WO2017104203A1 - 過酸化水素生成装置 - Google Patents

過酸化水素生成装置 Download PDF

Info

Publication number
WO2017104203A1
WO2017104203A1 PCT/JP2016/077737 JP2016077737W WO2017104203A1 WO 2017104203 A1 WO2017104203 A1 WO 2017104203A1 JP 2016077737 W JP2016077737 W JP 2016077737W WO 2017104203 A1 WO2017104203 A1 WO 2017104203A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen peroxide
electrolytic cell
pipe
oxygen
electrode
Prior art date
Application number
PCT/JP2016/077737
Other languages
English (en)
French (fr)
Inventor
健志 出
清一 村山
志村 尚彦
法光 阿部
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to CN201680074711.0A priority Critical patent/CN108474123B/zh
Priority to SG11201805108UA priority patent/SG11201805108UA/en
Priority to AU2016370898A priority patent/AU2016370898B2/en
Priority to CA3008590A priority patent/CA3008590A1/en
Priority to US16/062,534 priority patent/US20180371628A1/en
Publication of WO2017104203A1 publication Critical patent/WO2017104203A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/28Per-compounds
    • C25B1/30Peroxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/043Carbon, e.g. diamond or graphene
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof

Definitions

  • Embodiment relates to a hydrogen peroxide generator.
  • sterilization is performed by spraying hydrogen peroxide water in a mist form.
  • technologies for supplying hydrogen peroxide to raw water, generating OH radicals by ultraviolet irradiation and ozone aeration, and sterilizing by the strong oxidizing action of radicals have been studied.
  • Hydrogen peroxide water is used in some fields such as treatment.
  • the method of diluting a hydrogen peroxide solution with a concentration of several percent takes time and labor to supply the drug, and is not universal.
  • the hydrogen peroxide water generating apparatus using the electrolysis method has low hydrogen peroxide generation efficiency and cannot generate high concentration hydrogen peroxide water.
  • the hydrogen peroxide generator of the embodiment includes an electrolytic cell, a pair of electrodes, and a circulation pipe.
  • the electrolytic cell contains an electrolytic solution.
  • a pair of electrodes are provided in the electrolytic cell and electrolyze the electrolytic solution.
  • the circulation pipe is connected to the electrolytic cell, and flows oxygen generated from the electrolytic solution electrolyzed in the electrolytic cell to the electrolytic cell.
  • FIG. 1 is an overall configuration diagram of a hydrogen peroxide generator according to the first embodiment.
  • FIG. 2 is an overall configuration diagram of a hydrogen peroxide generator according to the second embodiment.
  • FIG. 3 is an overall configuration diagram of the hydrogen peroxide generating apparatus according to the first comparative example.
  • FIG. 4 is an overall configuration diagram of a hydrogen peroxide generator according to a second comparative example.
  • FIG. 5 shows the experimental results of the production concentration of hydrogen peroxide water according to the example and the comparative example.
  • the hydrogen peroxide solution according to the embodiment returns oxygen generated by electrolyzing the electrolytic solution in the electrolytic cell to the electrolytic solution in the electrolytic cell, and increases the dissolved oxygen concentration in the electrolytic solution, thereby increasing the high concentration of peroxide. Hydrogen water is produced.
  • FIG. 1 is an overall configuration diagram of a hydrogen peroxide generator 10 according to the first embodiment.
  • the hydrogen peroxide generator 10 includes an electrolytic cell 12, an electrode 14, an electrode 16, a storage tank 18, a raw water pump 20, a circulation pump 22, valves 26 and 28, and pipes 30, 32, 34, and 36. , 38, 40.
  • the piping 30, the piping 34, and the piping 38 are examples of circulation piping.
  • the electrolytic cell 12 contains an electrolytic solution 80 for generating hydrogen peroxide by electrolysis.
  • the electrolytic solution 80 is, for example, pure water or salt water.
  • An example of pure water is tap water.
  • An example of salt water is a sodium sulfate solution having a concentration of 0.05 mol / L.
  • the electrode 14 and the electrode 16 are provided in the electrolytic cell 12. More specifically, the electrode 14 and the electrode 16 are provided in an electrolytic solution 80 accommodated in the electrolytic cell 12. The electrode 14 and the electrode 16 are arranged in parallel with a certain distance from each other.
  • the electrode 14 is connected to the negative electrode of the DC power supply 90. Therefore, the electrode 14 functions as a cathode.
  • the electrode 16 is connected to the positive electrode of an external DC power supply 90. Therefore, the electrode 16 functions as an anode.
  • the electrode 14 and the electrode 16 are connected to a DC power supply 90 so that the polarity can be reversed. That is, the electrode 14 may be an anode and the electrode 16 may be a cathode.
  • Electrode 14 and electrode 16 electrolyze electrolyte solution 80 when a voltage is applied by DC power supply 90.
  • interval between the electrode 14 and the electrode 16 is not specifically limited, When the voltage of 10V to 20V is applied, it is preferable to set it as about 2 mm to 10 mm.
  • the electrode 14 and the electrode 16 are configured in a rectangular shape having the same shape and the same size. It is preferable that the electrode 14 and the electrode 16 have a specific surface area (or reaction area) that can sufficiently generate hydrogen peroxide.
  • the electrode 14 and the electrode 16 include, for example, carbon. Specifically, the electrode 14 and the electrode 16 are formed by dispersing highly active carbon black (for example, Vulcan XC-72 manufactured by Cabot) in a Teflon (registered trademark) dispersant and applying the carbon sheet on the carbon sheet. It is preferable to prepare by a method such as pressing, pressing a metal current collector and then sintering.
  • the electrode 16 may be composed of, for example, a platinum plate, a SUS plate, an insolubilized electrode (DSA), or the like.
  • the piping 30 is connected to the upper part of the electrolytic cell 12.
  • the pipe 32 is an example of a discharge pipe.
  • the pipe 32 is connected to the pipe 30 and an external storage portion 92.
  • the piping 30 and the piping 32 connect the upper part of the electrolytic cell 12 and the external accommodating part 92.
  • the pipe 30 and the pipe 32 discharge a part of the electrolyzed electrolytic solution 80 as hydrogen peroxide solution 88 from the upper part of the electrolytic cell 12 to the accommodating portion 92.
  • the valve 26 is an example of a pressure adjusting unit.
  • the valve 26 is provided in the middle of the pipe 32.
  • the valve 26 adjusts the pressure and the discharge amount of the discharged electrolyte solution 80 (that is, the hydrogen peroxide solution 88) so that the circulation pressure of the electrolyte solution 80 is equal to or higher than the atmospheric pressure.
  • the piping 30 and the piping 34 connected to the piping 30 are connected to the upper part of the electrolytic cell 12 and the storage tank 18. Thereby, the piping 30 and the piping 34 connect the electrolytic cell 12 and the storage tank 18.
  • the piping 30 and the piping 34 flow the electrolytic solution 80 including oxygen bubbles 84 generated from the electrolytic solution 80 electrolyzed by the electrodes 16 and 14 from the upper part of the electrolytic cell 12 to the storage tank 18.
  • the pipe 36 connects the storage tank 18 and an external electrolyte supply source 94.
  • the raw water pump 20 is provided in the middle of the pipe 36.
  • the raw water pump 20 supplies the electrolytic solution 80 from the electrolytic solution supply source 94 to the storage tank 18 via the pipe 36.
  • the storage tank 18 is an electrolytic solution 80 supplied from an external electrolytic solution supply source 94 and stores the electrolytic solution 80 supplied to the electrolytic cell 12.
  • the storage tank 18 is provided between the pipe 34 and the pipe 38, that is, in the middle of the circulation pipe.
  • the storage tank 18 stores an electrolytic solution 80 containing oxygen bubbles 84 sent from the electrolytic cell 12 through the piping 30 and the piping 30.
  • the piping 38 connects the storage tank 18 and the lower part of the electrolytic cell 12.
  • the piping 38 supplies the electrolytic solution 80 in the storage tank 18 to the lower part of the electrolytic cell 12.
  • the pipe 38 flows the electrolytic solution 80 containing oxygen bubbles 84 sent from the electrolytic cell 12 to the storage tank 18 through the pipe 30 and the pipe 34 to the electrolytic cell 12. That is, the pipe 30, the pipe 34, and the pipe 38 are connected to the electrolytic cell 12, and function as circulation piping that allows oxygen generated from the electrolytic solution 80 electrolyzed in the electrolytic cell 12 to flow to the electrolytic cell 12.
  • the circulation pump 22 is an example of a circulation member and a supply unit, and is provided in the middle of a pipe 38 that is a part of the circulation pipe.
