WO2017104097A1 - 点火プラグ - Google Patents

点火プラグ Download PDF

Info

Publication number
WO2017104097A1
WO2017104097A1 PCT/JP2016/004542 JP2016004542W WO2017104097A1 WO 2017104097 A1 WO2017104097 A1 WO 2017104097A1 JP 2016004542 W JP2016004542 W JP 2016004542W WO 2017104097 A1 WO2017104097 A1 WO 2017104097A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground electrode
diameter
base material
fixing member
hole
Prior art date
Application number
PCT/JP2016/004542
Other languages
English (en)
French (fr)
Inventor
征信 長谷川
坂倉 靖
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to CN201680073887.4A priority Critical patent/CN108475899A/zh
Priority to US16/062,357 priority patent/US10270227B2/en
Priority to DE112016005813.6T priority patent/DE112016005813T5/de
Publication of WO2017104097A1 publication Critical patent/WO2017104097A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/39Selection of materials for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/32Sparking plugs characterised by features of the electrodes or insulation characterised by features of the earthed electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T21/00Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs
    • H01T21/02Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs of sparking plugs
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal

Definitions

  • This specification relates to a spark plug for igniting fuel gas in an internal combustion engine or the like.
  • the spark plug has a ground electrode that forms a gap.
  • an electrode including a ground electrode base material and a noble metal ground electrode tip fixed to the ground electrode base material is used as the ground electrode.
  • Patent Document 1 discloses a technique in which a tip fixing hole is provided at the tip of a ground electrode base material, and a ground electrode tip is disposed in the tip fixing hole.
  • a fixing member is arranged on the side opposite to the discharge surface of the ground electrode chip in the chip fixing hole, and the fixing member is fixed to the ground electrode base material, whereby the ground electrode chip is attached to the ground electrode base material. It is fixed.
  • the present specification relates to a spark plug including a fixing member for fixing a ground electrode tip to a ground electrode base material.
  • the strength of the fixing member being fixed to the ground electrode base material is improved and the grounding from the ground electrode base material is improved.
  • Disclosed is a technique for suppressing electrode chipping.
  • a fixing member With An ignition plug in which the ground electrode tip is held by an inner surface of the ground electrode base material forming the through hole and a surface of the fixing member on the first direction side;
  • the maximum length along the first direction of the portion of the fixing member disposed in the through hole is along the first direction of the portion of the ground electrode base material where the through hole is formed. More than 50% of the maximum length In the cross section passing through the central axis of the fixing member and along the first direction, the melting portion is provided so as to straddle the ground electrode base material and the fixing member, In the cross section, the length along the first direction from the first direction side end of the melting portion at the boundary between the ground electrode base material and the fixing member to the second surface is the length of the fixing member.
  • the spark plug is 50% or more of the maximum length along the first direction of the portion arranged in the through hole.
  • positioned in a through-hole among fixing members is 50% or more of the maximum length along the 1st direction of a ground electrode base material.
  • the length along the first direction from the end in the first direction of the melted portion at the boundary between the ground electrode base material and the fixing member to the second surface of the ground electrode base material is within the through hole of the fixing member. Is 50% or more of the maximum length along the first direction.
  • the length along the first direction of the melting portion can be sufficiently secured, so that the strength with which the fixing member is fixed to the ground electrode base material can be improved. Accordingly, it is possible to suppress the drop of the ground electrode tip from the ground electrode base material.
  • the spark plug according to Application Example 1 The ground electrode chip has a chip body including the discharge surface, a diameter larger than the diameter of the chip body, located on the second direction side from the chip body, and a flange including the large diameter surface; Have The through-hole is larger than the discharge surface and has a small diameter portion having a diameter smaller than the flange portion, and a large diameter portion located on the second direction side from the small diameter portion and having a diameter larger than the flange portion; Including, The ground electrode base material is formed with a step portion positioned between the small diameter portion and the large diameter portion in the through hole, The spark plug according to claim 1, wherein a surface of the flange portion on the first direction side is supported by the stepped portion.
  • the strength with which the ground electrode tip is fixed to the ground electrode base material can be improved.
  • the ratio of the diameter of the end of the chip body in the second direction with respect to the diameter of the flange portion is 76% or more, the diameter of the discharge surface can be secured, so that the wear resistance can be improved.
  • the ratio of the diameter of the end of the chip body in the second direction to the diameter of the collar portion is 95% or less, the radial width of the collar portion can be secured, so that the ground electrode chip is used as the ground electrode base material.
  • the strength to be fixed can be further improved.
  • connection end side of the ground electrode base metal is connected to the metal shell, so it is easy to heat. According to the above configuration, the melted portion at the position intersecting with the imaginary line extending in the direction toward the connection end has reached the ground electrode chip, so that the ground electrode heated to high temperature by the spark or the fuel gas ignited by the spark Heat extraction from the tip to the connection end side of the ground electrode base material can be further improved.
  • the spark plug according to Application Example 4 The ground electrode base material has a free end that is an end not connected to the metal shell, on the side opposite to the connection end, The spark plug according to claim 1, wherein the melted portion at a position intersecting with an imaginary line extending in a direction from the center of the ground electrode tip toward the free end does not reach the ground electrode tip.
  • the spark plug according to any one of Application Examples 1 to 5 The spark plug is characterized in that the ground electrode tip is one of iridium and an iridium alloy.
  • the present invention can be realized in various modes.
  • an ignition plug and an ignition device using the ignition plug an internal combustion engine equipped with the ignition plug, and an ignition device using the ignition plug are provided.
  • This can be realized in the form of an internal combustion engine or the like to be mounted.
  • FIG. 1 is a cross-sectional view of an example of a spark plug according to the first embodiment.
  • the illustrated line CL indicates the axis line CL (also referred to as the central axis CL) of the spark plug 100.
  • the illustrated cross section is a cross section including the axis CL.
  • a direction parallel to the axis CL is also referred to as an “axis direction”.
  • the lower direction in FIG. 1 is referred to as a front end direction LD
  • the upper direction is also referred to as a rear end direction BD.
  • the tip direction LD is a direction from the terminal fitting 40 described later toward the electrodes 20 and 30.
  • radial direction of a circle centered on the axis CL and positioned on a plane perpendicular to the axis CL
  • circumferential direction of the circle
  • An end in the front end direction LD is also simply referred to as a front end
  • an end in the rear end direction BD is also simply referred to as a rear end.
  • the spark plug 100 includes an insulator 10, a center electrode 20, a ground electrode 30, a terminal fitting 40, a metal shell 50, a conductive first seal portion 60, a resistor 70, and a conductive second electrode.
  • the seal portion 80, the first packing 8, the talc 9, the second packing 6, and the third packing 7 are provided.
  • the insulator 10 is a substantially cylindrical member having a shaft hole 12 that is a through hole extending along the axis CL and penetrating the insulator 10.
  • the insulator 10 is formed by firing alumina (other insulating materials can also be used).
  • the insulator 10 includes a leg portion 13, a first reduced outer diameter portion 15, a first trunk portion 17, a flange portion 19, and a second reduced outer diameter portion 11 arranged in order in the rear end direction BD.
  • the outer diameter of the first reduced outer diameter portion 15 gradually decreases toward the distal end direction LD.
  • a reduced inner diameter portion 16 is formed in which the inner diameter gradually decreases toward the distal direction LD.
  • the outer diameter of the second reduced outer diameter portion 11 gradually decreases toward the rear end direction BD.
  • a rod-like center electrode 20 extending along the axis CL is inserted on the tip side of the shaft hole 12 of the insulator 10.
  • the center electrode 20 has a leg portion 25, a flange portion 24, and a head portion 23 that are arranged in order from the front end side toward the rear end direction BD.
  • a portion on the distal end side of the leg portion 25 is exposed outside the shaft hole 12 on the distal end side of the insulator 10.
  • the other part of the center electrode 20 is disposed in the shaft hole 12.
  • the front end side surface of the flange portion 24 is supported by the reduced inner diameter portion 16 of the insulator 10.
  • the center electrode 20 includes an electrode base material 21 and a core material 22 embedded in the electrode base material 21.
  • the electrode base material 21 is formed using, for example, nickel (Ni) or an alloy containing nickel as a main component (for example, NCF600, NCF601).
  • the “main component” means a component having the highest content (hereinafter the same).
  • the core material 22 is formed of a material (for example, an alloy containing copper) having a higher thermal conductivity than the electrode base material 21.
  • a terminal fitting 40 is inserted on the rear end side of the shaft hole 12 of the insulator 10.
  • the terminal fitting 40 is formed using a conductive material (for example, a metal such as low carbon steel).
  • the terminal fitting 40 includes a cap mounting portion 41, a flange portion 42, and a leg portion 43 that are arranged in order in the distal direction LD.
  • the cap mounting portion 41 is exposed outside the shaft hole 12 on the rear end side of the insulator 10.
  • the leg portion 43 is inserted into the shaft hole 12 of the insulator 10.
  • a columnar resistor 70 for suppressing electrical noise is disposed between the terminal fitting 40 and the center electrode 20.
  • a conductive first seal portion 60 is disposed between the resistor 70 and the center electrode 20, and a conductive second seal portion 80 is disposed between the resistor 70 and the terminal fitting 40. .
  • the center electrode 20 and the terminal fitting 40 are electrically connected through the resistor 70 and the seal portions 60 and 80.
  • the resistor 70 includes, for example, glass particles (for example, B 2 O 3 —SiO 2 glass) as main components, ceramic particles (for example, TiO 2 ), and a conductive material (for example, Mg). , Are used.
  • the seal portions 60 and 80 are formed using, for example, glass particles similar to the resistor 70 and metal particles (for example, Cu).
  • the metal shell 50 is a substantially cylindrical member having an insertion hole 59 that extends along the axis CL and penetrates the metal shell 50.
  • the metal shell 50 is formed using a low carbon steel material (other conductive materials (for example, metal materials) can also be used).
  • the insulator 10 is inserted into the insertion hole 59 of the metal shell 50.
  • the metal shell 50 is fixed to the insulator 10 in a state of being disposed around the insulator 10 in the radial direction.
  • the end portion on the distal end side of the insulator 10 (in this embodiment, the portion on the distal end side of the leg portion 13) is exposed outside the insertion hole 59.
  • the end portion on the rear end side of the insulator 10 (in this embodiment, the portion on the rear end side of the second body portion 18) is exposed outside the insertion hole 59.
  • the metal shell 50 includes a body portion 55, a seat portion 54, a deformation portion 58, a tool engagement portion 51, and a caulking portion 53 that are arranged in order in the rear end direction BD.
  • the seat part 54 is a bowl-shaped part.
  • a screw portion 52 for screwing into a mounting hole of an internal combustion engine for example, a gasoline engine
  • An annular gasket 5 formed by bending a metal plate is fitted between the seat portion 54 and the screw portion 52.
  • the metal shell 50 has a reduced inner diameter portion 56 disposed on the tip side of the deformable portion 58.
  • the inner diameter of the reduced inner diameter portion 56 gradually decreases toward the distal direction LD.
  • the first packing 8 is sandwiched between the reduced inner diameter portion 56 of the metal shell 50 and the first reduced outer diameter portion 15 of the insulator 10.
  • the first packing 8 is an iron O-ring (other materials (for example, metal materials such as copper) can also be used).
  • the shape of the tool engaging portion 51 is a shape (for example, a hexagonal column) with which the spark plug wrench is engaged.
  • a caulking portion 53 is provided on the rear end side of the tool engaging portion 51.
  • the caulking portion 53 is disposed on the rear end side of the second reduced outer diameter portion 11 of the insulator 10 and forms an end on the rear end side of the metal shell 50.
  • the caulking portion 53 is bent toward the inner side in the radial direction.
  • an annular space SP is formed between the inner peripheral surface of the metal shell 50 and the outer peripheral surface of the insulator 10.
  • the space SP is a space surrounded by the crimping portion 53 and the tool engagement portion 51 of the metal shell 50 and the second reduced outer diameter portion 11 and the second body portion 18 of the insulator 10. It is.
  • a second packing 6 is disposed on the rear end side in the space SP.
  • a third packing 7 is disposed on the front end side in the space SP. In this embodiment, these packings 6 and 7 are iron C-rings (other materials are also employable). Between the two packings 6 and 7 in the space SP, powder of talc (talc) 9 is filled.
  • the crimping portion 53 is crimped so as to be bent inward. And the crimping part 53 is pressed to the front end side. Thereby, the deformation
  • the first packing 8 is pressed between the first reduced outer diameter portion 15 and the reduced inner diameter portion 56 and seals between the metal shell 50 and the insulator 10. As a result, the gas in the combustion chamber of the internal combustion engine is prevented from leaking outside through the metal shell 50 and the insulator 10. In addition, the metal shell 50 is fixed to the insulator 10.
  • the ground electrode 30 is joined to the end on the front end side of the metal shell 50.
  • the ground electrode 30 includes a ground electrode base material 33, a ground electrode chip 38, and a fixing member 39.
  • the ground electrode base material 33 is a rod-shaped member.
  • One end of the ground electrode base material 33 is a connection end 332 that is connected, for example, by resistance welding so as to be electrically connected to the end on the front end side of the metal shell 50.
  • the other end of the ground electrode base material 33 is a free end 333.
  • the ground electrode base material 33 extends from the connection end 332 connected to the metal shell 50 in the distal direction LD and is bent toward the axis CL.
  • the ground electrode base material 33 extends in a direction perpendicular to the axis line CL and reaches the free end 333.
  • a portion of the ground electrode base material 33 that extends in a direction perpendicular to the axis line CL is also referred to as a tip portion 331.
  • a ground electrode tip 38 and a fixing member 39 are fixed to the tip portion 331.
  • the ground electrode tip 38 forms a gap (gap) g with the discharge surface 20s1 (surface on the front end side) of the center electrode 20.
