphonite)、ホスフィナイト(phosphinite)、または第3級ホスファン(phosphane)等のリン系化合物を使用することができる。リン系化合物としては、従来既知の化合物を用いることができる。例えば、特開2002-138188号、特開2005-344044号段落番号0022~0027、特開2004-182979号段落番号0023~0039、特開平10-306175号、特開平1-254744号、特開平2-270892号、特開平5-202078号、特開平5-178870号、特表2004-504435号、特表2004-530759号、および特願2005-353229号公報の明細書中に記載されているものが好ましい。
 リン系化合物の添加量は、樹脂100質量部に対して、通常0.01~10質量部、好ましくは0.05~5質量部、さらに好ましくは0.1~3質量部である。
 リン系化合物としては、上記一般式で表される化合物のほかに、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、10-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、6-[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ]-2,4,8,10-テトラ-t-ブチルジベンズ[d,f][1.3.2]ジオキサホスフェピン、トリデシルホスファイト等のモノホスファイト系化合物;4,4′-ブチリデン-ビス(3-メチル-6-t-ブチルフェニル-ジ-トリデシルホスファイト)、4,4′-イソプロピリデン-ビス(フェニル-ジ-アルキル(C12~C15)ホスファイト)等のジホスファイト系化合物;トリフェニルホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)[1,1-ビフェニル]-4,4′-ジイルビスホスホナイト、テトラキス(2,4-ジ-tert-ブチル-5-メチルフェニル)[1,1-ビフェニル]-4,4′-ジイルビスホスホナイト等のホスホナイト系化合物;トリフェニルホスフィナイト、2,6-ジメチルフェニルジフェニルホスフィナイト等のホスフィナイト系化合物;トリフェニルホスフィン、トリス(2,6-ジメトキシフェニル)ホスフィン等のホスフィン系化合物;等が挙げられる。
 上記タイプのリン系化合物は、例えば、住友化学株式会社から、“SumilizerGP”、株式会社ADEKAから“ADK STAB PEP-24G”、“ADK STAB PEP-36”及び“ADK STAB 3010”、チバ・ジャパン株式会社から“IRGAFOS P-EPQ”、堺化学工業株式会社から“GSY-P101”という商品名で市販されている。
 〈その他の酸化防止剤〉
 また、ジラウリル-3,3′-チオジプロピオネート、ジミリスチル-3,3′-チオジプロピオネート、ジステアリル-3,3′-チオジプロピオネート、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)等のイオウ系酸化防止剤、2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレート等の耐熱加工安定剤、特公平08-27508号記載の3,4-ジヒドロ-2H-1-ベンゾピラン系化合物、3,3′-スピロジクロマン系化合物、1,1-スピロインダン系化合物、モルホリン、チオモルホリン、チオモルホリンオキシド、チオモルホリンジオキシド、ピペラジン骨格を部分構造に有する化合物、特開平03-174150記載のジアルコキシベンゼン系化合物等の酸素スカベンジャー等が挙げられる。これら酸化防止剤の部分構造が、ポリマーの一部、あるいは規則的にポリマーへペンダントされていてもよく、可塑剤、酸捕捉剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。
 (その他添加剤)
 本実施形態に係るフィルム基材には、上記の化合物等の他に、目的に応じて種々の化合物等を添加剤として含有させることができる。
 〈酸捕捉剤〉
 酸捕捉剤としては、米国特許第4,137,201号明細書に記載されている酸捕捉剤としてのエポキシ化合物を含んでなるのが好ましい。このような酸捕捉剤としてのエポキシ化合物は、当該技術分野において既知であり、種々のポリグリコールのジグリシジルエーテル、特にポリグリコール1モル当たりに約8~40モルのエチレンオキシドなどの縮合によって誘導されるポリグリコール、グリセロールのジグリシジルエーテルなど、金属エポキシ化合物(例えば、塩化ビニルポリマー組成物において、及び塩化ビニルポリマー組成物と共に、従来から利用されているもの)、エポキシ化エーテル縮合生成物、ビスフェノールAのジグリシジルエーテル(即ち、4,4′-ジヒドロキシジフェニルジメチルメタン)、エポキシ化不飽和脂肪酸エステル(特に、2~22この炭素原子の脂肪酸の4~2個程度の炭素原子のアルキルのエステル(例えば、ブチルエポキシステアレート)など)、及び種々のエポキシ化長鎖脂肪酸トリグリセリドなど(例えば、エポキシ化大豆油などの組成物によって代表され、例示され得る、エポキシ化植物油及び他の不飽和天然油(これらは時としてエポキシ化天然グリセリドまたは不飽和脂肪酸と称され、これらの脂肪酸は一般に12~22個の炭素原子を含有している))が含まれる。
 〈光安定剤〉
 光安定剤としては、ヒンダードアミン光安定剤(HALS)化合物が挙げられ、これは既知の化合物であり、例えば、米国特許第4,619,956号明細書の第5~11欄及び米国特許第4,839,405号明細書の第3~5欄に記載されているように、2,2,6,6-テトラアルキルピペリジン化合物、またはそれらの酸付加塩もしくはそれらと金属化合物との錯体が含まれる。さらに、特開2007-63311号公報に記載されている光安定剤を用いることができる。
 〈紫外線吸収剤〉
 紫外線吸収剤としては、紫外線による劣化防止の観点から、波長370nm以下の紫外線の吸収能に優れており、かつ液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましい。例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物等を挙げることができるが、ベンゾフェノン系化合物や着色の少ないベンゾトリアゾール系化合物が好ましい。また、特開平10-182621号公報、特開平8-337574号公報記載の紫外線吸収剤、特開平6-148430号公報記載の高分子紫外線吸収剤を用いてもよい。
 ベンゾトリアゾール系化合物の具体例として、2-(2′-ヒドロキシ-5′-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′-tert-ブチル-5′-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2′-ヒドロキシ-3′-(3″,4″,5″,6″-テトラヒドロフタルイミドメチル)-5′-メチルフェニル)ベンゾトリアゾール、2,2-メチレンビス(4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール)、2-(2′-ヒドロキシ-3′-tert-ブチル-5′-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2′-ヒドロキシ-3′-tert-ブチル-5′-(2-オクチルオキシカルボニルエチル)-フェニル)-5-クロロベンゾトリアゾール、2-(2′-ヒドロキシ-3′-(1-メチル-1-フェニルエチル)-5′-(1,1,3,3-テトラメチルブチル)-フェニル)ベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-6-(直鎖及び側鎖ドデシル)-4-メチルフェノール、オクチル-3-〔3-tert-ブチル-4-ヒドロキシ-5-(クロロ-2H-ベンゾトリアゾール-2-イル)フェニル〕プロピオネートと2-エチルヘキシル-3-〔3-tert-ブチル-4-ヒドロキシ-5-(5-クロロ-2H-ベンゾトリアゾール-2-イル)フェニル〕プロピオネートの混合物等を挙げることができるが、これらに限定されない。
 また、市販品として、チヌビン(TINUVIN)326、チヌビン(TINUVIN)109、チヌビン(TINUVIN)171、チヌビン(TINUVIN)900、チヌビン(TINUVIN)928、チヌビン(TINUVIN)360(いずれもチバ・ジャパン社製)、LA31(ADEKA社製)、Sumisorb250(住友化学社製)、RUVA-100(大塚化学製)が挙げられる。
 ベンゾフェノン系化合物の具体例として、2,4-ジヒドロキシベンゾフェノン、2,2′-ジヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン、ビス(2-メトキシ-4-ヒドロキシ-5-ベンゾイルフェニルメタン)等を挙げることができるが、これらに限定されるものではない。
 本実施形態においては、紫外線吸収剤は0.1~20質量%添加することが好ましく、さらに0.5~10質量%添加することが好ましく、さらに1~5質量%添加することが好ましい。これらは2種以上を併用してもよい。
 〈マット剤〉
 本実施形態のフィルム基材には、マット剤等の微粒子を添加することができ、微粒子としては、無機化合物の微粒子又は有機化合物の微粒子が挙げられる。微粒子としては、例えば、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、カオリン、タルク、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、リン酸カルシウム等の無機微粒子や架橋高分子微粒子を挙げることができる。中でも、二酸化ケイ素が樹脂基板のヘイズを低くできるので好ましい。二酸化ケイ素のような微粒子は有機物により表面処理されている場合が多いが、このようなものは樹脂基板のヘイズを低下できるため好ましい。
 表面処理で好ましい有機物としては、ハロシラン類、アルコキシシラン類、シラザン、シロキサンなどが挙げられる。微粒子の平均粒径が大きい方が滑り性効果は大きく、反対に平均粒径の小さい方は透明性に優れる。
 また、微粒子の二次粒子の平均粒径は、0.05~1.0μmの範囲である。好ましい微粒子の二次粒子の平均粒径は5~50nmが好ましく、さらに好ましくは、7~14nmである。これらの微粒子はセルロースエステルフィルム中では、セルロースエステルフィルム表面に0.01~1.0μmの凹凸を生成させるために好ましく用いられる。微粒子のセルロースエステル中の含有量は、セルロースエステルに対して0.005~0.3質量%が好ましい。
 二酸化ケイ素の微粒子としては、日本アエロジル(株)製のアエロジル(AEROSIL)200、200V、300、R972、R972V、R974、R202、R812、OX50、TT600等を挙げることができ、好ましくはアエロジル200V、R972、R972V、R974、R202、R812である。これらの微粒子は2種以上併用してもよい。2種以上併用する場合、任意の割合で混合して使用することができる。この場合、平均粒径や材質の異なる微粒子、例えば、アエロジル200VとR972Vを質量比で0.1:99.9~99.9:0.1の範囲で使用できる。
 上記マット剤として用いられる基材中の微粒子の存在は、別の目的として基材の強度向上のために用いることもできる。
 (可塑剤)
 光学フィルムは、可塑剤を含有することが好ましい。可塑剤としては、ポリエステル化合物が好ましい。
 ポリエステル化合物としては特に限定されないが、例えば、ジカルボン酸またはこれらのエステル形成性誘導体とグリコールとの縮合反応により得られる、末端がヒドロキシ基(水酸基)となる重合体(以下、「ポリエステルポリオール」という)、または、当該ポリエステルポリオールの末端のヒドロキシ基がモノカルボン酸で封止された重合体(以下、「末端封止したポリエステル」または単に「末端封止ポリエステル」ともいう)を用いることができる。なお、本明細書において、エステル形成性誘導体とは、ジカルボン酸のエステル化物、ジカルボン酸クロライド、ジカルボン酸の無水物のことである。
 本実施形態の光学フィルムが、末端封止したポリエステルを可塑剤として含むことにより、フィルムの温度変化による位相差変動および粘性(tanδ)の変動が抑えられ、光学特性(位相差、粘性)が安定する。
 ポリエステル化合物の具体例としては、下記一般式(A)で表されるエステル系化合物が挙げられる。
   B-(G-A)n-G-B ・・・ (A)
(式中、Bはヒドロキシ基、ベンゼンモノカルボン酸残基または脂肪族モノカルボン酸残基であり、Gは炭素数2~18のアルキレングリコール残基または炭素数6~12のアリールグリコール残基または炭素数が4~12のオキシアルキレングリコール残基であり、Aは炭素数4~12のアルキレンジカルボン酸残基または炭素数6~16のアリールジカルボン酸残基であり、nは1以上の整数である。)
 上記一般式(A)において、Bがヒドロキシ基である化合物がポリエステルポリオールに相当し、Bがベンゼンモノカルボン酸残基または脂肪族モノカルボン酸残基である化合物が末端封止ポリエステルに相当する。一般式(A)で表されるポリエステル化合物は、通常のポリエステル系可塑剤と同様の反応により得られるものである。
 一般式(A)で表されるポリエステル化合物の脂肪族モノカルボン酸成分としては、例えば、炭素数3以下の脂肪族モノカルボン酸が好ましく、酢酸、プロピオン酸、ブタン酸(酪酸)が挙げられ、これらはそれぞれ1種または2種以上の混合物として使用することができる。
 一般式(A)で表されるポリエステル化合物のベンゼンモノカルボン酸成分としては、例えば、安息香酸、パラターシャリブチル安息香酸、オルソトルイル酸、メタトルイル酸、パラトルイル酸、ジメチル安息香酸、エチル安息香酸、ノルマルプロピル安息香酸、アミノ安息香酸、アセトキシ安息香酸、脂肪族酸等があり、これらはそれぞれ1種または2種以上の混合物として使用することができる。特に、安息香酸、またはパラトルイル酸を含むことが好ましい。
 一般式(A)で表されるポリエステル化合物の炭素数2~18のアルキレングリコール成分としては、エチレングリコール、1,2-プロパンジオール(1,2-プロピレングリコール)、1,3-プロパンジオール(1,3-プロピレングリコール)、1,2-ブタンジオール、1,3-ブタンジオール、1,2-プロパンジオール、2-メチル1,3-プロパンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、1,2-シクロペンタンジオール、1,3-シクロペンタンジオール、1,4-シクロヘキサンジオール、2,2-ジエチル-1,3-プロパンジオール(3,3-ジメチロールペンタン)、2-n-ブチル-2-エチル-1,3プロパンジオール(3,3-ジメチロールヘプタン)、3-メチル-1,5-ペンタンジオール1,6-ヘキサンジオール、2,2,4-トリメチル1,3-ペンタンジオール、2-エチル1,3-ヘキサンジオール、2-メチル1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-オクタデカンジオール等があり、これらのグリコールは、1種または2種以上の混合物として使用される。中でも、エチレングリコール、ジエチレングリコール、1,2-プロピレングリコール、2-メチル1,3-プロパンジオールが好ましく、さらに好ましくは、エチレングリコール、ジエチレングリコール、1,2-プロピレングリコールである。特に、炭素数2~12のアルキレングリコールがセルロースエステルとの相溶性に優れているため好ましい。より好ましくは炭素数2~6のアルキレングリコールであり、さらに好ましくは炭素数2~4のアルキレングリコールである。
 一般式(A)で表されるポリエステル化合物の炭素数4~12のオキシアルキレングリコール成分としては、例えば、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール等があり、これらのグリコールは、1種または2種以上の混合物として使用できる。
 一般式(A)で表されるポリエステル化合物の炭素数6~12のアリールグリコールとしては、例えば、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、シクロヘキサンジエタノール、1,4-ベンゼンジメタノール等の環状グリコール類があり、これらのグリコールは、1種または2種以上の混合物として使用できる。
 一般式(A)で表されるポリエステル化合物の炭素数4~12のアルキレンジカルボン酸成分としては、例えば、コハク酸、マレイン酸、フマル酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等があり、これらは、それぞれ1種または2種以上の混合物として使用される。
 一般式(A)で表されるポリエステル化合物の炭素数6~16のアリールジカルボン酸成分としては、フタル酸、テレフタル酸、イソフタル酸、1,5-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、2,6-アントラセンジカルボン酸等がある。上記アリールジカルボン酸は芳香族環に置換基を有していてもよい。置換基としては、炭素数1~6の直鎖もしくは分岐状のアルキル基、アルコキシ基、炭素数6~12のアリール基が挙げられる。