  • the circulation pump 22 pressurizes the electrolytic solution 80 containing oxygen flowing through the pipe 38 and flows it to the electrolytic cell 12.
  • the circulation pump 22 preferably supplies the electrolytic solution 80 to the electrolytic cell 12 at a pressure equal to or higher than atmospheric pressure.
  • the pipe 40 is an example of an exhaust pipe and is connected to the upper part of the storage tank 18.
  • the valve 28 is provided in the middle of the pipe 40.
  • the pipe 40 discharges from the upper part of the storage tank 18 a part of the gas layer 86 from which the gas bubbles 84 of the oxygen bubbles 84 generated at the electrode 16 of the electrolytic cell 12 are separated.
  • the valve 28 adjusts the exhaust amount of the gas layer 86 so as to maintain the circulating pressure of the electrolytic solution 80 at atmospheric pressure or higher.
  • the DC power supply 90 applies a DC voltage to the electrodes 16 and 14.
  • the electrode 14 and the electrode 16 electrolyze the electrolytic solution 80 in the electrolytic cell 12.
  • the following reaction proceeds.
  • OH generated at the electrode 14 side - secondarily hydrogen peroxide is produced by the oxidation of H 2 O by radicals.
  • oxygen is generated by the second reaction.
  • the oxygen concentration is supersaturated, and oxygen is released as bubbles 84.
  • a part of the bubbles 84 slowly dissolves in the electrolytic solution 80, but most of the remaining bubbles 84 are supplied from the electrolytic cell 12 to the storage tank 18 via the piping 30 and the piping 34.
  • the hydrogen peroxide generator 10 of the present embodiment circulates the electrolytic solution 80 together with the bubbles 84 through the storage tank 18 and the like, and returns it to the electrolytic cell 12. Thereby, the hydrogen peroxide generator 10 increases the dissolved oxygen concentration in the electrolytic solution 80 in the electrolytic cell 12.
  • the hydrogen peroxide generator 10 extends the residence time of the electrolyte solution 80 including the bubbles 84 by providing the storage tank 18 in the middle of the circulation path of the electrolyte solution 80. Thereby, the bubbles 84 are further dissolved in the electrolytic solution 80. Further, nitrogen dissolved in the electrolytic solution 80 supplied from the electrolytic solution supply source 94 to the storage tank 18 is discharged based on Charles's law by the bubbles 84 being dissolved in the electrolytic solution 80. Therefore, the dissolved oxygen concentration in the electrolytic solution 80 is increased by the partial pressure of the bubbles 84 due to the oxygen generated by the electrode 16.
  • the exhausted nitrogen and oxygen not dissolved in the electrolytic solution 80 are separated from the electrolytic solution 80 and become an air layer 86 at the upper part of the storage tank 18.
  • the valve 28 discharges a part of the gas layer 86 while adjusting the exhaust amount so that the circulating pressure of the electrolytic solution 80 is maintained at atmospheric pressure or higher.
  • the valve 26 adjusts the discharge amount so that the circulating pressure of the electrolytic solution 80 is equal to or higher than the atmospheric pressure, and uses the electrolytic solution 80 having a high concentration of the hydrogen peroxide solution as the hydrogen peroxide solution 88 to the outside. Discharge.
  • the hydrogen peroxide generating device 10 dissolves inorganic ions such as calcium deposited on the electrode 14 functioning as the cathode in the electrolytic solution 80, and the external solution together with the electrolytic solution 80. To discharge. Thereafter, the electrode 14 functioning as the anode proceeds with the second reaction to generate oxygen, and the electrode 16 functioning as the cathode causes the first reaction. Thereby, the hydrogen peroxide generator 10 can advance the above-mentioned reaction while regenerating the electrode 14 inverted from the cathode to the anode and extending the life. (Anode: Immediately after polarity reversal) Ca ⁇ Ca 2+ + 2e ⁇ (fourth reaction)
  • the hydrogen peroxide generator 10 includes the pipe 30 and the pipe 34 that flow the electrolytic solution 80 from the electrolytic cell 12 to the storage tank 18.
  • the hydrogen peroxide generator 10 is electrolyzed by the electrodes 14 and 16 in the electrolytic bath 12, and causes the electrolytic solution 80 containing a large amount of oxygen bubbles 84 to flow from the electrolytic bath 12 to the storage tank 18 for circulation.
  • the dissolved oxygen concentration of the electrolyte solution 80 in the storage tank 18 can be increased.
  • the hydrogen peroxide generator 10 can supply the electrolytic solution 80 having a high dissolved oxygen concentration to the electrolytic cell 12, the first reaction can proceed to the right, and the concentration of hydrogen peroxide can be increased. it can.
  • the hydrogen peroxide generator 10 can generate a hydrogen peroxide solution 88 having a concentration of several tens of ppm to several hundreds of ppm.
  • the hydrogen peroxide generator 10 has a storage tank 18. Thereby, the hydrogen peroxide generator 10 stores the electrolytic solution 80 flowing from the electrolytic cell 12 in the storage tank 18, dissolves the oxygen bubbles 84 in the electrolytic solution 80, and increases the dissolved oxygen concentration. it can. As a result, the hydrogen peroxide generator 10 can proceed the first reaction to the right to generate the hydrogen peroxide solution 88 having a higher concentration.
  • the pressure of the electrolytic solution 80 flowing through the pipe 38 can be maintained at atmospheric pressure or higher, so that the dissolved oxygen concentration in the electrolytic solution 80 can be increased.
  • the hydrogen peroxide generator 10 has a pipe 40 and a valve 28 connected to the upper part of the storage tank 18. Thereby, the hydrogen peroxide generator 10 maintains the pressure acting on the electrolytic solution 80 stored in the storage tank 18 at atmospheric pressure or higher, and the gas layer 86 above the storage tank 18 by the pipe 40 and the valve 28. Therefore, the dissolved oxygen concentration in the electrolytic solution 80 can be increased.
  • the hydrogen peroxide generator 10 has pipes 30 and 32 and a valve 26 connected to the upper part of the electrolytic cell 12. As a result, the hydrogen peroxide generator 10 maintains the pressure acting on the electrolytic solution 80 in the electrolytic cell 12 at atmospheric pressure or higher, while the piping 30, 32 and the valve 26 allow the electrolytic solution 80 (or excess liquid in the electrolytic cell 12) Hydrogen oxide water 88) can be discharged.
  • FIG. 2 is an overall configuration diagram of the hydrogen peroxide generator 110 according to the second embodiment.
  • the hydrogen peroxide generator 110 includes an electrolytic cell 12, an electrode 14, an electrode 16, a gas-liquid separation tank 118, a raw water pump 120, a compressor 122, valves 126 and 128, pipes 130, 132, 134, 136, 138, and 140, and a diffuser tube 142.
  • the piping 130, the piping 134, and the piping 138 are examples of circulation piping.
  • the piping 132 connects the lower part of the gas-liquid separation tank 118 and the external storage part 92.
  • the valve 126 is provided in the middle of the pipe 132.
  • the pipe 132 discharges the electrolyzed electrolytic solution 80 as hydrogen peroxide water 88 from the upper part of the electrolytic cell 12 to the accommodating portion 92.
  • the valve 126 adjusts the discharge amount of the hydrogen peroxide solution 88 so that the pressure of the discharged electrolyte solution 80 becomes equal to or higher than the atmospheric pressure.
  • the pipe 134 connects the upper part of the electrolytic cell 12 and the gas-liquid separation tank 118.
  • the pipe 134 causes the electrolytic solution 80 that is electrolyzed by the electrodes 16 and 14 and contains the oxygen bubbles 84 to flow from the upper part of the electrolytic cell 12 to the gas-liquid separation tank 118.
  • the gas-liquid separation tank 118 is provided between the pipe 138 and the pipe 134 in the middle of the circulation pipe.
  • the gas-liquid separation tank 118 stores the electrolytic solution 80 electrolyzed in the electrolytic cell 12 together with oxygen bubbles 84.
  • the gas-liquid separation tank 118 gas-liquid separates the electrolytic solution 80 into a liquid phase 180 discharged as the hydrogen peroxide solution 88 and a gas layer 186 containing oxygen generated at the electrode 16 of the electrolytic cell 12.
  • the pipe 130 is connected to the upper part of the gas-liquid separation tank 118.
  • the pipe 140 is connected to the middle part of the pipe 130. That is, the pipe 140 is an example of a branch pipe, and branches from the pipe 130 that is a part of the circulation pipe.
  • the pipe 140 is connected to the outside and exhausts the gas layer 186 of the gas-liquid separation tank 118.
  • the valve 128 is provided in the middle of the pipe 140.