  • the ground electrode base material 33 is formed using, for example, Ni or an alloy containing Ni as a main component (for example, NCF600, NCF601).
  • the ground electrode base material 33 may have a two-layer structure including a surface portion that forms a surface and a core portion embedded in the surface portion. In this case, the surface portion is formed using, for example, Ni or an alloy containing Ni as a main component, and the core portion is formed using a material (for example, pure copper) having a higher thermal conductivity than the surface portion.
  • FIG. 2 is an enlarged partial cross-sectional view showing the vicinity of the tip 331 of the ground electrode 30 of the first embodiment.
  • This cross section is a cross section that passes through the axis CL of the fixing member 39 and extends along the axial direction.
  • FIG. 3 is a schematic view of the vicinity of the front end portion 331 of the ground electrode 30 as viewed from the front end side toward the rear end direction BD.
  • FIG. 4 is a cross-sectional view of the tip 331 of the ground electrode 30 before laser welding according to the first embodiment. As shown in FIG. 2, the tip portion 331 described above extends in a direction perpendicular to the axis line CL.
  • connection end direction CD the direction perpendicular to the axis CL and directed from the axis CL toward the free end 333.
  • the front end portion 331 of the ground electrode base material 33 includes a first surface 33 s 1 located on the rear end side, that is, a first surface 33 s 1 facing the center electrode 20 and a first surface 33 s 1. It has the 2nd surface 33s2 which is a back surface, ie, 2nd surface 33s2 located in the front end side.
  • a through hole 335 penetrating from the first surface 33 s 1 to the second surface 33 s 2 is formed at a position facing the discharge surface 20 s 1 of the center electrode 20 of the tip 331.
  • the through-hole 335 has a small diameter portion 335a having a first diameter R1, and a large diameter having a second diameter R2 that is located on the tip side of the small diameter portion 335a and is larger than the first diameter R1.
  • the ground electrode base material 33 is formed with a step portion 335c positioned between the small diameter portion 335a and the large diameter portion 335b in the through hole 335.
  • the second diameter R2 (FIG. 4) on the second surface 33s2 is larger than the first diameter R1 (FIG. 4) on the first surface 33s1.
  • the ground electrode tip 38 includes a discharge surface 38s1 on the rear end side and a large-diameter surface 38s2 which is the back surface of the discharge surface 38s1 (that is, the front surface side).
  • the direction from the large diameter surface 38s2 toward the discharge surface 20s1 (in this embodiment, the rear end direction BD) is also referred to as a first direction, and the opposite direction (in the present embodiment, the front end direction LD) is also referred to as a second direction.
  • the discharge surface 38s1 is a surface that forms a gap g between the discharge surface 38s1 and the discharge surface 20s1 of the center electrode 20.
  • the ground electrode chip 38 includes a chip body 381 including a discharge surface 38s1 and a flange 382 including a large-diameter surface 38s2 and positioned on the tip side from the chip body 381.
  • the diameter of the chip body 381 is linearly reduced from the diameter R5 to the diameter R4 toward the center electrode 20, that is, from the front end side to the rear end side. That is, the chip body 381 has a truncated cone shape having a so-called tapered outer surface 381s.
  • the diameter of the flange 382 is larger than the diameter R5 of the tip end of the chip body 381 and the diameter R4 of the rear end.
  • the axis CL of the electrode tip is the same as the axis CL of the spark plug 100.
  • the diameter R3 (FIG. 4) of the large diameter surface 38s2 is larger than the diameter R4 of the discharge surface 38s1 (the diameter R4 of the rear end of the chip body 381).
  • the diameter R4 of the discharge surface 38s1 is smaller than the first diameter R1 (the diameter of the small diameter portion 335a) of the first surface 33s1 of the through hole 335.
  • the diameter R3 of the large diameter surface 38s2 is larger than the first diameter R1 of the first surface 33s1 of the through-hole 335 and slightly smaller than the second diameter R2 of the second surface 33s2 (the diameter R2 of the large diameter portion 335b).
  • the diameter of the rear end of the flange 382 (the diameter on the discharge surface 38s1 side) is R7.
  • the diameter R7 of the rear end of the collar portion 382 is the diameter of the tip of the collar portion 382. It is equal to R3 (the diameter R3 of the large diameter surface 38s2).
  • the ratio of the tip diameter R5 of the tip body 381 to the diameter R7 of the flange 382 is 76% or more and 96% or less. 2 and 4, the ratio of the diameter R5 of the tip of the chip body 381 to the diameter R7 is about 80%.
  • the diameter R5 of the tip of the chip body 381 is substantially equal to the diameter R1 of the small diameter portion 335a of the through hole 335.
  • the ground electrode tip 38 is formed by using an alloy containing a noble metal excellent in spark consumption as a main component.
  • the noble metal as the main component is iridium (Ir). Ir has a high melting point among noble metals and is excellent in spark wear resistance. Therefore, it is preferable to form the ground electrode tip 38 using Ir or an iridium alloy containing Ir as a main component.
  • a part of the ground electrode tip 38 including the large-diameter surface 38s2 is disposed in the through hole 335, and the discharge surface 20s1 is exposed from the through hole 335 to the center electrode 20 side.
  • the entire flange 382 of the ground electrode tip 38 is located on the rear end side in the large diameter portion 335 b of the through hole 335, and most of the tip side of the chip body 381 is the small diameter of the through hole 335.
  • a part of the rear end side including the discharge surface 38s1 of the chip body 381 protrudes from the through hole 335 to the rear end side.
  • the rear end surface 382s of the flange portion 382 is in contact with the step portion 335c in the through hole 335, and is supported from the rear end side by the step portion 335c.
  • the fixing member 39 has a substantially cylindrical outer shape.
  • the axis CL of the ground electrode tip 38, the through hole 335, and the fixing member 39 is the same as the axis CL of the spark plug 100.
  • the fixing member 39 is disposed in a portion on the tip side of the large-diameter surface 38 s 2 of the ground electrode tip 38 in the large-diameter portion 335 b of the through hole 335.
  • the rear end surface 39s1 of the fixing member 39 is in contact with the large diameter surface 38s2 of the ground electrode tip 38. That is, the fixing member 39 supports the ground electrode tip 38 (the flange portion 382) from the tip side.
  • the front end surface 39 s 2 of the fixing member 39 is located on substantially the same plane as the second surface 33 s 2 of the ground electrode base material 33.
  • the diameter R6 of the fixing member 39 before laser welding is substantially the same as the diameter R2 of the large diameter portion 335b of the through hole 335.
  • the ground electrode tip 38 is held by the inner surface of the ground electrode base material 33 that forms the through hole 335 and the rear end surface of the fixing member 39.
  • the maximum length L ⁇ b> 1 along the axial direction of the portion disposed in the through hole 335 in the fixing member 39 is a portion where the through hole 335 of the ground electrode base material 33 is formed ( That is, it is 50% or more of the maximum length L2 along the axial direction of the tip portion 331).
  • the maximum length L1 is about 60% of the maximum length L2.
  • the maximum length L1 is more preferably 60% or more of the maximum length L2, and further preferably 70% or more.
  • the bonding strength of the fixing member 39 can be improved.
  • the maximum length L1 is always less than 100% of the maximum length L2, and is less than 90% of the maximum length L2 in consideration of the thickness of the ground electrode tip 38.
  • the maximum length L ⁇ b> 1 is substantially equal to the length along the axial direction of the fixing member 39. If a part of the fixing member 39 protrudes to the tip side from the second surface 33s2, the maximum length along the axial direction of the fixing member 39 excluding the protruding part is the maximum.
  • the length is L1.
  • the maximum length L1 can also be said to be the maximum length (distance) along the axial direction from the rear end of the fixing member 39 to the second surface 33s2 of the front end portion 331 of the ground electrode base material 33.
  • the maximum length L2 along the axial direction of the portion where the through-hole 335 of the ground electrode base material 33 is formed (that is, the tip portion 331) is the axis line from the first surface 33s1 to the second surface 33s2 of the tip portion 331. It can also be said to be the maximum length (distance) along the direction.
  • the boundary BL between the outer side surface 39s3 of the fixing member 39 and the inner side surface of the ground electrode base material 33 that forms the large-diameter portion 335b of the through hole 335 is melted over the entire circumference.
  • a portion 82 is formed.
  • the hatched portion is a portion of the melted portion 82 that is exposed at the second surface 33 s 2 of the ground electrode base material 33.
  • the melting portion 82 is formed by irradiating a laser perpendicular to the second surface 33 s 2 of the ground electrode base material 33.
  • the melting portion 82 is a boundary between the outer surface 39 s 3 of the fixing member 39 and the inner surface of the ground electrode base material 33 that forms the large diameter portion 335 b of the through hole 335 in the cross section of FIG. 2. It is provided across the BL.
  • the melting portion 82 is a portion including the components of the ground electrode base material 33 and the components of the fixing member 39 that are melted together.
  • the ground electrode base material 33 and the fixing member 39 are joined via the melting part 82. Therefore, the melting portion 82 can also be referred to as a joining portion that joins the ground electrode base material 33 and the fixing member 39, and can also be referred to as a bead that joins the ground electrode base material 33 and the fixing member 39.
  • the melting portion 82 is formed by being melted at a high temperature.
  • the ground electrode base material 33 and the fixing member 39 are different in a fine structure such as a particle diameter, for example.
  • the ground electrode 30 is cut, the cross section of FIG. 2 is exposed, and the cross section is subjected to an etching process and then observed, whereby the ground electrode base material 33, the fixing member 39, and the melting portion 82 are observed.
  • the boundary can be clearly identified.
  • the length (depth) L3 along the axial direction of the melting portion 82 is the maximum length L1 along the axial direction of the portion of the fixing member 39 disposed in the through hole 335. 50% or more.
  • the length (depth) L3 along the axial direction of the melting portion 82 is determined from the rear end of the melting portion 82 at the boundary BL between the ground electrode base material 33 and the fixing member 39. It can be defined as the length along the axial direction to the second surface 33s2 of the tip 331.
  • the length L3 along the axial direction of the melting part 82 is about 95% of the above-described maximum length L1 of the fixing member 39.
  • the length L3 is more preferably 70% or more of the maximum length L1, more preferably 80% or more, still more preferably 90% or more. As the ratio of the length L3 to the maximum length L1 is higher, the bonding strength of the fixing member 39 can be improved.
  • the melting portion 82 is connected to the ground electrode over the entire circumference of the boundary BL between the fixing member 39 and the ground electrode base material 33 as can be seen from the portions surrounded by the wavy circles C1 and C2.
  • the buttocks 382 of the chip 38 are not reached. That is, the rear end of the melting portion 82 is located on the front end side of the large-diameter surface 38s2 of the ground electrode tip 38 over the entire circumference. In other words, the ratio of the length L3 to the maximum length L1 is less than 100%.
  • the maximum length L1 along the axial direction of the portion arranged in the through hole 335 of the fixing member 39 is the through hole of the ground electrode base material 33. From the end on the rear end side of the melted portion 82 at the boundary BL between the ground electrode base material 33 and the fixing member 39, which is 50% or more of the maximum length L2 along the axial direction of the portion where 335 is formed.
  • the length L3 along the axial direction to the second surface 33s2 of the tip portion 331 of the ground electrode base material 33 is the maximum length along the axial direction of the portion of the fixing member 39 disposed in the through hole 335. It is 50% or more of the length L1.
  • the tip of the spark plug 100 where the fixing member 39 is located is closest to the high temperature portion in the combustion chamber, it becomes extremely hot when the spark plug 100 is used, so that the melting portion 82 and the fixing member 39 are damaged. Easy to receive.
  • the spark plug 100 of the first embodiment it is possible to improve the strength particularly in a high temperature environment by ensuring a sufficient length along the axial direction of the melting portion 82.
  • the rear end surface 382 s of the flange portion 382 of the ground electrode tip 38 is supported by a step portion 335 c in the through hole 335.
  • the rear end surface 382 s of the flange portion 382 and the stepped portion 335 c are in contact with each other, so that the strength with which the ground electrode tip 38 is fixed to the ground electrode base material 33 can be improved.
  • the gap (gap) formed between the discharge surface 38 s 1 of the ground electrode tip 38 and the discharge surface 20 s 1 of the center electrode 20 can be prevented from changing during use of the spark plug 100.
  • the ratio (R5 / R7) of the diameter R5 of the tip of the chip body 381 to the diameter R7 of the collar part 382 is 76% or more and 95% or less.
  • the wear resistance of the spark plug 100 can be improved, and the strength with which the ground electrode tip 38 is fixed to the ground electrode base material 33 can be further improved.
  • the ratio (R5 / R7) is 76% or more, the diameter R4 of the discharge surface 20s1 can be suppressed from being excessively reduced, and the diameter R4 of the discharge surface 20s1 can be secured. 100 wear resistance can be improved.
  • the ratio (R5 / R7) is 95% or less, the radial width of the flange portion 382 (the width of the rear end surface 382s of the flange portion 382) can be ensured, so that the ground electrode chip 38 is made of the ground electrode base material.
  • the strength fixed to 33 can be further improved.
  • the ground electrode tip 38 is either iridium or an iridium alloy.
  • the strength with which the ground electrode tip 38 is fixed to the ground electrode base material 33 can be further improved.
  • FIG. 5 is a flowchart showing an example of a method for manufacturing a spark plug.
  • FIG. 6 is an explanatory diagram of a method for manufacturing the ground electrode 30.
  • step S120 an assembly is formed. In the manufacturing process of the spark plug 100 shown in FIG. 1, the assembly includes bending the ground electrode base material 33 of the ground electrode 30 and attaching the ground electrode tip 38 and the fixing member 39 onto the ground electrode base material 33. It is the state before performing.
  • a partial cross-sectional view showing the vicinity of the center electrode 20 of the assembly 100x is shown.
  • the assembly 100 x includes an insulator 10, a metal shell 50 fixed to the insulator 10, and a center electrode 20 inserted into the shaft hole 12 of the insulator 10.
  • a linear ground electrode base material 33 x is joined to the metal shell 50 as the ground electrode base material 33 before being bent.
  • Various known methods can be adopted as a method of forming the assembly 100x, and detailed description thereof is omitted.
  • the through-hole 335 is formed in the ground electrode base material 33x of the ground electrode 30.
  • the shape of the through hole 335 is as described with reference to FIG.
  • the through hole 335 is formed in the ground electrode base material 33x before bending using a cutting tool such as a drill.
