WO2017101776A1 - 外冷式单级精馏空分装置及方法 - Google Patents

外冷式单级精馏空分装置及方法 Download PDF

Info

Publication number
WO2017101776A1
WO2017101776A1 PCT/CN2016/109822 CN2016109822W WO2017101776A1 WO 2017101776 A1 WO2017101776 A1 WO 2017101776A1 CN 2016109822 W CN2016109822 W CN 2016109822W WO 2017101776 A1 WO2017101776 A1 WO 2017101776A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
oxygen
argon
tower
evaporator
Prior art date
Application number
PCT/CN2016/109822
Other languages
English (en)
French (fr)
Inventor
张英辰
毛文军
Original Assignee
新疆天辰深冷技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新疆天辰深冷技术有限公司 filed Critical 新疆天辰深冷技术有限公司
Publication of WO2017101776A1 publication Critical patent/WO2017101776A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04363Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/0466Producing crude argon in a crude argon column as a parallel working rectification column or auxiliary column system in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/30Processes or apparatus using separation by rectification using a side column in a single pressure column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/40Features relating to the provision of boil-up in the bottom of a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/40Air or oxygen enriched air, i.e. generally less than 30mol% of O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen

Definitions

  • the invention belongs to the field of air separation, and particularly relates to an externally cooled single-stage rectification air separation device and method.
  • the air separation device is a separation device for preparing oxygen and an inert gas such as nitrogen and argon from air.
  • the air is liquefied by compressing, expanding and cooling the air, and a product such as oxygen, nitrogen, and an inert gas (such as argon) is separated by a rectification column.
  • Raw material air used in production can be obtained anytime, anywhere.
  • the air separation industry is a branch of the chemical industry.
  • the existing air separation plant process is solidified, the energy consumption is large, and the air separation cost is high, especially in the single-stage rectification, the air cannot be completely separated, and high-purity nitrogen and oxygen are produced.
  • the energy consumption of oxygen and nitrogen separation in this process is reduced from 0.4kwh/NM3O2 to less than 0.3kWh/NM3O2, and the energy consumption is reduced by more than 30%.
  • Another object of the present invention is to provide an externally cooled single stage rectification air separation method.
  • Externally cooled single-stage rectification air separation unit including main tower, sub-tower, condensing evaporator, heat exchanger, circulating compressor, liquid oxygen pump, throttle valve and conveying pipeline;
  • the condensing evaporator comprises a main condensing evaporator and an argon condensing evaporator, wherein the main condensing evaporator and the argon condensing evaporator are respectively disposed at the top of the main tower and the argon column; the bottom of the argon column and the main tower The middle part of the lower section is connected;
  • the heat exchanger comprises an oxygen heat exchanger, a nitrogen heat exchanger, a crude argon heat exchanger, and a circulating heat exchanger;
  • a middle portion of the main tower is provided with a raw material air inlet, and the raw material air is respectively exchanged through the oxygen , the nitrogen heat exchanger and the crude argon heat exchanger are pre-cooled to a saturation temperature and then enter the main tower through a conveying pipe from a feeding port in the middle of the main tower, and a liquid oxygen inlet is arranged at the bottom of the main tower.
  • Liquid oxygen is injected into the column kettle from the liquid oxygen input port, and the raw material air rises into heat exchange with the reflux liquid nitrogen at the top of the column, and nitrogen gas is separated.
  • Nitrogen gas is taken out from the top of the main column and reheated by a nitrogen heat exchanger to normal temperature, and the liquid is refluxed to the bottom of the main column to separate liquid oxygen.
  • the liquid oxygen enters the main condensing evaporator at the top of the main tower through a throttle valve, a liquid oxygen pump, a conveying pipe, and an argon condensing evaporator at the top of the auxiliary tower as a refrigerant of the two condensing evaporators;
  • part of the nitrogen enters the main condensing evaporator and is cooled by liquid oxygen, and the liquid oxygen evaporating gas enters the circulating heat exchanger, and is pressurized and cooled by the circulating compressor, and then enters the tower to rise, and the condensed liquid nitrogen
  • the reflux as the main column is again thermally exchanged with the rising oxygen at the bottom of the main column, thereby circulating;
  • the Ar8-12% fraction extracted from the lower part of the main column enters the column, and in the column, the argon rectification separation rises to the top of the column.
  • a part of the argon gas is recovered by reheating to the normal temperature by the argon heat exchanger. Most of the condensate continues to reflux to the bottom of the main column.
  • the oxygen evaporated in the argon condensation evaporator is reheated by the oxygen heat exchanger to normal temperature and recovered.
  • a liquid nitrogen inlet is provided on the top of the main tower.
  • a liquid argon input port is disposed on the argon condensation evaporator.