  • the pipe 130 and the pipe 140 discharge a part of the gas layer 186 that has been gas-liquid separated from the upper part of the gas-liquid separation tank 118.
  • the valve 128 adjusts the exhaust amount of the gas layer 186 so that the circulating pressure of the electrolytic solution 80 is maintained at atmospheric pressure or higher.
  • the pipe 136 connects the electrolytic cell 12 and an external electrolyte supply source 94.
  • the raw water pump 120 is provided in the middle of the pipe 136.
  • the raw water pump 120 is an example of a supply unit, and directly supplies the electrolytic solution 80 from the electrolytic solution supply source 94 to the gas-liquid separation tank 118 via the pipe 136.
  • the raw water pump 120 preferably supplies the electrolytic solution 80 to the electrolytic cell 12 at a pressure equal to or higher than atmospheric pressure.
  • the pipe 130 and the pipe 138 connected to the middle part of the pipe 130 connect the upper part of the gas-liquid separation tank 118 and the electrolytic cell 12.
  • the pipe 138 is connected to the lower part of the electrolytic cell 12 below the diffuser pipe 142.
  • the pipe 130 and the pipe 138 flow the gas layer 186 in the upper part of the gas-liquid separation tank 118 to the electrolytic cell 12.
  • the compressor 122 is an example of a circulation member, and is provided in the middle of a pipe 138 that is a part of the circulation pipe.
  • the compressor 122 pressurizes the gas in the gas layer 186 containing oxygen in the gas-liquid separation tank 118 flowing through the pipe 130 and the pipe 138 and flows the gas from the gas-liquid separation tank 118 to the electrolytic cell 12.
  • the diffuser tube 142 is, for example, a diffuser having a spherical shape, a plate shape, or another shape.
  • the air diffuser 142 is provided in the lower part of the electrolytic cell 12.
  • the air diffuser 142 diffuses the gas in the gas layer 186 containing oxygen flowing into the electrolytic cell 12 through the pipes 134, 130, and 138 and the gas-liquid separation tank 118 into the electrolytic cell 12 and diffuses it as bubbles 84. .
  • the oxygen-rich gas layer 186 gas containing oxygen generated by the electrode 16 and gas-liquid separated by the gas-liquid separation tank 118 is converted into the electrolytic cell 12 by the compressor 122. It is sent to.
  • the hydrogen peroxide generator 110 can increase the dissolved oxygen concentration in the electrolyte solution 80 of the electrolytic cell 12, advance the first reaction to the right, and generate the hydrogen peroxide solution 88 having a high concentration.
  • a sufficiently high oxygen bubble 84 is generated in the electrolytic cell 12, and the electrode 14 is in contact with the oxygen bubble 84.
  • the bubble 84 having a high oxygen concentration can be dissolved in the electrolytic solution 80 by extending the time.
  • the concentration is sufficiently high, for example, from several tens of ppm to several A 100 ppm hydrogen peroxide solution 88 can be generated.
  • the hydrogen peroxide generator 110 has an aeration tube 142 that diffuses oxygen supplied to the electrolytic cell 12 as a gas into the electrolytic cell 12 as bubbles 84.
  • the hydrogen peroxide generator 110 can further increase the contact between the bubbles 84 and the electrode 14, the concentration of the hydrogen peroxide solution 88 can be further improved.
  • valve 128 Since the valve 128 exhausts the gas in the gas layer 186 through the pipe 130 and the pipe 140 while adjusting the exhaust amount and pressure, the electrolysis supplied to the electrolytic cell 12 from the external electrolyte supply source 94 is performed.
  • the dissolved nitrogen in the liquid 80 due to the chemical equilibrium of atmospheric contact can be easily exhausted from the gas layer 186 of the gas-liquid separation tank 118.
  • the hydrogen peroxide generator 110 can advance the first reaction to the right by chemical equilibrium as in the hydrogen peroxide generator 10 of the first embodiment. Can be improved.
  • FIG. 3 is an overall configuration diagram of the hydrogen peroxide generator 210 according to the first comparative example.
  • FIG. 4 is an overall configuration diagram of the hydrogen peroxide generator 310 according to the second comparative example.
  • the electrolytic solution 280 is supplied to the electrolytic cell 212 from the outside by the raw water pump 220 via the pipe 236.
  • the electrode 214 is connected to the negative electrode of the DC power supply 290 and functions as a cathode.
  • the electrode 216 is connected to the positive electrode of the DC power supply 290 and functions as an anode.
  • the electrodes 214 and 216 electrolyze the electrolyte 280 when a voltage is applied from the DC power supply 290.
  • the hydrogen peroxide solution 288 is discharged to the outside through the pipe 232 together with oxygen generated by the electrode 216.
  • oxygen is discharged together with the hydrogen peroxide solution 288, the electrode 214 cannot obtain sufficient contact time with oxygen.
  • the hydrogen peroxide generator 210 advances the first chemical reaction to the right in a chemical equilibrium, The concentration cannot be increased.
  • the electrode 216 functioning as the anode is made of an inexpensive material such as SUS, the surface of the electrode 216 becomes flat, the electrode area is reduced, and the activity of generating hydrogen peroxide is reduced. For this reason, the concentration of the hydrogen peroxide solution cannot be increased by reversing the polarity of the electrodes 214 and 216 to precipitate and remove calcium and the like.
  • the hydrogen peroxide generator 310 of the second comparative example includes an air diffuser 342 provided in the lower part of the electrolytic cell 212, a pipe 338 connected to an oxygen supply source, and a compressor 322 provided in the middle of the pipe 338. It has further.
  • the hydrogen peroxide generator 310 oxygen is supplied to the electrolytic cell 212 below the diffuser pipe 342 by the compressor 322 through the pipe 236.
  • the hydrogen peroxide generator 310 can increase the dissolved oxygen concentration of the electrolytic solution 280 in the electrolytic bath 212 as compared to the hydrogen peroxide generator 210.
  • oxygen that cannot be dissolved in the electrolyte solution 280 supplied from the outside and oxygen generated by the electrode 216 are discharged together with the hydrogen peroxide solution 288. Therefore, although the hydrogen peroxide generator 310 cannot sufficiently use oxygen effectively, the cost increases because an oxygen generator such as an oxygen generator or an oxygen cylinder for supplying oxygen is installed.
  • the hydrogen peroxide generator 10 of the first embodiment described above is a first example, and the hydrogen peroxide generator 110 of the second embodiment is a second example.
  • the experimental conditions are as follows. DC power supply voltage applied to the electrode: 10V Current flowing through the electrode: 100 mA Energizing time: 60 minutes Electrolyte: Tap water
  • the electrode 216 functioning as the anode of the first comparative example and the second comparative example was a Pt (platinum) plate.
  • the electrode 16 functioning as the anode in the first and second examples was a carbon electrode.
  • the electrodes 14 and 214 functioning as the cathode were carbon electrodes.
  • the size of the electrodes 14, 16, 214, and 216 was 2 cm ⁇ 4 cm.
  • the distance between the electrode 14 and the electrode 16 and the distance between the electrode 214 and the electrode 216 were 10 mm.
  • FIG. 5 shows the experimental results of the production concentration of hydrogen peroxide water according to the example and the comparative example.
  • the first example when comparing the first example and the first comparative example in which oxygen is not supplied, the first example has a higher concentration of hydrogen peroxide than the first comparative example. It can be seen that can be generated.
  • the second example when comparing the second example and the second comparative example in which oxygen is supplied and diffused, the second example can generate a hydrogen peroxide solution having a higher concentration than the second comparative example. I understand. In particular, it can be seen that the difference in the concentration of the generated hydrogen peroxide solution is larger when oxygen is supplied.
  • the first and second examples in which the electrodes 14 and 16 are both carbon electrodes are the first comparative example and the second example in which the electrode 216 is the Pt electrode and the electrode 214 is the carbon electrode. It can be seen from the comparative example that high-concentration hydrogen peroxide water can be generated.
  • the direct current is 400 mA and the conditions other than the direct current are as described above, oxygen is diffused and the electrodes 14 and 16 are both carbon electrodes.
  • the concentration of hydrogen oxide water could be achieved.
  • the concentration of the hydrogen peroxide solution did not change greatly even when the direct current was 400 mA.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