 一般式(A)において、Bがヒドロキシ基である場合、すなわち、ポリエステル化合物がポリエステルポリオールである場合には、Aは炭素数10~16のアリールジカルボン酸残基であることが好ましい。例えばベンゼン環構造、ナフタレン環構造、アントラセン環構造等の芳香族環式構造を有するジカルボン酸を使用することができ、具体的なアリールジカルボン酸成分としては、例えばオルソフタル酸、イソフタル酸、テレフタル酸、1,4-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、2,6-アントラセンジカルボン酸を挙げることができる。好ましくは、1,4-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸であり、さらに好ましくは、2,3-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸であり、特に好ましくは、2,6-ナフタレンジカルボン酸である。これらは1種または2種以上を併用することができる。
 上記ポリエステルポリオールは、原料として使用するジカルボン酸の炭素数の平均が10~16の範囲であることが好ましい。ジカルボン酸の炭素数の平均が10以上であれば、セルロースエステルフィルムの寸法安定性に優れ、炭素数の平均が16以下であれば、セルロースエステルとの相溶性に優れ、セルロースエステルフィルムの透明性が著しく優れる。ジカルボン酸として、好ましくは炭素数の平均が10~14であり、さらに好ましくは炭素数の平均が10~12である。
 前記ポリエステルポリオールのジカルボン酸の炭素数の平均とは、単一のジカルボン酸を用いてポリエステルポリオールを重合する場合は該ジカルボン酸の炭素数を意味するが、2種以上のジカルボン酸を用いてポリエステルポリオールを重合する場合、それぞれのジカルボン酸の炭素数とそのジカルボン酸のモル分率の積の合計を意味する。
 前記炭素数の平均が10~16であれば、上記した10~16個の炭素原子を有するアリールジカルボン酸とそれ以外のジカルボン酸を併用することができる。併用できるジカルボン酸としては、4~9個の炭素原子を有するジカルボン酸が好ましく、例えば、コハク酸、グルタル酸、アジピン酸、マレイン酸、オルソフタル酸、イソフタル酸、テレフタル酸やこれらのエステル化物、酸塩化物、酸無水物を挙げることができる。
 以下に、ポリエステルポリオールの炭素数が10~16であるジカルボン酸の具体例を示すが、本実施形態ではこれらに何ら限定されない。
(1)2,6-ナフタレンジカルボン酸
(2)2,3-ナフタレンジカルボン酸
(3)2,6-アントラセンジカルボン酸
(4)2,6-ナフタレンジカルボン酸:コハク酸(75:25~99:1 モル比)
(5)2,6-ナフタレンジカルボン酸:テレフタル酸(50:50~99:1 モル比)
(6)2,3-ナフタレンジカルボン酸:コハク酸(75:25~99:1 モル比)
(7)2,3-ナフタレンジカルボン酸:テレフタル酸(50:50~99:1 モル比)
(8)2,6-アントラセンジカルボン酸:コハク酸(50:50~99:1 モル比)
(9)2,6-アントラセンジカルボン酸:テレフタル酸(25:75~99:1 モル比)
(10)2,6-ナフタレンジカルボン酸:アジピン酸(67:33~99:1 モル比)
(11)2,3-ナフタレンジカルボン酸:アジピン酸(67:33~99:1 モル比)
(12)2,6-アントラセンジカルボン酸:アジピン酸(40:60~99:1 モル比)
 本実施形態において用いることができるポリエステル化合物としては、上記のポリエステルポリオール以外に、化合物の水溶性や配向性の観点から、オクタノール-水分配係数(logP(B))が0以上7未満の化合物を用いることも好ましい。
 ポリエステルポリオールは、ジカルボン酸またはそれらのエステル形成性誘導体(一般式(A)のAに相当する成分)とグリコール(一般式(A)のGに相当する成分)を必要に応じてエステル化触媒の存在下で、たとえば180~250℃の温度範囲内で、10~25時間、周知慣用の方法でエステル化反応させることによって製造することができる。 
 エステル化反応を行う際に、トルエン、キシレン等の溶媒を用いてもよいが、無溶媒もしくは原料として使用するグリコールを溶媒として用いる方法が好ましい。
 前記エステル化触媒としては、例えばテトライソプロピルチタネート、テトラブチルチタネート、p-トルエンスルホン酸、ジブチル錫オキサイド等を使用することができる。前記エステル化触媒は、ジカルボン酸またはそれらのエステル形成性誘導体の全量100質量部に対して0.01~0.5質量部使用することが好ましい。
 ジカルボン酸またはそれらのエステル形成性誘導体とグリコールを反応させる際のモル比は、ポリエステルの末端基がヒドロキシ基(水酸基)となるモル比でなければならず、そのためジカルボン酸またはそれらのエステル形成性誘導体1モルに対してグリコールは1.1~10モルである。好ましくは、ジカルボン酸またはそれらのエステル形成性誘導体1モルに対して、グリコールが1.5~7モルであり、より好ましくは、ジカルボン酸またはそれらのエステル形成性誘導体1モルに対して、グリコールが2~5モルである。
 上記ポリエステルポリオールの末端基はヒドロキシ基(水酸基)であるが、ポリエステルポリオール中には、副生成物としてカルボキシ基末端の化合物も含まれうる。ただし、ポリエステルポリオール中におけるカルボキシ基末端は、湿度安定性を低下させるため、その含有量は低い方が好ましい。具体的には、酸価5.0mgKOH/g以下が好ましく、より好ましくは1.0mgKOH/g以下であり、さらに好ましくは0.5mgKOH/g以下である。なお、ここでいう「酸価」とは、試料1g中に含まれる酸(試料中に存在するカルボキシ基)を中和するために必要な水酸化カリウムのミリグラム数をいう。酸価はJIS K0070:1992に準拠して測定することができる。
 前記ポリエステルポリオールは、ヒドロキシ(水酸基)価(OHV)が35mg/g以上220mg/g以下の範囲であることが好ましい。ここで言うヒドロキシ(水酸基)価とは、試料1g中に含まれるOH基をアセチル化したときに、ヒドロキシ基(水酸基)と結合した酢酸を中和するために要する水酸化カリウムのミリグラム数をいう。ヒドロキシ(水酸基)価は、無水酢酸を用いて試料中のOH基をアセチル化し、使われなかった酢酸を水酸化カリウム溶液で滴定し、初期の無水酢酸の滴定値との差より求められる。
 前記ポリエステルポリオールのヒドロキシ基(水酸基)含有量は、70%以上であることが好ましい。ヒドロキシ基(水酸基)含有量が少ない場合、ポリエステルポリオールとセルロースエステルとの相溶性が低下する傾向がある。このため、ヒドロキシ基(水酸基)含有量は、70%以上が好ましく、より好ましくは90%以上であり、さらに好ましくは99%以上である。本実施形態において、ヒドロキシ基(水酸基)含有量が50%以下の化合物は、末端基の一方がヒドロキシ基(水酸基)以外の基で置換されているためポリエステルポリオールには含まれない。
 前記ヒドロキシ基(水酸基)含有量は、下記の式(B)により求めることができる。
   Y/X×100=ヒドロキシ基(水酸基)含有量(%) ・・・ (B)
    X:前記ポリエステルポリオールのヒドロキシ基(水酸基)価(OHV)
    Y:1/(数平均分子量(Mn))×56×2×1000
 前記ポリエステルポリオールは、300~3000の範囲内の数平均分子量を有することが好ましく、350~2000の数平均分子量を有することがより好ましい。
 また、本実施形態のポリエステルポリオールの分子量の分散度は1.0~3.0であることが好ましく、1.0~2.0であることがより好ましい。分散度が上記範囲内であれば、セルロースエステルとの相溶性に優れたポリエステルポリオールが得られやすい。
 また、前記ポリエステルポリオールは、分子量が300~1800の成分を50%以上含有することが好ましい。数平均分子量を前記範囲とすることにより、相溶性を大幅に向上させることができる。
 末端封止ポリエステルは、2つの末端基Bのうちの少なくとも一方がモノカルボン酸残基であればよい。すなわち、2つの末端基Bのうちの一方がヒドロキシ基であり、他方がモノカルボン酸残基であってもよい。ただし、2つの末端基Bの両方がモノカルボン酸残基であることが好ましい。
 末端基Bとしては、上述したベンゼンモノカルボン酸残基、脂肪族モノカルボン酸残基を使用することができ、好ましくはベンゼンモノカルボン酸残基を使用することができる。すなわち、末端封止ポリエステルは、芳香族末端ポリエステルであることが好ましい。
 上記末端封止ポリエステルは、グリコール(一般式(A)のGに相当する成分)と、ジカルボン酸またはそれらのエステル形成性誘導体(一般式(A)のAに相当する成分)およびモノカルボン酸またはそれらのエステル形成性誘導体(一般式(A)のBに相当する成分)とエステル化反応させることにより得ることができ、例えば、特開2011-52205号公報、特開2008-69225号公報、特開2008-88292号公報、特開2008-115221号公報等を参考にして合成することができる。
 本実施形態のエステル化合物は、その合成時点では分子量および分子構造に分布を有する混合物であるが、そのなかに本実施形態に好ましい成分、例えば、一般式(A)のAとしてフタル酸残基およびアジピン酸残基を有するポリエステル化合物を少なくとも1種含有していることが好ましい。
 末端封止ポリエステルは、数平均分子量が、好ましくは300~1500、より好ましくは400~1000である。また、酸価は、0.5mgKOH/g以下、ヒドロキシ(水酸基)価は25mgKOH/g以下、より好ましくは酸価0.3mgKOH/g以下、ヒドロキシ(水酸基)価は15mgKOH/g以下である。
 以下に、本実施形態で用いることができるポリエステル(エステル系化合物)の具体的化合物を示すが、本実施形態はこれに限定されない。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 糖エステル(糖エステル化合物)としては、セルロースエステル以外のエステルであって、下記単糖、二糖、三糖又はオリゴ糖などの糖のOH基の全て若しくは一部をエステル化した化合物であり、より具体的な例示としては、一般式(1)で表される化合物などを挙げることができる。
Figure JPOXMLDOC01-appb-C000004
 式中、R1~R8は、水素原子、置換若しくは無置換の炭素数2~22のアルキルカルボニル基、又は置換若しくは無置換の炭素数2~22のアリールカルボニル基を表す。R1~R8は、同じであってもよく、異なっていてもよい。
 以下に、一般式(1)で示される化合物をより具体的に示すが(化合物1-1~化合物1-23)、これらに限定はされない。なお、下表において平均置換度が8.0未満の場合、R1~R8のうちのいずれかは水素原子を表す。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 これらの可塑剤は、セルロースエステルフィルム100質量部に対して、0.5~30質量部を添加するのが好ましい。
 〔ハードコート層〕
 本実施形態では、光学フィルムの表面に機能層としてのハードコート層が形成されていてもよい。ハードコート層は、例えば、活性エネルギー線硬化型樹脂で構成されることが好ましい。
 (活性エネルギー線硬化型樹脂)
 活性エネルギー線硬化型樹脂とは、紫外線や電子線のような活性線照射により架橋反応等を経て硬化する樹脂をいい、具体的にはエチレン性不飽和基を有する樹脂である。さらに具体的には、紫外線硬化型ウレタンアクリレート系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、または紫外線硬化型エポキシ樹脂等が好ましく用いられる。中でも紫外線硬化型アクリレート系樹脂が好ましい。
 紫外線硬化型アクリレート系樹脂としては、多官能アクリレートが好ましい。該多官能アクリレートとしては、ペンタエリスリトール多官能アクリレート、ジペンタエリスリトール多官能アクリレート、ペンタエリスリトール多官能メタクリレート、およびジペンタエリスリトール多官能メタクリレートよりなる群から選ばれることが好ましい。ここで、多官能アクリレートとは、分子中に2個以上のアクリロイルオキシ基またはメタクロイルオキシ基を有する化合物である。
 多官能アクリレートのモノマーとしては、例えばエチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールエタントリアクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、グリセリントリアクリレート、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、トリス(アクリロイルオキシエチル)イソシアヌレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、1,6-ヘキサンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールエタントリメタクリレート、テトラメチロールメタントリメタクリレート、テトラメチロールメタンテトラメタクリレート、ペンタグリセロールトリメタクリレート、ペンタエリスリトールジメタクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、グリセリントリメタクリレート、ジペンタエリスリトールトリメタクリレート、ジペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタメタクリレート、ジペンタエリスリトールヘキサメタクリレート、活性エネルギー線硬化型のイソシアヌレート誘導体等が好ましく挙げられる。これら多官能アクリレートとしては市販品を用いてもよく、ペンタエリスリトールトリ/テトラアクリレート(新中村化学工業株式会社製、A-TMM-3Lなど)、ペンタエリスリトールトリアクリレート(共栄社化学製、PE-3A)等を入手できる。なお、これらの化合物は、それぞれ単独または2種以上を混合して用いられる。
 活性エネルギー線硬化型樹脂のイソシアヌレート誘導体としては、イソシアヌル酸骨格に1個以上のエチレン性不飽和基が結合した構造を有する化合物であればよく、特に制限はないが、同一分子内に3個以上のエチレン性不飽和基及び1個以上のイソシアヌレート環を有する化合物が好ましい。
 このようなイソシアヌル酸トリアクリレート化合物としては市販品を用いることもでき、例えば新中村化学工業株式会社製A-9300などが挙がられる。イソシアヌル酸ジアクリレート化合物の市販品としては、例えば東亞合成株式会社製アロニックスM-215などが挙がられる。イソシアヌル酸トリアクリレート化合物及びイソシアヌル酸ジアクリレート化合物の混合物としては、例えば東亞合成株式会社製アロニックスM-315、アロニックスM-313などが挙がられる。ε-カプロラクトン変性の活性エネルギー線硬化型のイソシアヌレート誘導体としては、ε-カプロラクトン変性トリス-(アクリロキシエチル)イソシアヌレートである新中村化学工業株式会社製A-9300-1CL、東亞合成株式会社製アロニックスM-327などを挙げることができるが、これらに限定されない。
 また、活性エネルギー線硬化型樹脂としては、単官能アクリレートを用いても良い。単官能アクリレートとしては、イソボロニルアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、イソステアリルアクリレート、ベンジルアクリレート、エチルカルビトールアクリレート、フェノキシエチルアクリレート、ラウリルアクリレート、イソオクチルアクリレート、テトラヒドロフルフリルアクリレート、ベヘニルアクリレート、4-ヒドロキシブチルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、シクロヘキシルアクリレートなどが挙げられる。単官能アクリレートとしては、新中村化学工業株式会社や大阪有機化学工業株式会社等から入手できる。これらの化合物は、それぞれ単独または2種以上を混合して用いられる。また、上記モノマーの2量体、3量体等のオリゴマーであってもよい。
 さらに、活性エネルギー線硬化型樹脂としては、ウレタンアクリレートを用いてもよい。ウレタンアクリレートとしては、例えば、荒川化学工業(株)製のビームセット575CB、共栄社化学製のUA-306Hなどの市販品を用いることができる。
 上述したような多官能アクリレートの粘度は、25℃における粘度が3000mPa・s以下であることが好ましく、1500mPa・s以下がさらに好ましい。特に好ましくは、1000mPa・s以下である。このような低粘度樹脂としては、グリセリントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレートなどを挙げることができる。なお、前記粘度はE型粘度計を用いて25℃の条件にて測定した値である。
 ハードコート層組成物中における、前記活性エネルギー線硬化型樹脂の配合量は、組成物全体を100質量部とすると、通常、10~99質量部、好ましくは35~99質量部である。活性エネルギー線硬化型樹脂の配合量が少ないと、ハードコート層の膜強度が十分に得られにくい。また、配合量が多いと、後述する公知の塗布方法で塗布した際の膜厚均一性や塗布筋などの故障が発生するため好ましくない。
 (カチオン重合性化合物)