  • liquid nitrogen input port and the liquid argon input port and the aforementioned liquid oxygen input port serve as supplementary inlets for the external cold source liquid nitrogen, liquid argon and liquid oxygen.
  • Liquid oxygen, liquid nitrogen, and liquid argon can be used alone, and combined with a supplemental device for cold damage.
  • a throttle valve is disposed on the circuit that communicates with the main condensing evaporator, and a return valve and the liquid oxygen pump are disposed on the circuit that communicates with the argon condensing evaporator.
  • oxygen heat exchanger the nitrogen heat exchanger, and the argon heat exchanger are plate heat exchangers Device.
  • the plate heat exchanger is not in contact with the heat transfer medium, and the heat exchange is performed only by the heat exchanger itself, which can achieve the purpose of the present scheme.
  • the invention also provides an external cooling single tower rectification air separation method, comprising the following steps:
  • pre-purified raw material air is sent to the heat exchanger and the reflux gas for heat exchange, pre-cooled to saturation temperature, and sent into the main tower through the feeding port in the middle of the main tower;
  • the liquid oxygen continuously flowing back to the bottom of the main tower is sent to the first condensing evaporator at the top of the main tower and the third condensing evaporator at the top of the sub-tank through the liquid oxygen pump and the throttle valve respectively as liquid oxygen
  • the refrigerant is used, the liquid oxygen refrigerant in the first condensing evaporator is exchanged with the nitrogen gas entering the condensing evaporator, and then converted into oxygen and discharged from the first condensing evaporator, and after being reheated by the circulating evaporator, it is circulated through the circulation.
  • the compressor After the compressor is pressurized and liquefied, it is again converted into a liquid oxygen refrigerant to be performed in the second refrigerant evaporator, and the nitrogen gas is condensed and refluxed again as a reflux liquid for rising oxygen; most of the argon gas in the column rises to the top of the column.
  • a liquid nitrogen input port is disposed on the first condensing evaporator.
  • a liquid argon input port is disposed on the third condensing evaporator.
  • a first throttle valve is disposed on the communication line of the first condensing evaporator and the second condensing evaporator, and the throttle valve is disposed adjacent to the second condensing evaporator
  • a liquid oxygen pump and a second throttle valve are compounded on the communication line of the second condensing evaporator and the third condensing evaporator.
  • step d further comprises: feeding the recovered normal temperature argon gas into the refined argon column to continue purification.
  • the externally cooled single-stage rectification air separation device breaks through the traditional theory that single-stage rectification cannot completely separate air and produce high-purity N2 and O2.
  • the liquid oxygen at the bottom of the main tower is directly sent to the top of the main tower and the condensing evaporator at the top of the tower through a throttle valve, and the liquefied N2 is refluxed to realize a single tower pressure (0.5-1 MPa) rectification separation air. , the production of double high products. Not only is the process flow greatly simplified, but the separation energy consumption is reduced by more than 30%.
  • liquid oxygen, liquid nitrogen and liquid argon are directly used for cold cooling. Compared with the conventional air expansion refrigeration, the cooling temperature is low, the cooling capacity is large, the reflux ratio can be increased, and the distillation efficiency is improved.
  • the air separation device provided by the invention can reduce the energy consumption of oxygen and nitrogen separation by more than 30%.
  • the unit energy consumption based on oxygen production is reduced from the current international advanced water product 0.4KWh/M3O2 to below 0.3KWh/M3O2.
  • FIG. 1 is a diagram of an externally cooled single-stage rectification single-stage rectification air separation system provided by the present invention
  • Main tower 1. Main tower, 2. Fu tower (argon column), 3. Main condensing evaporator, 4. Tower kettle, 5. Argon condensation evaporator, 6. Oxygen heat exchanger, 7. Nitrogen heat exchanger, 8. Rough Argon heat exchanger, 9. Circulating heat exchanger, 10. Recirculating compressor, 11. Liquid oxygen pump, 12. Throttle valve, 13. Return valve, 14. Main tower upper section, 15. Main tower lower section.
  • Fig. 1 is a flow chart of an externally cooled single-stage rectification air separation according to the embodiment.
  • the externally cooled single-stage rectification air separation device includes a main tower 1 and a sub-tower 2, and the main tower 1 includes a main tower upper section 14 and a main tower lower section 15, and the bottom of the sub-tower 2 is The central portion of the lower section 15 of the main tower is connected.
  • the raw material air is compressed and purified, and then exchanged with the refluxing oxygen, nitrogen and argon respectively through the oxygen heat exchanger 6, the nitrogen heat exchanger 7, and the argon heat exchanger 8, and cooled to a saturation temperature to enter the distillation column.
  • the middle of the main tower 1 is located at the upper end of the lower section 15 of the main tower, and is fed into the main tower 1.
  • the evaporation of nitrogen in the liquid in the column rises, and the condensation of oxygen and argon in the gas is lowered to achieve rectification separation.