高い濃度の過酸化水素水を生成することができない。 過酸化水素生成装置は、電解槽と、一対の電極と、循環配管と、を備える。電解槽は、電解液を収容する。一対の電極は、前記電解槽中に設けられ、前記電解液を電気分解する。循環配管は、前記電解槽と接続され、前記電解槽中で電気分解された前記電解液から生成された酸素を、前記電解槽へと流す。

Description

過酸化水素生成装置
 実施形態は、過酸化水素生成装置に関する。
 近年、新型インフルエンザの流行などにより対ウイルス対策や除菌対策への関心が高まっている。これらの除菌及び対ウイルス対策への要望に対して過酸化水素水をミスト状で噴霧して除菌することが行われている。また、浄水及び下水分野では、原水に過酸化水素を供給して、紫外線照射及びオゾン散気する事でOHラジカルを発生させ、ラジカルの強力な酸化作用で殺菌する技術が研究されており、廃水処理等の一部の分野で過酸化水素水が利用されている。
 除菌に用いられる過酸化水素水の生成には、従来、数%濃度の過酸化水素水を希釈する方法が知られている。また、水中に一対の電極板を互いに対向するように立てて挿入して電解液である水に対して電気分解を行う電気分解法を用いた過酸化水素水の生成装置が知られている。
特開2004-10904号公報 特開2007-162033号公報 特開2002-317287号公報
 しかしながら、数%濃度の過酸化水素水を希釈する方法では薬剤を供給する手間がかかり、汎用的でない。また、電気分解法による過酸化水素水の生成装置は、過酸化水素の発生効率が低く、高濃度の過酸化水素水を生成することができない。
 上述した課題を解決し、目的を達成するために、実施形態の過酸化水素生成装置は、電解槽と、一対の電極と、循環配管と、を備える。電解槽は、電解液を収容する。一対の電極は、前記電解槽中に設けられ、前記電解液を電気分解する。循環配管は、前記電解槽と接続され、前記電解槽中で電気分解された前記電解液から生成された酸素を、前記電解槽へと流す。
図1は、第1実施形態にかかる過酸化水素生成装置の全体構成図である。 図2は、第2実施形態にかかる過酸化水素生成装置の全体構成図である。 図3は、第1比較例にかかる過酸化水素生成装置の全体構成図である。 図4は、第2比較例にかかる過酸化水素生成装置の全体構成図である。 図5は、実施例及び比較例による過酸化水素水の生成濃度の実験結果である。
 以下の例示的な実施形態や変形例には、同様の構成要素が含まれている。よって、以下では、同様の構成要素には共通の符号が付されるとともに、重複する説明が部分的に省略される。実施形態や変形例に含まれる部分は、他の実施形態や変形例の対応する部分と置き換えて構成されることができる。また、実施形態や変形例に含まれる部分の構成や位置等は、特に言及しない限りは、他の実施形態や変形例と同様である。
 実施形態による過酸化水素水は、電解槽で電解液を電気分解することによって発生した酸素を、電解槽の電解液に戻して、電解液の溶存酸素濃度を高めることにより、高濃度の過酸化水素水を生成する。
 <第1実施形態>
 図1は、第1実施形態にかかる過酸化水素生成装置10の全体構成図である。過酸化水素生成装置10は、電解槽12と、電極14と、電極16と、貯留タンク18と、原水ポンプ20と、循環ポンプ22と、バルブ26、28と、配管30、32、34、36、38、40とを備えている。配管30、配管34及び配管38は、循環配管の一例である。
 電解槽12は、電気分解によって過酸化水素を生成するための電解液80を収容する。電解液80は、例えば、純水または塩水である。純水の一例は、水道水である。塩水の一例は、0.05mol/Lの濃度の硫酸ナトリウム溶液である。
 電極14及び電極16は、電解槽12中に設けられている。より具体的には、電極14及び電極16は、電解槽12に収容された電解液80の中に設けられている。電極14及び電極16は、互いに一定の間隔をあけて、平行に配置されている。電極14は、直流電源90の負極と接続されている。従って、電極14は、陰極として機能する。電極16は、外部の直流電源90の正極と接続されている。従って、電極16は、陽極として機能する。電極14及び電極16は、直流電源90と極性を反転可能に接続されている。即ち、電極14が陽極となり、電極16が陰極となることもある。電極14及び電極16は、直流電源90によって電圧が印加されると、電解液80を電気分解する。尚、電極14及び電極16の間の間隔は、特に限定されるものではないが、10Vから20Vの電圧が印加される場合、2mmから10mm程度にすることが好ましい。
 電極14及び電極16は、互いに同じ形状及び同じ寸法の矩形状に構成されている。電極14及び電極16は、過酸化水素を十分に発生させることが可能な比表面積(または反応面積)を有することが好ましい。電極14及び電極16は、例えば、カーボンを含む。具体的には、電極14及び電極16は、高活性のカーボンブラック(例えば、Cabot社製VulcanXC-72)をテフロン(登録商標)分散剤に分散させてカーボンシート上に塗布、または、カーボンシート状にプレス、金属製集電体にプレスしてから焼結させる等の方法によって作成することが好ましい。電極16は、例えば、白金板、SUS板、不溶化電極(DSA)等によって構成してもよい。
 配管30は、電解槽12の上部と接続されている。配管32は、排出配管の一例である。配管32は、配管30と、外部の収容部92とに接続されている。これにより、配管30及び配管32は、電解槽12の上部と外部の収容部92とを接続する。配管30及び配管32は、電気分解された電解液80の一部を過酸化水素水88として、電解槽12の上部から収容部92へ排出する。
 バルブ26は、圧力調整部の一例である。バルブ26は、配管32の途中部に設けられている。ここで、バルブ26は、電解液80の循環圧力が大気圧以上となるように、排出される電解液80(即ち、過酸化水素水88)の圧力及び排出量を調整する。
 配管30及び配管30に接続された配管34は、電解槽12の上部と、貯留タンク18とに接続されている。これにより、配管30及び配管34は、電解槽12と、貯留タンク18とを接続する。配管30及び配管34は、電極16及び電極14によって電気分解された電解液80から生成された酸素の気泡84を含む電解液80を、電解槽12の上部から貯留タンク18へ流す。
 配管36は、貯留タンク18と、外部の電解液供給源94とを接続する。原水ポンプ20は、配管36の途中部に設けられている。原水ポンプ20は、配管36を介して、電解液供給源94から貯留タンク18に電解液80を供給する。
 貯留タンク18は、外部の電解液供給源94から供給された電解液80であって、電解槽12へ供給する電解液80を貯留する。また、貯留タンク18は、配管34と配管38との間、即ち、循環配管の途中部に設けられている。貯留タンク18は、配管30及び配管30を介して、電解槽12から送られた酸素の気泡84を含む電解液80を貯留する。
 配管38は、貯留タンク18と電解槽12の下部とを接続する。配管38は、貯留タンク18の電解液80を電解槽12の下部へと供給する。また、配管38は、配管30及び配管34によって電解槽12から貯留タンク18に送られた、酸素の気泡84を含む電解液80を、電解槽12へと流す。即ち、配管30、配管34及び配管38は、電解槽12と接続され、電解槽12中で電気分解された電解液80から生成された酸素を、電解槽12へと流す循環配管として機能する。
 循環ポンプ22は、循環部材及び供給部の一例であって、循環配管の一部である配管38の途中部に設けられている。循環ポンプ22は、配管38を流れる酸素を含む電解液80を加圧して、電解槽12へと流す。循環ポンプ22は、大気圧以上の圧力で、電解液80を電解槽12へ供給することが好ましい。
 配管40は、排気配管の一例であって、貯留タンク18の上部と接続されている。バルブ28は、配管40の途中部に設けられている。配管40は、電解槽12の電極16で発生した酸素の気泡84が気液分離された気層86の一部を、貯留タンク18の上部から排出する。ここで、バルブ28は、電解液80の循環圧力を大気圧以上に維持するように、気層86の排気量を調整する。