 ハードコート層は、さらにカチオン重合性化合物を含有してもよい。カチオン重合性化合物とは、エネルギー活性線照射や熱によってカチオン重合を起こして樹脂化するものである。具体的には、エポキシ基、環状エーテル基、環状アセタール基、環状ラクトン基、環状チオエーテル基、スピロオルソエステル化合物、ビニルオキソ基等が挙げられる。中でもエポキシ基やビニルエーテル基などの官能基を有する化合物が、本実施形態においては、好適に用いられる。
 エポキシ基またはビニルエーテル基を有するカチオン重合性化合物としては、例えば、フェニルグリシジルエーテル、エチレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、ビニルシクロヘキセンジオキサイド、リモネンジオキサイド、3,4-エポキシシクロヘキシルメチル-3′,4′-エポキシシクロヘキサンカルボキシレート、ビス-(6-メチル-3,4-エポキシシクロヘキシル)アジペート、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、ジエチレングリコールジビニルエーテル、ポリエチレングリコールジビニルエーテル、1,4-シクロヘキサンジメタノールジビニルエーテル等が挙げられる。また、エポキシ化合物としては、ポリマー化合物も使用することができる。
 ハードコート層組成物に前記カチオン重合性化合物が含まれる場合、ハードコート層組成物中における、カチオン重合性化合物の配合量は、組成物全体を100質量部とすると、通常、1~90質量部、好ましくは1~50質量部である。
 (微粒子)
 ハードコート層は、微粒子を含有しても良い。微粒子としては無機微粒子と有機微粒子が挙げられる。無機粒子としては、シリカ、酸化チタン、酸化アルミニウム、酸化スズ、酸化インジウム、ITO、酸化亜鉛、酸化ジルコニウム、酸化マグネシウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。有機粒子としては、ポリメタアクリル酸メチルアクリレート樹脂粉末、アクリルスチレン系樹脂粉末、ポリメチルメタクリレート樹脂粉末、シリコン系樹脂粉末、ポリスチレン系樹脂粉末、ポリカーボネート樹脂粉末、ベンゾグアナミン系樹脂粉末、メラミン系樹脂粉末、ポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉末、ポリイミド系樹脂粉末、またはポリ弗化エチレン系樹脂粉末等を挙げることができる。これら微粒子の平均粒径は、ハードコート層塗布組成物の安定性やクリア性から、30nm~200nmが好ましい。また、ハードコート層には粒径が異なる2種以上の微粒子を含有させてもよい。所望の鉛筆硬度を達成しやすい点から、ハードコート層にはシリカ微粒子を含有させることが好ましい。
 また、本実施形態の作用効果をより良く発揮する点から、ハードコート層には重合性不飽和基を有する有機化合物によって表面処理された反応性シリカ微粒子(Xa)を含有させることが好ましい。以下、重合性不飽和基を有する有機化合物によって表面処理された反応性シリカ微粒子(Xa)について説明する。
 《反応性シリカ微粒子(Xa)》
 シリカ微粒子としては、公知のものを使用することができる。また、その形状は、球状でも不定形のものでもよく、通常のコロイダルシリカに限らず中空粒子、多孔質粒子、コア/シェル型粒子等であっても構わないが、pHが2.0~6.5のコロイダルシリカが好ましい。
 シリカ微粒子の分散媒は、水あるいは有機溶媒が好ましい。有機溶媒としては、メタノール、イソプロピルアルコール、エチレングリコール、ブタノール、エチレングリコールモノプロピルエーテル等のアルコール類;メチルエチルケトン、メチルイソブチルケトン等のケトン類;トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド類;酢酸エチル、酢酸ブチル、γ-ブチロラクトン等のエステル類;テトラヒドロフラン、1,4-ジオキサン等のエ-テル類等の有機溶剤を挙げることができ、これらの中で、アルコール類及びケトン類が好ましい。これら有機溶剤は、単独又は2種以上混合して分散媒として使用することもできる。市販品としては、例えば、コロイダルシリカとして、日産化学工業(株)製MEK-ST-L、MEK-ST-MS,IPA-ST-L、IPA-ST-ZL等を挙げることができる。
 反応性シリカ微粒子(Xa)は、上述したようなコロイダルシリカを、重合性不飽和基を有する有機化合物(以下、「有機化合物(X)」という)で表面処理することによって得られる。有機化合物(X)は、重合性不飽和基、好ましくはエチレン性不飽和基を有し、更に下記一般式(a)に示す基及び分子内にシラノール基を有する化合物又は加水分解によってシラノール基を生成する化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000008
 [-U-C(=V)-NH-]は、具体的には、[-O-C(=O)-NH-]、[-O-C(=S)-NH-]、[-S-C(=O)-NH-]、[-NH-C(=O)-NH-]、[-NH-C(=S)-NH-]、及び[-S-C(=S)-NH-]の6種である。これらの基は、1種単独で又は2種以上を組み合わせて用いることができる。中でも、熱安定性の観点から、[-O-C(=O)-NH-]基と、[-O-C(=S)-NH-]基または[-S-C(=O)-NH-]基の少なくともいずれか1つとを併用することが好ましい。
 有機化合物(X)に含まれるエチレン性不飽和基としては特に制限はないが、例えば、アクリロイル基、メタクリロイル基、ビニル基を好適例として挙げることができる。このエチレン性不飽和基は、活性ラジカル種により付加重合をする構成単位である。
 シラノール基を生成する化合物としては、ケイ素原子にアルコキシ基、アリールオキシ基、アセトキシ基、アミノ基、ハロゲン原子等が結合した化合物を挙げることができるが、ケイ素原子にアルコキシ基又はアリールオキシ基が結合した化合物、即ち、アルコキシシリル基含有化合物又はアリールオキシシリル基含有化合物が好ましい。具体例としては、例えば、下記一般式(b)に示す化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000009
 一般式(b)中、R21、R22は、同一でも異なっていてもよく、水素原子又は炭素数1~8のアルキル基若しくはアリール基であり、例えば、メチル、エチル、プロピル、ブチル、オクチル、フェニル、キシリル基等を挙げることができる。ここで、jは、1~3の整数である。
 [(R21O)j22 3-jSi-]で示される基としては、例えば、トリメトキシシリル基、トリエトキシシリル基、トリフェノキシシリル基、メチルジメトキシシリル基、ジメチルメトキシシリル基等を挙げることができる。このような基のうち、トリメトキシシリル基又はトリエトキシシリル基等が好ましい。
 R23は、炭素数1~12の脂肪族又は芳香族構造を有する2価の有機基であり、鎖状、分岐状又は環状の構造を含んでいてもよい。具体例として、メチレン、エチレン、プロピレン、ブチレン、ヘキサメチレン、シクロヘキシレン、フェニレン、キシリレン、ドデカメチレン等を挙げることができる。
 R24は、2価の有機基であり、通常、分子量14から1万、好ましくは、分子量76から500の2価の有機基の中から選ばれる。具体例として、ヘキサメチレン、オクタメチレン、ドデカメチレン等の鎖状ポリアルキレン基;シクロヘキシレン、ノルボルニレン等の脂環式又は多環式の2価の有機基;フェニレン、ナフチレン、ビフェニレン、ポリフェニレン等の2価の芳香族基;及びこれらのアルキル基置換体、アリール基置換体を挙げることができる。また、これら2価の有機基は炭素及び水素原子以外の元素を含む原子団を含んでいてもよく、ポリエーテル結合、ポリエステル結合、ポリアミド結合、ポリカーボネート結合を含むこともできる。
 R25は、(k+1)価の有機基であり、好ましくは、鎖状、分岐状又は環状の飽和炭化水素基、不飽和炭化水素基の中から選ばれる。
 Zは、活性ラジカル種の存在下、分子間架橋反応をする重合性不飽和基を分子中に有する1価の有機基を示す。また、kは、好ましくは、1~20の整数であり、さらに好ましくは、1~10の整数、特に好ましくは、1~5の整数である。
 有機化合物(X)は、例えば、加水分解性シランと、ポリイソシアネ-ト化合物、ポリチオイソシアネ-ト化合物およびイソシアネ-ト基とチオイソシアネ-ト基を共に有する化合物から選ばれた1つ以上の化合物と、イソシアネ-ト基もしくはチオイソシアネ-ト基と付加反応を起こす活性水素原子を有する活性水素含有重合性不飽和化合物とを直接付加反応せしめることにより行うことができる。
 好ましくは、メルカプトプロピルトリメトキシシランとイソホロンジイソシアネートをジブチルスズジラウレート存在下で混合し、60~70℃で数時間程度反応させた後に、ペンタエリスリトールトリアクリレートを添加して、さらに60~70℃で数時間程度反応させる。
 次いで、得られた有機化合物(X)をシリカ微粒子と混合し、加水分解させ、両者を結合させることで反応性シリカ微粒子(Xa)を製造できる。
 シリカ微粒子への有機化合物(X)の結合量は、シリカ微粒子を100質量%として、好ましくは0.01質量%以上であり、さらに好ましくは0.1質量%以上、特に好ましくは1質量%以上である。
 前記範囲であれば、組成物中における反応性シリカ微粒子(Xa)の分散性が良好である。また、反応性シリカ微粒子(Xa)製造時の原料中のシリカ微粒子の配合割合は、好ましくは5~99質量%であり、さらに好ましくは10~98質量%である。ハードコート層用塗布組成物中の、反応性シリカ微粒子(Xa)の含有量は、組成物中の固形分全量を100質量%としたときに、5~80質量%が好ましく、10~80質量%がより好ましい。このような範囲で用いることで、ハードコート塗布組成物中で反応性シリカ微粒子(Xa)が安定に存在する。
 また、ハードコート層は、前述した活性エネルギー線硬化型樹脂と微粒子とを含有し、含有質量比で、活性エネルギー線硬化型樹脂:微粒子=90:10~20:80であることが好ましい。
 (その他の添加剤、ハードコート層の製造方法)
 ハードコート層には、前記活性エネルギー線硬化型樹脂の硬化促進のため、さらに光重合開始剤を含有させることが好ましい。光重合開始剤の配合量としては、質量比で、光重合開始剤:活性エネルギー線硬化型樹脂=20:100~0.01:100であることが好ましい。
 光重合開始剤としては、具体的には、アルキルフェノン系、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーケトン、α-アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることができるが、特にこれらに限定されるものではない。これらは市販のものを使用してもよく、例えば、BASFジャパン(株)製のイルガキュア184、イルガキュア907、イルガキュア651などが好ましい例示として挙げられる。
 また、ハードコート層は、上述の紫外線吸収剤と同様の紫外線吸収剤を含有していてもよい。
 さらには、ハードコート層が2層以上で構成され、かつ基材フィルムと接するハードコート層に紫外線吸収剤を含有することが、本実施形態の目的効果が良好に発揮され、かつハードコート層の膜強度(耐擦傷性)や鉛筆硬度が良好に得られる点から好ましい。紫外線吸収剤の含有量としては、質量比で、紫外線吸収剤:ハードコート層組成物=0.01:100~10:100で含有することが好ましい。
 ハードコート層を2層以上設ける場合、基材フィルムと接するハードコート層の膜厚は、0.05~2μmの範囲であることが好ましい。2層以上の積層は同時重層で形成してもよい。同時重層とは、乾燥工程を経ずに基材上に2層以上のハードコート層をwet on wetで塗布して、ハードコート層を形成することである。第1ハードコート層の上に乾燥工程を経ずに、第2ハードコート層をwet on wetで積層するには、押し出しコーターにより逐次重層するか、若しくは複数のスリットを有するスロットダイにて同時重層を行えばよい。
 また、ハードコート層の作成方法としては、セルロースアセテートフィルムを膨潤または一部溶解をする溶剤で希釈したハードコート層塗布組成物を、以下の方法でセルロースアセテートフィルム上に塗布、乾燥、硬化して設ける方法が、ハードコート層とセルロースアセテートフィルムとの層間密着が得られやすい点から好ましい。
 セルロースアセテートフィルムを膨潤または一部溶解する溶剤としては、ケトンおよび/または酢酸エステルを含む溶剤が好ましい。具体的には、ケトンとしてはメチルエチルケトン、アセトン、シクロヘキサノンなどを挙げることができる。また、酢酸エステルとしては酢酸エチル、酢酸メチル、酢酸ブチルなどを挙げることができる。ハードコート層塗布組成物は、その他の溶剤として、アルコール系溶剤を含んでもよい。
 ハードコート層塗布組成物の塗布量は、ウェット膜厚として0.1~40μmが好適で、さらに好ましくは、0.5~30μmである。また、ドライ膜厚としては平均膜厚5~20μm程度、好ましくは7~12μmが好ましい。
 ハードコート層は、グラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイ(押し出し)コーター、インクジェット法等公知の塗布方法を用いて、ハードコート層を形成するハードコート塗布組成物を塗布し、塗布後、乾燥し、活性線を照射(UV硬化処理とも言う)し、更に必要に応じて、UV硬化後に加熱処理することで形成できる。UV硬化後の加熱処理温度としては80℃以上が好ましく、更に好ましくは100℃以上であり、特に好ましくは120℃以上である。このような高温でUV硬化後の加熱処理を行うことで、ハードコート層の機械的強度(耐擦性、鉛筆硬度)がより良好となる。
 乾燥は、減率乾燥区間の温度を80℃以上の高温として行うことが好ましい。更に好ましくは減率乾燥区間の温度は95℃以上、130℃以下である。減率乾燥区間の温度を高温として乾燥処理とすることで、ハードコート層の形成時に塗膜樹脂中で対流が生じるため、ハードコート層表面に微細な表面粗れが発現しやすく、後述する算術平均粗さRaも得られやすくなる。
 一般に、乾燥プロセスは、乾燥が始まると、乾燥速度が一定の状態から徐々に減少する状態へと変化していくことが知られており、乾燥速度が一定の区間を恒率乾燥区間、乾燥速度が減少していく区間を減率乾燥区間と呼ぶ。恒率乾燥区間においては流入する熱量はすべて塗膜表面の溶媒蒸発に費やされており、塗膜表面の溶媒が少なくなると蒸発面が表面から内部に移動して減率乾燥区間に入る。これ以降は塗膜表面の温度が上昇し熱風温度に近づいていくため、紫外線硬化型樹脂組成物の温度が上昇し、樹脂粘度が低下して流動性が増すと考えられる。
 UV硬化処理の光源としては、紫外線を発生する光源であれば制限なく使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。
 照射条件はそれぞれのランプによって異なるが、活性線の照射量は、通常50~1000mJ/cm2、好ましくは50~300mJ/cm2である。
 また、活性線を照射する際には、フィルムの搬送方向に張力を付与しながら行うことが好ましく、更に好ましくは幅方向にも張力を付与しながら行うことである。付与する張力は、通常30~500N/m、好ましくは30~300N/mである。張力を付与する方法は特に限定されず、バックロール上で搬送方向に張力を付与してもよく、テンターにて幅方向、または2軸方向に張力を付与してもよい。これによって更に平面性の優れたフィルムを得ることができる。
 ハードコート層には、帯電防止性を付与するために導電剤を含有させても良く、好ましい導電剤としては、金属酸化物粒子またはπ共役系導電性ポリマーが挙げられる。また、イオン液体も導電性化合物として好ましく用いられる。
 また、ハードコート層には、フッ素-シロキサングラフトポリマーやシリコーン系界面活性剤を含有させてもよい。
 フッ素-シロキサングラフトポリマーとは、少なくともフッ素系樹脂に、シロキサン及び/またはオルガノシロキサン単体を含むポリシロキサン及び/またはオルガノポリシロキサンをグラフト化させて得られる共重合体のポリマーをいう。市販品としては、富士化成工業株式会社製のZX-022H、ZX-007C、ZX-049、ZX-047-D等を挙げることができる。
 シリコーン系界面活性剤は、シリコーンオイルのメチル基の一部を親水性基に置換した界面活性剤である。親水性基としては、ポリエーテル、ポリグリセリン、ピロリドン、ベタイン、硫酸塩、リン酸塩、4級塩等がある。シリコーン界面活性剤の具体的商品として、例えば、SH200、BY16-873、PRX413(ジメチルシリコーンオイル;東レ・ダウコーニング・シリコーン(株)社製)、SH203、SH230、SF8416(アルキル変性シリコーンオイル;東レ・ダウコーニング・シリコーン(株)社製)、SF8417、BY16-208、BY16-209、BY16-849、BY16-872、FZ-2222、FZ-2207(ジメチルポリシロキサン・ポリエチレンオキサイド直鎖状ブロックコポリマー;日本ユニカー(株)製のFZシリーズ)、KF-101、KF-102,KF―105(エポキシ変性シリコーンオイル;信越化学工業社製)、BYK-UV3500,BYK-UV3510、BYK-333、BYK-331、BYK-337(ポリエーテル変性シリコーンオイル、ビックケミ-ジャパン社製)等が挙げられるがこれらに限定されない。