  • step S140 as shown in FIG. 6A, the ground electrode tip 38 and the fixing member 39 are arranged in this order in the formed through-hole 335 in this order (see FIG. 6A). From above). At this time, since the tip body 381 of the ground electrode tip 38 protrudes to the rear end side (lower side of FIG. 6A) from the through hole 335, the ground electrode base material 33x is a support base on which the recess HL is formed. The ground electrode tip 38 and the fixing member 39 are placed in a state of being placed on the ST.
  • the front end surface 39s2 of the fixing member 39 is pressed toward the rear end direction BD by the hand press HP. Accordingly, the fixing member 39 is pushed in the rear end direction BD to the position where the flange portion 382 is sandwiched by the rear end surface 39s1 of the fixing member 39 and the stepped portion 335c in the through hole 335.
  • the front end surface 39s2 of the fixing member 39 slightly protrudes (for example, 0.1 mm) from the second surface of the front end portion 331 of the ground electrode base material 33 toward the front end side.
  • the length of the fixing member 39 along the axial direction is determined so as to be in a state. Thereby, the fixing member 39 can be accurately pushed to a predetermined position by the hand press HP.
  • step S160 the fixing member 39 and the ground electrode base material 33 are joined by laser welding.
  • An arrow LZ in FIG. 6B conceptually shows laser irradiation for laser welding.
  • the laser LZ is irradiated perpendicularly to the second surface 33 s 2 of the ground electrode base material 33 on the boundary BL between the inner surface of the through-hole 335 and the outer surface 39 s 3 of the fixing member 39.
  • the laser LZ irradiation is performed over the entire circumference of the boundary BL between the ground electrode base material 33 and the fixing member 39.
  • the melting part 82 is formed over the entire circumference of the boundary BL by irradiating the laser LZ at 24 locations at a speed of 12 Hz. As a result, the melting part 82 of FIGS. 2 and 3 is formed.
  • step S170 the ground electrode base material 33x is bent to form the gap g. That is, as shown in FIG. 2, the ground electrode base material 33 x is bent toward the center electrode 20 so that the discharge surface 20 s 1 of the center electrode 20 and the discharge surface 38 s 1 of the ground electrode tip 38 face each other.
  • the length along the axial direction of the fixing member 39 and the length along the axial direction of the large-diameter portion 335b of the through hole 335 are 1.2 mm, 1.1 mm, and 1 mm, respectively. 0.9 mm, 0.75 mm, and 0.6 mm. Accordingly, in the six types of samples 1 to 6, as shown in Table 1, the maximum length L1 along the axial direction of the portion of the fixing member 39 arranged in the through hole 335 is 1. 2 mm, 1.1 mm, 1 mm, 0.9 mm, 0.75 mm, and 0.6 mm. In addition, the length L3 along the axial direction of the melting part 82 was adjusted to 50% of the length L1.
  • the ratio of the length L1 to the length L2 (L1 / L2) is 80% and 73.3%, respectively. , 66.7%, 60%, 50%, and 40%.
  • Samples 1 to 6 were subjected to a high temperature strength test.
  • the vicinity of the fixing member 39 of each sample was heated to 1050 degrees Celsius using a high frequency heating apparatus.
  • a load of 1000 N was applied to the rear end surface 39s1 of the fixing member 39 toward the front end direction LD using a metal rod.
  • each sample was observed from the second surface 33 s 2 side of the ground electrode base material 33, and it was confirmed whether or not the fracture occurred in the melted portion 82.
  • the evaluation of the sample in which the fracture of the melting part 82 occurs was “B”, and the evaluation of the sample in which the fracture of the melting part 82 did not occur was “A”.
  • the results of the evaluation are as shown in Table 1.
  • the evaluation of the sample in which the ratio of the length L1 to the length L2 (L1 / L2) is less than 50%, that is, the sample 6 in which (L1 / L2) is 40% was “B”.
  • (L1 / L2) By setting (L1 / L2) to 50% or more, the length in the axial direction of the boundary BL between the fixing member 39 and the ground electrode base material 33 can be increased, whereby the length of the melting portion 82 in the axial direction can be increased.
  • the length can be increased. This is considered to be because the strength at which the fixing member 39 is joined to the ground electrode base material 33 can be improved.
  • the length L3 along the axial direction of the melting portion 82 is 0.3 mm, 0.45 mm, 0.6 mm, 0.75 mm, and 0.9 mm. It was done. Accordingly, in the five types of samples 7 to 11, the ratio of the length L3 to the length L1 (L3 / L1) is 33.3%, 50%, 66.7%, 83.3%, and 100%, respectively. Has been adjusted. The configuration of the other parts of these samples is the same as that of the sample 4 of the first evaluation test.
  • each sample was observed from the second surface 33 s 2 side of the ground electrode base material 33, and it was confirmed whether or not the fracture occurred in the melted portion 82.
  • the evaluation of the sample in which the fracture of the melting part 82 occurs was “B”, and the evaluation of the sample in which the fracture of the melting part 82 did not occur was “A”.
  • the results of the evaluation are as shown in Table 2.
  • the evaluation of the sample in which the ratio of the length L3 to the length L1 (L3 / L1) is less than 50%, that is, the sample 7 in which (L3 / L1) is 33.3% was “B”.
  • the evaluation of samples 8 to 11 in which (L3 / L1) is 50% or more, that is, samples 8 to 11 in which (L3 / L1) is 50%, 66.7%, 83.3%, and 100% is “A”.
  • Met By setting (L3 / L1) to 50% or more, the length of the melting portion 82 in the axial direction can be increased. This is considered to be because the strength at which the fixing member 39 is joined to the ground electrode base material 33 can be improved.
  • the maximum length L1 along the axial direction of the portion of the fixing member 39 disposed in the through hole 335 is the axial direction of the tip portion 331 of the ground electrode base material 33.
  • the axial line from the rear end of the melted portion 82 at the boundary between the ground electrode base material 33 and the fixing member 39 to the second surface 33s2 of the ground electrode base material 33 is 50% or more of the maximum length L2 along
  • the length L3 along the direction is preferably 50% or more of the maximum length L1 along the axial direction of the portion of the fixing member 39 disposed in the through hole 335, from the viewpoint of improving the strength. I was able to confirm.
  • the diameter R7 of the flange portion 382 has a common value of 3.3 mm, and as shown in Table 3, the diameter R5 of the tip of the chip body 381 is 2 mm and 2.3 mm, respectively. , 2.5 mm, 2.7 mm, 2.9 mm, 3.15 mm, and 3.2 mm, samples 12 to 18 of the seven types of ground electrode chips 38 were fabricated. In addition, the length along the axial direction of the chip body 381 was a common value of 0.4 mm for each sample.
  • the tip diameter R5 of the tip body 381 is adjusted to adjust the ratio of the tip diameter R5 of the tip body 381 to the diameter R7 of the flange 382 (R5 / R7). ) Are adjusted to 61%, 70%, 76%, 82%, 88%, 95% and 97%, respectively.
  • the strength test and the wear resistance test were performed on the samples 12 to 18 of the ground electrode tip 38, respectively.
  • each sample of the ground electrode tip 38 is fitted to the ground electrode base material 33 in which the corresponding shape of the through hole 335 is formed, and each sample (the ground electrode tip 38 is used). ) was loaded with a load of 150 N (Newton) toward the rear end direction BD.
  • the results of the evaluation are as shown in Table 3.
  • the evaluation of the sample 18 in which the ratio (R5 / R7) of the diameter R5 of the tip of the tip body 381 to the diameter R7 of the flange 382 is greater than 95%, that is, the sample 18 in which (R5 / R7) is 97% is “B "Met.
  • the evaluation of samples 12 to 17 in which (R5 / R7) is 95% or less, that is, samples 12 to 17 in which (R5 / R7) is 61%, 70%, 76%, 82%, 88%, 95% is “ A ".
  • the spark plug 100 was assembled using each sample of the ground electrode tip 38. And the test which ignites the ignition plug of each sample 60 times per second in the chamber of the nitrogen gas atmosphere of atmospheric pressure 0.6MPa was implemented over 500 hours. In each sample, the initial gap was set to 0.3 mm.
  • the ratio of the diameter R5 of the rear end of the chip body 381 to the diameter R7 of the flange 382 is preferably 76% or more and 95% or less from the viewpoint of improving strength and improving wear resistance. I was able to confirm.
  • FIG. 7 is an enlarged partial cross-sectional view showing the vicinity of the tip 331b of the ground electrode 30b of the spark plug according to the second embodiment.
  • the partial cross-sectional view of FIG. 7 is a cross-section passing through the axis CL of the fixing member 39 and along the axial direction, similarly to FIG.
  • the melting portion 82 does not reach the flange 382 of the ground electrode tip 38 over the entire circumference of the boundary BL between the fixing member 39 and the ground electrode base material 33.
  • the melting portion 82 reaches the flange portion 382 of the ground electrode tip 38 at a part of the boundary BL between the fixing member 39 and the ground electrode base material 33, and the ground portion at the other portion. It does not reach the flange 382 of the electrode tip 38.
  • Other configurations of the second embodiment are the same as those of the first embodiment. Further details will be described below.
  • a virtual line extending in the free end direction FD from the axis line CL of the electrode tip 38 is defined as a first line VL 1
  • the axis line of the electrode tip 38 A virtual line extending from CL to the connection end direction CD is defined as a second line VL2.
  • a portion intersecting with the first line VL 1 in the melting portion 82 shown by hatching in FIG. A portion intersecting with the second line VL2 is defined as a second portion PT2.
  • the melting part 82 does not reach the collar part 382 of the ground electrode tip 38 (FIG. 2).
  • the melting portion 82 reaches the flange portion 382 of the ground electrode tip 38 in the first portion PT1, as in the first embodiment. Not done.
  • the melting portion 82 is different from the first embodiment in the flange portion 382 of the ground electrode tip 38. Has reached.
  • the rear end of the melting portion 82 in the first portion PT1 is positioned on the front end side of the large-diameter surface 38s2 of the ground electrode tip 38, and the rear end of the melting portion 82 in the second portion PT2. Is located on the rear end side of the large-diameter surface 38s2 of the ground electrode tip 38.
  • the melting portion 82 reaches the flange portion 382 of the electrode tip 38 within the range of the angle ⁇ in the circumferential direction around the second portion PT ⁇ b> 2 of the melting portion 82. Yes. Outside the range of the angle ⁇ in the circumferential direction, the melting part 82 does not reach the flange part 382 of the electrode tip 38.
  • the angle ⁇ indicating the range of the melted part 82 reaching the electrode tip 38 is preferably, for example, more than 0 degree and less than 160 degrees, and more preferably 30 degrees or more and less than 120 degrees.
  • the length L3b (FIG. 7) along the axial direction of the melting portion 82 exceeds 100% of the maximum length L1 of the fixing member 39. That is, in the second embodiment, the ratio (L3b / L1) of the length L3b to the maximum length L1 described above exceeds 100%. For example, in the example of FIG. 7, the ratio (L3b / L1) of the length L3b to the maximum length L1 is more than 100% and less than 120%.
  • connection end 332 is connected to the metal shell 50 on the connection end 332 side of the ground electrode base material 33, heat sinking is good.
  • the melting portion 82 at the position intersecting the first line VL1 extending in the connection end direction CD from the center of the ground electrode tip 38 toward the connection end 332 is the ground electrode tip 38. Has reached. For this reason, heat is easily transmitted from the ground electrode tip 38 heated to the spark or the fuel gas ignited by the spark to the connection end 332 side of the ground electrode base material 33 through the melting portion 82.
  • the thermal conductivity is reduced at the interface between the ground electrode tip 38 and the ground electrode base material 33.
  • heat is less likely to be transmitted from the ground electrode tip 38 to the connection end side of the ground electrode base material 33.
  • the heat-drawing performance of the spark plug 100 can be improved, and the ground electrode tip 38 can be prevented from becoming excessively hot.
  • the wear resistance of the ground electrode tip 38 deteriorates as the temperature of the ground electrode tip 38 increases.
  • the wear resistance of the ground electrode tip 38 can be improved.
  • the heat absorption is poor and the temperature tends to be high. If the melting part 82 near the free end 333 that tends to become high temperature reaches the ground electrode tip 38, cracks are likely to occur in the melting part 82 due to thermal stress. This is because the ground electrode tip 38 and the ground electrode base material 33 are made of different materials, and therefore have different linear expansion coefficients, so that thermal stress is generated at the joint portion in a high temperature environment.
  • the melting portion 82 at a position intersecting the second line VL ⁇ b> 2 extending in the direction from the center of the ground electrode tip 38 toward the free end 333 does not reach the ground electrode tip 38.
  • the occurrence of cracks in the melted portion 82 due to thermal stress can be suppressed.
  • the durability of the spark plug in a high temperature environment can be improved.
  • the melting portion 82 is formed over the entire circumference of the boundary BL between the fixing member 39 and the ground electrode base material 33.
  • the melted portion is not limited to this, and may be formed in a part of the circumferential direction of the boundary BL between the fixing member 39 and the ground electrode base material 33 and may not be formed in the other part.
  • the melting portion 82 is divided into a plurality at predetermined intervals (for example, intervals of 30 degrees or 60 degrees) along the circumferential direction of the boundary BL between the fixing member 39 and the ground electrode base material 33. It may be divided.
  • the shape of the ground electrode tip 38 shown in each of the above embodiments is an example, and is not limited thereto.
  • the flange portion 382 of the ground electrode tip 38 may be omitted, and the ground electrode tip 38 may be only the tip body 381 having a tapered shape (conical truncated cone shape).
  • the small diameter portion 335 a of the through hole 335 may be reduced in diameter from the front end side toward the rear end direction BD corresponding to the outer shape of the chip body 381.
  • the chip body 381 may have a cylindrical shape instead of a tapered shape.
  • the shape of the fixing member 39 shown in each of the above embodiments is an example, and is not limited thereto.
  • the shape of the fixing member 39 may have a tapered shape that decreases in diameter from the front end side toward the rear end direction BD.
  • the shape of the large-diameter portion 335 b of the through hole 335 only needs to have a tapered shape corresponding to the shape of the fixing member 39.
  • the melting portion 82 is formed so as to extend obliquely with respect to the second surface 33 s 2 of the ground electrode base material 33 corresponding to the boundary between the fixed member 39 having a tapered shape and the large diameter portion 335 b. Also good.
  • the shape of the fixing member 39 viewed from the rear end side toward the front end direction LD may not be a circle but may be another shape.
  • the shape of the fixing member 39 viewed from the rear end side toward the front end direction LD may be an ellipse in which the length in the free end direction FD is longer than the length in the direction orthogonal to the free end direction FD.
  • the fixing member 39 is formed using NCF600 or NCF601, but may be formed using another heat-resistant material, for example, a heat-resistant nickel alloy different from NCF600 or NCF601.
  • the ground electrode tip 38 is made of an iridium alloy, but may be made of a noble metal different from iridium or an alloy containing the noble metal as a main component.
  • a noble metal different from iridium for example, platinum (Pt) or rhodium (Rh) may be employed.
  • the configuration of the spark plug is not limited to the configuration described in FIG. 1, and various configurations can be employed.
  • an electrode tip may be provided in a portion of the center electrode 20 where the gap g is formed.
  • an alloy containing a noble metal such as iridium or platinum can be used.
  • the core material 22 of the center electrode 20 may be omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Spark Plugs (AREA)