 第1実施形態の過酸化水素生成装置10の動作について説明する。
 過酸化水素生成装置10では、直流電源90が電極16及び電極14に直流電圧を印加する。これにより、電極14及び電極16が、電解槽12内の電解液80を電気分解する。ここで、陰極として機能する電極14及び陽極として機能する電極16による電解液80としての水の電気分解では、以下に示す反応が進行する。
 (陰極)4HO+4e+O→2HO+4OH ・・・(第1反応)
 (陽極)2HO→O+4H+4e       ・・・(第2反応)
 更に、電極14側で発生したOHラジカルによるHOの酸化により副次的に過酸化水素が生成される。
 ここで、電極14側では、第1反応の左側に示す電解液80の溶存酸素濃度が高いほど、化学平衡的に反応が右側に進む。電極16側では、第2反応により酸素が生成されている。通常、電極16の表面では、酸素濃度が過飽和となり、気泡84として酸素が放出される。気泡84の一部は、ゆっくりと電解液80中に溶解するが、残りのほとんどの気泡84は、配管30及び配管34を介して、電解槽12から貯留タンク18へと供給される。
 ここで、大気(=空気)に接触している電解液80が電解槽12に供給される場合、当該電解液80の溶存酸素濃度は、大気平衡によって、空気の酸素分圧と同じ20%程度となる。一方、本実施形態の過酸化水素生成装置10は、電解液80を気泡84とともに、貯留タンク18等を介して循環させて、電解槽12に戻す。これにより、過酸化水素生成装置10は、電解槽12内の電解液80中の溶存酸素濃度を高くしている。
 更に、過酸化水素生成装置10は、電解液80の循環経路の途中に貯留タンク18を設けることにより、気泡84を含む電解液80の滞留時間を長くしている。これにより、気泡84が電解液80中に更に溶解する。また、電解液供給源94から貯留タンク18に供給された電解液80に溶存している窒素が、気泡84が電解液80に溶解することにより、シャルルの法則に基づいて排出される。従って、電極16が生成した酸素による気泡84の分圧だけ、電解液80中の溶存酸素濃度が高くなる。
 排気された窒素と電解液80に溶存しなかった酸素は、電解液80から分離して、貯留タンク18の上部の気層86となる。バルブ28は、電解液80の循環圧力が大気圧以上に維持するように、排気量を調整しつつ当該気層86の一部を排出する。
 バルブ26は、電解液80の循環圧力が大気圧以上を維持するように、排出量を調整しつつ、過酸化水素水の濃度が高くなった電解液80を過酸化水素水88として、外部へ排出する。
 ここで、陰極として機能する電極14では、副反応として、電解液80に溶解しているカルシウム等の無機イオンが次の第3反応によって副生成されて、電極14の劣化の原因となる。
  (陰極)  Ca2++2e→Ca  ・・・(第3反応)
 過酸化水素生成装置10では、電極14と電極16とを同じ材料及び同じ形状にした場合、定期的に電極14と電極16の極性を反転させることができる。即ち、電極16が直流電源90の負極に接続され、電極14が直流電源90の正極に接続される。これにより、電極16が陰極となり、電極14が陽極となる。過酸化水素生成装置10は、第4反応に示すように、陰極として機能していた電極14上に析出していたカルシウム等の無機イオンを電解液80に溶解させて、当該電解液80とともに外部へと排出する。この後、陽極として機能する電極14は第2反応を進めて酸素を発生させ、陰極として機能する電極16は第1反応を起こす。これにより、過酸化水素生成装置10は、陰極から陽極に反転させた電極14を再生して寿命を延ばしつつ、上述の反応を進めることができる。
  (陽極:極性反転直後)  Ca→Ca2++2e ・・・(第4反応)
 上述したように、第1実施形態の過酸化水素生成装置10は、電解槽12から貯留タンク18へと電解液80を流す配管30及び配管34を有する。これにより、過酸化水素生成装置10は、電解槽12内で電極14、16によって電気分解され、酸素の気泡84を多く含む電解液80を、電解槽12から貯留タンク18へと流して循環させることにより、貯留タンク18内の電解液80の溶存酸素濃度を高めることができる。過酸化水素生成装置10は、溶存酸素濃度が高い電解液80を電解槽12へと供給することができるので、第1反応を右へと進めることができ、過酸化水素の濃度を高めることができる。例えば、過酸化水素生成装置10は、数10ppmから数100ppm濃度の過酸化水素水88を生成することができる。
 過酸化水素生成装置10は、貯留タンク18を有する。これにより、過酸化水素生成装置10は、電解槽12から流れた電解液80を貯留タンク18に貯留して、電解液80内に酸素の気泡84を溶解させて、溶存酸素濃度を高めることができる。この結果、過酸化水素生成装置10は、第1反応を右へと進めて、より高濃度の過酸化水素水88を生成することができる。
 過酸化水素生成装置10は、循環ポンプ22を有するので、配管38を流れる電解液80の圧力を大気圧以上に維持することができるので、電解液80内の溶存酸素濃度を高めることができる。
 過酸化水素生成装置10は、貯留タンク18の上部に接続された配管40及びバルブ28を有する。これにより、過酸化水素生成装置10は、貯留タンク18に貯留された電解液80に作用する圧力を大気圧以上に維持しつつ、配管40及びバルブ28によって、貯留タンク18の上部の気層86を排気できるので、電解液80内の溶存酸素濃度を高めることができる。
 過酸化水素生成装置10は、電解槽12の上部に接続された配管30、32及びバルブ26を有する。これにより、過酸化水素生成装置10は、電解槽12の電解液80に作用する圧力を大気圧以上に維持しつつ、配管30、32及びバルブ26によって、電解槽12の電解液80(または過酸化水素水88)を排出できる。
 <第2実施形態>
 図2は、第2実施形態にかかる過酸化水素生成装置110の全体構成図である。過酸化水素生成装置110は、電解槽12と、電極14と、電極16と、気液分離タンク118と、原水ポンプ120と、コンプレッサー122と、バルブ126、128と、配管130、132、134、136、138、140と、散気管142とを備えている。配管130、配管134及び配管138が、循環配管の一例である。
 配管132は、気液分離タンク118の下部と外部の収容部92とを接続する。バルブ126は、配管132の途中部に設けられている。配管132は、電気分解された電解液80を過酸化水素水88として、電解槽12の上部から収容部92へ排出する。ここで、バルブ126は、排出される電解液80の圧力が大気圧以上となるように、過酸化水素水88の排出量を調整する。
 配管134は、電解槽12の上部と気液分離タンク118とを接続する。配管134は、電極16及び電極14によって電解されて酸素の気泡84を含む電解液80を、電解槽12の上部から気液分離タンク118へ流す。
 気液分離タンク118は、配管138と配管134との間、循環配管の途中部に設けられている。気液分離タンク118は、電解槽12で電気分解された電解液80を酸素の気泡84とともに、収容する。気液分離タンク118は、過酸化水素水88として排出される液相180と、電解槽12の電極16で発生した酸素を含む気層186とに、電解液80を気液分離する。
 配管130は、気液分離タンク118の上部と接続されている。配管140は、配管130の途中部に接続されている。即ち、配管140は、分岐配管の一例であって、循環配管の一部である配管130から分岐している。配管140は、外部と接続され、気液分離タンク118の気層186を排気する。バルブ128は、配管140の途中部に設けられている。配管130及び配管140は、気液分離された気層186の一部を、気液分離タンク118の上部から排出する。ここで、バルブ128は、電解液80の循環圧力を大気圧以上に維持するように、気層186の排気量を調整する。
