WO2017104498A1 - 犠牲陽極アセンブリ、犠牲陽極アセンブリの余命予測診断システム及びこれらを備えるポンプ - Google Patents

犠牲陽極アセンブリ、犠牲陽極アセンブリの余命予測診断システム及びこれらを備えるポンプ Download PDF

Info

Publication number
WO2017104498A1
WO2017104498A1 PCT/JP2016/086304 JP2016086304W WO2017104498A1 WO 2017104498 A1 WO2017104498 A1 WO 2017104498A1 JP 2016086304 W JP2016086304 W JP 2016086304W WO 2017104498 A1 WO2017104498 A1 WO 2017104498A1
Authority
WO
WIPO (PCT)
Prior art keywords
sacrificial anode
electrode
anode assembly
sacrificial
pump
Prior art date
Application number
PCT/JP2016/086304
Other languages
English (en)
French (fr)
Inventor
八鍬 浩
涼太郎 山本
内田 義弘
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Publication of WO2017104498A1 publication Critical patent/WO2017104498A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • C23F13/10Electrodes characterised by the structure
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • C23F13/22Monitoring arrangements therefor

Definitions

  • the present invention relates to a sacrificial anode assembly used for anticorrosion of equipment that handles electrolytes such as seawater, a life expectancy prediction diagnosis system for the sacrificial anode assembly, a pump including these, and a maintenance technique thereof.
  • cathodic protection by the galvanic anode method For steel structures including pumps used in the sea, cathodic protection by the galvanic anode method is performed.
  • the cathodic protection by the galvanic anode method uses the polarization phenomenon caused by the potential difference between the sacrificial anode and the anticorrosion object by electrically connecting the sacrificial anode to the anticorrosion object such as steel that touches the electrolyte such as seawater. It is intended to prevent corrosion protection.
  • the sacrificial anode used in the galvanic anode method is made of a metal that is baser than the anticorrosion object, and prevents corrosion of the anticorrosion object when it corrodes itself.
  • the sacrificial anode is made of a base metal such as zinc or an aluminum alloy, and is consumed over time. When the sacrificial anode finally disappears, the object to be protected comes into contact with the electrolyte alone, and corrosion proceeds.
  • the present applicant has (1) as a technique belonging to the method of simulating the life of the sacrificial anode, a method of dividing the analysis object into a plurality of regions and continuously analyzing the potential and current density distribution over adjacent regions.
  • Patent Document 1 This technique has made it possible to design the equipment where the sacrificial anode should be placed in the anticorrosion target.
  • actual equipment is greatly affected by seasonal fluctuations, anode contamination, adhesion of corrosion products, changes in water temperature, etc., there is a limit to grasping everything by simulation, and the life expectancy of the actual sacrificial anode is estimated over a long period of time. It is difficult to do.
  • the method of estimating the life expectancy of the sacrificial anode by monitoring the actual sacrificial anode's anticorrosion current is relatively low in the density of current (galvanic current) flowing between the different metal contact pairs between the corrosion protection object and the sacrificial anode It is possible to analyze with high accuracy and to know the change of current density flowing per unit time relatively short.
  • a method (2) a method using Bayesian estimation has been proposed (Patent Documents 2 and 3). This method is an unknown analysis that reflects the anticorrosion state of the observation equation using Bayesian estimation from the potential measured at multiple measurement points separated from the electrode attached to the anticorrosion object and the information on the prior anticorrosion state.
  • the parameters are identified, and the anticorrosion state of the object to be protected is monitored based on the identified analysis parameters.
  • the anticorrosion state can be monitored, and if the sacrificial anode is dissolved and the anticorrosion effect is lost, it can be immediately detected.
  • the present applicant proposes a method of providing a sacrificial anode having a plurality of slits with different depths on a corrosion protection target and observing the plurality of slits with a fiberscope as a method of monitoring the corrosion prevention state by an actual sacrificial anode.
  • Patent Document 4 microorganisms and plants are bred in the actual environment such as the seawater where the anticorrosion target is installed, and moss and scales often grow on the lens surface and slit surface of the fiberscope, making observation impossible.
  • An object of the present invention is to provide a method for diagnosing the life expectancy of a sacrificial anode before the sacrificial anode disappears by a method of monitoring in an actual environment.
  • a sacrificial anode assembly is provided.
  • the sacrificial anode assembly of the present invention includes a sacrificial anode and at least one second electrode embedded in the sacrificial anode in an electrically insulated state.
  • a conductive wire for constituting a battery is connected to the sacrificial anode with an object to be protected.
  • the second electrode is made of a material having a natural potential nobler than that of the sacrificial anode.
  • An insulating material is provided on the outer periphery of the second electrode to establish electrical insulation with the sacrificial anode except for a portion (exposed surface) that is separated from the sacrificial anode but is exposed to the sacrificial anode. It is covered.
  • the exposed surface of the second electrode is separated from the sacrificial anode by a distance corresponding to the thickness of the insulating material and is not electrically conductive.
  • Conductive terminals are connected to the sacrificial anode and the second electrode, respectively.
  • Each conduction terminal connected to the sacrificial anode and the second electrode is connected to an ammeter and configured to detect a current when a battery is configured between the sacrificial anode and the second electrode.
  • the conducting terminal of the second electrode is electrically insulated from the sacrificial anode and the corrosive solution.
  • the conducting terminal of the sacrificial anode is electrically insulated from the corrosive solution.
  • the exposed surface of the second electrode and the sacrificial anode may be separated by a space, but are preferably covered with a mesh-like insulating material or a water-soluble or permeable insulating material.
  • two or more second electrodes may be embedded in the sacrificial anode.
  • the two or more second electrodes are embedded so that each exposed surface is separated from the surface exposed to the corrosive solution of the sacrificial anode (exposed surface) by a different predetermined distance.
  • the current value between the sacrificial anode and the second electrode is measured, and based on the elution rate determined from the current value and the elution amount of the sacrificial anode, A method for predicting the life expectancy of a sacrificial anode assembly for estimating the life expectancy of the sacrificial anode is also provided.
  • the sacrificial anode assembly described above and a computer electrically connected to the ammeter of the sacrificial anode assembly are provided, and a current value between the sacrificial anode and the second electrode is measured.
  • a life expectancy prediction diagnostic system for a sacrificial anode assembly is provided that estimates the life expectancy of the sacrificial anode based on the elution rate determined from the current value and the elution amount of the sacrificial anode.
  • the present invention further provides a pump carrying the above-described sacrificial anode assembly that is electrically connected to a component that is exposed to a corrosive solution.
  • the pump of the present invention preferably includes the above-described sacrificial anode assembly life expectancy diagnostic system.
  • the present invention also provides a pump station including a pump carrying the above-described sacrificial anode assembly.
  • the pump station includes a pump and a structure for installing the pump.
  • a method for diagnosing the life expectancy of a sacrificial anode before the sacrificial anode disappears is provided by a method of monitoring in an actual environment.
  • the life expectancy of the sacrificial anode can be diagnosed more accurately.
  • the pump of the present invention is equipped with a system for diagnosing the life expectancy of the sacrificial anode in real time and can accurately grasp the replacement time of the sacrificial anode assembly, so that failure due to corrosion hardly occurs.