 また、これら成分は、塗布液中の固形分成分に対し、0.01~5質量%の範囲で添加することが好ましい。
 (ハードコート層の表面形状)
 本実施形態におけるハードコート層の表面の算術平均粗さRaは、長尺フィルムで巻き取った際のブロッキング防止効果やセルロースアセテートフィルムとの密着性に優れる点から、4~20nmであることが好ましい。算術平均粗さRaは、JIS B0601:1994の規定に基づいて、光学干渉式表面粗さ計(RST/PLUS、WYKO社製)で測定した値である。
 また、ハードコート層表面の凹凸平均間隔Smは3~40μmが好ましい。また、ハードコート層の表面の算術平均粗さRaと、セルロースエステルフィルム(フィルム基材)のハードコート層塗設面の凹凸平均間隔Smとの比率(Ra/Sm)が、2×10-4~6×10-3であることが好ましい。Smについては、算術平均粗さRaと同様に、JIS B0601:1994の規定に基づいて、光学干渉式表面粗さ計(RST/PLUS、WYKO社製)で測定できる。
 ハードコート層の表面の算術平均粗さRaを上記範囲とするために、鋳型を押し当てて表面に突起を形成させる方法や、SP値(溶解度パラメーター)が異なる樹脂を混ぜて、表面凹凸を形成させる方法、スピノーダル分解や核生成などで突起形成させる方法を用いることができる。
 なお、突起形成に用いられる鋳型ロールとしては、凹凸が細かいものから粗いものまで、適宜選択して適用でき、マット状、レンチキュラーレンズ状、球状の凹凸が規則正しく、もしくはランダムに配列されたものが使用できる。
 また、本実施形態のハードコートフィルムのヘイズ値は、1%以下であることが、十分な輝度や高いコントラストが得られる点で好ましい。
 〔機能性層〕
 (バックコート層)
 本実施形態のフィルム基材におけるハードコート層を設けた側とは反対側の面に、カールやブロッキング防止のためにバックコート層を設けてもよい。
 カールやブロッキング防止の点から、バックコート層には、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、酸化錫、酸化インジウム、酸化亜鉛、ITO、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウムおよびリン酸カルシウム等の粒子を添加することができる。
 バックコート層に含まれる粒子は、バインダーに対して0.1~50質量%が好ましい。バックコート層を設けた場合のヘイズの増加は0.5%以下であることが好ましく、特に0.1%以下であることが好ましい。バインダーとしては、セルロースエステル樹脂が好ましい。また、バックコート層を形成するための塗布組成物には、アルコール類、ケトン類および/または酢酸エステル類糖の溶媒を含有することが好ましい。
 (反射防止層)
 本実施形態では、フィルム基材上にハードコート層を形成し、そのハードコート層の上層に反射防止層を塗設して、外光反射防止機能を有する反射防止フィルムとして用いることもできる。
 反射防止層は、光学干渉によって反射率が減少するように屈折率、膜厚、層の数、層順等を考慮して積層されていることが好ましい。反射防止層は、支持体であるフィルム基材よりも屈折率の低い低屈折率層、もしくは支持体よりも屈折率の高い高屈折率層と低屈折率層とを組み合わせて構成されていることが好ましい。特に好ましくは、3層以上の屈折率層から構成される反射防止層であり、支持体側から屈折率の異なる3層を、中屈折率層(支持体よりも屈折率が高く、高屈折率層よりも屈折率の低い層)/高屈折率層/低屈折率層の順に積層されているものが好ましく用いられる。または、2層以上の高屈折率層と2層以上の低屈折率層とを交互に積層した4層以上の層構成の反射防止層も好ましく用いられる。
 反射防止層を有するフィルムの層構成としては、下記のような構成が考えられるが、これに限定されるものではない。
 セルロースアセテートフィルム/ハードコート層/低屈折率層
 セルロースアセテートフィルム/ハードコート層/中屈折率層/低屈折率層
 セルロースアセテートフィルム/ハードコート層/中屈折率層/高屈折率層/低屈折率層
 セルロースアセテートフィルム/ハードコート層/高屈折率層(導電性層)/低屈折率層
 セルロースアセテートフィルム/ハードコート層/防眩性層/低屈折率層
 (低屈折率層)
 低屈折率層は、シリカ系微粒子を含有することが好ましく、その屈折率は、23℃、波長550nm測定で、1.30~1.45の範囲であることが好ましい。
 低屈折率層の膜厚は、5nm~0.5μmであることが好ましく、10nm~0.3μmであることが更に好ましく、30nm~0.2μmであることが最も好ましい。
 低屈折率層形成用組成物については、シリカ系微粒子として、特に外殻層を有し内部が多孔質または空洞の粒子を少なくとも1種類以上含むことが好ましい。特に該外殻層を有し内部が多孔質または空洞である粒子が、中空シリカ系微粒子であることが好ましい。
 なお、低屈折率層形成用組成物には、下記一般式(OSi-1)で表される有機ケイ素化合物もしくはその加水分解物、或いは、その重縮合物を併せて含有させても良い。
 一般式(OSi-1):Si(OR)4
 前記一般式で表される有機ケイ素化合物は、式中、Rは炭素数1~4のアルキル基を表す。具体的には、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等が好ましく用いられる。
 他に溶剤、必要に応じて、シランカップリング剤、硬化剤、界面活性剤等を添加してもよい。また、フッ素原子を35~80質量%の範囲で含み、且つ架橋性若しくは重合性の官能基を含む含フッ素化合物を主としてなる熱硬化性および/または光硬化性を有する化合物を含有してもよい。具体的には含フッ素ポリマー、あるいは含フッ素ゾルゲル化合物などである。含フッ素ポリマーとしては、例えばパーフルオロアルキル基含有シラン化合物〔例えば(ヘプタデカフルオロ-1,1,2,2-テトラヒドロデシル)トリエトキシシラン〕の加水分解物や脱水縮合物の他、含フッ素モノマー単位と架橋反応性単位とを構成単位とする含フッ素共重合体が挙げられる。その他、溶剤、必要に応じて、シランカップリング剤、硬化剤、界面活性剤等を添加してもよい。
 (高屈折率層)
 高屈折率層の屈折率は、23℃、波長550nm測定で、屈折率を1.4~2.2の範囲に調整することが好ましい。また、高屈折率層の厚さは5nm~1μmが好ましく、10nm~0.2μmであることが更に好ましく、30nm~0.1μmであることが最も好ましい。屈折率を調整は、金属酸化物微粒子等を添加することで行うことができる。用いる金属酸化物微粒子の屈折率は1.80~2.60であるものが好ましく、1.85~2.50であるものが更に好ましい。
 金属酸化物微粒子の種類は特に限定されるものではなく、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P及びSから選択される少なくとも一種の元素を有する金属酸化物を用いることができる。これらの金属酸化物微粒子には、Al、In、Sn、Sb、Nb、ハロゲン元素、Taなどの微量の原子をドープしてもよい。また、これらの混合物でもよい。本実施形態においては、中でも、酸化ジルコニウム、酸化アンチモン、酸化錫、酸化亜鉛、酸化インジウム-スズ(ITO)、アンチモンドープ酸化スズ(ATO)、及びアンチモン酸亜鉛から選ばれる少なくとも1種の金属酸化物微粒子を主成分として用いることが特に好ましい。特にアンチモン酸亜鉛粒子を含有することが好ましい。
 これら金属酸化物微粒子の一次粒子の平均粒子径は10nm~200nmの範囲であり、10~150nmであることが特に好ましい。金属酸化物微粒子の平均粒子径は、走査電子顕微鏡(SEM)等による電子顕微鏡写真から計測することができる。動的光散乱法や静的光散乱法等を利用する粒度分布計等によって計測してもよい。粒径が小さ過ぎると凝集しやすくなり、分散性が劣化する。粒径が大き過ぎるとヘーズが著しく上昇し好ましくない。金属酸化物微粒子の形状は、米粒状、球形状、立方体状、紡錘形状、針状或いは不定形状であることが好ましい。
 金属酸化物微粒子は有機化合物により表面処理してもよい。金属酸化物微粒子の表面を有機化合物で表面修飾することによって、有機溶媒中での分散安定性が向上し、分散粒径の制御が容易になるとともに、経時での凝集、沈降を抑えることもできる。このため、好ましい有機化合物での表面修飾量は金属酸化物粒子に対して0.1質量%~5質量%、より好ましくは0.5質量%~3質量%である。表面処理に用いる有機化合物の例には、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤及びチタネートカップリング剤が含まれる。この中でもシランカップリング剤が好ましい。二種以上の表面処理を組み合わせてもよい。
 また、高屈折率層は、π共役系導電性ポリマーを含有しても良い。π共役系導電性ポリマーとは、主鎖がπ共役系で構成されている有機高分子であれば使用することができる。例えば、ポリチオフェン類、ポリピロール類、ポリアニリン類、ポリフェニレン類、ポリアセチレン類、ポリフェニレンビニレン類、ポリアセン類、ポリチオフェンビニレン類、及びこれらの共重合体が挙げられる。重合の容易さ、安定性の点からは、ポリチオフェン類、ポリアニリン類、ポリアセチレン類が好ましい。
 π共役系導電性ポリマーは、無置換のままでも十分な導電性やバインダー樹脂への溶解性が得られるが、導電性や溶解性をより高めるために、アルキル基、カルボキシ基、スルホ基、アルコキシ基、ヒドロキシ基、シアノ基等の官能基を導入してもよい。
 また、高屈折率層は、イオン性化合物を含有してもよい。イオン性化合物としては、イミダゾリウム系、ピリジウム系、脂環式アミン系、脂肪族アミン系、脂肪族ホスホニウム系の陽イオンとBF4-、PF6-等の無機イオン系、CF3SO2-、(CF3SO22N-、CF3CO2-等のフッ素系の陰イオンとからなる化合物等が挙げられる。該ポリマーとバインダーの比率は、ポリマー100質量部に対して、バインダーが10~400質量部が好ましく、特に好ましくは、ポリマー100質量部に対して、バインダーが100~200質量部である。
 (防眩性層)
 ハードコート層上には、機能性層として防眩層を設けることもできる。防眩性層は、フィルム表面に反射した像の輪郭をぼかすことによって反射像の視認性を低下させて、液晶ディスプレイ、有機ELディスプレイ、プラズマディスプレイといった画像表示装置等の使用時に、反射像の映り込みが気にならないようにする層のことである。防眩層は、具体的には、前記したハードコート層に微粒子等の添加や前記鋳型を押し当てて表面に突起を形成する方法などによって、層表面の算術平均粗さRaを0.1~1μmに調整した層であることが好ましい。
 また、前記防眩層の積分反射率に占める散乱反射率の割合(散乱反射比率)は2~60%であることが好ましい。前記範囲に散乱反射比率を微粒子等を用いて制御することで、上述したような透湿性の高い酢化度を有するセルロースアセテートフィルムと防眩層との層間密着性を向上させることができる。さらに好ましくは、前記散乱反射比率の割合が20~50%の範囲であればより密着性を良好にすることができる。
 なお、散乱反射比率は、コニカミノルタ(株)製、分光測色計CM-2500dを用いて、測定径φ8mm、観察視野2°の条件で、SCI(積分反射率)及びSCE(散乱反射率)を測定することによって求めることができる。
 〔導電層〕
 本実施形態では、光学フィルムの最表面に(例えばハードコート層上に)、導電層を形成してもよい。導電層は、少なくとも導電性繊維を含有し、バインダー、感光性化合物、更に必要に応じてその他の成分を含有してなることが望ましい。
 (導電性繊維)
 導電性繊維の構造としては、特に制限はなく、目的に応じて適宜選択することができるが、中実構造及び中空構造のいずれかであることが好ましい。
 ここで、中実構造の繊維をワイヤーと呼ぶことがあり、中空構造の繊維をチューブと呼ぶことがある。
 また、平均短軸長さが5nm~1,000nmであって、平均長軸長さが1μm~100μmの導電性繊維を「ナノワイヤー」と呼ぶことがある。
 また、平均短軸長さが1nm~1,000nm、平均長軸長さが0.1μm~1,000μmであって、中空構造を持つ導電性繊維を「ナノチューブ」と呼ぶことがある。
 導電性繊維の材料としては、導電性を有していれば特に制限はなく、目的に応じて適宜選択することができるが、金属及びカーボンの少なくともいずれかであることが好ましい。これらの中でも、導電性繊維は、金属ナノワイヤー、金属ナノチューブ、及びカーボンナノチューブの少なくともいずれかであることが好ましい。
 〈金属ナノワイヤー〉
 金属ナノワイヤーの材料としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、長周期律表(IUPAC1991)の第4周期、第5周期、及び第6周期からなる群から選ばれる少なくとも1種の金属が好ましく、第2族~第14族から選ばれる少なくとも1種の金属がより好ましく、第2族、第8族、第9族、第10族、第11族、第12族、第13族、及び第14族から選ばれる少なくとも1種の金属が更に好ましく、主成分として含むことが特に好ましい。
 上記金属としては、例えば、銅、銀、金、白金、パラジウム、ニッケル、錫、コバルト、ロジウム、イリジウム、鉄、ルテニウム、オスミウム、マンガン、モリブデン、タングステン、ニオブ、タンテル、チタン、ビスマス、アンチモン、鉛、又はこれらの合金などが挙げられる。これらの中でも、導電性に優れる点で、銀、及び銀との合金が好ましい。
 上記銀との合金で使用する金属としては、白金、オスミウム、パラジウム、イリジウムなどが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
 金属ナノワイヤーの形状としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、円柱状、直方体状、断面が多角形となる柱状など任意の形状をとることができる。高い透明性が必要とされる用途では、円柱状や断面の多角形の角が丸まっている断面形状であることが好ましい。金属ナノワイヤーの断面形状は、基材上に金属ナノワイヤー水分散液を塗布し、断面を透過型電子顕微鏡(TEM)で観察することにより調べることができる。
 金属ナノワイヤーの平均短軸長さ(「平均短軸径」、「平均直径」と称することがある)は、1nm~50nmであることが好ましい。上記平均短軸長さが、1nm未満であると、耐酸化性が悪化し、耐久性が悪くなることがあり、50nmを超えると、金属ナノワイヤー起因の散乱が生じ、十分な透明性を得ることができないことがある。なお、上記平均短軸長さは、10nm~40nmであることがより好ましく、15nm~35nmであることが更に好ましい。
 金属ナノワイヤーの平均短軸長さは、透過型電子顕微鏡(TEM;日本電子株式会社製、JEM-2000FX)を用い、300個の金属ナノワイヤーを観察し、その平均値から金属ナノワイヤーの平均短軸長さを求めた。なお、金属ナノワイヤーの短軸が円形でない場合の短軸長さは、最も長いものを短軸長さとした。
 金属ナノワイヤーの平均長軸長さ(「平均長さ」と称することがある)は、1μm~40μmであることが好ましい。上記平均長軸長さが、1μm未満であると、密なネットワークを形成することが難しく、十分な導電性を得ることができないことがあり、40μmを超えると、金属ナノワイヤーが長すぎて製造時に絡まり、製造過程で凝集物が生じてしまうことがある。なお、上記平均長軸長さは、3μm~35μmであることがより好ましく、5μm~30μmであることが更に好ましい。
 金属ナノワイヤーの平均長軸長さは、例えば透過型電子顕微鏡(TEM;日本電子株式会社製、JEM-2000FX)を用い、300個の金属ナノワイヤーを観察し、その平均値から金属ナノワイヤーの平均長軸長さを求めた。なお、金属ナノワイヤーが曲がっている場合、それを弧とする円を考慮し、その半径、及び曲率から算出される値を長軸長さとした。
 金属ナノワイヤーの製造方法としては、例えば特開2009-215594号公報、特開2009-242880号公報、特開2009-299162号公報、特開2010-84173号公報、特開2010-86714号公報に記載の方法を用いることができる。金属ナノワイヤーの製造方法は、特に制限はなく、いかなる方法で製造してもよいが、以下のようにハロゲン化合物と分散添加剤とを溶解した溶媒中で加熱しながら金属イオンを還元することによって製造することが好ましい。
 上記溶媒としては、親水性溶媒が好ましく、例えば、水、アルコール類、エーテル類、ケトン類などが挙げられ、これらは1種単独で使用してもよく、2種以上を併用してもよい。上記アルコール類としては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、エチレングリコールなどが挙げられる。上記エーテル類としては、例えば、ジオキサン、テトラヒドロフランなどが挙げられる。上記ケトン類としては、例えば、アセトンなどが挙げられる。
 上記加熱時の加熱温度は、250℃以下であることが好ましく、20℃~200℃であることがより好ましい。加熱温度が低くなるほど、核形成確率が下がり、加熱温度が20℃未満であると、金属ナノワイヤーが長くなりすぎて絡みやすくなり、分散安定性が悪くなることがある。一方、加熱温度が250℃を超えると、金属ナノワイヤーの断面の角が急峻になり、塗布膜評価での透過率が低くなることがある。なお、加熱温度は、30℃~180℃であることがより好ましく、40℃~170℃であることが更に好ましい。