 配管136は、電解槽12と外部の電解液供給源94とを接続する。原水ポンプ120は、配管136の途中部に設けられている。原水ポンプ120は、供給部の一例であって、配管136を介して、電解液供給源94から気液分離タンク118に電解液80を直接供給する。原水ポンプ120は、原水ポンプ120は、電解液80を大気圧以上の圧力で電解槽12へ供給することが好ましい。
 配管130及び配管130の途中部に接続された配管138は、気液分離タンク118の上部と電解槽12とを接続する。配管138は、散気管142よりも下方で、電解槽12の下部と接続される。配管130及び配管138は、気液分離タンク118の上部の気層186を、電解槽12へと流す。
 コンプレッサー122は、循環部材の一例であって、循環配管の一部である配管138の途中部に設けられている。コンプレッサー122は、配管130及び配管138を流れる気液分離タンク118の酸素を含む気層186のガスを加圧して、気液分離タンク118から電解槽12へと流す。
 散気管142は、例えば、球状、板状及び他の形状の散気装置である。散気管142は、電解槽12の下部に設けられている。散気管142は、配管134、130、138及び気液分離タンク118を介して、電解槽12へ流れる酸素を含む気層186の気体を、電解槽12内に分散させて気泡84として散気する。
 第2実施形態の過酸化水素生成装置110では、電極16で生成された酸素を含み、気液分離タンク118で気液分離された酸素リッチの気層186のガスを、コンプレッサー122で電解槽12へと送っている。これにより、過酸化水素生成装置110は、電解槽12の電解液80中の溶存酸素濃度を高めて、第1反応を右へ進めて、濃度の高い過酸化水素水88を生成できる。
 特に、電解槽12と電極14及び電極16とが十分に大きい過酸化水素生成装置110では、電解槽12において十分に酸素の多い気泡84を生成して、電極14と酸素の気泡84との接触時間を長くして、酸素濃度の高い気泡84を電解液80中に溶解させることができる。このような過酸化水素生成装置110では、上述したように気液分離タンク118の酸素の気泡84を含むガスを、電解槽12に送るだけでも、十分に濃度の高い、例えば、数10ppmから数100ppmの過酸化水素水88を生成できる。
 更に、過酸化水素生成装置110は、ガスとして電解槽12に供給される酸素を気泡84として電解槽12内に散気する散気管142を有する。これにより、過酸化水素生成装置110は、気泡84と電極14との接触をより高めることができるので、過酸化水素水88の濃度をより向上させることができる。
 バルブ128が、配管130及び配管140を介して、排気量及び圧力を調整しつつ、気層186のガスを排気しているので、外部の電解液供給源94から電解槽12に供給された電解液80中の大気接触の化学平衡による溶存窒素を、気液分離タンク118の気層186中から容易に排気できる。これにより、過酸化水素生成装置110は、第1実施形態の過酸化水素生成装置10と同様に、化学平衡によって第1反応を右へとより進めることができ、生成する過酸化水素水の濃度を向上させることができる。
 第2実施形態のその他の効果は、第1実施形態の効果とほぼ同様である。
 次に、上述した実施形態の効果を証明するための実験について説明する。
 図3は、第1比較例にかかる過酸化水素生成装置210の全体構成図である。図4は、第2比較例にかかる過酸化水素生成装置310の全体構成図である。まず、実施形態と比較した第1比較例の過酸化水素生成装置210及び第2比較例の過酸化水素生成装置310について説明する。
 第1比較例の過酸化水素生成装置210では、電解液280が、配管236を介して、原水ポンプ220により外部から電解槽212に供給される。電極214は、直流電源290の負極と接続されて、陰極として機能する。電極216は、直流電源290の正極と接続されて、陽極として機能する。電極214、216は、直流電源290から電圧が印加されると、電解液280を電気分解する。過酸化水素水288は、電極216で生成された酸素とともに、配管232を介して、外部へ排出される。このように、酸素が、過酸化水素水288と一緒に排出されるので、電極214は、酸素と十分な接触時間を得ることができない。また、供給された電解液280の大気接触の化学平衡及び空気の酸素分圧により、過酸化水素生成装置210は、第1化学反応を化学平衡的に右へ進めて、過酸化水素水288の濃度を高めることができない。
 また、陽極として機能する電極216をSUS等の安価な材料で構成した場合、電極216の表面が平坦になり、電極面積が小さくなり、過酸化水素水を発生させる活性が低くなる。このため、電極214、216の極性を反転させて、カルシウム等を析出させて除去することによって、過酸化水素水の濃度を高めることができない。
 第2比較例の過酸化水素生成装置310は、電解槽212の下部に設けられた散気管342と、酸素の供給源と接続された配管338と、配管338の途中部に設けられたコンプレッサー322とを更に有する。
 過酸化水素生成装置310では、配管236を介して、コンプレッサー322により酸素が、散気管342よりも下方で、電解槽212に供給される。これにより、過酸化水素生成装置310は、過酸化水素生成装置210に比べれば、電解槽212内の電解液280の溶存酸素濃度を上げることができる。しかしながら、過酸化水素生成装置310では、外部から供給された電解液280に溶解できなかった酸素及び電極216で生成された酸素は、過酸化水素水288とともに、排出される。従って、過酸化水素生成装置310は、十分に酸素を有効利用できないにも関わらず、酸素を供給するための酸素発生装置または酸素ボンベ等の酸素供給装置を設置するために、コストが増大する。
 上述の第1実施形態の過酸化水素生成装置10を第1実施例として、第2実施形態の過酸化水素生成装置110を第2実施例とする。
 実験の条件は、以下のとおりである。
 電極に印加される直流電源の電圧:10V
 電極に流れる電流:100mA
 通電時間:60分
 電解液:水道水
 第1比較例及び第2比較例の陽極として機能する電極216は、Pt(白金)板とした。第1実施例及び第2実施例の陽極として機能する電極16は、カーボン電極とした。陰極として機能する電極14、214は、カーボン電極とした。電極14、16、214、216のサイズは、2cm×4cmとした。電極14と電極16との間隔、及び、電極214と電極216との間隔は、10mmとした。
 これらの条件に基づいて実験した結果、生成された過酸化水素水の濃度をヨウ化カリウム法によるパックテストを用いて測定した。図5は、実施例及び比較例による過酸化水素水の生成濃度の実験結果である。
 図5に示すように、酸素を供給していない第1実施例及び第1比較例を比較した場合、第1実施例の方が、第1比較例に比べて、高濃度の過酸化水素水を生成できることが分かる。また、酸素を供給して散気した第2実施例及び第2比較例を比較した場合、第2実施例の方が、第2比較例に比べて、高濃度の過酸化水素水を生成できることが分かる。特に、酸素を供給した場合の方が、生成された過酸化水素水の濃度の差が大きいことが分かる。
 また、図5から、電極14、16をともにカーボン電極とした第1実施例及び第2実施例の方が、電極216をPt電極として、電極214をカーボン電極とした第1比較例及び第2比較例より、高濃度の過酸化水素水を生成できることが分かる。
 更に、直流電流を400mAとして、直流電流以外の条件を上述の条件とした場合、酸素を散気して、電極14、16をともにカーボン電極とした第2実施例の場合、4倍以上の過酸化水素水の濃度を達成できた。一方、酸素を散気しない第1実施例の場合、直流電流を400mAとしても、過酸化水素水の濃度は大きく変化しなかった。
 上述した各実施形態の構成の形状、個数、配置、接続関係等は適宜変更してよい。また、各実施形態を組み合わせてもよい。
 例えば、上述の第1実施形態に、第2実施形態の散気管142を設けてもよい。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (11)