  • FIG. 3 is a schematic diagram illustrating one embodiment of a sacrificial anode assembly of the present invention. It is a schematic diagram which shows the use condition of the sacrificial anode assembly shown in FIG.
  • FIG. 3 is a schematic diagram illustrating another embodiment of the sacrificial anode assembly of the present invention. It is sectional drawing which shows the whole structure of one Embodiment of the pump with which the pump station of this invention was equipped. It is sectional drawing which shows the principal part of the pump shown in FIG. It is sectional drawing which shows the attachment part of the sacrificial anode assembly of the pump shown in FIG.
  • FIG. 1 and 2 show an embodiment of the sacrificial anode assembly of the present invention.
  • FIG. 1 shows an initial state before use
  • FIG. 2 shows a state where corrosion of the sacrificial anode has progressed.
  • the sacrificial anode assembly 31 includes a sacrificial anode 105 and a second electrode 102 embedded in the sacrificial anode 105.
  • a conductive wire 101 is connected to the sacrificial anode 105 for electrical conduction with the anticorrosion object 100.
  • the second electrode 102 is an electrode made of a material having a natural potential nobler than that of the sacrificial electrode 105.
  • an alloy such as zinc, aluminum, iron or magnesium can be suitably used
  • an alloy such as stainless steel, carbon, platinum, titanium or nickel is used.
  • a combination of a zinc alloy as the sacrificial anode and a stainless steel as the second electrode can be used.
  • the outer peripheral surface of the sacrificial anode 105 is covered with an insulating material 104 except for the exposed surface 106 exposed to the external environment such as seawater.
  • the outer peripheral surface of the second electrode 102 is covered with an insulating material 104 so that the exposed surface 107 is left on the end surface 103 facing the exposed surface 106 of the sacrificial anode 105. As shown in FIG. In the state, it is electrically insulated from the sacrificial anode 105.
  • the exposed surface 107 of the second electrode 102 has a clearance corresponding to the thickness of the insulating material 104 and is electrically insulated from the sacrificial anode 105.
  • the exposed surface 107 of the second electrode 102 and the sacrificial anode may be separated by a space, but a mesh-like insulating material or It is preferably coated with a water-soluble or permeable insulating material.
  • the exposed surface 107 of the second electrode 102 is preferably as small as possible compared with the exposed surface 106 of the sacrificial anode 105.
  • FIG. 1 shows a state in which an exposed surface 106 in contact with a corrosive solution (for example, seawater) is provided on the upper end of the sacrificial anode 105 and the other surface is covered with an insulating material 104 for convenience.
  • the exposed surface 107 of the second electrode 102 is provided on the end surface closest to the exposed surface 106 of the sacrificial anode 105.
  • the exposed surface 107 of the second electrode 102 and the exposed surface 107 of the sacrificial anode 105 are separated by a predetermined distance X.
  • a conductive wire 101 is connected between the sacrificial anode 105 and the anticorrosion object 100.
  • a conduction terminal 109 that can be electrically connected to the outside of the sacrificial anode assembly 31 is connected to the second electrode 102, and a conduction terminal 108 is connected to the sacrificial anode 105.
  • the conducting terminals 108 and 109 are covered with an insulating film, and the conducting terminal 109 does not conduct with the sacrificial anode 105 and the corrosive solution, and the conducting terminal 108 does not conduct with the corrosive solution.
  • the conduction terminals 108 and 109 are electrically connected to the ammeter 110.
  • the current value signal measured by the ammeter 110 is sent to a computer 111 or the like having a recording device and a display device, and is recorded and displayed.
  • resin materials such as polyethylene, polypropylene, vinyl chloride, rubber, and enamel, which are used as ordinary insulating materials, are suitable.
  • the mesh-like insulating material applied to the clearance of the exposed surface 107 of the second electrode 102 ceramics such as alumina, silica, and calcia having a high porosity can be suitably used.
  • a natural water-soluble polymer such as an agar-agar layer obtained by superimposing an starch gelatinized with starch can be suitably used.
  • the permeable insulating substance include synthetic water-soluble polymers such as polyvinyl alcohol and sodium polyacrylate.
  • resin materials such as polyethylene, polypropylene, vinyl chloride, rubber, enamel, etc., which are used as usual insulating materials are suitable.
  • the corrosion protection target 100 including the sacrificial anode assembly 31 continues to be used in a corrosive solution
  • the corrosive solution that contacts the exposed surface 106 of the sacrificial anode 105 is used as an electrolyte and is sacrificed via the conductive wire 101.
  • a battery is formed between the anode 105 and the anticorrosion object 100, and metal ions are eluted from the sacrificial anode 105.
  • the metal ions continue to elute and the material constituting the sacrificial anode 107 is reduced in volume, and the distance X between the exposed surface 106 of the sacrificial anode 105 and the exposed surface 107 of the second electrode 102 decreases.
  • the insulating material 104 covering the outer periphery of the second electrode 102 embedded in the sacrificial anode 105 comes into contact with the corrosive solution.
  • the corrosive solution reaches the exposed surface 107 of the second electrode 102 through the clearance.
  • a battery is formed between the sacrificial anode 105 and the second electrode 102, and the current value between the conductive terminals 108 and 109 is detected.
  • the elution rate of the sacrificial anode is determined from the time from the start of use of the sacrificial anode assembly 31 to the time when the current value between the conductive terminals 108 and 109 is detected and the elution amount of the sacrificial anode 105.
  • the life expectancy of the sacrificial anode can be estimated based on the elution rate of the sacrificial anode and the remaining amount of the sacrificial anode 105.
  • FIG. 3 shows an initial state of another embodiment of the sacrificial anode assembly of the present invention.
  • two second electrodes 102 and 102 ′ are embedded in the sacrificial anode 105.
  • the distance X1 between the exposed surface 107 of the second electrode 102 and the exposed surface 106 of the sacrificial anode 105 is a distance between the exposed surface 107 ′ of the second electrode 102 ′ and the exposed surface 106 of the sacrificial anode 105.
  • Two second electrodes 102 and 102 ′ are embedded in the sacrificial anode 105 so as to be smaller than the distance X2.
  • Conductive terminals 109 and 109 ′ are connected to the second electrodes 102 and 102 ′, respectively, and ammeters 110 and 110 ′ for measuring respective current values between the second electrodes 102 and 102 ′ and the conductive terminal 108 connected to the sacrificial anode 105. It is connected.
  • the ammeters 110 and 110 ′ are electrically connected to the computer 111, and each current value signal can be recorded and displayed on the computer 111.
  • the battery is interposed between the sacrificial anode 105 and the corrosion protection target 100 using the corrosive solution that contacts the exposed surface 106 of the sacrificial anode 105 as an electrolytic solution.
  • metal ions are eluted from the sacrificial anode 105. The metal ions continue to elute with use time and the volume of the material constituting the sacrificial anode 105 is reduced, and the distance X between the exposed surface 106 of the sacrificial anode 105 and the exposed surface 107 of the second electrode 102 becomes smaller.
  • the insulating material 104 covering the outer periphery of the second electrode 102 embedded in the sacrificial anode 105 comes into contact with the corrosive solution.
  • the corrosive solution reaches the exposed surface 107 of the second electrode 102 through the clearance.
  • a battery is formed between the sacrificial anode 105 and the second electrode 102, and the current value between the conductive terminals 108 and 109 is detected.