 なお、必要に応じて、金属ナノワイヤーの形成過程で温度を変更してもよい。途中での温度変更により、金属ナノワイヤーの核形成の制御や再核発生の抑制、選択成長の促進による単分散性向上の効果を向上させることができる。
 上記加熱の際には、還元剤を添加して行うことが好ましい。還元剤としては、特に制限はなく、通常使用されるものの中から適宜選択することができる。例えば、水素化ホウ素金属塩、水素化アルミニウム塩、アルカノールアミン、脂肪族アミン、ヘテロ環式アミン、芳香族アミン、アラルキルアミン、アルコール、有機酸類、還元糖類、糖アルコール類、亜硫酸ナトリウム、ヒドラジン化合物、デキストリン、ハイドロキノン、ヒドロキシルアミン、エチレングリコール、グルタチオンなどが挙げられる。これらの中でも、還元糖類、その誘導体としての糖アルコール類、エチレングリコールが特に好ましい。
 上記水素化ホウ素金属塩としては、例えば、水素化ホウ素ナトリウム、水素化ホウ素カリウムなどが挙げられる。
 上記水素化アルミニウム塩としては、例えば、水素化アルミニウムリチウム、水素化アルミニウムカリウム、水素化アルミニウムセシウム、水素化アルミニウムベリリウム、水素化アルミニウムマグネシウム、水素化アルミニウムカルシウムなどが挙げられる。
 上記アルカノールアミンとしては、例えば、ジエチルアミノエタノール、エタノールアミン、プロパノールアミン、トリエタノールアミン、ジメチルアミノプロパノールなどが挙げられる。
 上記脂肪族アミンとしては、例えば、プロピルアミン、ブチルアミン、ジプロピレンアミン、エチレンジアミン、トリエチレンペンタミンなどが挙げられる。
 上記ヘテロ環式アミンとしては、例えば、ピペリジン、ピロリジン、Nメチルピロリジン、モルホリンなどが挙げられる。
 上記芳香族アミンとしては、例えば、アニリン、N-メチルアニリン、トルイジン、アニシジン、フェネチジンなどが挙げられる。
 上記アラルキルアミンとしては、例えば、ベンジルアミン、キシレンジアミン、N-メチルベンジルアミンなどが挙げられる。
 上記アルコールとしては、例えば、メタノール、エタノール、2-プロパノールなどが挙げられる。
 上記有機酸類としては、例えば、クエン酸、リンゴ酸、酒石酸、クエン酸、コハク酸、アスコルビン酸又はそれらの塩などが挙げられる。
 上記還元糖類としては、例えば、グルコース、ガラクトース、マンノース、フルクトース、スクロース、マルトース、ラフィノース、スタキオースなどが挙げられる。
 上記糖アルコール類としては、例えば、ソルビトールなどが挙げられる。
 上記還元剤によっては、機能として分散添加剤、溶媒としても働く場合があり、同様に好ましく用いることができる。
 上記金属ナノワイヤー製造の際には、分散添加剤と、ハロゲン化合物又はハロゲン化金属微粒子とを添加して行うことが好ましい。分散添加剤とハロゲン化合物との添加のタイミングは、還元剤の添加前でも添加後でもよく、金属イオンあるいはハロゲン化金属微粒子の添加前でも添加後でもよいが、単分散性のよりよい金属ナノワイヤーを得るためには、ハロゲン化合物の添加を2段階以上に分けることが好ましい。
 上記分散添加剤としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、アミノ基含有化合物、チオール基含有化合物、スルフィド基含有化合物、アミノ酸又はその誘導体、ペプチド化合物、多糖類、合成高分子、これらに由来するゲルなどが挙げられる。これらの中でも、ゼラチン、ポリビニルアルコール、メチルセルロース、ヒドロキシプロピルセルロース、ポリアルキレンアミン、ポリアクリル酸の部分アルキルエステル、ポリビニルピロリドン、ポリビニルピロリドン共重合体が特に好ましい。
 上記分散添加剤として使用可能な構造については、例えば、「顔料の事典」(伊藤征司郎編、株式会社朝倉書院発行、2000年)の記載を参照できる。
 また、使用する分散添加剤の種類によって、得られる金属ナノワイヤーの形状を変化させることもできる。
 上記ハロゲン化合物としては、臭素、塩素、ヨウ素を含有する化合物であれば特に制限はなく、目的に応じて適宜選択することができる。例えば、臭化ナトリウム、塩化ナトリウム、ヨウ化ナトリウム、ヨウ化カリウム、臭化カリウム、塩化カリウム、ヨウ化カリウム等のアルカリハライドや下記の分散添加剤と併用できる化合物が好ましい。上記ハロゲン化合物によっては、分散添加剤として機能するものがありうるが、同様に好ましく用いることができる。
 上記ハロゲン化合物の代替としてハロゲン化銀微粒子を使用してもよいし、ハロゲン化合物とハロゲン化銀微粒子を共に使用してもよい。
 上記分散剤とハロゲン化合物は同一物質で併用してもよい。上記分散剤とハロゲン化合物を併用した化合物としては、例えば、アミノ基と臭化物イオンを含むHTAB(ヘキサデシル-トリメチルアンモニウムブロミド)、アミノ基と塩化物イオンを含むHTAC(ヘキサデシル-トリメチルアンモニウムクロライド)、アミノ基と臭化物イオン又は塩化物イオンを含むドデシルトリメチルアンモニウムブロミド、ドデシルトリメチルアンモニウムクロリド、ステアリルトリメチルアンモニウムブロミド、ステアリルトリメチルアンモニウムクロリド、デシルトリメチルアンモニウムブロミド、デシルトリメチルアンモニウムクロリド、ジメチルジステアリルアンモニウムブロミド、ジメチルジステアリルアンモニウムクロリド、ジラウリルジメチルアンモニウムブロミド、ジラウリルジメチルアンモニウムクロリド、ジメチルジパルミチルアンモニウムブロミド、ジメチルジパルミチルアンモニウムクロリド、などが挙げられる。
 金属ナノワイヤーを形成した後、限外ろ過、透析、ゲルろ過、デカンテーション、遠心分離などの手法により、脱塩処理を行ってもよい。
 〈金属ナノチューブ〉
 金属ナノチューブの材料としては、特に制限はなく、いかなる金属であってもよく、例えば、上記した金属ナノワイヤーの材料などを使用することができる。
 金属ナノチューブの形状としては、単層であってもよく、多層であってもよいが、導電性及び熱伝導性に優れる点で単層であることが好ましい。
 金属ナノチューブの厚み(外径と内径との差)は、3nm~80nmであることが好ましい。上記厚みが、3nm未満であると、耐酸化性が悪化し、耐久性が悪くなることがあり、80nmを超えると、金属ナノチューブ起因の散乱が生じることがある。なお、上記厚みは、3nm~30nmであることがより好ましい。
 金属ナノチューブの平均長軸長さは、1μm~40μmであることが好ましく、3μm~35μmであることがより好ましく、5μm~30μmであることが更に好ましい。
 上記金属ナノチューブの製造方法としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、米国出願公開2005/0056118号明細書等に記載の方法などを用いることができる。
 〈カーボンナノチューブ〉
 カーボンナノチューブ(CNT)は、グラファイト状炭素原子面(グラフェンシート)が、単層あるいは多層の同軸管状になった物質である。単層のカーボンナノチューブはシングルウォールナノチューブ(SWNT)、多層のカーボンナノチューブはマルチウォールナノチューブ(MWNT)と呼ばれ、特に、2層のカーボンナノチューブはダブルウォールナノチューブ(DWNT)とも呼ばれる。本実施形態で用いられる導電性繊維において、カーボンナノチューブは、単層であってもよく、多層であってもよいが、導電性及び熱伝導性に優れる点で単層であることが好ましい。
 カーボンナノチューブの製造方法としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、二酸化炭素の接触水素還元、アーク放電法、レーザー蒸発法、熱CVD法、プラズマCVD法、気相成長法、一酸化炭素を高温高圧化で鉄触媒と共に反応させて気相で成長させるHiPco法(high-pressure  carbon  monoxide  process )等の公知の手段を用いることができる。
 また、これらの方法で得られたカーボンナノチューブは、洗浄、遠心分離、ろ過、酸化、クロマトグラフ等の方法により、副生成物や触媒金属等の残留物を除去することが、高純度化されたカーボンナノチューブを得ることができる点で好ましい。
 上記導電性繊維のアスペクト比は、10以上であることが好ましい。上記アスペクト比とは、一般的には繊維状の物質の長辺と短辺との比(平均長軸長さ/平均短軸長さの比)を意味する。
 アスペクト比の測定方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、電子顕微鏡等により測定する方法などが挙げられる。
 導電性繊維のアスペクト比を電子顕微鏡で測定する場合、導電性繊維のアスペクト比が10以上であるか否かは、電子顕微鏡の1視野で確認できればよい。また、導電性繊維の長軸長さと短軸長さとを各々別に測定することによって、導電性繊維全体のアスペクト比を見積もることができる。
 なお、導電性繊維がチューブ状の場合、アスペクト比を算出するための直径としては、該チューブの外径を用いる。
 導電性繊維のアスペクト比は、10以上であれば特に制限はなく、目的に応じて適宜選択することができるが、50~1,000,000であることが好ましい。上記アスペクト比が10未満であると、導電性繊維によるネットワーク形成がなされず、導電性が十分取れないことがあり、1,000,000を超えると、導電性繊維の形成時やその後の取り扱いにおいて、成膜前に導電性繊維が絡まり凝集するため、安定な液が得られないことがある。なお、上記アスペクト比は、100~1,000,000であることがより好ましい。
 全導電性組成物中における、上記アスペクト比が10以上の導電性繊維の割合(比率)は、体積比で50%以上であることが好ましい。上記比率が50%未満であると、導電性に寄与する導電性物質が減少して導電性が低下してしまうことがあり、同時に密なネットワークを形成できないために電圧集中が生じ、耐久性が低下してしまうことがある。また、導電性繊維以外の形状の粒子は、導電性に大きく寄与しない上に吸収を持つため、好ましくなく、特に金属の場合で、球形などのプラズモン吸収が強い場合には、透明度が悪化してしまうことがある。なお、上記比率は、60%以上がより好ましく、75%以上が特に好ましい。
 ここで、上記比率は、例えば、導電性繊維が銀ナノワイヤーである場合には、銀ナノワイヤー水分散液をろ過して、銀ナノワイヤーと、それ以外の粒子とを分離し、ICP発光分析装置を用いてろ紙に残っている銀の量と、ろ紙を透過した銀の量とを各々測定することで、導電性繊維の比率を求めることができる。ろ紙に残っている導電性繊維をTEMで観察し、300個の導電性繊維の短軸長さを観察し、その分布を調べることにより、短軸長さが200nm以下であり、かつ長軸長さが1μm以上である導電性繊維であることを確認する。なお、ろ紙は、上記サイズの導電性繊維以外の粒子の最長軸を計測し、その最長軸の2倍以上であり、かつ導電性繊維の長軸の最短長以下の長さの粒子を通過させるものを用いることが好ましい。
 ここで、上記導電性繊維の平均短軸長さ及び平均長軸長さは、例えば、透過型電子顕微鏡(TEM)や光学顕微鏡を用い、TEM像や光学顕微鏡像を観察することにより求めることができる。本実施形態においては、導電性繊維の平均短軸長さ及び平均長軸長さは、透過型電子顕微鏡(TEM)により300個の導電性繊維を観察し、その平均値から求めたものである。
 〈バインダー〉
 上記バインダーとしては、有機高分子重合体であって、分子(好ましくは、アクリル系共重合体を主鎖とする分子)中に少なくとも1つのアルカリ可溶性を促進する基(例えばカルボキシル基、リン酸基、スルホン酸基など)を有するアルカリ可溶性樹脂の中から適宜選択することができる。
 これらの中でも、有機溶剤に可溶で弱アルカリ水溶液により現像可能なものが好ましく、また、酸解離性基を有し、酸の作用により酸解離性基が解離した時にアルカリ可溶となるものが特に好ましい。なお、酸解離性基とは、酸の存在下で解離することが可能な官能基を表す。
 上記バインダーの製造には、例えば公知のラジカル重合法による方法を適用することができる。上記ラジカル重合法でアルカリ可溶性樹脂を製造する際の温度、圧力、ラジカル開始剤の種類及びその量、溶媒の種類等々の重合条件は、当業者において容易に設定可能であり、実験的に条件を定めることができる。
 線状の上記有機高分子重合体としては、側鎖にカルボン酸を有するポリマー(酸性基を有する感光性樹脂)が好ましい。
 側鎖にカルボン酸を有するポリマーとしては、例えば特開昭59-44615号、特公昭54-34327号、特公昭58-12577号、特公昭54-25957号、特開昭59-53836号、特開昭59-71048号の各公報に記載されているような、メタクリル酸共重合体、アクリル酸共重合体、イタコン酸共重合体、クロトン酸共重合体、マレイン酸共重合体、部分エステル化マレイン酸共重合体等、並びに側鎖にカルボン酸を有する酸性セルロース誘導体、水酸基を有するポリマーに酸無水物を付加させたもの等であり、更に側鎖に(メタ)アクリロイル基を有する高分子重合体も好ましいものとして挙げられる。
 これらの中でも、ベンジル(メタ)アクリレート/(メタ)アクリル酸共重合体、ベンジル(メタ)アクリレート/(メタ)アクリル酸/他のモノマーからなる多元共重合体が特に好ましい。
 更に、側鎖に(メタ)アクリロイル基を有する高分子重合体や(メタ)アクリル酸/グリシジル(メタ)アクリレート/他のモノマーからなる多元共重合体も有用なものとして挙げられる。該ポリマーは任意の量で混合して用いることができる。
 上記以外にも、特開平7-140654号公報に記載の、2-ヒドロキシプロピル(メタ)アクリレート/ポリスチレンマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体、2-ヒドロキシ-3-フェノキシプロピルアクリレート/ポリメチルメタクリレートマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体、2-ヒドロキシエチルメタクリレート/ポリスチレンマクロモノマー/メチルメタクリレート/メタクリル酸共重合体、2-ヒドロキシエチルメタクリレート/ポリスチレンマクロモノマー/ベンジルメタクレート/メタクリル酸共重合体、などが挙げられる。
 上記アルカリ可溶性樹脂における具体的な構成単位としては、(メタ)アクリル酸と、該(メタ)アクリル酸と共重合可能な他の単量体とが好適である。上記(メタ)アクリル酸と共重合可能な他の単量体としては、例えばアルキル(メタ)アクリレート、アリール(メタ)アクリレート、ビニル化合物などが挙げられる。これらは、アルキル基及びアリール基の水素原子は、置換基で置換されていてもよい。
 上記アルキル(メタ)アクリレート又はアリール(メタ)アクリレートとしては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、トリル(メタ)アクリレート、ナフチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 上記ビニル化合物としては、例えば、スチレン、α-メチルスチレン、ビニルトルエン、グリシジルメタクリレート、アクリロニトリル、ビニルアセテート、N-ビニルピロリドン、テトラヒドロフルフリルメタクリレート、ポリスチレンマクロモノマー、ポリメチルメタクリレートマクロモノマー、CH2=CR12、CH2=C(R1)(COOR3)、などが挙げられる。ただし、R1は水素原子又は炭素数1~5のアルキル基を表し、R2は炭素数6~10の芳香族炭化水素環を表し、R3は炭素数1~8のアルキル基又は炭素数6~12のアラルキル基を表す。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 上記バインダーの重量平均分子量は、アルカリ溶解速度、膜物性等の点から、1,000~500,000が好ましく、3,000~300,000がより好ましく、5,000~200,000が更に好ましい。なお、上記重量平均分子量は、ゲルパーミエイションクロマトグラフィー法により測定し、標準ポリスチレン検量線を用いて求めることができる。
 上記バインダーの含有量は、上記導電層全体に対し25質量%~80質量%であることが好ましく、30質量%~75質量%がより好ましく、40質量%~70質量%が更に好ましい。上記含有量の範囲にあると、現像性と金属ナノワイヤーの導電性の両立が図れる。
 〈感光性化合物〉
 上記感光性化合物とは、露光により画像を形成する機能を導電層に付与するか、又はそのきっかけを与える化合物を意味する。具体的には、(1)露光による酸を発生する化合物(光酸発生剤)、(2)感光性のキノンジアジド化合物、(3)光ラジカル発生剤等を挙げることができる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。また、感度調整のために、増感剤などを併用して用いることもできる。
 (光酸発生剤)
 光酸発生剤としては、光カチオン重合の光開始剤、光ラジカル重合の光開始剤、色素類の光消色剤、光変色剤、あるいはマイクロレジスト等に使用されている活性光線又は放射線の照射により酸を発生する公知の化合物及びそれらの混合物を適宜に選択して使用することができる。
 光酸発生剤には特に制限はなく、目的に応じて適宜選択することができる。例えば、ジアゾニウム塩、ホスホニウム塩、スルホニウム塩、ヨードニウム塩、イミドスルホネート、オキシムスルホネート、ジアゾジスルホン、ジスルホン、o-ニトロベンジルスルホネートなどが挙げられる。これらの中でも、スルホン酸を発生する化合物であるイミドスルホネート、オキシムスルホネート、o-ニトロベンジルスルホネートが特に好ましい。