  1.  電解液を収容する電解槽と、
     前記電解槽中に設けられ、前記電解液を電気分解する一対の電極と、
     前記電解槽と接続され、前記電解槽中で電気分解された前記電解液から生成された酸素を、前記電解槽へと流す循環配管と、
     を備える過酸化水素生成装置。
  2.  前記循環配管の途中部に設けられ、前記循環配管を流れる前記酸素を加圧して前記電解槽へ流す循環部材を備える請求項1に記載の過酸化水素生成装置。
  3.  前記循環配管の途中部に設けられ、前記酸素とともに流される前記電解液を貯留する貯留部を備える請求項1または2に記載の過酸化水素生成装置。
  4.  前記貯留部の上部に接続された排気配管と、
     前記排気配管の途中部に設けられたバルブと、
     を備える請求項3に記載の過酸化水素生成装置。
  5.  前記循環配管の途中部に設けられ、電気分解された前記電解液を前記酸素とともに収容して、前記酸素を含む気層と液相とに分離する気液分離部と、
     前記循環配管の途中部に設けられ、前記酸素を含む前記気層を加圧して前記電解槽へ流す循環部材と、
     を備える請求項1に記載の過酸化水素生成装置。
  6.  前記循環配管の途中部から分岐して、前記気液分離部の前記気層を排気する分岐配管と、
     前記分岐配管の途中部に設けられたバルブと、
     を備える請求項5に記載の過酸化水素生成装置。
  7.  前記電解槽へ大気圧以上の圧力で前記電解液を供給する供給部を備える請求項1から6のいずれか1項に記載の過酸化水素生成装置。
  8.  電気分解された前記電解液を排出する排出配管と、
     前記排出配管の途中部に設けられ、排出される前記電解液の圧力を調整する圧力調整部と、
     を備える請求項1から7のいずれか1項に記載の過酸化水素生成装置。
  9.  前記一対の電極は、カーボンを含み、同じ形状である請求項1から8のいずれか1項に記載の過酸化水素生成装置。
  10.  前記一対の電極は、極性を反転可能に直流電源と接続されている請求項1から9のいずれか1項に記載の過酸化水素生成装置。
  11.  前記循環配管を介して前記電解槽へと流れる前記酸素を散気させる散気部材を備える請求項1から10のいずれか1項に記載の過酸化水素生成装置。
PCT/JP2016/077737 2015-12-18 2016-09-20 過酸化水素生成装置 WO2017104203A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680074711.0A CN108474123B (zh) 2015-12-18 2016-09-20 过氧化氢生成装置
SG11201805108UA SG11201805108UA (en) 2015-12-18 2016-09-20 Device for generating hydrogen peroxide
AU2016370898A AU2016370898B2 (en) 2015-12-18 2016-09-20 Device for generating hydrogen peroxide
CA3008590A CA3008590A1 (en) 2015-12-18 2016-09-20 Device for generating hydrogen peroxide
US16/062,534 US20180371628A1 (en) 2015-12-18 2016-09-20 Device for generating hydrogen peroxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-247552 2015-12-18
JP2015247552A JP6636790B2 (ja) 2015-12-18 2015-12-18 過酸化水素生成装置