  • the nitrogen rising to the top of the main column 1 is as pure as 5N. A part of the nitrogen is taken out as a product, and the other part enters the main refrigerant evaporator to exchange heat with the liquid oxygen refrigerant therein, and after liquefaction, it becomes liquid nitrogen reflux.
  • a throttle valve is disposed outside the bottom of the main tower 1.
  • a conveying pipe of 12 which connects the bottom of the main tower 1 with the condensing evaporator at the top of the tower.
  • part of the liquid oxygen at the bottom of the tower can be decompressed through the throttle valve and then sent to the main condensing evaporator at the top of the tower.
  • the refrigerant in the main condensing evaporator 3 is involved in heat exchange in 3.
  • the liquid oxygen refrigerant in the main condensing evaporator 3 is vaporized into gas evaporation by heat exchange with the rising nitrogen gas, and the evaporated gas is reheated by the peripheral heat exchanger 9 and passed through the circulation compressor 10 After pressurization, after cooling, it enters the ascending cycle of the tower 4 and participates in rectification, thereby realizing the refrigeration cycle inside the system and the recycling of the refrigerant.
  • one side of the main tower 1 further includes a sub-tray 2 which communicates with an intermediate portion of the lower section 15 of the main tower 1.
  • nitrogen has the lowest boiling point, and argon is similar to the boiling point of oxygen.
  • neither oxygen nor argon can rise to the top of the main column 1, so that only nitrogen can be separated at the top of the main column 1, and 8-12% of the argon fraction is concentrated in the middle of the lower portion 15 of the main column 1, It is sent to the column 2 for oxygen and argon separation.
  • the initial reflux liquid required in the column 2 can be taken from the bottom of the main column 1 to extract a portion of the liquid oxygen refrigerant through the liquid oxygen pump 11 and passed through the reflux valve 13 to the argon at the top of the column 2.
  • the refrigerant evaporator heat is exchanged with the rising argon gas.
  • argon is more easily converted into a gas evaporation rise.
  • the argon gas rises to the top of the column 2, and a part thereof is taken out as a product, and is recovered after being reheated to the normal temperature by the external argon heat exchanger 8.
  • Most of the argon gas will enter the argon condensation evaporator 5 at the top of the column 2 and exchange heat with the liquid oxygen refrigerant therein to be converted into liquid argon condensate reflux, and the liquid oxygen refrigerant in the argon condensation evaporator 5 will be converted into oxygen discharge.
  • the oxygen heat exchanger 6 reheats to reach normal temperature, it is recovered as a product.
  • the externally cooled single-stage rectification single-stage rectification air separation device provided by the present invention can realize single-stage rectification capable of completely separating air and producing 2N pure oxygen and 5N pure nitrogen.
  • LN2 and LAr are respectively replenished from the respective inlet ports to ensure continuous distillation.
  • the external cooling air separation process design method separates the two processes of refrigeration and rectification, mainly rectification, and the refrigeration service is subject to rectification, which removes the mutual interference and restriction between the two. This can turn the two-factor problem into a single-factor problem, solve the complex problem in a simple way, and greatly expand the free play space of the air-divided process design.
  • the external cold air separation device has the characteristics of fast starting speed, flexible opening and closing, and wide adjustment of load. Moreover, the process is variable, product purity, ratio, tower pressure, and distillation parameters can be optimized. Targeted design for users with different requirements, can receive the best effect of system energy saving
  • the external cold air separation device starts up quickly and is convenient to start and stop. It is not limited by the cooling rate.
  • the cooling phase is increased during the start-up phase, and the equipment is quickly cooled to the working state.
  • the hot start can be controlled within 8 hours. Stop 8 hours, cold start time within 0.5-1 hours. 24 hours of downtime, 1-2 hours can return to normal working conditions, start to enter the oxygen supply conditions.
  • the external cooling method achieves timely, fast and accurate cold filling.
  • the cold filling does not affect the rectification conditions, and the cold filling route is short. Therefore, the adjustment is flexible and the operation is stable.
  • the air volume of the raw material is changed by opening and stopping the air compressor, and the load is adjusted in a wide range.
  • the total power consumption varies linearly with the output, and the unit consumption remains unchanged.
  • the diameter of the pressurized rectification air separation tower can be reduced by more than half, and the manufacturing problems of large and extra large air separation equipment can be solved.
  • the expansion machine that is running at high speed is cancelled.
  • the air separation tower is completely composed of stationary equipment, eliminating mechanical failures and providing greater safety and stability.
  • the externally cooled single-stage rectification air separation device and method provided by the invention can be industrially manufactured and used to meet the requirements of industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