Abstract

接地電極母材からの接地電極チップの脱落を抑制する。 点火プラグは、中心電極と、第1面と第2面とを有すると共に第1面から第2面まで貫通する貫通孔を有する接地電極母材と、放電面と放電面の裏面である大径面とを有し、大径面を含む一部が貫通孔内に配置され、放電面が貫通孔から中心電極側に露出する接地電極チップと、大径面から放電面に向かう方向を第1方向とし、その反対方向を第2方向としたとき、貫通孔内における大径面より第2方向側の部分に配置される固定部材と、を備える。固定部材のうち貫通孔内に配置された部分の第1方向に沿った最大長さは、固定部材の中心軸を通り、かつ、第1方向に沿う断面において、接地電極母材と固定部材との境界における溶融部の第1方向の端から第2面までの第1方向の長さは、固定部材のうち貫通孔内に配置された部分の第1方向に沿った最大長さの50%以上である。

Description

点火プラグ
 本明細書は、内燃機関等において燃料ガスに点火するための点火プラグに関する。
 従来から、内燃機関に、点火プラグが用いられている。点火プラグは、間隙(ギャップ)を形成する接地電極を有している。接地電極には、例えば、接地電極母材と、接地電極母材に固定された貴金属製の接地電極チップと、を備える電極が利用されている。例えば、特許文献1には、接地電極母材の先端部に、チップ固定用の孔を設け、チップ固定用の孔内に接地電極チップを配置する技術が開示されている。この技術では、チップ固定用の孔において、接地電極チップの放電面とは反対側に固定部材を配置し、固定部材を接地電極母材に固定することによって、接地電極チップを接地電極母材に固定している。
特開昭62-268079号公報
 しかしながら、上記の技術では、固定部材を接地電極母材に固定する具体的な構成について、十分な工夫がされているとは言えなかった。このために、固定部材を接地電極母材に十分な強度で固定することができず、接地電極チップが接地電極母材から脱落する可能性があった。
 本明細書は、接地電極チップを接地電極母材に固定するための固定部材を備える点火プラグにおいて、固定部材が接地電極母材に固定される強度を向上して、接地電極母材からの接地電極チップの脱落を抑制する技術を開示する。
 本明細書に開示される技術は、以下の適用例として実現することが可能である。
[適用例1] 中心電極と、
 前記中心電極に面する第1面と前記第1面の裏面である第2面とを有すると共に、前記第1面から前記第2面まで貫通し、前記第2面における第2の径が前記第1面における第1の径より大きな貫通孔を有する接地電極母材と、
 前記中心電極との間に間隙を形成し、前記第1の径より小さな径を有する放電面と、前記第1の径より大きく、前記第2の径より小さな径を有すると共に、前記放電面の裏面である大径面と、を有し、前記大径面を含む一部が前記貫通孔内に配置され、前記放電面が前記貫通孔から前記中心電極側に露出する接地電極チップと、
 前記大径面から前記放電面に向かう方向を第1方向とすると共に、その反対方向を第2方向としたとき、前記貫通孔内における前記大径面より前記第2方向側の部分に配置される固定部材と、
 を備え、
 前記貫通孔を形成する前記接地電極母材の内面と、前記固定部材の前記第1方向側の面と、によって前記接地電極チップが保持される点火プラグであって、
 前記固定部材のうち前記貫通孔内に配置された部分の、前記第1方向に沿った最大長さは、前記接地電極母材の前記貫通孔が形成されている部分の前記第1方向に沿った最大長さの50%以上であり、
 前記固定部材の中心軸を通り、かつ、前記第1方向に沿う断面において、前記接地電極母材と前記固定部材とを跨ぐように設けられた溶融部を有し、
前記断面において、前記接地電極母材と前記固定部材との境界における前記溶融部の第1方向側の端から、前記第2面までの前記第1方向に沿った長さは、前記固定部材のうち前記貫通孔内に配置された部分の、前記第1方向に沿った最大長さの50%以上であることを特徴とする点火プラグ。
 上記構成によれば、固定部材のうち貫通孔内に配置された部分の、第1方向に沿った最大長さは、接地電極母材の第1方向に沿った最大長さの50%以上であり、接地電極母材と固定部材との境界における溶融部の第1方向の端から、接地電極母材の第2面までの第1方向に沿った長さは、固定部材のうち貫通孔内に配置された部分の、第1方向に沿った最大長さの50%以上である。この結果、溶融部の第1方向に沿った長さを十分に確保できるので、固定部材が接地電極母材に固定される強度を向上することができる。したがって、接地電極母材からの接地電極チップの脱落を抑制することができる。
[適用例2]適用例1に記載の点火プラグであって、
 前記接地電極チップは、前記放電面を含むチップ本体と、前記チップ本体の径より大きな径を有し、前記チップ本体より前記第2方向側に位置し、前記大径面を含む鍔部と、を有し、
 前記貫通孔は、前記放電面より大きく、かつ、前記鍔部より小さな径を有する小径部分と、前記小径部分より前記第2方向側に位置し、前記鍔部より大きな径を有する大径部分と、を含み、
 前記接地電極母材には、前記貫通孔内における前記小径部分と前記大径部分との間に位置する段部が形成され、
 前記鍔部の前記第1方向側の面は、前記段部によって支持されることを特徴とする、点火プラグ。
 上記構成によれば、鍔部の第1方向側の面は、段部によって支持されるので、接地電極チップが接地電極母材に対して固定される強度を向上することができる。また、接地電極チップの放電面と中心電極との間に形成される間隙が、点火プラグの使用中等に変動することを抑制することができる。
[適用例3]適用例2に記載の点火プラグであって、
 前記鍔部の径に対する前記チップ本体の前記第2方向の端の径の比率は、76%以上、かつ、95%以下であることを特徴とする、点火プラグ。
 上記構成によれば、鍔部の径に対するチップ本体の第2方向の端の径の比率が、76%以上であることによって、放電面の径が確保できるので、耐消耗性を向上できる。一方、鍔部の径に対するチップ本体の第2方向の端の径の比率が、95%以下であることによって、鍔部の径方向の幅が確保できるので、接地電極チップが接地電極母材に対して固定される強度をより向上することができる。
[適用例4]適用例1から3のいずれか一項に記載の点火プラグであって、
 前記中心電極を保持する絶縁体と、
 前記絶縁体の径方向の周囲に配置された主体金具と、
 を有し、
 前記接地電極母材は、前記主体金具に接続された端である接続端を有し、
 前記接地電極チップの中心から前記接続端に向かう方向に延びる仮想線と交差する位置における前記溶融部は、前記接地電極チップに到達していることを特徴とする、点火プラグ。
 接地電極母材の接続端側は、接続端が主体金具に接続されているので、熱引きが良い。上記構成によれば、接続端に向かう方向に延びる仮想線と交差する位置における溶融部は、接地電極チップに到達しているので、火花や火花によって着火される燃料ガスによって高温になった接地電極チップから接地電極母材の接続端側への熱引きをさらに向上することができる。
[適用例5]適用例4に記載の点火プラグであって、
 前記接地電極母材は、前記接続端とは反対側に、前記主体金具に接続されない端である自由端を有し、
 前記接地電極チップの中心から前記自由端に向かう方向に延びる仮想線と交差する位置における前記溶融部は、前記接地電極チップに到達していないことを特徴とする、点火プラグ。
 接地電極母材の自由端側は、自由端が主体金具に接続されていないので、熱引きが悪く、高温になりがちである。高温になりがちな自由端に近い溶融部が、接地電極チップに到達していると、熱応力によって溶融部にクラックが発生しやすい。上記構成によれば、自由端に向かう方向に延びる仮想線と交差する位置における溶融部は、接地電極チップに到達していないので、熱応力によって溶融部にクラックが発生することを抑制できる。
[適用例6]適用例1から5のいずれか一項に記載の点火プラグであって、
 前記接地電極チップは、イリジウム、および、イリジウム合金のうちのいずれかであることを特徴とする、点火プラグ。
 なお、本発明は、種々の態様で実現することが可能であり、例えば、点火プラグや点火プラグを用いた点火装置、その点火プラグを搭載する内燃機関や、その点火プラグを用いた点火装置を搭載する内燃機関等の態様で実現することができる。
第1実施形態の点火プラグの一例の断面図である。 第1実施形態の接地電極の先端部の近傍を拡大して示す部分断面図である。 先端側から後端方向を向いて見た接地電極の先端部の近傍の概略図である。 レーザ溶接前の接地電極の先端部の断面図である。 点火プラグの製造方法の一例を示すフローチャートである。 接地電極30の製造方法の説明図である。 第2実施形態の点火プラグの接地電極の先端部の近傍を拡大して示す部分断面図である。
 A.第1実施形態:
 A-1.点火プラグの構成:
 図1は、第1実施形態の点火プラグの一例の断面図である。図示されたラインCLは、点火プラグ100の軸線CL(中心軸CLとも呼ぶ)を示している。図示された断面は、軸線CLを含む断面である。以下、軸線CLと平行な方向を「軸線方向」とも呼ぶ。軸線CLと平行な方向のうち、図1における下方向を先端方向LDと呼び、上方向を後端方向BDとも呼ぶ。先端方向LDは、後述する端子金具40から電極20、30に向かう方向である。また、軸線CLを中心とし、軸線CLと垂直な面上に位置する円の径方向を、単に「径方向」とも呼び、当該円の円周方向を、単に「周方向」とも呼ぶ。先端方向LDの端を、単に、先端とも呼び、後端方向BDの端を、単に、後端とも呼ぶ。
 点火プラグ100は、絶縁体10と、中心電極20と、接地電極30と、端子金具40と、主体金具50と、導電性の第1シール部60と、抵抗体70と、導電性の第2シール部80と、第1パッキン8と、タルク9と、第2パッキン6と、第3パッキン7と、を備えている。
 絶縁体10は、軸線CLに沿って延びて絶縁体10を貫通する貫通孔である軸孔12を有する略円筒状の部材である。絶縁体10は、アルミナを焼成して形成されている(他の絶縁材料も採用可能である)。絶縁体10は、後端方向BDに向かって順番に並ぶ、脚部13と、第1縮外径部15と、第1胴部17と、鍔部19と、第2縮外径部11と、第2胴部18と、を有している。第1縮外径部15の外径は、先端方向LDに向かって、徐々に小さくなる。絶縁体10の第1縮外径部15の近傍(図1の例では、第1胴部17)の内部には、先端方向LDに向かって内径が徐々に小さくなる縮内径部16が形成されている。第2縮外径部11の外径は、後端方向BDに向かって、徐々に小さくなる。
 絶縁体10の軸孔12の先端側には、軸線CLに沿って延びる棒状の中心電極20が挿入されている。中心電極20は、先端側から後端方向BDに向かって順番に並ぶ、脚部25と、鍔部24と、頭部23と、を有している。脚部25の先端側の部分は、絶縁体10の先端側で、軸孔12の外に露出している。中心電極20の他の部分は、軸孔12内に配置されている。鍔部24の先端側の面は、絶縁体10の縮内径部16によって、支持されている。また、中心電極20は、電極母材21と、電極母材21の内部に埋設された芯材22と、を有している。電極母材21は、例えば、ニッケル(Ni)またはニッケルを主成分として含む合金(例えば、NCF600、NCF601)を用いて形成されている。ここで、「主成分」は、含有率が最も高い成分を意味している(以下、同様)。芯材22は、電極母材21よりも熱伝導率が高い材料(例えば、銅を含む合金)で形成されている。
 絶縁体10の軸孔12の後端側には、端子金具40が挿入されている。端子金具40は、導電材料(例えば、低炭素鋼等の金属)を用いて形成されている。端子金具40は、先端方向LDに向かって順番で並ぶ、キャップ装着部41と、鍔部42と、脚部43と、を有している。キャップ装着部41は、絶縁体10の後端側で、軸孔12の外に露出している。脚部43は、絶縁体10の軸孔12に挿入されている。
 絶縁体10の軸孔12内において、端子金具40と中心電極20との間には、電気的なノイズを抑制するための、円柱状の抵抗体70が配置されている。抵抗体70と中心電極20との間は、導電性の第1シール部60が配置され、抵抗体70と端子金具40との間には、導電性の第2シール部80が配置されている。中心電極20と端子金具40とは、抵抗体70とシール部60、80とを介して、電気的に接続される。シール部60、80を用いることによって、積層される部材20、60、70、80、40間の接触抵抗が安定し、中心電極20と端子金具40との間の電気抵抗値を安定させることができる。なお、抵抗体70は、例えば、主成分であるガラス粒子(例えば、B23-SiO2系のガラス)と、セラミック粒子(例えば、TiO)と、導電性材料(例えば、Mg)と、を用いて形成されている。シール部60、80は、例えば、抵抗体70と同様のガラス粒子と、金属粒子(例えば、Cu)と、を用いて形成されている。