  • the corrosion protection object 100 continues to be used, the volume reduction of the sacrificial anode 105 proceeds, and finally the exposed surface 107 'of the second electrode 102' comes into contact with the corrosive solution. Then, a battery is formed between the sacrificial anode 105 and the second electrode 102 ′ using the corrosive solution as an electrolytic solution, and the current value between the conduction terminals 108 and 109 ′ is detected.
  • the life expectancy of the sacrificial anode can be estimated.
  • the life expectancy of the sacrificial anode can be estimated more accurately in an actual operating state where the elution rate of the sacrificial anode is not constant, for example, when the concentration of the corrosive solution is varied over a long period of use. .
  • the illustrated embodiment is a cylindrical sacrificial to show that the distance X between the exposed surface 106 of the sacrificial anode 105 and the exposed surface 107 of the second electrode 102 becomes shorter as the anticorrosion object 100 is used.
  • a cylindrical second electrode is embedded in the anode 105, and the outer periphery excluding the exposed surface 106 of the sacrificial anode 105 is covered with an insulating material 104.
  • the distance between the sacrificial anode and the exposed surface of the second electrode may be from any direction in the three-dimensional space, such as an embodiment in which the exposed surface of the second electrode is positioned at the center of gravity of the spherical sacrificial anode.
  • the distance between the exposed surface of the sacrificial anode and the exposed surface of the second electrode only needs to reflect the total elution amount of the sacrificial anode in the three-dimensional space, and the shapes of the sacrificial anode and the second electrode are not limited.
  • the desired shape can be obtained according to the shape of the three-dimensional space in which these are installed.
  • the sacrificial anode 105 is connected to the anticorrosion object 100 via the conductive wire 101, but the sacrificial anode 105 may be directly connected to the anticorrosion object 100.
  • FIG. 4 is a cross-sectional view showing the entire configuration of the vertical pump provided in the pump station
  • FIG. 5 is a cross-sectional view showing the main part of the vertical pump shown in FIG.
  • the vertical pump includes an impeller casing 1 having a suction bell mouth 1a and a discharge bowl 1b, a suspension pipe 3 for suspending the impeller casing 1 in a water tank of a pump station, and a suspension pipe 3
  • a discharge bend pipe 4 connected to the upper end, an impeller 10 accommodated in the impeller casing 1, and a rotating shaft 6 to which the impeller 10 is fixed are provided.
  • the suspension pipe 3 extends downward through an insertion hole 24 formed in the pump installation floor 22 of the pump station in the upper part of the water tank, and is connected to the pump installation floor 22 via an installation base 23 provided at the upper end of the suspension pipe 3.
  • the rotating shaft (vertical shaft) 6 extends in the vertical direction through the discharge curved pipe 4, the suspension pipe 3, and the impeller casing 1.
  • the impeller casing 1 and the suspension pipe 3 constitute a pump casing 2.
  • the suction bell mouth 1a opens downward, and the upper end of the suction bell mouth 1a is fixed to the lower end of the discharge bowl 1b.
  • the impeller 10 is fixed to the lower end of the rotating shaft 6, and the impeller 10 and the rotating shaft 6 rotate integrally.
  • the impeller 10 has a plurality of blades 11, and a plurality of guide vanes 14 are arranged above the impeller 10 (discharge side). These guide vanes 14 are fixed to the inner peripheral surface of the impeller casing 1.
  • the rotating shaft 6 is rotatably supported by the underwater bearings 12 and 15.
  • the underwater bearing 12 is accommodated in the discharge bowl 1b, and the underwater bearing 15 is accommodated in the suspension pipe 3.
  • the support member 7 that supports the underwater bearing 12 is fixed to the inner surface of the holding body 13, and the holding body 13 is supported by the impeller casing 1 via a guide vane 14.
  • the support member 17 that supports the underwater bearing 15 is fixed to the inner peripheral surface of the suspension pipe 3.
  • the underwater bearings 12 and 15 are so-called sliding bearings that are in sliding contact with the rotary shaft 6.
  • the rotating shaft 6 protrudes upward from the discharge curved pipe 4.
  • the upper end of the rotating shaft 6 is connected to a drive shaft 16, and the drive shaft 16 is connected to a drive source such as a motor or an engine provided in a pump station (not shown).
  • a drive source such as a motor or an engine provided in a pump station (not shown).
  • water (handling liquid) in the water tank is sucked from the suction bell mouth 1 a and passes through the discharge bowl 1 b, the suspension pipe 3, and the discharge bent pipe 4.
  • the direction of the fluid flow is changed from the upward direction to the horizontal direction, and is transferred to a discharge pipe (not shown) provided in the pump station.
  • the impeller casing 1 that houses the impeller 10 and the underwater bearing 12 is located below the water surface 25.
  • the sacrificial anode assembly 31 is not limited to the inner surface of the bell mouth 1a or the discharge bowl 1b, but can be attached to the inner and outer surfaces of a portion where the anticorrosion effect is desired.
  • a conduit 28 is provided for guiding the insulation-coated electric cable 27 into the impeller casing 1.
  • the tip is inserted to a position near the impeller 10.
  • the conduit 28 passes through the suction bell mouth 1 a (or the discharge bowl 1 b), and its one end 28 a is opened at a position close to the impeller 10.
  • the other end (insertion port) 28b of the conduit 28 is located above the pump installation floor 22, as shown in FIG.
  • the sacrificial anode assembly 31 is attached to the inner peripheral surface of the suction bell mouth 1 a so that there is no depression so as not to cause a change in fluid flow or a failure of the pump operation.
  • the sacrificial anode assembly 31 for corrosion prevention according to the present invention is fixed thereto.
  • the sacrificial anode assembly 31 is positioned so that the surface of the sacrificial anode assembly 31 in contact with the corrosive solution is in contact with the handling liquid of the pump.
  • the sacrificial anode 105 of the sacrificial anode assembly 31 and the conduction terminals 108 and 109 of the second electrode 102 The electrical cable 27 extending in the conduit 28 is connected.
  • the conduction terminals 108 and 109 and the pump handling liquid are insulated.
  • An electrical cable 27 extending from the insertion port 28 b to the outside of the conduit 28 is connected to the ammeter 110, 110 ′ or the computer 111.
  • the conduit 28 extends along the discharge bend pipe 4, the suspension pipe 3, and the impeller casing 1 (see FIG. 4).
  • One end 28a of the conduit 28 is inserted into the inner peripheral surface of the suction bell mouth 1a and is connected to the sacrificial anode assembly 31 as described above.
  • the vertical pump having the above configuration can use an appropriate number (one or a plurality of) according to the amount of pumping / draining water required at the pump station.
  • the pump equipped with the sacrificial anode assembly of the present invention can confirm the degree of consumption of the sacrificial anode by detecting the current value, and can estimate the life expectancy of the sacrificial anode.
  • pump corrosion or sacrificial anode wear is checked by visual inspection, dimensional measurement, etc. by pulling up the pump with a crane or stopping the pump and submerging it in water.
  • the life expectancy of the sacrificial anode can be predicted, so that the sacrificial anode disappears and corrosion of the pump can be suppressed, and an accurate sacrificial anode replacement time can be set.
  • the present invention can be applied not only to a vertical shaft pump but also to a horizontal shaft pump, a slant shaft pump, or a submersible pump.
  • Suction bell mouth 28 Conduit 31: Sacrificial anode assembly 100: Corrosion protection object 101: Conductive wires 102, 102 ': Second electrode 103, 103': End face 104 of the second electrode 104: Insulating material 105: Sacrificial anode 106: Exposed surfaces 107 and 107 'of the sacrificial anode: Exposed surface of the second electrode 108: Conductive terminals 109 and 109' with the sacrificial anode 110: Conductive terminals with the second electrode 110: Ammeter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