提供一种外冷式单级精馏空分装置,包括主塔(1)、付塔(2)、主冷凝蒸发器(3),塔釜(4)、氩冷凝蒸发器(5)、换热器(6、7、8)、循环压缩机(10)、液氧泵(11)、节流阀(12)和输送管道。付塔(2)的底部与主塔(1)下段的中部连通;换热器(6、7、8)包括氧气换热器(6)、氮气换热器(8=7)、粗氩换热器(8)、循环换热器(9)。将液氧作为馏出物同时也作为冷凝蒸发器(3、5)的冷媒,实现系统内部的制冷循环。而且将主塔(1)底部的液氧作为冷媒通过节流阀(12)和液氧泵(11)及输送管道直接输送至主塔(1)和付塔(2)塔顶的冷凝蒸发器(3、5)内,极大地节省了工艺流程提高了空分效率。实现了单级带压精馏分离空气,生产双高产品,不仅工业流程大大简化,而且使分离能耗降低30%以上。

Description

外冷式单级精馏空分装置及方法 技术领域
本发明属于空分领域,具体涉及外冷式单级精馏空分装置及方法。
背景技术
空分装置是以空气为原料制备氧气和氮气及氩气等惰性气体的分离装置。通过对空气进行压缩、膨胀制冷,进而使空气液化,利用精馏塔分离出氧气、氮气和惰性气体(如氩气)等产品。生产中使用的原料空气,可以随时随地获得。目前空分行业是属于化工产业的一个分支行业。
现有的空分设备工艺流程固化,能耗大,空气分离成本较高,尤其在单级精馏中不能完全分离空气,生产高纯度的氮气和氧气。
发明内容
本发明的一个目的在于提供一种外冷式单级精馏空分装置,能够实现单级带压精馏完全分离空气,生产高纯度的N2和O2,并降低分离能耗。与传统空分流程相比,此流程氧氮分离能耗由0.4kwh/NM3O2以上降至0.3kWh/NM3O2以下,能耗降低30%以上。
本发明的另一目的在于提供外冷式单级精馏空分方法。
为了实现上述目的,本发明的具体方案如下:
外冷式单级精馏空分装置,包括主塔、付塔、冷凝蒸发器,换热器、循环压缩机、液氧泵、节流阀和输送管道;
所述冷凝蒸发器包括主冷凝蒸发器、氩冷凝蒸发器,其中所述主冷凝蒸发器和氩冷凝蒸发器分别设置在所述主塔和氩塔的顶部;所述氩塔的底部与主塔下段的中部连通;
所述换热器包括氧气换热器、氮气换热器、粗氩换热器、循环换热器;
所述主塔的中部设有原料空气进料口,原料空气分别通过所述氧气换热 器、氮气换热器和粗氩换热器预冷至饱和温度后通过输送管道从所述主塔中部的进料口进入所述主塔,所述主塔底部上设有液氧输入口,从该液氧输入口向所述塔釜注入液氧,原料空气上升过程中与塔顶回流液氮进入热质交换,分离出氮气。氮气从主塔的顶部引出并通过氮气换热器复热至常温后回收,液体回流至主塔底部分离出液氧。液氧经节流阀、液氧泵、输送管道进入主塔顶部的主冷凝蒸发器以及付塔顶部的氩冷凝蒸发器,作为该两个冷凝蒸发器的冷媒;
主塔中,部分氮气进入主冷凝蒸发器与液氧冷进行换热,液氧蒸发气体进入所述循环换热器,并通过所述循环压缩机加压冷却后进入塔釜上升,冷凝液氮作为主塔的回流液与主塔底部上升的氧气再次热质交换,以此循环;
从主塔下段抽取的含Ar8-12%的馏分进入付塔,在付塔内,氩气精馏分离上升至付塔塔顶。一部分氩气通过所述氩气换热器复热至常温后回收。大部分继续冷凝回流至主塔底部。氩冷凝蒸发器中蒸发的氧气再通过所述氧气换热器复热至常温后回收。
进一步地,所述主塔顶部上设有液氮输入口。
进一步地,所述氩冷凝蒸发器上设有液氩输入口。
液氮输入口和液氩输入口及前述液氧输入口均作为外部冷源液氮、液氩和液氧的补充入口。液氧、液氮、液氩可单独使用,并可组合使用补充装置冷损。
进一步地,所述塔釜与所述主冷凝蒸发器连通的回路上设有节流阀,与氩冷凝蒸发器连通的回路上设有回流阀以及所述液氧泵。
因为主冷凝器外侧压力小于氩冷凝器外侧压力,所以,在将主塔底部的液氧通过外部的输送管路送入主冷凝蒸发器内时,需要通过输送管路上设置的节流阀限制液氧冷媒的流量,而将主塔底部的液氧送入付塔顶部的氩冷凝蒸发器内时,需要通过液氧泵将其增压。同时,需要使用回流阀限制流量,保证平稳输送。
进一步地,所述氧气换热器、氮气换热器以及氩气换热器均为板式换热 器。
板式换热器为传热介质不相接触,仅仅通过换热器本身进行热量交换,能够达到本方案的目的。
本发明还提供了外冷式单塔精馏空分方法,包括以下步骤:
a.将预处理净化后的原料空气送入热换器与返流气体换热后预冷至饱和温度,并通过主塔中部的加料口送入主塔内;
b.向主塔底部的第二冷凝蒸发器内注入液氧,与该冷凝蒸发器内的液氧冷媒进行换热,产生的氧气上升,并与中部的饱和原料空气中的液氮进行换热,氮气上升至主塔顶部,大部分被引出,经过氮气换热器复热至常温后回收,氧气冷凝回流;同时,位于主塔下段中部的氩气以及大部分氧气进入付塔,其中的大部分氩气上升至所述付塔顶部;
c.将持续回流至主塔底部的液氧通过液氧泵以及节流阀分别送入所述主塔顶部的第一冷凝蒸发器和所述付塔顶部的第三冷凝蒸发器内作为液氧冷媒使用,所述第一冷凝蒸发器内的液氧冷媒与进入该冷凝蒸发器内的氮气换热后转化为氧气从第一冷凝蒸发器内排出,并经过循环蒸发器复热后,通过循环压缩机加压液化后再次转化为液氧冷媒进行所述第二冷媒蒸发器内,同时氮气冷凝回流再次作为上升氧气的回流液;付塔中的大部分氩气上升至所述付塔的顶部,并被引出,通过氩气换热器复热至常温后被回收,部分氩气进入所述第三冷凝蒸发器内,并与其内的液氧冷媒换热冷凝回流,而液氧冷媒转化为氧气从所述第三冷凝蒸发器内排出,并经过氧气换热器复热至常温后被回收。
进一步地,所述第一冷凝蒸发器上设有液氮输入口。
进一步地,所述第三冷凝蒸发器上设有液氩输入口。
进一步地,步骤c中,所述第一冷凝蒸发器和所述第二冷凝蒸发器的连通管路上设有第一节流阀,所述节流阀设在靠近所述第二冷凝蒸发器的一端;
所述第二冷凝蒸发器和所述第三冷凝蒸发器的连通管路上复合配设有液氧泵和第二节流阀。
进一步地,所述步骤d中还包括,将回收的常温氩气再送入精氩塔内继续提纯。
通过本发明提供的外冷式单级精馏空分装置,突破了单级精馏不能完全分离空气,生产高纯度N2和O2的传统理论。本方案通过节流阀将主塔底部的液氧作为冷媒直接送入主塔顶部以及付塔顶部的冷凝蒸发器内,液化N2回流,实现了单塔带压(0.5-1MPa)精馏分离空气,生产双高产品。不仅工艺流程大大简化,而且使分离能耗降低30%以上。同时,本方案中直接使用液氧,液氮,液氩补冷,较传统的空气膨胀制冷,补冷温度低,冷量大,可增大回流比,提高了精馏效率。
本发明还具有如下特点:
1.本方案中,摒弃了传统空气液化分离装置的设计理念,将制冷和精馏两项工艺分开,用外部冷源补偿径流过程中的冷损,摆脱了制冷和精馏之间的相互干扰和制约,变双因素问题为单因素问题,降低了空分流程设计的难度。
2.充分发挥外冷式空分流程可灵活变化的特点,根据用户的特点和用气要求,进行针对性流程设计。不仅仅根据用气量多少确定装置生产能力,而且产品氧气与氮气的纯度,配比,出塔压力,精馏参数均可优化选择,最大限度满足用户要求,达到最佳综合节能效果。
3.经理论分析,流程重组和工业实验证明,本发明提供的空分装置可降低氧,氮分离能耗达到30%以上。以氧气产量为基准的单位能耗由目前国际先进水品0.4KWh/M3O2降至0.3KWh/M3O2以下。
附图说明
图1为本发明提供的外冷式单级精馏单级精馏空分系统图;
1.主塔,2.付塔(氩塔),3.主冷凝蒸发器,4.塔釜,5.氩冷凝蒸发器,6.氧气换热器,7.氮气换热器,8.粗氩换热器,9.循环换热器,10.循环压缩机,11.液氧泵,12.节流阀,13.回流阀,14.主塔上段,15.主塔下段。
本发明的较佳实施方式
参照附图对本发明的外冷式单级精馏空分装置的实施方式进行说明。
图1为本实施方式的外冷式单级精馏空分流程图。
如图1所示,本实施方式所提供的外冷式单级精馏空分装置包括主塔1和付塔2,主塔1包括主塔上段14和主塔下段15,付塔2底部与主塔下段15的中部位置连通。
原料空气经压缩净化后分别通过氧气换热器6、氮气换热器7和氩气换热器8分别与返流的氧气,氮气,氩气进行换热,冷却至饱和温度进入精馏塔的主塔1中部,具体位于主塔下段15的上端,向主塔1内加料。
此时,因为氮的沸点低于氧和氩的沸点,所以塔内液体中氮蒸发上升,气体中氧、氩冷凝下降实现精馏分离。上升至主塔1顶部的氮气其纯度可达5N。部分氮气其中一部分作为产品引出,其中另一部分进入主冷媒蒸发器与其内的液氧冷媒进行换热,液化后成为液氮回流。液化回流的液氮在与从主塔1底部不断上升的氧气交汇过程中,由于沸点较低,会再次汽化为氮气上升至主塔1顶部,一部分引出,一部分进入主冷凝蒸发器3进行换热,以此循环进行。