 主体金具50は、軸線CLに沿って延びて主体金具50を貫通する挿入孔59を有する略円筒状の部材である。主体金具50は、低炭素鋼材を用いて形成されている(他の導電材料(例えば、金属材料)も採用可能である)。主体金具50の挿入孔59には、絶縁体10が挿入されている。主体金具50は、絶縁体10の径方向の周囲に配置された状態で、絶縁体10に固定されている。主体金具50の先端側では、絶縁体10の先端側の端部(本実施形態では、脚部13の先端側の部分)が、挿入孔59の外に露出している。主体金具50の後端側では、絶縁体10の後端側の端部(本実施形態では、第2胴部18の後端側の部分)が、挿入孔59の外に露出している。
 主体金具50は、後端方向BDに向かって順番に並ぶ、胴部55と、座部54と、変形部58と、工具係合部51と、加締部53と、を有している。座部54は、鍔状の部分である。胴部55の外周面には、内燃機関(例えば、ガソリンエンジン)の取付孔に螺合するためのネジ部52が形成されている。座部54とネジ部52との間には、金属板を折り曲げて形成された環状のガスケット5が嵌め込まれている。
 主体金具50は、変形部58よりも先端側に配置された、縮内径部56を有している。縮内径部56の内径は、先端方向LDに向かって、徐々に小さくなる。主体金具50の縮内径部56と、絶縁体10の第1縮外径部15と、の間には、第1パッキン8が挟まれている。第1パッキン8は、鉄製のOリングである(他の材料(例えば、銅等の金属材料)も採用可能である)。
 工具係合部51の形状は、点火プラグレンチが係合する形状(例えば、六角柱)である。工具係合部51の後端側には、加締部53が設けられている。加締部53は、絶縁体10の第2縮外径部11よりも後端側に配置され、主体金具50の後端側の端を形成する。加締部53は、径方向の内側に向かって屈曲されている。
 主体金具50の後端側では、主体金具50の内周面と、絶縁体10の外周面と、の間に、環状の空間SPが形成されている。本実施形態では、この空間SPは、主体金具50の加締部53および工具係合部51と、絶縁体10の第2縮外径部11および第2胴部18と、に囲まれた空間である。この空間SP内の後端側には、第2パッキン6が配置されている。この空間SP内の先端側には、第3パッキン7が配置されている。本実施形態では、これらのパッキン6、7は、鉄製のCリングである(他の材料も採用可能である)。空間SP内における2つのパッキン6、7の間には、タルク(滑石)9の粉末が充填されている。
 点火プラグ100の製造時には、加締部53が内側に折り曲がるように加締められる。そして、加締部53が先端側に押圧される。これにより、変形部58が変形し、パッキン6、7とタルク9とを介して、絶縁体10が、主体金具50内で、先端側に向けて押圧される。第1パッキン8は、第1縮外径部15と縮内径部56との間で押圧され、そして、主体金具50と絶縁体10との間をシールする。以上により、内燃機関の燃焼室内のガスが、主体金具50と絶縁体10との間を通って外に漏れることが、抑制される。また、主体金具50が、絶縁体10に、固定される。
 接地電極30は、主体金具50の先端側の端に接合されている。接地電極30は、接地電極母材33と、接地電極チップ38と、固定部材39と、を有している。本実施形態では、接地電極母材33は、棒状の部材である。接地電極母材33の一端は、主体金具50の先端側の端に、電気的に導通するように、例えば、抵抗溶接によって、接続されている接続端332である。接地電極母材33の他端は、自由端333である。接地電極母材33は、主体金具50に接続された接続端332から先端方向LDに向かって延び、軸線CLに向かって曲がっている。そして、接地電極母材33は、軸線CLと垂直な方向に延びて自由端333に至る。
 接地電極母材33のうち、軸線CLと垂直な方向に延びる部分を先端部331とも呼ぶ。先端部331には、接地電極チップ38と、固定部材39と、が固定されている。接地電極チップ38は、中心電極20の放電面20s1(先端側の表面)との間で間隙(ギャップ)gを形成する。接地電極母材33は、例えば、Ni又はNiを主成分として含む合金(例えば、NCF600、NCF601)を用いて形成されている。なお、接地電極母材33は、表面を形成する表面部と、表面部に埋設された芯部と、を含む二層構造を有していても良い。この場合には、表面部は、例えば、Ni又はNiを主成分として含む合金を用いて形成され、芯部は、表面部よりも熱伝導率が高い材料(例えば、純銅)を用いて形成される。
 図2は、第1実施形態の接地電極30の先端部331の近傍を拡大して示す部分断面図である。この断面は、固定部材39の軸線CLを通り、かつ、軸線方向に沿う断面である。図3は、先端側から後端方向BDを向いて見た接地電極30の先端部331の近傍の概略図である。図4は、第1実施形態のレーザ溶接前の接地電極30の先端部331の断面図である。図2に示すように、上述した先端部331は、軸線CLと垂直な方向に延びている。ここで、軸線CLと垂直な方向であって、軸線CLから自由端333に向かう方向を、自由端方向FDとも呼ぶ。また、軸線CLと垂直な方向であって、自由端方向FDとは反対方向、すなわち、軸線CLから接続端332に向かう方向を、接続端方向CDとも呼ぶ。
 図2、4に示すように、接地電極母材33の先端部331は、後端側に位置する第1面33s1、すなわち、中心電極20と面する第1面33s1と、第1面33s1の裏面である第2面33s2、すなわち、先端側に位置する第2面33s2と、を有している。先端部331の中心電極20の放電面20s1と対向する位置には、第1面33s1から第2面33s2まで貫通する貫通孔335が形成されている。図4に示すように、貫通孔335は、第1の径R1を有する小径部分335aと、小径部分335aより先端側に位置し、第1の径R1より大きな第2の径R2を有する大径部分335bと、を有している。そして、接地電極母材33には、貫通孔335内における小径部分335aと大径部分335bとの間に位置する段部335cが形成されている。このように、貫通孔335では、第2面33s2における第2の径R2(図4)が、第1面33s1における第1の径R1(図4)より大きい。
 図2、図4に示すように、接地電極チップ38は、後端側の放電面38s1と、放電面38s1の裏面である(すなわち、先端側の面である)の大径面38s2と、を有している。大径面38s2から放電面20s1に向かう方向(本実施形態では、後端方向BD)を第1方向とも呼び、その反対方向(本実施形態では、先端方向LD)を第2方向とも呼ぶ。
 放電面38s1は、中心電極20の放電面20s1との間に、間隙gを形成する面である。接地電極チップ38は、放電面38s1を含むチップ本体381と、大径面38s2を含み、チップ本体381より先端側に位置する鍔部382と、を有している。チップ本体381の径は、中心電極20に向かって、すなわち、先端側から後端側に向かって、径R5から径R4まで直線的に縮径している。すなわち、チップ本体381は、いわゆるテーパ状の外側面381sを有する円錐台形状を有している。鍔部382の径は、チップ本体381の先端の径R5および後端の径R4より大きい。電極チップの軸線CLは、点火プラグ100の軸線CLと同じである。この説明から解るように、大径面38s2の径R3(図4)は、放電面38s1の径R4(チップ本体381の後端の径R4)より大きい。そして、放電面38s1の径R4は、貫通孔335の第1面33s1における第1の径R1(小径部分335aの径)より小さい。大径面38s2の径R3は、貫通孔335の第1面33s1における第1の径R1より大きく、第2面33s2における第2の径R2(大径部分335bの径R2)より僅かに小さい。
 ここで、鍔部382の後端の径(放電面38s1側の径)をR7とする。なお、本実施形態では、鍔部382は、軸線方向に沿った位置によって径が変化しない円柱形状を有しているので、鍔部382の後端の径R7は、鍔部382の先端の径R3(大径面38s2の径R3)と、等しい。鍔部382の径R7に対するチップ本体381の先端の径R5の比率は、76%以上、かつ、96%以下である。図2、図4の例では、径R7に対するチップ本体381の先端の径R5の比率は、約80%である。チップ本体381の先端の径R5は、貫通孔335の小径部分335aの径R1と、ほぼ等しい。
 接地電極チップ38は、火花消耗性に優れた貴金属を主成分として含む合金を用いて、形成されている。本実施形態では、主成分となる貴金属は、イリジウム(Ir)である。なお、Irは、貴金属の中でも融点が高く、そして、耐火花消耗性に優れている。従って、Ir、または、Irを主成分とするイリジウム合金を用いて、接地電極チップ38を形成することが好ましい。
 図2に示すように、接地電極チップ38のうち、大径面38s2を含む一部は、貫通孔335内に配置され、放電面20s1は、貫通孔335から中心電極20側に露出している。具体的には、接地電極チップ38の鍔部382の全体は、貫通孔335の大径部分335b内の後端側に位置し、チップ本体381の先端側の大部分は、貫通孔335の小径部分335a内に位置している。そして、チップ本体381の放電面38s1を含む後端側の一部は、貫通孔335から後端側に突出している。鍔部382の後端面382sは、貫通孔335内の段部335cに当接しており、段部335cによって後端側から支持されている。
 図2、図4に示すように、固定部材39は、略円柱状の外形を有している。接地電極チップ38、貫通孔335、固定部材39の軸線CLは、点火プラグ100の軸線CLと同じである。固定部材39は、貫通孔335の大径部分335b内において、接地電極チップ38の大径面38s2より先端側の部分に配置されている。固定部材39の後端面39s1は、接地電極チップ38の大径面38s2に当接している。すなわち、固定部材39は、接地電極チップ38(鍔部382)を先端側から支持している。固定部材39の先端面39s2は、接地電極母材33の第2面33s2と、ほぼ同じ平面上に位置している。なお、レーザ溶接前の固定部材39の径R6は、貫通孔335の大径部分335bの径R2と、ほぼ同じである。
 以上の説明から解るように、接地電極チップ38は、貫通孔335を形成する接地電極母材33の内面と、固定部材39の後端側の面と、によって保持されている。
 図2に示すように、固定部材39のうち、貫通孔335内に配置された部分の軸線方向に沿った最大長さL1は、接地電極母材33の貫通孔335が形成されている部分(すなわち、先端部331)の軸線方向に沿った最大長さL2の50%以上である。図2の例では、最大長さL1は、最大長さL2の約60%である。なお、最大長さL1は、最大長さL2の60%以上であることが、より好ましく、70%以上であることが、さらに、好ましい。最大長さL2に対する最大長さL1の比率が高いほど、固定部材39の接合強度を向上することができる。なお、最大長さL1は、必ず最大長さL2の100%未満であり、接地電極チップ38の厚みを考慮すれば、最大長さL2の90%未満である。
 図2の例では、固定部材39のほぼ全体が、貫通孔335内に配置されているので、最大長さL1は、固定部材39の軸線方向に沿った長さにほぼ等しい。仮に、固定部材39の一部分が、第2面33s2より先端側に突出している場合には、固定部材39のうち、当該突出した部分を除いた部分の軸線方向に沿った最大長さが、最大長さL1とされる。最大長さL1は、固定部材39の後端から、接地電極母材33の先端部331の第2面33s2までの軸線方向に沿った最大長さ(距離)と言うこともできる。
 接地電極母材33の貫通孔335が形成されている部分(すなわち、先端部331)の軸線方向に沿った最大長さL2は、先端部331の第1面33s1から第2面33s2までの軸線方向に沿った最大長さ(距離)と言うこともできる。
 図3に示すように、固定部材39の外側面39s3と、貫通孔335の大径部分335bを形成する接地電極母材33の内側面と、の境界BLには、全周に亘って、溶融部82が形成されている。図3において、ハッチングされた部分は、溶融部82のうち、接地電極母材33の第2面33s2に露出している部分である。溶融部82は、接地電極母材33の第2面33s2に対して垂直に、レーザを照射することによって形成されている。
 図2に示すように、溶融部82は、図2の断面において、固定部材39の外側面39s3と、貫通孔335の大径部分335bを形成する接地電極母材33の内側面と、の境界BLを跨ぐように設けられている。
 溶融部82は、互いに溶融した、接地電極母材33の成分と、固定部材39の成分と、を含む部分である。接地電極母材33と、固定部材39と、は、溶融部82を介して接合されている。したがって、溶融部82は、接地電極母材33と固定部材39とを接合する接合部とも言うこともでき、接地電極母材33と固定部材39とを接合するビードとも言うことができる。
 また、溶融部82は、接地電極母材33と固定部材39とが、同じ材料(例えば、NCF600)で形成されていたとしても、高温で溶融されて形成されていることによって、溶融部82は、接地電極母材33や固定部材39とは、例えば、粒径等の微細な構造が異なっている。このために、例えば、接地電極30を切断して、図2の断面を露出させて、当該断面にエッチング処理を施した後に観察することで、接地電極母材33と固定部材39と溶融部82との境界は明確に特定することができる。