犠牲陽極アセンブリ31は、犠牲陽極105と、犠牲陽極105内に電気的に絶縁された状態で埋設されている少なくとも1の第2の電極102と、を備える。犠牲陽極105には、防食対象100との間に電池を構成するための導線101が接続されている。第2の電極102は、犠牲陽極よりも自然電位が貴である物質から構成されている。第2の電極102の外周には、犠牲陽極と離間しているが犠牲陽極に対して露出される部分107を除いて、犠牲陽極との電気的な絶縁を確立するために絶縁物質104が被覆されている。第2の電極の露出面107は、絶縁物質の厚みに相当する距離だけ、犠牲陽極と離間しており、電気的に導通していない。犠牲陽極105と第2の電極102にはそれぞれ導通端子108及び109が接続され、各導通端子は電流計110に接続され、犠牲陽極と第2の電極との間に電池が構成される時の電流を検出する。

Description

犠牲陽極アセンブリ、犠牲陽極アセンブリの余命予測診断システム及びこれらを備えるポンプ
 本発明は、海水などの電解質を取り扱う機器の防食に用いる犠牲陽極アセンブリ、犠牲陽極アセンブリの余命予測診断システム及びこれらを備えるポンプ、並びにこれらのメンテナンス技術に関する。
 海中で用いられるポンプなどを含む鋼材構造物に対しては、流電陽極方式による電気防食が行われる。流電陽極方式による電気防食とは、海水などの電解質に触れる鋼材などの防食対象に犠牲陽極を電気的に接続して、犠牲陽極と防食対象との間の電位差により生ずる分極現象を利用して防食対象を防食するものである。
 流電陽極方式で用いる犠牲陽極は、防食対象よりも卑である金属で構成され、自らが腐食することによって防食対象の腐食を防止する。一般的に、犠牲陽極は亜鉛やアルミニウム合金などの卑金属で構成されており、時間経過とともに消耗していく。最終的に犠牲陽極が消滅すると、防食対象が単独で電解質と接触することになり、腐食が進行することになる。
 防食対象の腐食進行を阻止するためには、犠牲陽極がすべて溶出して消滅する前に、犠牲陽極を交換する必要がある。このため、犠牲陽極の寿命推定が盛んに提案されており、(1)防食対象や腐食環境の様々な条件に基づくコンピュータシミュレーションにより、犠牲陽極の寿命を推定する方法、(2)実際の犠牲陽極の防食電流をモニタリングして、得られたデータから犠牲陽極の余命を推定する方法、に大別することができる。
 本出願人は、(1)犠牲陽極の寿命をシミュレーションする方法に属する技術として、解析対象物を複数の領域に分割して、隣接する領域にわたって電位及び電流密度分布を連続的に解析する手法を提案している(特許文献1)。本手法により防食対象のどの部分に犠牲陽極を配置すべきか、という機器設計が可能になった。しかし、実際の機器は季節変動や陽極の汚れ、腐食生成物の付着、水温変化などの影響が大きいためシミュレーションで全てを把握するには限界があり、長期間にわたって実際の犠牲陽極の余命を推定することは困難である。
 一方、(2)実際の犠牲陽極の防食電流をモニタリングして犠牲陽極の余命を推定する方法は、防食対象と犠牲陽極との異種金属接触対の間に流れる電流(ガルバニック電流)密度を比較的精度よく解析でき、比較的短い単位時間あたりに流れる電流密度の変化を知ることができる。(2)の方法として、ベイズ推定を用いる手法が提案されている(特許文献2及び3)。この手法は、防食対象に取り付けられた電極から所定距離離れた複数の測定点で測定された電位および事前の防食状態の情報から、ベイズ推定を用いて観測方程式の防食状態を反映する未知の解析パラメータを同定し、同定した解析パラメータに基づいて被防食体の防食状態をモニタリングするものである。このように防食状態をモニタリングでき、犠牲陽極が溶解して防食効果がなくなっていると、すぐに検知することが可能となる。しかし、防食効果がなくなってから検知できても時機に遅れ、陽極が消失して防食効果がなくなる前に、犠牲陽極の余命を知ることが望まれている。また、(2)の方法であっても、年単位の長期に及ぶ犠牲陽極の余命を精度良く予測することは困難である。
 さらに、本出願人は、実際の犠牲陽極による防食状態をモニタリングする方法として、深さの異なる複数のスリットを有する犠牲陽極を防食対象に設け、これら複数のスリットをファイバースコープで観察する方法を提案している(特許文献4)。しかし、防食対象を設置する海水中など実環境中には微生物や植物が繁殖しており、ファイバースコープのレンズ面やスリット表面に苔や水垢が繁茂してしまい、観察ができないことも多い。
特開平11-37967号公報 特開2014-51713号公報 特開2014-162628号公報 特開2006-161790号公報
 本発明は、実環境中においてモニタリングする方法により、犠牲陽極が消滅する前に、犠牲陽極の余命を診断する手法を提供することを目的とする。
 本発明によれば、犠牲陽極アセンブリが提供される。
 本発明の犠牲陽極アセンブリは、犠牲陽極と、当該犠牲陽極内に電気的に絶縁された状態で埋設されている少なくとも1の第2の電極と、を備える。犠牲陽極には、防食対象との間に電池を構成するための導線が接続されている。第2の電極は、犠牲陽極よりも自然電位が貴である物質から構成されている。第2の電極の外周には、犠牲陽極と離間しているが犠牲陽極に対して露出される部分(露出面)を除いて、犠牲陽極との電気的な絶縁を確立するために絶縁物質が被覆されている。第2の電極の露出面は、絶縁物質の厚みに相当する距離だけ、犠牲陽極と離間しており、電気的に導通していない。当該犠牲陽極と当該第2の電極にはそれぞれ導通端子が接続されている。犠牲陽極と第2の電極に接続されているそれぞれの導通端子は電流計に接続されており、犠牲陽極と第2の電極との間に電池が構成される時の電流を検出できるように構成されている。第2の電極の導通端子は、犠牲陽極及び腐食性溶液と電気的に絶縁されている。犠牲陽極の導通端子は、腐食性溶液と電気的に絶縁されている。
 第2の電極の露出面と犠牲陽極との間は、空間で離間されていてもよいが、メッシュ状の絶縁物質又は水溶性もしくは浸透性の絶縁物質で被覆されていることが好ましい。
 本発明の犠牲電極アセンブリは、2個以上の第2の電極が犠牲陽極内に埋設されていても良い。2個以上の第2の電極は、それぞれの露出面が犠牲陽極の腐食性溶液に曝される面(露出面)から異なる所定距離だけ離間するように埋設されている。2個以上の第2の電極を埋設する場合には、異なる寸法又は形状の第2の電極を用いることが好ましい。
 本発明によれば、上述の犠牲陽極アセンブリを用いて、犠牲陽極と第2の電極との間の電流値を測定し、電流値と犠牲陽極の溶出量とから求めた溶出速度に基づいて、犠牲陽極の余命を推定する犠牲陽極アセンブリの余命予測診断方法も提供される。
 また本発明によれば、上述の犠牲陽極アセンブリと、当該犠牲陽極アセンブリの電流計と電気的に接続されているコンピュータと、を備え、犠牲陽極と第2の電極との間の電流値を測定し、電流値と犠牲陽極の溶出量とから求めた溶出速度に基づいて、犠牲陽極の余命を推定する犠牲陽極アセンブリの余命予測診断システムが提供される。
 さらに本発明は、腐食性溶液に曝される構成部材と電気的に接続されている、上述の犠牲陽極アセンブリを搭載するポンプを提供する。本発明のポンプは、上述の犠牲陽極アセンブリの余命予測診断システムを備えることが好ましい。
 またさらに本発明は、上述の犠牲陽極アセンブリを搭載するポンプを備えるポンプ機場も提供する。ポンプ機場は、ポンプ及びポンプを設置するための構造物を含む。
 本発明によれば、実環境中においてモニタリングする方法により、犠牲陽極が消滅する前に、犠牲陽極の余命を診断する手法が提供される。