 また、活性光線又は放射線の照射により酸を発生する基、あるいは化合物を樹脂の主鎖又は側鎖に導入した化合物、例えば、米国特許第3,849,137号明細書、独国特許第3914407号明細書、特開昭63-26653号、特開昭55-164824号、特開昭62-69263号、特開昭63-146038号、特開昭63-163452号、特開昭62-153853号、特開昭63-146029号の各公報等に記載の化合物を用いることができる。更に、米国特許第3,779,778号、欧州特許第126,712号等の各明細書に記載の光により酸を発生する化合物も使用することができる。
 (キノンジアジド化合物)
 上記キノンジアジド化合物は、例えば、1,2-キノンジアジドスルホニルクロリド類、ヒドロキシ化合物、アミノ化合物などを脱塩酸剤の存在下で縮合反応させることで得られる。
 上記光酸発生剤、及び上記キノンジアジド化合物の配合量は、露光部と未露光部の溶解速度差と、感度の許容幅の点から、上記バインダーの総量100質量部に対して、1質量部~100質量部であることが好ましく、3質量部~80質量部がより好ましい。なお、上記光酸発生剤と、上記キノンジアジド化合物とを併用してもよい。
 本実施形態においては、上記光酸発生剤の中でもスルホン酸を発生する化合物が好ましく、下記のようなオキシムスルホネート化合物が高感度である観点から特に好ましい。
 〔粘着剤層〕
 本実施形態の視認側の偏光板の最表面に(例えばハードコート層上に)粘着剤層を介してタッチパネルを接着することにより、タッチパネル表示装置を構成することもできる。上記粘着剤層としては、特に制限なく、公知の粘着剤を使用できる。例えば、アクリル系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ゴム系粘着剤、ポリエステル系粘着剤などを使用できるが、粘着力や貯蔵弾性率の制御が比較的容易なアクリル系粘着剤を使用することが特に好ましい。
 アクリル系粘着剤としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸2-エチルブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸デシル等の炭素数1~20アクリル酸アルキルエステルの一種または二種以上と、前記アクリル酸アルキルエステルと共重合可能な(メタ)アクリル酸、イタコン酸、マレイン酸、無水マレイン酸、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸4-ヒドロキシブチル等の官能基モノマーとの共重合体に、イソシアネート系架橋剤、エポキシ系架橋剤、アジリジン系架橋剤、金属キレート系架橋剤等の架橋剤を反応させたものが挙げられる。
 粘着剤層の厚さは、1μm~13μmであることが好ましい。粘着剤層の厚さが1μm以上の場合、十分な粘着力が得られ、13μm以下の場合、抜き加工時や裁断加工時に糊のはみ出しを抑制することができ、かつ高い鉛筆硬度が維持される。さらに好ましい粘着剤層の厚さは、3~12μmである。
 粘着剤層の貯蔵弾性率としては、0℃における貯蔵弾性率が1.0×106~1.0×108Paであることが好ましい。粘着剤層の貯蔵弾性率が1.0×106Pa以上の場合、十分な抜き加工適性、裁断加工適性及び高い鉛筆硬度が得られ、1.0×108Pa以下の場合、十分な粘着力が得られる。好ましい粘着剤層の貯蔵弾性率は、1.5×106~1.0×107Paである。
 ハードコート層上に粘着剤層を設ける方法としては、別途、剥離シートに粘着剤含有組成物を塗布し、乾燥させて作製した粘着剤層に、ハードコートフィルム(フィルム基材+ハードコート層)を積層する方法が挙げられる。上記粘着剤含有組成物の塗布方法は、例えば、バーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法、カーテンコート法などの従来公知の方法が挙げられる。また、上記粘着剤含有組成物をハードコートフィルムの表面に直接塗布し、乾燥させることで、粘着剤層を積層するようにしてもよい。
 上記の剥離シートは、種々の剥離シートを使用できるが、代表的には剥離性を表面に有する基材シートから構成される。基材シートとしては、ポリエステル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリカーボネート樹脂などのフィルムや、これらのフィルムに填料などの充填剤を配合したフィルムや合成紙などが挙げられる。また、グラシン紙、クレーコート紙、上質紙などの紙基材が挙げられる。
 基材シートの表面に剥離性を持たせるには、その表面に熱硬化性シリコーン樹脂や、紫外線硬化型シリコーン樹脂等の剥離剤を塗布等により付着させればよい。剥離剤の塗布量は、0.03~3.0g/m2が好ましい。剥離シートは、剥離剤を有する表面を粘着剤層に接して積層される。
 〔実施例〕
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。
 <保護フィルムの作製>
 <セルロースエステルフィルムCE1の作製>
 〈微粒子分散液1の調製〉
 シリカ微粒子(アエロジル R972V 日本アエロジル(株)製)
                             11質量部
 エタノール                       89質量部
 以上をディゾルバーで50分間攪拌混合した後、マントンゴーリンで分散を行い、微粒子分散液1を調製した。
 〈微粒子添加液1の調製〉
 メチレンクロライドを入れた溶解タンクに十分攪拌しながら、微粒子分散液1をゆっくりと添加した。更に、二次粒子の粒径が所定の大きさとなるようにアトライターにて分散を行った。これを日本精線(株)製のファインメットNFで濾過し、微粒子添加液1を調製した。
 メチレンクロライド                   99質量部
 微粒子分散液1                      5質量部
 〈ドープの調製〉
 まず、加圧溶解タンクにメチレンクロライドとエタノールを添加した。次に、溶剤の入った加圧溶解タンクにセルロースアセテートを攪拌しながら投入した。これを加熱し、攪拌しながら、完全に溶解した。これを安積濾紙(株)製の安積濾紙No.244を使用して濾過し、主ドープを調製した。
 メチレンクロライド                  340質量部
 エタノール                       64質量部
 セルロースジアセテート(平均アセチル基置換度2.41、Mw30万)
                            100質量部
 ポリエステル系化合物AP-16              6質量部
 糖エステル化合物1-3                  6質量部
 微粒子添加液1                      1質量部
 その後、上記の比率となるように、主ドープと各材料とを密閉容器に投入し、攪拌しながら溶解してドープを調製した。
 〈製膜〉
 次いで、無端ベルト流延装置を用い、ドープを温度33℃、1500mm幅でステンレスベルト支持体上に均一に流延した。ステンレスベルトの温度は30℃に制御した。そして、ステンレスベルト上で、流延(キャスト)したフィルム中の残留溶媒量が75%になるまで溶媒を蒸発させ、その後、剥離張力130N/mで、ステンレスベルト上からウェブを剥離した。
 剥離したウェブ(セルロースエステルフィルム)を、160℃の熱をかけながらテンターを用いて幅方向に10%延伸した。延伸開始時の残留溶媒は15%であった。次いで、乾燥ゾーンを多数のロールで搬送させながら乾燥を終了させた。乾燥温度は130℃で、搬送張力は100N/mとした。乾燥後、フィルムを1.5m幅にスリットし、フィルム両端に幅10mm、高さ10μmのナーリング加工を施し、ロール状に巻き取り、乾燥膜厚30μmのセルロースエステルフィルムCE1を得た。セルロースエステルフィルムCE1の巻長は、5200mであった。
 セルロースエステルフィルムCE1の面内位相差値Roおよび厚み方向の位相差値Rthを、自動複屈折率計アクソスキャン(Axo  Scan  Mueller Matrix Polarimeter:アクソメトリックス社製)を用いて測定したところ、Ro=1nm、Rth=4nmであった。
 <セルロースエステルフィルムCE2~CE3の作製>
 表1に示す膜厚に変更して製膜した以外は、セルロースエステルフィルムCE1と同様の方法でセルロースエステルフィルムCE2~CE3を製膜した。
 <セルロースエステルフィルムCE4の用意>
 市販のコニカミノルタ株式会社製のセルロースエステルフィルム(KC2CT1、膜厚20μm)を追加延伸することで、膜厚13μmのセルロースエステルフィルムCE4を用意した。
 <COPフィルム1の製膜>
 〈脂環式構造を有する重合体樹脂の合成〉
 エチレン雰囲気下、容量1.6lのオートクレーブにフェニルノルボルネン濃度が20mol/lで、総液量が640mlとなるようにトルエンとフェニルノルボルネン-トルエン溶液を入れた。メチルアルミノキサン(アルベマール社製、MAO20%トルエン溶液)をAl基準で5.88mmol、メチレン(シクロペンタジエニル)(テトラメチルシクロペンタジエニル)ジルコニウムジクロリド1.5μmolを添加し、エチレンを導入して圧力を0.2MPaに保持しながら、80℃で60分間反応させた。
 反応終了後、放冷しながらエチレンを脱圧し、系内を窒素で置換した。その後、吸着水分量を10質量%に調整したシリカ(富士シリシア社製、グレード:G-3粒径:50μm)を3.0g加えて1時間反応させた。その反応液を濾紙(5C、90mm)とセライト(和光純薬工業社)をセットした加圧ろ過器(アドバンテック東洋株式会社、型式KST-90-UH)に入れ、窒素で加圧ろ過して重合液を回収した。その重合液を5倍量のアセトン中に少量ずつ滴下して析出させ、脂環式構造を有する重合体樹脂COP1を得た。COP1の重量平均分子量は142000であり、またガラス転移温度は140℃であった。
 上記で合成した脂環式構造を有する重合体樹脂COP1を、空気を流通させた熱風乾燥機を用いて70℃で2時間乾燥して水分を除去した後に、65mmφのスクリューを備えた樹脂溶融混練機を有するTダイ式フィルム溶融押し出し成形機(Tダイ幅500mm)を使用し、溶融樹脂温度240℃、Tダイ温度240℃の成形条件にて、膜厚100μmのCOPフィルムを押し出し成形した。
 次いで、剥離したCOPフィルムを、200℃の熱をかけながらテンターを用いて幅手方向に90%延伸した。次いで、乾燥ゾーンを多数のローラで搬送させながら乾燥を終了させた。乾燥温度は130℃で、搬送張力は100N/mとした。乾燥後、1.5m幅にスリットし、フィルム両端に幅10mm、高さ10μmのナーリング加工を施し、ロール状に巻き取り、乾燥膜厚8μmのCOPフィルム1を得た。COPフィルム1の巻長は、5000mであった。
 COPフィルム1の面内位相差値Roおよび厚み方向の位相差値Rthを、自動複屈折率計アクソスキャン(Axo  Scan  Mueller Matrix Polarimeter:アクソメトリックス社製)を用いて測定したところ、Ro=0nm、Rth=2nmであった。
 <COPフィルム2の製膜>
 JSR(株)製のアートン(G7810)を用い、添加剤としてポリエステル系化合物AP-15を加えた以外は、セルロースエステルフィルムCE1と同様にして、COPフィルム2を作製した。
 COPフィルム2の面内位相差値Roおよび厚み方向の位相差値Rthを、自動複屈折率計アクソスキャン(Axo  Scan  Mueller Matrix Polarimeter:アクソメトリックス社製)を用いて測定したところ、Ro=2nm、Rth=3nmであった。
 <粘性の測定>
 上記のようにして用意した各光学フィルム(セルロースエステルフィルムCE1~CE4、COPフィルム1~2)の粘性を、日立ハイテクサイエンス製の粘弾性測定装置(DMA7100)を用いて測定した。すなわち、上記装置を使用し、各光学フィルムにおいて、-40℃~90℃の温度範囲でのLog(tanδ)の最小値を測定した。
 <偏光子の作製>
 クラレ製PVAフィルム(厚み20μm)を用いて、ヨウ素濃度0.3wt%およびKI含有の染色浴(35℃)にて、延伸倍率2倍で延伸し、染色した後、ほう酸の入った架橋浴(50℃)にて、2.5倍延伸し、トータル延伸倍率を5倍として延伸した(厚み7μm)。その後、60℃の乾燥機で上記PVAフィルムを乾燥し、偏光子1を作製した。また、トータル延伸倍率を5.7倍として延伸した以外は、上記と同様の方法で、厚み5μmの偏光子2も作製した。
 <偏光板の作製>
 表1に示す保護フィルムおよび対向フィルムの組み合わせで、これらを偏光子に接着剤を用いて貼り合わせ、偏光板1~6を作製した。
 <評価>
 (クラック)
 上記で作製した偏光板1~6を、円形状(長方形以外の異形形状)に打ち抜いた後、偏光板にクラックが入っているかを顕微鏡で観察した。また、上記で作製した偏光板1~6を、-30℃と80℃との間で温度変化させ、この温度変化を200回繰り返して行った後、偏光板にクラックが入っているかを顕微鏡で観察した。そして、以下の評価基準に基づいて、クラックについて評価した。
  《評価基準》
  ○:打ち抜き時および温度変化時の双方において、クラックがほとんど見られなかった。
  ×:打ち抜き時および温度変化時の少なくとも一方において、クラックの発生が見られた。
 (輝度)
 〈IPS型液晶表示装置の作製〉
 図7で示した製造方法により、ストライプ状の画素電極と、ストライプ状の共通電極とを有するIPSセルを作製した。その後、表1で示した偏光板1~6を、IPSセルの視認側およびバックライト側に接着剤で接着して、IPS型の液晶表示装置1~6を作製した。
 次に、コニカミノルタ(株)製の分光放射輝度計CS2000を用いて、上記で作製したIPS型の液晶表示装置の輝度を測定し、以下の基準に基づいて評価した。
  《評価基準》
  ○:輝度値が、基準値以上である。
  △:輝度値が、基準値の90%以上で、かつ、基準値未満である。
  ×:輝度値が、基準値の90%未満である。
 表1は、偏光板1~6についての評価の結果を示しており、表2は、液晶表示装置1~6についての評価の結果を示している。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 表1の結果より、偏光板1~4では、クラックの発生がないのに対して、偏光板5および6ではクラックが発生している。これは、偏光板1~4では、偏光板5および6とは異なり、厚みが20μm以上65μm以下の薄型であるため、打ち抜きに対してクラックが発生しにくく、また、Log(tanδ)の値が-1.8以上であり、温度変化による粘性の変化が小さいので、温度変化によってクラックが発生しにくくなっているためと考えられる。
 また、表2より、液晶表示装置1~6は全て、輝度評価が良好な結果となっている。これは、IPSセルが、ストライプ状の画素電極とストライプ状の共通電極とを有していることにより、高透過率のIPSセルを実現できているためと考えられる。
 以上で説明した本実施形態の異形表示装置は、以下のように表現することができる。
 1.表示画面が、長方形および正方形とは異なる形状である異形表示装置であって、
 IPSセルと、前記IPSセルを両側から挟み込む各偏光板とを備え、
 前記IPSセルは、
 1画素の表示領域内でストライプ状に位置する画素電極と、
 前記画素電極と交互に並ぶストライプ状の共通電極とを有しており、
 前記各偏光板の厚みは、それぞれ20μm以上65μm以下であり、
 前記各偏光板は、
 偏光子と、前記偏光子を両側から挟み込む各光学フィルムとを有しており、
 損失弾性率と貯蔵弾性率との比を示す損失正接をtanδとしたとき、
 前記各偏光板の各光学フィルムにおいて、-40℃から100℃の間でのLog(tanδ)の値が、-1.8以上であることを特徴とする異形表示装置。
 2.前記各偏光板の各光学フィルムは、それぞれ、セルロースエステル系樹脂を含むことを特徴とする前記1に記載の異形表示装置。
 3.前記各偏光板の各光学フィルムは、末端封止したポリエステルを可塑剤として含むことを特徴とする前記1または2に記載の異形表示装置。
 4.前記IPSセルは、
 1画素の表示領域内でストライプ状に位置するパッシベーション膜と、
 前記パッシベーション膜を支持する下地層とをさらに有しており、
 前記画素電極は、前記パッシベーション膜の上に位置しており、
 前記共通電極は、前記下地層上で、かつ、隣り合う前記パッシベーション膜の間に位置していることを特徴とする前記1から3のいずれかに記載の異形表示装置。
 本発明は、表示画面が異形形状の表示装置に利用可能である。
   1   液晶表示装置(異形表示装置)
   1a  表示画面
   2   IPSセル
   3   偏光板
   4   偏光板
  11   偏光子
  12   保護フィルム(光学フィルム)
  13   対向フィルム(光学フィルム)
  21   偏光子
  22   保護フィルム(光学フィルム)
  23   対向フィルム(光学フィルム)
 107   有機パッシベーション膜(下地層)
 108   共通電極
 109   パッシベーション膜
 110   画素電極
   P   表示領域