 図2の断面において、溶融部82の軸線方向に沿った長さ(深さ)L3は、固定部材39のうち、貫通孔335内に配置された部分の軸線方向に沿った最大長さL1の50%以上である。ここで、溶融部82の軸線方向に沿った長さ(深さ)L3は、接地電極母材33と固定部材39との境界BLにおける溶融部82の後端端から、接地電極母材33の先端部331の第2面33s2までの軸線方向に沿った長さ、と定義できる。
 図2に波線の円C1、C2で囲んだ部分から解るように、図2の例では、接地電極母材33と固定部材39との境界BLは、僅かしか残っていない。溶融部82の軸線方向に沿った長さL3は、固定部材39の上述した最大長さL1の約95%である。なお、長さL3は、最大長さL1の70%以上であることが、より好ましく、80%以上であることが、さらに、好ましく、90%以上であることが特に好ましい。最大長さL1に対する長さL3の比率が高いほど、固定部材39の接合強度を向上することができる。なお、第1実施形態では、波線の円C1、C2で囲んだ部分から解るように、溶融部82は、固定部材39と接地電極母材33との境界BLの全周に亘って、接地電極チップ38の鍔部382に到達していない。すなわち、溶融部82の後端は、全周に亘って、接地電極チップ38の大径面38s2より先端側に位置している。換言すれば、最大長さL1に対する長さL3の比率は、100%未満である。
 以上説明した第1実施形態の点火プラグ100によれば、固定部材39のうち、貫通孔335内に配置された部分の軸線方向に沿った最大長さL1は、接地電極母材33の貫通孔335が形成されている部分の軸線方向に沿った最大長さL2の50%以上であり、かつ、接地電極母材33と固定部材39との境界BLにおける溶融部82の後端側の端から、接地電極母材33の先端部331の第2面33s2までの軸線方向に沿った長さL3は、固定部材39のうち、貫通孔335内に配置された部分の軸線方向に沿った最大長さL1の50%以上である。この結果、溶融部82の軸線方向に沿った長さを十分に確保できるので、固定部材39が接地電極母材33に固定される強度を向上することができる。特に、固定部材39が位置する点火プラグ100の先端は、燃焼室内の高温となる部分に最も近いために、点火プラグ100の使用時には極めて高温となるので、溶融部82や固定部材39が損傷を受けやすい。第1実施形態の点火プラグ100では、溶融部82の軸線方向に沿った長さを十分に確保することで、特に、高温環境下での強度を向上することができる。
 さらには、接地電極チップ38の鍔部382の後端面382sは、貫通孔335内の段部335cによって支持されている。この結果、鍔部382の後端面382sと段部335cとが面で接触するので、接地電極チップ38が接地電極母材33に対して固定される強度を向上することができる。また、接地電極チップ38の放電面38s1と中心電極20の放電面20s1との間に形成される間隙(ギャップ)が、点火プラグ100の使用中に変動することを抑制することができる。
 さらに、鍔部382の径R7に対するチップ本体381の先端の径R5の比率(R5/R7)は、76%以上、かつ、95%以下である。これによって、点火プラグ100の耐消耗性を向上できるとともに、接地電極チップ38が接地電極母材33に対して固定される強度をより向上することができる。具体的には、比率(R5/R7)が76%以上であることによって、放電面20s1の径R4が過度に小さくなることを抑制して、放電面20s1の径R4を確保できるので、点火プラグ100の耐消耗性を向上できる。また、比率(R5/R7)が95%以下であることによって、鍔部382の径方向の幅(鍔部382の後端面382sの幅)を確保できるので、接地電極チップ38が接地電極母材33に対して固定される強度をより向上することができる。
 さらに、第1実施形態の点火プラグ100では、接地電極チップ38は、イリジウム、および、イリジウム合金のうちのいずれかである。このように、高温環境下で使用されるイリジウムやイリジウム合金が用いられる点火プラグ100において、接地電極チップ38が接地電極母材33に対して固定される強度をより向上することができる。
 A-2.点火プラグの製造方法:
 図5は、点火プラグの製造方法の一例を示すフローチャートである。図6は、接地電極30の製造方法の説明図である。ステップS120では、組立体が形成される。組立体は、図1に示す点火プラグ100の製造工程のうち、接地電極30の接地電極母材33の屈曲と、接地電極母材33上への接地電極チップ38と固定部材39との取り付けを行う前の状態のものである。図5のステップS120を示す箱の中には、組立体100xの中心電極20の近傍を示す部分断面図が示されている。組立体100xは、絶縁体10と、絶縁体10に固定された主体金具50と、絶縁体10の軸孔12に挿入された中心電極20と、を有している。また、主体金具50には、直線状の接地電極母材33xが、曲げる前の接地電極母材33として、接合されている。組立体100xを形成する方法としては、公知の種々の方法を採用可能であり、詳細な説明を省略する。
 ステップS130では、接地電極30の接地電極母材33xに、貫通孔335が形成される。貫通孔335の形状は、図4を参照して説明した通りである。貫通孔335は、曲げる前の接地電極母材33xに、例えば、ドリル等の切削工具を用いて、形成される。
 ステップS140では、図6(A)に示すように、形成済の貫通孔335内に、接地電極チップ38と固定部材39とが、この順序で、貫通孔335の先端側(図6(A)の上側)から、配置される。このとき、貫通孔335より後端側(図6(A)の下側)に、接地電極チップ38のチップ本体381が突出するので、接地電極母材33xは、凹部HLが形成された支持台ST上に配置された状態で、接地電極チップ38と固定部材39の配置が行われる。
 S150では、ハンドプレスHPによって、固定部材39の先端面39s2が後端方向BDに向かってプレスされる。これによって、固定部材39の後端面39s1と、貫通孔335内の段部335cとによって、鍔部382が挟持される位置まで、固定部材39が後端方向BDに押し込まれる。この位置まで固定部材39が押し込まれた状態で、固定部材39の先端面39s2は、接地電極母材33の先端部331の第2面より先端側に僅か(例えば、0.1mm)だけ突出した状態になるように、固定部材39の軸線方向に沿った長さが決められている。これにより、ハンドプレスHPによって、固定部材39を所定の位置まで精度良く押し込むことができる。
 ステップS160では、固定部材39と接地電極母材33とがレーザ溶接によって接合される。図6(B)の矢印LZは、レーザ溶接のためのレーザの照射を概念的に示している。レーザLZは、貫通孔335の内側面と固定部材39の外側面39s3との境界BL上に、接地電極母材33の第2面33s2に対して垂直に照射される。なお、レーザLZの照射は、図3に示すように、接地電極母材33と固定部材39との境界BLの全周に亘って行われる。例えば、レーザLZが、24カ所に、12Hzの速度で照射されることで、境界BLの全周に亘って、溶融部82が形成される。この結果、図2、図3の溶融部82が形成される。
 ステップS170では、接地電極母材33xが曲げられて、間隙gが形成される。すなわち、図2に示すように、中心電極20の放電面20s1と、接地電極チップ38の放電面38s1とが、互いに対向するように、接地電極母材33xが中心電極20に向かって曲げられる。
 A-3.評価試験:
 A-3-1.第1評価試験
 点火プラグ100のサンプルを用いて評価試験が行われた。第1評価試験では、表1に示すように、6種類の点火プラグのサンプル1~6が作製された。このサンプルでは、接地電極チップ38を取り付けず、接地電極母材33に固定部材39だけが溶接された。各サンプルに共通な寸法は、以下の通りである。
 鍔部382の軸線方向の長さL5:0.2mm
 固定部材39の外径R6:3.3mm
 接地電極母材33の第1面33s1から第2面33s2までの長さL2:1.5mm
 固定部材39の材質:NCF600
 接地電極母材33の材質:NCF600
Figure JPOXMLDOC01-appb-T000001
 6種類のサンプル1~6では、固定部材39の軸線方向に沿った長さと、貫通孔335の大径部分335bの軸線方向に沿った長さとは、それぞれ、1.2mm、1.1mm、1mm、0.9mm、0.75mm、0.6mmとされた。これによって、6種類のサンプル1~6では、表1に示すように、固定部材39のうち、貫通孔335内に配置された部分の軸線方向に沿った最大長さL1が、それぞれ、1.2mm、1.1mm、1mm、0.9mm、0.75mm、0.6mmとされた。なお、溶融部82の軸線方向に沿った長さL3は、長さL1の50%に調整された。
 6種類のサンプル1~6では、上記のように、最大長さL1が調整されることで、長さL2に対する長さL1の比率(L1/L2)が、それぞれ、80%、73.3%、66.7%、60%、50%、40%に調整されている。
 サンプル1~6について、高温強度試験を行った。高温強度試験では、各サンプルの固定部材39の近傍が、高周波加熱装置を用いて摂氏1050度まで加熱された。そして、加熱された状態で、金属棒を用いて、固定部材39の後端面39s1に対して、先端方向LDに向かって1000N(ニュートン)の荷重を負荷した。
 その後、各サンプルを接地電極母材33の第2面33s2側から観察して、溶融部82に破断が生じているか否かが確認された。溶融部82の破断が生じているサンプルの評価を「B」とし、溶融部82の破断が生じていないサンプルの評価を「A」とした。
 評価の結果は、表1に示すとおりである。長さL2に対する長さL1の比率(L1/L2)が、50%未満であるサンプル、すなわち、(L1/L2)が40%であるサンプル6の評価は、「B」であった。(L1/L2)が、50%以上であるサンプル、すなわち、(L1/L2)が50%、60%、66.7%、73.3%、80%であるサンプル1~5の評価は、「A」であった。(L1/L2)を50%以上とすることによって、固定部材39と接地電極母材33との境界BLの軸線方向の長さを長くすることができ、これによって溶融部82の軸線方向の長さを長くすることができる。これによって、接地電極母材33に対して固定部材39が接合される強度を向上することができるためであると考えられる。
 A-3-2.第2評価試験
 第2評価試験では、表2に示すように、第1評価試験のサンプル4(L1=0.9mm)について、溶融部82の軸線方向に沿った長さL3を変更することで、5種類の点火プラグのサンプル7~11が作製された。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、5種類のサンプル7~11では、溶融部82の軸線方向に沿った長さL3は、0.3mm、0.45mm、0.6mm、0.75mm、0.9mmとされた。これによって、5種類のサンプル7~11では、長さL1に対する長さL3の比率(L3/L1)が、それぞれ、33.3%、50%、66.7%、83.3%、100%に調整されている。これらのサンプルの他の部分の構成は、第1評価試験のサンプル4と同じである。
 サンプル7~11について、接地電極母材33の先端部331の第2面33s2が凸状に曲率R=2.0mmで曲がるように、接地電極母材33を曲げる曲げ試験を行った。この曲げ試験は、常温で行われた。
 その後、各サンプルを接地電極母材33の第2面33s2側から観察して、溶融部82に破断が生じているか否かが確認された。溶融部82の破断が生じているサンプルの評価を「B」とし、溶融部82の破断が生じていないサンプルの評価を「A」とした。
 評価の結果は、表2に示すとおりである。長さL1に対する長さL3の比率(L3/L1)が、50%未満であるサンプル、すなわち、(L3/L1)が33.3%であるサンプル7の評価は、「B」であった。(L3/L1)が、50%以上であるサンプル、すなわち、(L3/L1)が50%、66.7%、83.3%、100%であるサンプル8~11の評価は、「A」であった。(L3/L1)を50%以上とすることによって、溶融部82の軸線方向の長さを長くすることができる。これによって、接地電極母材33に対して固定部材39が接合される強度を向上することができるためであると考えられる。
 第1評価試験と第2評価試験から、固定部材39のうち貫通孔335内に配置された部分の、軸線方向に沿った最大長さL1は、接地電極母材33の先端部331の軸線方向に沿った最大長さL2の50%以上であり、かつ、接地電極母材33と固定部材39との境界における溶融部82の後端から、接地電極母材33の第2面33s2までの軸線方向に沿った長さL3は、固定部材39のうち、貫通孔335内に配置された部分の、軸線方向に沿った最大長さL1の50%以上であることが、強度向上の観点から好ましいことが確認できた。
 A-3-3.第3評価試験
 第3評価試験では、鍔部382の径R7が共通の値3.3mmであり、表3に示すように、チップ本体381の先端の径R5が、それぞれ、2mm、2.3mm、2.5mm、2.7mm、2.9mm、3.15mm、3.2mmとされた7種類の接地電極チップ38のサンプル12~18が作製された。なお、チップ本体381の軸線方向に沿った長さは、各サンプルで共通の値0.4mmとされた。