 本発明によれば、犠牲陽極が消失して防食効果がなくなる前に、犠牲陽極の溶出の程度を検知することができるため、より正確に犠牲陽極の余命を診断することができる。
 本発明のポンプは、リアルタイムに犠牲陽極の余命を診断するシステムを搭載し、犠牲陽極アセンブリの交換時期を的確に把握することができるため、腐食による故障が発生しにくい。
本発明の犠牲陽極アセンブリの一実施形態を示す模式図である。 図1に示す犠牲陽極アセンブリの使用状態を示す模式図である。 本発明の犠牲陽極アセンブリの別の実施形態を示す模式図である。 本発明のポンプ機場に備えられたポンプの一実施形態の全体構成を示す断面図である。 図4に示すポンプの要部を示す断面図である。 図4に示すポンプの犠牲陽極アセンブリの取付部を示す断面図である。
 以下、添付図面を参照しながら本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
 図1及び図2に本発明の犠牲陽極アセンブリの一実施形態を示す。図1は使用前の初期状態を示し、図2は犠牲陽極の腐食が進行した状態を示す。
 犠牲陽極アセンブリ31は、犠牲陽極105と、犠牲陽極105内に埋設されている第2の電極102とを備える。犠牲陽極105には、防食対象100と電気的に導通するための導線101が接続されている。第2の電極102は、犠牲電極105よりも自然電位が貴である物質から構成された電極である。犠牲陽極を構成する物質としては亜鉛、アルミニウム、鉄、マグネシウムなどの合金を好適に用いることができ、第2の電極を構成する物質としてはステンレス鋼、炭素、白金、チタン、ニッケルなどの合金などを好適に用いることができる。特に、犠牲陽極として亜鉛合金、第2の電極としてステンレス鋼の組合せを用いることができる。
 犠牲陽極105の外周面は、海水などの外部環境に曝される露出面106を除き、絶縁物質104で被覆されている。第2の電極102の外周面は、犠牲陽極105の露出面106と対面する端面103に露出面107を残すように、絶縁物質104で被覆されており、図1に示すように使用前の初期状態においては、犠牲陽極105と電気的に絶縁されている。第2の電極102の露出面107は、絶縁物質104の厚みに相当するクリアランスを有し、犠牲陽極105と電気的に絶縁されている。犠牲陽極105との電気的絶縁状態をより確実にするために、第2の電極102の露出面107と犠牲陽極との間は、空間で離間されていてもよいが、メッシュ状の絶縁物質又は水溶性もしくは浸透性の絶縁物質で被覆されていることが好ましい。第2の電極102の露出面107は、犠牲陽極105の露出面106と比較して、できる限り小さい面積とすることが好ましい。
 図1は、便宜的に、犠牲陽極105の上端に、腐食性溶液(たとえば海水)と接する露出面106を設け、他の面は絶縁物質104で被覆されている状態を示す。第2の電極102の露出面107は、犠牲陽極105の露出面106に最も近い端面に設けられている。図1に示す使用前の初期状態においては、第2の電極102の露出面107と、犠牲陽極105の露出面107とは所定距離Xだけ離間されている。
 犠牲陽極105と防食対象100との間には、導線101が接続されている。犠牲陽極アセンブリ31の外部と導通可能な導通端子109が第2の電極102に接続され、導通端子108が犠牲陽極105に接続されている。導通端子108及び109は絶縁性被膜で被覆されており、導通端子109は、犠牲陽極105及び腐食性溶液と導通せず、導通端子108は、腐食性溶液と導通しない。導通端子108及び109は電流計110に電気的に接続されている。電流計110により計測される電流値信号は、記録装置と表示装置を備えるコンピュータ111等に送られ、記録及び表示される。
 犠牲陽極105及び第2の電極102の外周を被覆する絶縁物質としては、通常の絶縁材として用いられるポリエチレン、ポリプロピレン、塩化ビニル、ゴム、エナメルなどの樹脂材料が好適である。
 第2の電極102の露出面107のクリアランスに適用するメッシュ状の絶縁物質としては、気孔率が大きいアルミナやシリカ、カルシアなどのセラミックスを好適に用いることができる。水溶性の絶縁物質としては、でんぷんを糊化させたオブラートを重ねたものや寒天などの天然系の水溶性高分子を好適に用いることができる。浸透性の絶縁物質としては、ポリビニルアルコールやポリアクリル酸ナトリウムなどの合成系の水溶性高分子を好適に挙げることができる。
 導通端子108及び109を被覆する絶縁性被膜としては、通常の絶縁材として用いられるポリエチレン、ポリプロピレン、塩化ビニル、ゴム、エナメルなどの樹脂材料が好適である。
 図示した実施形態において、犠牲陽極アセンブリ31を備える防食対象100が腐食性溶液中で使用され続けると、犠牲陽極105の露出面106で接触する腐食性溶液を電解液として、導線101を介して犠牲陽極105と防食対象100との間に電池が構成され、犠牲陽極105から金属イオンが溶出する。使用時間の経過と共に金属イオンが溶出し続けて犠牲陽極107を構成する物質が減容し、犠牲陽極105の露出面106と第2の電極102の露出面107との間の距離Xが小さくなり、ついには犠牲陽極105に埋設されている第2の電極102の外周を被覆する絶縁物質104が腐食性溶液に接するようになる。第2の電極の絶縁物質104が腐食性溶液と接すると、クリアランスを通して第2の電極102の露出面107に腐食性溶液が到達する。腐食性溶液が露出面107と接すると、犠牲陽極105と第2の電極102との間に電池が構成され、導通端子108及び109の間の電流値が検出される。
 犠牲陽極アセンブリ31の使用開始から、導通端子108及び109の間の電流値が検出されるようになる時までの時間と、犠牲陽極105の溶出量から、犠牲陽極の溶出速度を求める。犠牲陽極の溶出速度と犠牲陽極105の残存量とに基づいて、犠牲陽極の余命を推定することができる。
 図3に本発明の犠牲陽極アセンブリの別の実施形態の初期状態を示す。図1及び図2に示す実施形態と同じ構成部材には同じ符号を付して説明を省略する。
 図3に示す実施形態においては、犠牲陽極105に2個の第2の電極102及び102’が埋設されている。第2の電極102の露出面107と犠牲陽極105の露出面106との間の離間距離X1は、第2の電極102’の露出面107’と犠牲陽極105の露出面106との間の離間距離X2よりも小さくなるように、2個の第2の電極102及び102’を犠牲陽極105内に埋設する。第2の電極102及び102’にはそれぞれ導通端子109及び109’が接続され、犠牲陽極105に接続されている導通端子108との間のそれぞれの電流値を計測する電流計110及び110’に接続されている。電流計110及び110’は、コンピュータ111に電気的に接続され、それぞれの電流値信号をコンピュータ111に記録し、表示させることができる。
 犠牲陽極アセンブリ31を備える防食対象100が腐食性溶液中で使用され続けると、犠牲陽極105の露出面106で接触する腐食性溶液を電解液として、犠牲陽極105と防食対象100との間に電池が構成され、犠牲陽極105から金属イオンが溶出する。使用時間と共に金属イオンが溶出し続けて犠牲陽極105を構成する物質が減容し、犠牲陽極105の露出面106と第2の電極102の露出面107との間の距離Xが小さくなり、ついには犠牲陽極105に埋設されている第2の電極102の外周を被覆する絶縁物質104が腐食性溶液に接するようになる。第2の電極の絶縁物質104が腐食性溶液と接すると、クリアランスを通して第2の電極102の露出面107に腐食性溶液が到達する。腐食性溶液が露出面107と接すると、犠牲陽極105と第2の電極102との間に電池が構成され、導通端子108及び109の間の電流値が検出される。