Publications (1)

Publication Number Publication Date
WO2017104203A1 true WO2017104203A1 (ja) 2017-06-22

Family

ID=59055972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077737 WO2017104203A1 (ja) 2015-12-18 2016-09-20 過酸化水素生成装置

Country Status (7)

Country Link
US (1) US20180371628A1 (ja)
JP (1) JP6636790B2 (ja)
CN (1) CN108474123B (ja)
AU (1) AU2016370898B2 (ja)
CA (1) CA3008590A1 (ja)
SG (1) SG11201805108UA (ja)
WO (1) WO2017104203A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101910636B1 (ko) * 2017-12-19 2018-10-24 (주) 테크로스 전기분해를 이용한 과산화수소 발생 장치
US11798799B2 (en) * 2021-08-09 2023-10-24 Applied Materials, Inc. Ultraviolet and ozone clean system
CN113957460A (zh) * 2021-10-27 2022-01-21 国红环保科技有限责任公司 一种基于交流电解合成双氧水的方法及其装置与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH093680A (ja) * 1995-06-26 1997-01-07 Shinko Pantec Co Ltd 水素・酸素発生装置
JP2000061471A (ja) * 1998-08-18 2000-02-29 Gifu Prefecture 水の浄化方法及び浄化装置
JP2002330665A (ja) * 2001-05-07 2002-11-19 Nippon Oil Corp 水槽水の浄化方法および装置
JP2005296922A (ja) * 2004-03-19 2005-10-27 Sekisui Chem Co Ltd 雨水の殺菌システム
JP2008063648A (ja) * 2006-09-11 2008-03-21 Sumitomo Heavy Ind Ltd 過酸化水素含有洗浄水の製造装置及び過酸化水素含有洗浄水の製造方法
JP2012001745A (ja) * 2010-06-14 2012-01-05 Toshiba Corp 電解装置及び電解方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9225421D0 (en) * 1992-12-04 1993-01-27 Chemetics Int Electrolytic production of hydrogen peroxide using bipolar membranes
US20070012578A1 (en) * 2005-06-30 2007-01-18 Akzo Nobel N.V. Chemical process
US8303797B2 (en) * 2006-06-16 2012-11-06 Kabushiki Kaisha Toshiba Cleaning system and cleaning method
DE102007017613A1 (de) * 2007-04-12 2008-10-23 Neubert, Susanne Verfahren und Vorrichtung zur Aufbereitung von Flüssigkeiten
JP2010018840A (ja) * 2008-07-10 2010-01-28 Teijin Pharma Ltd 電解質中の水除去方法、その装置、及び水分量測定装置
WO2012142435A2 (en) * 2011-04-15 2012-10-18 Advanced Diamond Technologies, Inc. Electrochemical system and method for on-site generation of oxidants at high current density
US8808528B2 (en) * 2011-05-26 2014-08-19 David Thomas Richardson Electrolyte supply tanks and bubbler tanks having improved gas diffusion properties for use in electrolyzer units
WO2012166997A2 (en) * 2011-05-31 2012-12-06 Clean Chemistry, Llc Electrochemical reactor and process

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH093680A (ja) * 1995-06-26 1997-01-07 Shinko Pantec Co Ltd 水素・酸素発生装置
JP2000061471A (ja) * 1998-08-18 2000-02-29 Gifu Prefecture 水の浄化方法及び浄化装置
JP2002330665A (ja) * 2001-05-07 2002-11-19 Nippon Oil Corp 水槽水の浄化方法および装置
JP2005296922A (ja) * 2004-03-19 2005-10-27 Sekisui Chem Co Ltd 雨水の殺菌システム
JP2008063648A (ja) * 2006-09-11 2008-03-21 Sumitomo Heavy Ind Ltd 過酸化水素含有洗浄水の製造装置及び過酸化水素含有洗浄水の製造方法
JP2012001745A (ja) * 2010-06-14 2012-01-05 Toshiba Corp 電解装置及び電解方法

Also Published As

Publication number Publication date
JP6636790B2 (ja) 2020-01-29
JP2017110279A (ja) 2017-06-22
SG11201805108UA (en) 2018-07-30
CN108474123A (zh) 2018-08-31
US20180371628A1 (en) 2018-12-27
CA3008590A1 (en) 2017-06-22
CN108474123B (zh) 2020-09-01
AU2016370898B2 (en) 2019-10-10
AU2016370898A1 (en) 2018-07-05

Similar Documents

Publication Publication Date Title
JP5913693B1 (ja) 電解装置及び電解オゾン水製造装置
JP4392354B2 (ja) 高電界電解セル
CA2649873A1 (en) Method, apparatus and plant for desalinating saltwater using concentration difference energy
US20120048744A1 (en) Electrolytic Synthesis of Hydrogen Peroxide Directly from Water and Application Thereof
JP5096054B2 (ja) オゾン生成方法
WO2017104203A1 (ja) 過酸化水素生成装置
JP6869188B2 (ja) 還元水の製造装置および還元水の製造方法
JP2013108104A (ja) 電解合成装置、電解処理装置、電解合成方法及び電解処理方法
US10239772B2 (en) Recycling loop method for preparation of high concentration ozone
KR20060007369A (ko) 고전기장 전해 전지
JP2010156033A (ja) 過硫酸製造装置及び過硫酸製造方法
KR100564062B1 (ko) 유기폐액의 복합매개산화 처리장치
KR200305722Y1 (ko) 살균수 생성 전해조
KR101441339B1 (ko) 오존수 생성장치
JP5651134B2 (ja) 電解反応装置及び電解反応方法
JP5984063B2 (ja) オゾン水生成装置
JP4644272B2 (ja) オゾン生成装置、及び、オゾン生成方法
JP2005161196A (ja) 電解殺菌水製造装置
KR20110039594A (ko) 혼합 산화제 발생장치
KR200374857Y1 (ko) 도전성 다이아몬드 전극의 전기분해 장치
KR100654349B1 (ko) 도전성 다이아몬드 전극의 전기분해 장치
JP2015000388A (ja) 電解水生成装置
KR20110082454A (ko) 전기 분해 살균수 제조장치를 이용한 공기청정가습기
JP2020506051A (ja) 電気分解モジュール、これを含む電気分解水生成装置及び電気分解水生成装置の運転方法
KR20110047680A (ko) 살균제 발생장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875189

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3008590

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11201805108U

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016370898

Country of ref document: AU

Date of ref document: 20160920

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16875189

Country of ref document: EP

Kind code of ref document: A1