 7種類のサンプル12~18では、上記のように、チップ本体381の先端の径R5が調整されることで、鍔部382の径R7に対するチップ本体381の先端の径R5の比率(R5/R7)が、それぞれ、61%、70%、76%、82%、88%、95%、97%に調整されている。
Figure JPOXMLDOC01-appb-T000003
 これらの接地電極チップ38のサンプル12~18について、強度試験と、耐消耗性試験と、がそれぞれ行われた。
 強度試験では、接地電極チップ38の各サンプルを、対応する形状の貫通孔335が形成された接地電極母材33に嵌合させた状態で、金属棒を用いて、各サンプル(接地電極チップ38)の大径面38s2に対して、後端方向BDに向かって150N(ニュートン)の荷重を負荷した。
 当該荷重を負荷した結果、鍔部382に破断が生じたサンプルの評価を「B」とし、鍔部382に破断が生じないサンプルの評価を「A」とした。
 評価の結果は、表3に示すとおりである。鍔部382の径R7に対するチップ本体381の先端の径R5の比率(R5/R7)が、95%より大きいサンプル、すなわち、(R5/R7)が97%であるサンプル18の評価は、「B」であった。(R5/R7)が、95%以下であるサンプル、すなわち、(R5/R7)が61%、70%、76%、82%、88%、95%であるサンプル12~17の評価は、「A」であった。(R5/R7)を95%以下とすることによって、鍔部382が破断して接地電極チップ38が脱落することを抑制して、接地電極母材33に対して接地電極チップ38が固定される強度を向上することができるためであると考えられる。
 耐消耗性試験では、接地電極チップ38の各サンプルを用いて、点火プラグ100を組み立てた。そして、気圧0.6MPaの窒素ガス雰囲気のチャンバ内にて、各サンプルの点火プラグを1秒間に60回の頻度で点火する試験が、500時間に亘って実施された。なお、各サンプルでは、初期のギャップは、0.3mmとされた。
 試験後に、接地電極チップ38の各サンプルにおいて、初期の放電面38s1の全体が消耗のために残存していないサンプルの評価を「B」とし、初期の放電面38s1の少なくとも一部が消耗せずに残存しているサンプルの評価を「A」とした。
 評価の結果は、表3に示すとおりである。(R5/R7)が、76%未満であるサンプル、すなわち、(R5/R7)が61%、70%であるサンプル12、13の評価は、「B」であった。(R5/R7)が、76%以上であるサンプル、すなわち、(R5/R7)が76%、82%、88%、95%、97%であるサンプル14~18の評価は、「A」であった。(R5/R7)を76%以上とすることによって、放電面38s1の径が過度に小さくなることを抑制して、対消耗性を向上できるためであると考えられる。
 第3評価試験から、鍔部382の径R7に対するチップ本体381の後端の径R5の比率は、76%以上、かつ、95%以下であることが強度向上と耐消耗性向上の観点から好ましいことが確認できた。
 B.第2実施形態
 図7は、第2実施形態の点火プラグの接地電極30bの先端部331bの近傍を拡大して示す部分断面図である。図7の部分断面図は、図2と同様に、固定部材39の軸線CLを通り、かつ、軸線方向に沿う断面である。第1実施形態では、溶融部82は、固定部材39と接地電極母材33との境界BLの全周に亘って、接地電極チップ38の鍔部382に到達していない。第2実施形態では、溶融部82は、固定部材39と接地電極母材33との境界BLの一部において、接地電極チップ38の鍔部382に到達しており、他の一部において、接地電極チップ38の鍔部382に到達していない。その他の第2実施形態の構成は、第1実施形態と同一である。以下、さらに、詳しく説明する。
 ここで、図3に示すように、接地電極母材33の第2面33s2において、電極チップ38の軸線CLから自由端方向FDに延びる仮想線を第1の線VL1とし、電極チップ38の軸線CLから接続端方向CDに上る仮想線を第2の線VL2とする。このときに、接地電極母材33の第2面33s2において、図3においてハッチングで示す溶融部82のうち、第1の線VL1と交差する部分を第1部分PT1とし、溶融部82のうち、第2の線VL2と交差する部分を第2部分PT2とする。
 第1実施形態では、第1部分PT1および第2部分PT2を含む溶融部82のいずれの部分においても、溶融部82は、接地電極チップ38の鍔部382に到達していない(図2)。第2実施形態では、図7の破線の円C1で囲んだ部分から解るように、第1部分PT1において溶融部82は、第1実施形態と同様に、接地電極チップ38の鍔部382に到達していない。そして、第2実施形態では、図7の破線の円C2で囲んだ部分から解るように、第2部分PT2において溶融部82は、第1実施形態とは異なり、接地電極チップ38の鍔部382に到達している。換言すれば、第2実施形態では、第1部分PT1において溶融部82の後端は、接地電極チップ38の大径面38s2より先端側に位置し、第2部分PT2において溶融部82の後端は、接地電極チップ38の大径面38s2より後端側に位置している。
 さらに、詳しく述べると、図3において、溶融部82のうちの第2部分PT2を中心とした周方向の角度θの範囲内において、溶融部82は、電極チップ38の鍔部382に到達している。周方向の角度θの範囲外において、溶融部82は、電極チップ38の鍔部382に到達していない。この電極チップ38に到達している溶融部82の範囲を示す角度θは、例えば、0度を超え160度未満であることが好ましく、30度以上120度未満であることが、さらに、好ましい。
 なお、図7の第2部分PT2における溶融部82のように、溶融部82の後端が、固定部材39の後端面39s1より後端側に達している場合には、その部分では、固定部材39と接地電極母材33との境界BLが、全て溶融して消滅している。このような部分では、溶融部82の軸線方向に沿った長さL3b(図7)は、固定部材39の最大長さL1の100%を越えている、と言うことができる。すなわち、第2実施形態では、上述した最大長さL1に対する長さL3bの比率(L3b/L1)は、100%を越えている。例えば、図7の例では、最大長さL1に対する長さL3bの比率(L3b/L1)は、100%を越え、120%未満である。
 ここで、接地電極母材33の接続端332側は、接続端332が主体金具50に接続されているので、熱引きが良い。第2実施形態によれば、上述したように、接地電極チップ38の中心から接続端332に向かう接続端方向CDに延びる第1の線VL1と交差する位置における溶融部82は、接地電極チップ38に到達している。このために、火花や火花によって着火される燃料ガスによって高温になった接地電極チップ38から、溶融部82を介して、接地電極母材33の接続端332側へ熱が伝わり易くなる。例えば、仮に、接続端332側において、接地電極チップ38と接地電極母材33とが接合されていないと、接地電極チップ38と接地電極母材33との界面において、熱伝導性が低下して、第2実施形態と比べて、接地電極チップ38から接地電極母材33の接続端側へ熱が伝わりにくくなる。このように、第2実施形態によれば、点火プラグ100の熱引き性能が向上して、接地電極チップ38が過度に高温になることを抑制できる。この結果、例えば、接地電極チップ38は高温になるほど、耐消耗性が悪化するところ、第2実施形態によれば、接地電極チップ38の耐消耗性を向上することができる。
 ここで、接地電極母材33の自由端333側は、自由端333が主体金具に接続されていないので、熱引きが悪く、高温になりがちである。高温になりがちな自由端333に近い溶融部82が、接地電極チップ38に到達していると、熱応力によって溶融部82にクラックが発生しやすい。接地電極チップ38と接地電極母材33とは、材料が互いに異なるので、互いに線膨張係数が異なるために、高温環境下では、接合部分に熱応力が発生するからである。第2実施形態の点火プラグでは、接地電極チップ38の中心から自由端333に向かう方向に延びる第2の線VL2と交差する位置における溶融部82は、接地電極チップ38に到達していない。この結果、熱応力によって溶融部82にクラックが発生することを抑制できる。この結果、例えば、点火プラグの高温環境下での耐久性を向上することができる。
I.変形例:
(1)上記各実施形態では、溶融部82は、固定部材39と接地電極母材33との境界BLの全周に亘って形成されている。これに限らず、溶融部は、固定部材39と接地電極母材33との境界BLの周方向の一部に形成され、他の一部に形成されていなくても良い。例えば、溶融部82は、固定部材39と接地電極母材33との境界BLの周方向に沿って、所定角度の間隔(例えば、30度間隔や、60度間隔)を空けて、複数個に分かれていても良い。
(2)上記各実施形態に示す接地電極チップ38の形状は、一例であり、これに限られない。例えば、接地電極チップ38の鍔部382は、無くても良く、接地電極チップ38は、テーパー形状(円錐台形状)を有するチップ本体381だけであっても良い。この場合には、例えば、貫通孔335の小径部分335aは、チップ本体381の外形に対応して、先端側から後端方向BDに向かって縮径していれば良い。
 また、鍔部382がある場合には、チップ本体381は、テーパー形状ではなく、円柱形状であっても良い。
(3)上記各実施形態に示す固定部材39の形状は、一例であり、これに限られない。例えば、固定部材39の形状は、先端側から後端方向BDに向かって縮径するテーパー形状を有していても良い。この場合には、貫通孔335の大径部分335bの形状は、固定部材39の形状に対応して、テーパー形状を有していれば良い。また、溶融部82は、テーパー形状を有する固定部材39と大径部分335bとの境界に対応して、接地電極母材33の第2面33s2に対して斜めに延びるように、形成されていても良い。
 固定部材39は、後端側から先端方向LDを向いて見た形状が、円でなくても良く、他の形状であっても良い。例えば、固定部材39は、後端側から先端方向LDを向いて見た形状が、自由端方向FDの長さが、自由端方向FDと直交する方向の長さより長い楕円であっても良い。
 また、固定部材39は、NCF600やNCF601を用いて形成されているが、他の耐熱性を有する材料、例えば、NCF600やNCF601とは異なる耐熱ニッケル合金を用いて形成されてもよい。
(4)上記各実施形態では、接地電極チップ38は、イリジウム合金で形成されているが、イリジウムとは異なる貴金属、あるいは、該貴金属を主成分とする合金で形成されても良い。イリジウムとは異なる貴金属としては、たとえば、白金(Pt)、ロジウム(Rh)が採用され得る。
(5)点火プラグの構成としては、図1で説明した構成に限らず、種々の構成を採用可能である。例えば、中心電極20のうちの間隙gを形成する部分に、電極チップを設けても良い。電極チップの材料としては、イリジウムや白金等の貴金属を含む合金を採用可能である。また、中心電極20の芯材22が省略されてもよい。
 以上、実施形態、変形例に基づき本発明について説明してきたが、上記した発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨並びに特許請求の範囲を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれる。
5...ガスケット、6...第2パッキン、7...第3パッキン、8...第1パッキン、9...タルク、10...絶縁体、11...第2縮外径部、12...軸孔、13...脚部、15...第1縮外径部、16...縮内径部、17...第1胴部、18...第2胴部、19...鍔部、20...中心電極、20s1...放電面、21...電極母材、22...芯材、23...頭部、24...鍔部、25...脚部、30、30b...接地電極、33...接地電極母材、33x...接地電極母材、33s1...第1面、33s2...第2面、38...接地電極チップ、38s1...放電面、38s2...大径面、39...固定部材、39s1...後端面、39s2...先端面、39s3...外側面、40...端子金具、41...キャップ装着部、42...鍔部、43...脚部、50...主体金具、51...工具係合部、52...ネジ部、53...加締部、54...座部、55...胴部、56...縮内径部、58...変形部、59...貫通孔、60...第1シール部、70...抵抗体、80...第2シール部、82...溶融部、100...点火プラグ、331、331b...先端部、332...接続端、333...自由端、335...貫通孔、335a...小径部分、335b...大径部分、335c...段部、381...チップ本体、381s...外側面、382...鍔部、g...間隙、LD...先端方向、BD...後端方向、FD...自由端方向、CD...接続端方向、BL...境界、CL...軸線、HL...凹部、PT1...第1部分、PT2...第2部分