Claims (4)

  1.  表示画面が、長方形および正方形とは異なる形状である異形表示装置であって、
     IPSセルと、前記IPSセルを両側から挟み込む各偏光板とを備え、
     前記IPSセルは、
     1画素の表示領域内でストライプ状に位置する画素電極と、
     前記画素電極と交互に並ぶストライプ状の共通電極とを有しており、
     前記各偏光板の厚みは、それぞれ20μm以上65μm以下であり、
     前記各偏光板は、
     偏光子と、前記偏光子を両側から挟み込む各光学フィルムとを有しており、
     損失弾性率と貯蔵弾性率との比を示す損失正接をtanδとしたとき、
     前記各偏光板の各光学フィルムにおいて、-40℃から100℃の間でのLog(tanδ)の値が、-1.8以上である、異形表示装置。
  2.  前記各偏光板の各光学フィルムは、それぞれ、セルロースエステル系樹脂を含む、請求項1に記載の異形表示装置。
  3.  前記各偏光板の各光学フィルムは、末端封止したポリエステルを可塑剤として含む、請求項1または2に記載の異形表示装置。
  4.  前記IPSセルは、
     1画素の表示領域内でストライプ状に位置するパッシベーション膜と、
     前記パッシベーション膜を支持する下地層とをさらに有しており、
     前記画素電極は、前記パッシベーション膜の上に位置しており、
     前記共通電極は、前記下地層上で、かつ、隣り合う前記パッシベーション膜の間に位置している、請求項1から3のいずれかに記載の異形表示装置。
PCT/JP2016/086941 2015-12-16 2016-12-12 異形表示装置 WO2017104623A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187013405A KR102036468B1 (ko) 2015-12-16 2016-12-12 이형 표시 장치
JP2017556048A JPWO2017104623A1 (ja) 2015-12-16 2016-12-12 異形表示装置
CN201680072672.0A CN108369356A (zh) 2015-12-16 2016-12-12 异形显示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015245221 2015-12-16
JP2015-245221 2015-12-16