因为在主塔1内部,回流至塔底的液氧无法自动上升至塔顶,也无法转化为气体蒸发出来,所以本实施方式中,在主塔1底部的外侧配设了设有节流阀12的输送管道,该输送管道将主塔1塔底和塔顶的冷凝蒸发器连通,此时,可以将塔底的部分液氧通过节流阀减压后输送入塔顶的主冷凝蒸发器3内作为主冷凝蒸发器3内的冷媒参与换热。
而此时主冷凝蒸发器3内的液氧冷媒因为与上升的氮气进行换热后气化成为气体蒸发,蒸发的气体经过外设的循环换热器9复热后,并经过循环压缩机10加压,冷却后进入塔釜4上升循环参与精馏,进而实现系统内部的制冷循环以及冷媒的循环利用。
在所述主塔1的一侧同时还包括一个付塔2,该付塔2与主塔1下段15的中间部位连通。在精馏过程中,氮气的沸点最低,氩气与氧气的沸点相近, 在主塔1内氧气与氩气都无法上升至主塔1的顶部,所以,只有氮气能够在主塔1顶部被分离出来,8-12%氩馏分集聚在主塔1下段15的中部位置,被送入付塔2进行氧、氩分离。
此时,付塔2中所需要的最初的回流液可以通过从主塔1底部的塔釜4中抽取部分液氧冷媒经过液氧泵11并通过回流阀13被送入付塔2顶部的氩冷媒蒸发器内,与上升的氩气进行换热。
在付塔2内,因为氧的沸点高于氩的沸点,所以,氩更容易转化为气体蒸发上升。氩气上升至付塔2顶部,一部分作为产品引出,并经过外部的氩气换热器8复热至常温后被回收。大部分氩气会进入付塔2顶部的氩冷凝蒸发器5内与其内的液氧冷媒进行换热转化为液氩冷凝回流,同时氩冷凝蒸发器5内的液氧冷媒会转化为氧气排出,并经氧气换热器6复热达到常温后作为产品回收。
所以,通过本发明提供的外冷式单级精馏单级精馏空分装置,能够实现单级精馏能够完全分离空气,生产2N纯氧和5N纯氮。
为补偿精馏过程冷损,可单独或组合使用LO2。LN2、LAr分别从各自进液口进行补充,保证精馏过程连续进行。
1.外冷式空分流程设计方法的特点
1)外冷式空分流程设计方法将制冷和精馏两项工艺分开,以精馏为主,制冷服务并服从于精馏,摆脱了两者之间的互相干扰和制约。这样可以将双因素问题变为单因素问题,将复杂问题用简单的方法解决,大大拓展了空分流程设计的自由发挥空间。
2)打破了传统空分流程一成不变的固定模式,充分发挥外冷式空分流程可多样性变化的特点,适应了用户对产品多样性和负荷变化的要求
3)外冷空分装置具有启动速度快,开停灵活方便,负荷可大范围调节的特点。而且流程多变,产品纯度,配比,出塔压力,精馏参数均可以优化选择。对不同要求的用户采取针对性设计,可以收到系统节能的最佳效果
4)专事低温精馏设计,有利于采用精馏技术的最新成果和技术创新。通过将外冷技术,带压精馏技术,内嵌林德循环制冷技术,单级精馏技术等植 入空分流程中,拓展了空分节能的方法和措施,收获明显的节能效果。
外冷式单级低压精馏空分装置的特点:
1)外冷空分装置启动迅速,开停方便。不受补冷速度限制,启动阶段加大补冷,快速将设备冷至工作状态。热启动可控制在8小时以内。停机8小时,冷启动时间0.5-1小时以内。停机时间24小时,1-2小时可恢复正常工况,启动即可进入供氧工况。
2)调节灵活,运转平稳。外冷方式实现了及时、快速、精准补冷。补冷不影响精馏工况,补冷路线短。因此调节灵活,运转平稳。
3)一改传统空分气态补冷方式,采用液态补冷。温度低,冷量大,可以增大回流比改善精馏过程,提高分离效率。
4)采用一塔多机配置,通过开停机空压机,改变原料气量,实现大范围分档调负荷。总电耗随产量呈线性变化,单耗保持不变。
5)林德制冷循环以氧为工质,制冷效率高。
6)带压精馏空分塔直径可缩小一半以上,大型及特大型空分设备制造难题迎刃而解。
7)取消了高速运转的膨胀机。空分塔完全由静止设备组成,消除了机械故障,安全性和稳定性更高。
以上,虽然说明了本发明的几个实施方式,但是这些实施方式只是作为例子提出的,并非用于限定本发明的范围。对于这些新的实施方式,能够以其他各种方式进行实施,在不脱离本发明的要旨的范围内,能够进行各种省略、置换、及变更。这些实施方式和其变形,包含于本发明的范围和要旨中的同时,也包含于权利要求书中记载的发明及其均等范围内。
工业实用性
本发明提供的外冷式单级精馏空分装置及方法可以在工业上制造和使用,满足工业实用性的要求。