Claims (6)

  1.  中心電極と、
     前記中心電極に面する第1面と前記第1面の裏面である第2面とを有すると共に、前記第1面から前記第2面まで貫通し、前記第2面における第2の径が前記第1面における第1の径より大きな貫通孔を有する接地電極母材と、
     前記中心電極との間に間隙を形成し、前記第1の径より小さな径を有する放電面と、前記第1の径より大きく、前記第2の径より小さな径を有すると共に、前記放電面の裏面である大径面と、を有し、前記大径面を含む一部が前記貫通孔内に配置され、前記放電面が前記貫通孔から前記中心電極側に露出する接地電極チップと、
     前記大径面から前記放電面に向かう方向を第1方向とすると共に、その反対方向を第2方向としたとき、前記貫通孔内における前記大径面より前記第2方向側の部分に配置される固定部材と、
     を備え、
     前記貫通孔を形成する前記接地電極母材の内面と、前記固定部材の前記第1方向側の面と、によって前記接地電極チップが保持される点火プラグであって、
     前記固定部材のうち前記貫通孔内に配置された部分の、前記第1方向に沿った最大長さは、前記接地電極母材の前記貫通孔が形成されている部分の前記第1方向に沿った最大長さの50%以上であり、
     前記固定部材の中心軸を通り、かつ、前記第1方向に沿う断面において、前記接地電極母材と前記固定部材とを跨ぐように設けられた溶融部を有し、
     前記断面において、前記接地電極母材と前記固定部材との境界における前記溶融部の第1方向側の端から、前記第2面までの前記第1方向に沿った長さは、前記固定部材のうち前記貫通孔内に配置された部分の、前記第1方向に沿った最大長さの50%以上であることを特徴とする点火プラグ。
  2.  請求項1に記載の点火プラグであって、
     前記接地電極チップは、前記放電面を含むチップ本体と、前記チップ本体の径より大きな径を有し、前記チップ本体より前記第2方向側に位置し、前記大径面を含む鍔部と、を有し、
     前記貫通孔は、前記放電面より大きく、かつ、前記鍔部より小さな径を有する小径部分と、前記小径部分より前記第2方向側に位置し、前記鍔部より大きな径を有する大径部分と、を含み、
     前記接地電極母材には、前記貫通孔内における前記小径部分と前記大径部分との間に位置する段部が形成され、
     前記鍔部の前記第1方向側の面は、前記段部によって支持されることを特徴とする、点火プラグ。
  3.  請求項2に記載の点火プラグであって、
     前記鍔部の径に対する前記チップ本体の前記第2方向の端の径の比率は、76%以上、かつ、95%以下であることを特徴とする、点火プラグ。
  4.  請求項1から3のいずれか一項に記載の点火プラグであって、
     前記中心電極を保持する絶縁体と、
     前記絶縁体の径方向の周囲に配置された主体金具と、
     を有し、
     前記接地電極母材は、前記主体金具に接続された端である接続端を有し、
     前記接地電極チップの中心から前記接続端に向かう方向に延びる仮想線と交差する位置における前記溶融部は、前記接地電極チップに到達していることを特徴とする、点火プラグ。
  5.  請求項4に記載の点火プラグであって、
     前記接地電極母材は、前記接続端とは反対側に、前記主体金具に接続されない端である自由端を有し、
     前記接地電極チップの中心から前記自由端に向かう方向に延びる仮想線と交差する位置における前記溶融部は、前記接地電極チップに到達していないことを特徴とする、点火プラグ。
  6. 請求項1から5のいずれか一項に記載の点火プラグであって、
     前記接地電極チップは、イリジウム、および、イリジウム合金のうちのいずれかであることを特徴とする、点火プラグ。
PCT/JP2016/004542 2015-12-16 2016-10-11 点火プラグ WO2017104097A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680073887.4A CN108475899A (zh) 2015-12-16 2016-10-11 火花塞
US16/062,357 US10270227B2 (en) 2015-12-16 2016-10-11 Ignition plug
DE112016005813.6T DE112016005813T5 (de) 2015-12-16 2016-10-11 Zündkerze

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015245619A JP6270802B2 (ja) 2015-12-16 2015-12-16 点火プラグ
JP2015-245619 2015-12-16

Publications (1)

Publication Number Publication Date
WO2017104097A1 true WO2017104097A1 (ja) 2017-06-22

Family

ID=59056192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004542 WO2017104097A1 (ja) 2015-12-16 2016-10-11 点火プラグ

Country Status (5)

Country Link
US (1) US10270227B2 (ja)
JP (1) JP6270802B2 (ja)
CN (1) CN108475899A (ja)
DE (1) DE112016005813T5 (ja)
WO (1) WO2017104097A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113396513B (zh) * 2020-01-10 2022-06-03 日本特殊陶业株式会社 火花塞
DE102020211897A1 (de) * 2020-09-23 2022-03-24 Robert Bosch Gesellschaft mit beschränkter Haftung Zündkerzenelektrode sowie Zündkerze mit der Zündkerzenelektrode und Herstellungsverfahren für die Zündkerzenelektrode
DE102023201527A1 (de) * 2023-02-21 2024-08-22 Robert Bosch Gesellschaft mit beschränkter Haftung Zündkerze mit Vorsprung an einer brennraumseitigen ebenen Gehäusestirnfläche

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940482A (ja) * 1982-08-30 1984-03-06 日本特殊陶業株式会社 スパ−クプラグ
JPS62268079A (ja) * 1986-05-13 1987-11-20 株式会社デンソー 内燃機関用スパ−クプラグ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280145A (ja) 2001-03-19 2002-09-27 Ngk Spark Plug Co Ltd スパークプラグ及びその製造方法
KR101562411B1 (ko) * 2007-12-20 2015-10-21 니혼도꾸슈도교 가부시키가이샤 스파크 플러그 및 그 제조방법
EP2624384B1 (en) * 2010-09-29 2020-05-13 Ngk Spark Plug Co., Ltd. Spark plug
JP6328088B2 (ja) * 2015-11-06 2018-05-23 日本特殊陶業株式会社 スパークプラグ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940482A (ja) * 1982-08-30 1984-03-06 日本特殊陶業株式会社 スパ−クプラグ
JPS62268079A (ja) * 1986-05-13 1987-11-20 株式会社デンソー 内燃機関用スパ−クプラグ

Also Published As

Publication number Publication date
JP6270802B2 (ja) 2018-01-31
CN108475899A (zh) 2018-08-31
JP2017111982A (ja) 2017-06-22
DE112016005813T5 (de) 2018-08-30
US10270227B2 (en) 2019-04-23
US20180375300A1 (en) 2018-12-27

Similar Documents

Publication Publication Date Title
JP6855354B2 (ja) 点火プラグ
WO2021111719A1 (ja) スパークプラグ
KR101375915B1 (ko) 스파크 플러그
WO2017104097A1 (ja) 点火プラグ
JP6611769B2 (ja) 点火プラグ
CN108352680B (zh) 火花塞
JP6548610B2 (ja) プラズマジェットプラグ
CN102204041A (zh) 火花塞及其制造方法
KR101118401B1 (ko) 스파크 플러그
JP5895056B2 (ja) スパークプラグ
WO2009116553A1 (ja) スパークプラグ
US9742157B2 (en) Spark plug
JP6293107B2 (ja) 点火プラグ
JP6910992B2 (ja) イグナイタプラグ
JP7039519B2 (ja) 点火プラグ
JP6707404B2 (ja) スパークプラグ
JP2017111981A (ja) 点火プラグ
JP2020191227A (ja) 内燃機関、および、点火プラグ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875088

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016005813

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875088

Country of ref document: EP

Kind code of ref document: A1