Publications (1)

Publication Number Publication Date
WO2017104623A1 true WO2017104623A1 (ja) 2017-06-22

Family

ID=59056625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086941 WO2017104623A1 (ja) 2015-12-16 2016-12-12 異形表示装置

Country Status (4)

Country Link
JP (1) JPWO2017104623A1 (ja)
KR (1) KR102036468B1 (ja)
CN (1) CN108369356A (ja)
WO (1) WO2017104623A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019097960A1 (ja) * 2017-11-17 2019-05-23 富士フイルム株式会社 液晶表示装置、偏光板および画像表示装置
KR20200100202A (ko) * 2018-03-30 2020-08-25 닛토덴코 가부시키가이샤 점착제층을 구비한 편광 필름 및 화상 표시 장치
US11096271B1 (en) * 2020-04-09 2021-08-17 Raytheon Company Double-sided, high-density network fabrication

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7387361B2 (ja) * 2019-09-27 2023-11-28 日東電工株式会社 光学積層体および画像表示装置
CN110728915B (zh) * 2019-10-31 2021-12-31 武汉天马微电子有限公司 可卷曲显示装置及其驱动方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139735A (ja) * 2000-10-31 2002-05-17 Fujitsu Ltd 液晶表示パネル及びその開発方法
WO2011083690A1 (ja) * 2010-01-08 2011-07-14 コニカミノルタオプト株式会社 ハードコートフィルム、偏光板及び液晶表示装置
JP2013127570A (ja) * 2011-12-19 2013-06-27 Konica Minolta Advanced Layers Inc 偏光板およびこれを用いた表示装置
JP2014067045A (ja) * 2008-05-11 2014-04-17 Nlt Technologies Ltd 非矩形状の画素アレイ及び該アレイを備える表示装置
WO2015005398A1 (ja) * 2013-07-09 2015-01-15 富士フイルム株式会社 セルロースアシレートフィルム、それを用いた偏光板および液晶表示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103559838B (zh) * 2008-05-11 2016-03-23 Nlt科技股份有限公司 非矩形的像素阵列及具有该阵列的显示装置
EP2341112B1 (en) * 2008-10-15 2014-09-03 Mitsubishi Plastics, Inc. Transparent adhesive sheet and image display device
JPWO2012073692A1 (ja) * 2010-11-29 2014-05-19 コニカミノルタ株式会社 セルロースエステルフィルム、その製造方法、及びそれを用いた偏光板
CN104311853B (zh) * 2011-03-29 2018-05-25 可乐丽股份有限公司 聚乙烯醇系聚合物薄膜及其制造方法
CN103018986B (zh) * 2012-11-27 2015-03-11 京东方科技集团股份有限公司 阵列基板及其制备和驱动方法、液晶显示面板
JP2015114377A (ja) 2013-12-09 2015-06-22 株式会社ジャパンディスプレイ 液晶表示装置
KR20160135199A (ko) * 2014-03-18 2016-11-25 소켄 케미칼 앤드 엔지니어링 캄파니, 리미티드 편광판용 점착제 조성물, 점착제층, 점착 시트 및 점착제층 부착 편광판

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139735A (ja) * 2000-10-31 2002-05-17 Fujitsu Ltd 液晶表示パネル及びその開発方法
JP2014067045A (ja) * 2008-05-11 2014-04-17 Nlt Technologies Ltd 非矩形状の画素アレイ及び該アレイを備える表示装置
WO2011083690A1 (ja) * 2010-01-08 2011-07-14 コニカミノルタオプト株式会社 ハードコートフィルム、偏光板及び液晶表示装置
JP2013127570A (ja) * 2011-12-19 2013-06-27 Konica Minolta Advanced Layers Inc 偏光板およびこれを用いた表示装置
WO2015005398A1 (ja) * 2013-07-09 2015-01-15 富士フイルム株式会社 セルロースアシレートフィルム、それを用いた偏光板および液晶表示装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019097960A1 (ja) * 2017-11-17 2019-05-23 富士フイルム株式会社 液晶表示装置、偏光板および画像表示装置
JPWO2019097960A1 (ja) * 2017-11-17 2020-11-19 富士フイルム株式会社 液晶表示装置、偏光板および画像表示装置
KR20200100202A (ko) * 2018-03-30 2020-08-25 닛토덴코 가부시키가이샤 점착제층을 구비한 편광 필름 및 화상 표시 장치
US11169312B2 (en) 2018-03-30 2021-11-09 Nitto Denko Corporation Pressure-sensitive-adhesive-layer-attached polarizing film, and image display device
KR102343039B1 (ko) * 2018-03-30 2021-12-24 닛토덴코 가부시키가이샤 점착제층을 구비한 편광 필름 및 화상 표시 장치
US11096271B1 (en) * 2020-04-09 2021-08-17 Raytheon Company Double-sided, high-density network fabrication
US11317505B2 (en) 2020-04-09 2022-04-26 Raytheon Company Double-sided, high-density network fabrication

Also Published As

Publication number Publication date
JPWO2017104623A1 (ja) 2018-10-04
KR20180069015A (ko) 2018-06-22
CN108369356A (zh) 2018-08-03
KR102036468B1 (ko) 2019-10-24

Similar Documents

Publication Publication Date Title
JP5884915B2 (ja) タッチパネル付き表示装置
JP5831559B2 (ja) タッチパネル付き液晶表示装置
WO2017104623A1 (ja) 異形表示装置
JP5835358B2 (ja) タッチパネル付き液晶表示装置
JP5954427B2 (ja) タッチパネル付き表示装置
KR101618423B1 (ko) 방현성 필름, 그 제조 방법, 편광판, 화상 표시 장치 및 터치 패널용 부재
JP5958550B2 (ja) タッチパネル付き表示装置
WO2011114884A1 (ja) ハードコートフィルム、その製造方法、偏光板、及び液晶表示装置
JP5983758B2 (ja) タッチパネル付き表示装置
WO2012035849A1 (ja) 防眩性フィルム、防眩性フィルムの製造方法、偏光板及び液晶表示装置
KR20130122964A (ko) 방현성 필름, 방현성 필름의 제조 방법, 방현성 반사 방지 필름, 편광판 및 화상 표시 장치
JP5996163B2 (ja) 光学フィルムの製造方法、偏光板及び画像表示装置
WO2012073437A1 (ja) 光学フィルム、画像表示装置及びタッチパネルを含む画像表示装置
WO2012026192A1 (ja) ハードコートフィルム、偏光板、及び液晶表示装置
WO2010150577A1 (ja) 偏光板、及び液晶表示装置
JP2006251163A (ja) 反射防止フィルム、偏光板及びこれらを用いた画像表示装置
JP2012128064A (ja) 反射防止フィルム、偏光板、及び画像表示装置
JP6048506B2 (ja) 光学フィルム
JP2008003359A (ja) 反射防止フィルム、偏光板、及び液晶表示装置
JP2014061643A (ja) 光学フィルムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875600

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017556048

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187013405

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875600

Country of ref document: EP

Kind code of ref document: A1