 さらに防食対象100を使用し続けると、犠牲陽極105の減容が進行し、ついには第2の電極102’の露出面107’が腐食性溶液と接するようになる。すると、腐食性溶液を電解液として、犠牲陽極105と第2の電極102’との間に電池が構成され、導通端子108及び109’の間の電流値が検出されるようになる。
 この実施形態においては、絶縁状態から最初に電流値が検出されるまでの犠牲陽極の溶出速度と犠牲陽極の溶出量、及び電流計110'に電流値が検出されるまでの犠牲陽極の溶出速度と犠牲陽極の溶出量に基づいて、犠牲陽極の余命を推定することができる。本実施形態は、たとえば使用期間が長期にわたり、腐食性溶液の濃度変動が生じる場合など、犠牲陽極の溶出速度が一定ではない実稼働状態において、より正確な犠牲陽極の余命を推定することができる。
 図示した実施形態は、防食対象100の使用時間に応じて、犠牲陽極105の露出面106と第2の電極102の露出面107との距離Xが短くなることを示すために、円柱形の犠牲陽極105内に円柱状の第2の電極を埋設し、犠牲陽極105の露出面106を除く外周を絶縁物質104で被覆している。しかし、たとえば、球形の犠牲陽極の重心に第2の電極の露出面を位置づける態様など、犠牲陽極と第2の電極の露出面との距離が3次元空間のいずれの方向からであっても等距離になるのであれば、犠牲陽極の外周を絶縁材で被覆することは必ずしも必要ではない。また、犠牲陽極の露出面と第2の電極の露出面との距離が3次元空間における犠牲陽極の全溶出量を反映することができればよく、犠牲陽極及び第2の電極の形状は制限されず、これらを設置する3次元空間の形状に応じて所望の形状とすることができる。
 また、図示した実施形態において、犠牲陽極105は導線101を介して防食対象100と接続されているが、犠牲陽極105を防食対象100と直接接続させてもよい。
 次に、図4~6を参照しながら、本発明の犠牲陽極アセンブリを搭載したポンプの実施形態を説明する。
 図4はポンプ機場に備えられた立軸ポンプの全体構成を示す断面図であり、図5は図4に示す立軸ポンプの要部を示す断面図である。
 図4に示すように、立軸ポンプは、吸込ベルマウス1a及び吐出しボウル1bを有するインペラケーシング1と、インペラケーシング1をポンプ機場の水槽内に吊り下げる吊下管3と、吊下管3の上端に接続される吐出曲管4と、インペラケーシング1内に収容される羽根車10と、羽根車10が固定される回転軸6とを備えている。吊下管3は、水槽上部のポンプ機場のポンプ据付床22に形成された挿通孔24を通して下方に延び、吊下管3の上端に設けられた据付用ベース23を介してポンプ据付床22に固定される。回転軸(立軸)6は、吐出曲管4、吊下管3、及びインペラケーシング1内を通って鉛直方向に延びている。なお、インペラケーシング1及び吊下管3によりポンプケーシング2が構成される。
 図5に示すように、吸込ベルマウス1aは下方を向いて開口し、吸込ベルマウス1aの上端は吐出しボウル1bの下端に固定されている。羽根車10は回転軸6の下端に固定されており、羽根車10と回転軸6とは一体的に回転するようになっている。この羽根車10は複数の羽根11を有し、羽根車10の上方(吐出側)には複数のガイドベーン14が配置されている。これらのガイドベーン14はインペラケーシング1の内周面に固定されている。図4及び図5に示すように、回転軸6は水中軸受12,15により回転自在に支持されている。水中軸受12は吐出しボウル1bに収容されており、水中軸受15は吊下管3に収容されている。水中軸受12を支持する支持部材7は保持体13の内面に固定されており、さらに、保持体13はガイドベーン14を介してインペラケーシング1に支持されている。また、水中軸受15を支持する支持部材17は、吊下管3の内周面に固定されている。水中軸受12,15は、回転軸6に滑り接触する、いわゆる滑り軸受である。
 図4に示すように、回転軸6は吐出曲管4から上方に突出している。回転軸6の上端は駆動軸16に連結されており、駆動軸16は図示しないポンプ機場に備えられたモータやエンジンなどの駆動源に連結されている。駆動源により回転軸6を介して羽根車10を回転させると、水槽内の水(取扱液)が吸込ベルマウス1aから吸い込まれ、吐出しボウル1b、吊下管3、吐出曲管4を通って上方向から水平方向に流体流れの方向を転じ、ポンプ機場に備えられた吐出配管(図示せず)に移送される。なお、立軸ポンプ運転時においては、羽根車10や水中軸受12を収容するインペラケーシング1は、水面25よりも下に位置している。なお、本犠牲陽極アセンブリ31は、ベルマウス1aまたは吐き出しボウル1b内面に限らず、防食効果を発揮させたい箇所の内外面に取り付けることができる。
 吐出曲管4、吊下管3、及びインペラケーシング1の側部には、絶縁被覆された電気ケーブル27をインペラケーシング1の内部に案内するための導管28が設けられており、電気ケーブル27の先端部を羽根車10の近傍の位置まで挿入する。図5に示すように、この導管28は吸込ベルマウス1a(または吐出ボウル1b)を貫通し、その一端28aは羽根車10に近接した位置で開口している。一方、導管28の他端(挿入口)28bは、図4に示すように、ポンプ据付床22の上方に位置している。
 図6に示すように、吸込ベルマウス1aの内周面には、本発明に係る犠牲陽極アセンブリ31を取り付けることにより、流体の流れの変化やポンプの動作の障害の虞のないように窪みが設けられ、そこに本発明に係る腐食防止用の犠牲陽極アセンブリ31が固定されている。この犠牲陽極アセンブリ31の腐食性溶液と接する面が、ポンプの取扱い液に接するように犠牲陽極アセンブリ31を位置づけ、犠牲陽極アセンブリ31の犠牲陽極105と第2の電極102の導通端子108及び109と、前述した導管28内に延在する電気ケーブル27が接続される。前述したように、犠牲陽極アセンブリ31を組み付ける初期状態において、各導通端子108及び109同士、およびポンプの取扱い液は絶縁されている。挿入口28bから導管28の外部に延在する電気ケーブル27は、電流計110、110’又はコンピュータ111と接続されている。
 導管28は、吐出曲管4、吊下管3、及びインペラケーシング1に沿って延びている(図4参照)。導管28の一端28aは、吸込ベルマウス1aの内周面に挿入され、前述のように犠牲陽極アセンブリ31と接続する。以上の構成の立軸ポンプは、ポンプ機場において必要とされる揚排水量に応じて適切な数(1機乃至複数機)を用いることができる。
 本発明の犠牲陽極アセンブリを搭載したポンプは、犠牲陽極の消耗の程度を電流値の検出によって確認することができ、犠牲陽極の余命を推定することができる。通常、ポンプの腐食の具合や犠牲陽極の損耗具合は、クレーンでポンプを引き上げて、あるいはポンプを停止して水中に潜って、目視や寸法計測などより確認するため、多大な労力と時間、コストを必要とするが、本発明によれば、犠牲陽極の余命を予測できるため、犠牲陽極が消失してポンプの腐食が進行することを抑制できるとともに、適確な犠牲陽極交換時期を設定でき、羽根車や水中軸受などの消耗部材の腐食の程度を容易に確認することが可能となり、ポンプの保守管理に要する労力を大幅に低減させることが可能となる。また、本発明は、立軸ポンプに限らす、横軸ポンプや斜軸ポンプあるいは水中ポンプにも適用することができる。
1a:吸込ベルマウス
28:導管
31:犠牲陽極アセンブリ
100:防食対象
101:導線
102、102’:第2の電極
103、103’:第2の電極の端面
104:絶縁物質
105:犠牲陽極
106:犠牲陽極の露出面
107、107’:第2の電極の露出面
108:犠牲陽極との導通端子
109、109’:第2の電極との導通端子
110:電流計