Claims (10)

  1. 外冷式单级精馏空分装置,其特征在于,包括主塔、付塔、冷凝蒸发器,换热器、循环压缩机、液氧泵、节流阀和输送管道;
    所述冷凝蒸发器包括主冷凝蒸发器、氩冷凝蒸发器,其中所述主冷凝蒸发器和氩冷凝蒸发器分别设置在所述主塔和付塔的顶部;所述付塔的底部与主塔下段的中部连通;
    所述换热器包括氧气换热器、氮气换热器、粗氩换热器、循环换热器;
    所述主塔的中部设有原料空气进料口,原料空气分别通过所述氧气换热器、氮气换热器和粗氩换热器预冷至饱和温度后通过输送管道从所述主塔中部进入主塔。所述主塔底部设有液氧输入口,从该液氧输入口注入液氧。氮气从主塔的顶部引出并通过氮气换热器复热至常温后回收;液体回流至主塔底部分离出液氧通过主塔外部配设的带有节流阀以及液氧泵的输送管道进入主塔顶部的主凝蒸发器以及付塔顶部的氩冷凝蒸发器,作为该两个冷凝蒸发器的冷媒;
    主塔中,部分氮气进入主凝蒸发器与液氧冷媒进行换热,液氧冷媒转化为气体蒸发排出后进入所述循环换热器,并通过所述循环压缩机加压,预冷后进入主塔底部塔釜上升,氮气冷凝回流与主塔底部上升的氧气循环精馏;
    位于主塔下段的氩馏分进入付塔,在付塔内,氩气上升至付塔塔顶,一部分引出后通过所述氩气换热器复热至常温后回收,其余继续冷凝回流。液氧在氩冷凝蒸发器内,参与换热后转化为氧气,再通过所述氧气换热器复热至常温后回收。
  2. 根据权利要求1所述的外冷式单级精馏空分装置,其特征在于,所述主塔顶部设有液氮输入口。
  3. 根据权利要求1所述的外冷式单级精馏空分装置,其特征在于,所述氩冷凝蒸发器上设有液氩输入口。
  4. 根据权利要求1所述的外冷式单级精馏空分装置,其特征在于,所述 主塔塔釜与所述主凝蒸发器连通的回路上设有节流阀,与氩冷凝蒸发器连通的回路上设有回流阀以及所述液氧泵。
  5. 根据权利要求1所述的外冷式单级精馏空分装置,其特征在于,所述氧气换热器、氮气换热器以及氩气换热器均为板式换热器。
  6. 外冷式单级精馏空分方法,其特征在于,包括以下步骤:
    a.将预处理净化后的原料空气送入热换器与返流气体换热后预冷至饱和温度,并通过主塔中部的加料口送入主塔内;
    b.向主塔底部的第二冷凝蒸发器内注入液氧,与该冷凝蒸发器内的液氧冷媒进行换热,产生的氧气上升,并与中部的饱和原料空气中的液氮进行换热,氮气上升至主塔顶部,大部分被引出,经过氮气换热器复热至常温后回收,氧气冷凝回流;同时,位于主塔下段中部的氩气以及大部分氧气进入付塔,其中的大部分氩气上升至所述付塔顶部;
    c.将持续回流至主塔底部的液氧通过液氧泵以及节流阀分别送入所述主塔顶部的第一冷凝蒸发器和所述付塔顶部的第三冷凝蒸发器内作为液氧冷媒使用,所述第一冷凝蒸发器内的液氧冷媒与进入该冷凝蒸发器内的氮气换热后转化为氧气从第一冷凝蒸发器内排出,并经过循环蒸发器复热后,通过循环压缩机加压液化后再次转化为液氧冷媒进行所述第二冷媒蒸发器内,同时氮气冷凝回流再次作为上升氧气的回流液;付塔中的大部分氩气上升至所述付塔的顶部,并被引出,通过氩气换热器复热至常温后被回收,部分氩气进入所述第三冷凝蒸发器内,并与其内的液氧冷媒换热冷凝回流,而液氧冷媒转化为氧气从所述第三冷凝蒸发器内排出,并经过氧气换热器复热至常温后被回收。
  7. 根据权利要求6所述的外冷式单级精馏空分方法,其特征在于,所述第一冷凝蒸发器上设有液氮输入口。
  8. 根据权利要求6所述的外冷式单级精馏空分方法,其特征在于,所述第三冷凝蒸发器上设有液氩输入口。
  9. 根据权利要求6所述的外冷式单级精馏空分方法,其特征在于,步骤c中,所述第一冷凝蒸发器和所述第二冷凝蒸发器的连通管路上设有第一节 流阀,所述节流阀设在靠近所述第二冷凝蒸发器的一端;
    所述第二冷凝蒸发器和所述第三冷凝蒸发器的连通管路上复合配设有液氧泵和第二节流阀。
  10. 根据权利要求6所述的外冷式单级精馏空分方法,其特征在于,所述步骤d中还包括,将回收的常温氩气再送入精氩塔内继续提纯。
PCT/CN2016/109822 2015-12-16 2016-12-14 外冷式单级精馏空分装置及方法 WO2017101776A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510940808.2A CN105423703B (zh) 2015-12-16 2015-12-16 外冷式单级精馏空分系统
CN201510940808.2 2015-12-16