Claims (8)

  1. 犠牲陽極と、当該犠牲陽極内に電気的に絶縁された状態で埋設されている少なくとも1の第2の電極と、を備え、
    当該犠牲陽極には、防食対象との間に電池を構成するための導線が接続されており、
    当該第2の電極は、犠牲陽極よりも自然電位が貴である物質から構成されており、
    当該第2の電極の外周には、犠牲陽極と離間しているが犠牲陽極に対して露出される露出面を除いて、犠牲陽極との電気的な絶縁を確立するために絶縁物質が被覆されており、
    当該第2の電極の露出面は、絶縁物質の厚みに相当する距離だけ、犠牲陽極と離間しており、電気的に導通しておらず、
    当該犠牲陽極と当該第2の電極にはそれぞれ導通端子が接続されており、犠牲陽極と第2の電極に接続されているそれぞれの導通端子は電流計に接続されており、犠牲陽極と第2の電極との間に電池が構成される時の電流を検出できるように構成されている、
    腐食性溶液に曝される防食対象を防食するための犠牲陽極アセンブリ。
  2. 第2の電極の露出面と犠牲陽極との間は、空間で離間されているか、又はメッシュ状の絶縁物質あるいは水溶性もしくは浸透性の絶縁物質で被覆されている、請求項1に記載の犠牲陽極アセンブリ。
  3. 2個以上の第2の電極が、それぞれの露出面が犠牲陽極の腐食性溶液に曝される露出面から異なる所定距離だけ離間するように1の犠牲陽極内に埋設されている、請求項1又は2に記載の犠牲陽極アセンブリ。
  4. 請求項1~3のいずれか1に記載の犠牲陽極アセンブリを用いて、犠牲陽極と第2の電極との間の電流値を測定し、電流値と犠牲陽極の溶出量とから求めた溶出速度に基づいて、犠牲陽極の余命を推定する犠牲陽極アセンブリの余命予測診断方法。
  5. 請求項1~3のいずれか1に記載の犠牲陽極アセンブリと、
    当該犠牲陽極アセンブリの電流計と電気的に接続されているコンピュータと、を備え、
    犠牲陽極と第2の電極との間の電流値を測定し、電流値と犠牲陽極の溶出量とから求めた溶出速度に基づいて、犠牲陽極の余命を推定する犠牲陽極アセンブリの余命予測診断システム。
  6. 腐食性溶液に曝される構成部材と電気的に接続されている、請求項1~3のいずれか1に記載の犠牲陽極アセンブリを搭載するポンプ。
  7. さらに請求項5に記載の犠牲陽極アセンブリの余命予測診断システムを備える、請求項6に記載のポンプ。
  8. 請求項6又は7に記載のポンプを備えるポンプ機場。
PCT/JP2016/086304 2015-12-15 2016-12-07 犠牲陽極アセンブリ、犠牲陽極アセンブリの余命予測診断システム及びこれらを備えるポンプ WO2017104498A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015244265A JP2017110250A (ja) 2015-12-15 2015-12-15 犠牲陽極アセンブリ、犠牲陽極アセンブリの余命予測診断システム及びこれらを備えるポンプ
JP2015-244265 2015-12-15

Publications (1)

Publication Number Publication Date
WO2017104498A1 true WO2017104498A1 (ja) 2017-06-22

Family

ID=59056332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086304 WO2017104498A1 (ja) 2015-12-15 2016-12-07 犠牲陽極アセンブリ、犠牲陽極アセンブリの余命予測診断システム及びこれらを備えるポンプ

Country Status (2)

Country Link
JP (1) JP2017110250A (ja)
WO (1) WO2017104498A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017201A (ja) * 2014-07-08 2016-02-01 株式会社荏原製作所 液体ポンプ、および、液体ポンプの維持管理方法
CN109977508A (zh) * 2019-03-15 2019-07-05 河北新兴铸管有限公司 牺牲阳极金属涂层寿命评估方法、终端设备及存储介质
CN111324937A (zh) * 2018-11-29 2020-06-23 深圳信息职业技术学院 牺牲阳极的使用寿命预测方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107419275A (zh) * 2017-08-01 2017-12-01 合肥威斯伏新材料有限公司 一种管道用防腐装置
WO2019208462A1 (ja) * 2018-04-27 2019-10-31 株式会社荏原製作所 腐食環境モニタリング方法及び腐食環境モニタリングシステムを備えた機器
CN113337825B (zh) * 2021-05-07 2023-03-31 中交天津港湾工程研究院有限公司 海洋回淤环境牺牲阳极服役性能监测与失效风险预警系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63115067U (ja) * 1987-01-19 1988-07-25
JPH0431691A (ja) * 1990-05-25 1992-02-03 Kubota Corp ポンプ装置
JPH0892772A (ja) * 1994-09-21 1996-04-09 Mikado Propeller Kk 被防食材の防食構造
JP2000111510A (ja) * 1998-09-30 2000-04-21 Ebara Corp 腐食・防食解析方法
JP2001194340A (ja) * 2000-01-11 2001-07-19 Osaka Gas Co Ltd 電気防食状態計測装置
JP2014051713A (ja) * 2012-09-07 2014-03-20 Tokyo Institute Of Technology 金属製構造物の電気防食モニタリング方法及び装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263788A (ja) * 2006-03-29 2007-10-11 Ebara Corp マクロ的電気化学系の解析方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63115067U (ja) * 1987-01-19 1988-07-25
JPH0431691A (ja) * 1990-05-25 1992-02-03 Kubota Corp ポンプ装置
JPH0892772A (ja) * 1994-09-21 1996-04-09 Mikado Propeller Kk 被防食材の防食構造
JP2000111510A (ja) * 1998-09-30 2000-04-21 Ebara Corp 腐食・防食解析方法
JP2001194340A (ja) * 2000-01-11 2001-07-19 Osaka Gas Co Ltd 電気防食状態計測装置
JP2014051713A (ja) * 2012-09-07 2014-03-20 Tokyo Institute Of Technology 金属製構造物の電気防食モニタリング方法及び装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017201A (ja) * 2014-07-08 2016-02-01 株式会社荏原製作所 液体ポンプ、および、液体ポンプの維持管理方法
CN111324937A (zh) * 2018-11-29 2020-06-23 深圳信息职业技术学院 牺牲阳极的使用寿命预测方法及装置
CN111324937B (zh) * 2018-11-29 2023-09-12 深圳信息职业技术学院 牺牲阳极的使用寿命预测方法及装置
CN109977508A (zh) * 2019-03-15 2019-07-05 河北新兴铸管有限公司 牺牲阳极金属涂层寿命评估方法、终端设备及存储介质

Also Published As

Publication number Publication date
JP2017110250A (ja) 2017-06-22

Similar Documents

Publication Publication Date Title
WO2017104498A1 (ja) 犠牲陽極アセンブリ、犠牲陽極アセンブリの余命予測診断システム及びこれらを備えるポンプ
JP4141841B2 (ja) 電気化学腐食監視のためのセンサアレイ及び方法
JP6770046B2 (ja) 陰極防食の監視プローブ
US6809506B2 (en) Corrosion sensor loudspeaker for active noise control
JP5898595B2 (ja) 腐食電位センサ
JP2007532887A (ja) 複数電極アレイ・センサを用いた局所腐食度を測定する改良された方法
KR101680798B1 (ko) 극한지 파이프라인의 부식을 실시간 모니터링하는 외부전원방식 시스템 및 그 방법
JP7476270B2 (ja) 海洋風力タービンの監視
JP2010266342A (ja) 金属の腐食診断方法
SE533727C2 (sv) Anordning för att indikera kritisk korrosion hos en metallisk konstruktion
US20160326657A1 (en) Corrosion protection system and pump device with the same
EP2221601B1 (en) Pitting corrosion diagnostic method and apparatus for stainless steel and for seawater pump using stainless steel as a structural member
JP2007263788A (ja) マクロ的電気化学系の解析方法
RU2510496C2 (ru) Устройство для контроля проникновения локальной коррозии в металлические конструкции
JP2008297600A (ja) 電気防食方法
JP2013160541A (ja) 腐食センサ
JP7411459B2 (ja) 腐食管理システム
US20170261421A1 (en) Method for estimating the risk of corrosion
JP3821004B2 (ja) 犠牲陽極の検査方法及び検査装置
JP7063737B2 (ja) 鋼構造物の防食状態監視システム
JP2019215290A (ja) 鋼構造物の腐食検知装置
US9856566B1 (en) Methods and apparatus for monitoring a sacrificial anode
NO343483B1 (no) Offeranodemåler
JP2014066620A (ja) すきま腐食センサー、すきま腐食評価装置及び評価方法
JP2019168383A (ja) 電極構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875478

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875478

Country of ref document: EP

Kind code of ref document: A1