Publications (1)

Publication Number Publication Date
WO2017101776A1 true WO2017101776A1 (zh) 2017-06-22

Family

ID=55502090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/109822 WO2017101776A1 (zh) 2015-12-16 2016-12-14 外冷式单级精馏空分装置及方法

Country Status (2)

Country Link
CN (1) CN105423703B (zh)
WO (1) WO2017101776A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109323534A (zh) * 2018-11-06 2019-02-12 杭州杭氧股份有限公司 一种通过低温精馏法提纯空气制取高压氧气方法及装置
CN110779277A (zh) * 2019-11-25 2020-02-11 杭州杭氧股份有限公司 一种利用lng冷能和混合制冷工质循环的生产液氮的空分节能装置
CN111057583A (zh) * 2019-12-03 2020-04-24 中国船舶重工集团公司第七一一研究所 气体分离装置
CN114183996A (zh) * 2021-11-04 2022-03-15 灵谷化工集团有限公司 一种优化氩系统开车时长的液化氩制备方法
CN116099318A (zh) * 2022-12-22 2023-05-12 瑞燃(上海)环境工程技术有限公司 化学品罐区废气及多组分化工尾气处理方法和系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105423703B (zh) * 2015-12-16 2017-08-25 新疆天辰气体有限公司 外冷式单级精馏空分系统
CN110873514B (zh) * 2018-08-30 2021-02-05 北大方正集团有限公司 粗氩提取装置
CN114923313B (zh) * 2022-05-17 2024-02-09 陕西聚能新创煤化科技有限公司 粗氩精制液氩系统及其精制工艺

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61122480A (ja) * 1984-11-16 1986-06-10 株式会社日立製作所 アルゴンを採取する空気分離方法
US5159816A (en) * 1991-05-14 1992-11-03 Air Products And Chemicals, Inc. Method of purifying argon through cryogenic adsorption
EP0768504A2 (en) * 1995-10-11 1997-04-16 The BOC Group plc Air separation
JP2003207267A (ja) * 2002-01-16 2003-07-25 Jfe Steel Kk 空気分離装置
CN101684983A (zh) * 2008-09-22 2010-03-31 普莱克斯技术有限公司 制备高纯度氧的方法和设备
DE102008060783A1 (de) * 2008-12-05 2010-06-10 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Zerlegung von Luft
CN105423703A (zh) * 2015-12-16 2016-03-23 新疆天辰气体有限公司 外冷式单级精馏空分装置及方法
CN205300115U (zh) * 2015-12-16 2016-06-08 新疆天辰气体有限公司 外冷式单级精馏空分装置
CN205300114U (zh) * 2015-12-16 2016-06-08 新疆天辰气体有限公司 一种空分塔

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633934B2 (ja) * 1985-04-02 1994-05-02 大同ほくさん株式会社 空気分離装置
JPH01239375A (ja) * 1988-04-30 1989-09-25 Daido Sanso Kk 高純度窒素ガス製造装置
JPH07127971A (ja) * 1993-11-02 1995-05-19 Nippon Sanso Kk アルゴンの分離装置
US5701763A (en) * 1997-01-07 1997-12-30 Praxair Technology, Inc. Cryogenic hybrid system for producing low purity oxygen and high purity nitrogen
CN100494839C (zh) * 2007-04-11 2009-06-03 杭州杭氧股份有限公司 获得液氧和液氮的空气分离系统
JP5655104B2 (ja) * 2013-02-26 2015-01-14 大陽日酸株式会社 空気分離方法及び空気分離装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61122480A (ja) * 1984-11-16 1986-06-10 株式会社日立製作所 アルゴンを採取する空気分離方法
US5159816A (en) * 1991-05-14 1992-11-03 Air Products And Chemicals, Inc. Method of purifying argon through cryogenic adsorption
EP0768504A2 (en) * 1995-10-11 1997-04-16 The BOC Group plc Air separation
JP2003207267A (ja) * 2002-01-16 2003-07-25 Jfe Steel Kk 空気分離装置
CN101684983A (zh) * 2008-09-22 2010-03-31 普莱克斯技术有限公司 制备高纯度氧的方法和设备
DE102008060783A1 (de) * 2008-12-05 2010-06-10 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Zerlegung von Luft
CN105423703A (zh) * 2015-12-16 2016-03-23 新疆天辰气体有限公司 外冷式单级精馏空分装置及方法
CN205300115U (zh) * 2015-12-16 2016-06-08 新疆天辰气体有限公司 外冷式单级精馏空分装置
CN205300114U (zh) * 2015-12-16 2016-06-08 新疆天辰气体有限公司 一种空分塔

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109323534A (zh) * 2018-11-06 2019-02-12 杭州杭氧股份有限公司 一种通过低温精馏法提纯空气制取高压氧气方法及装置
CN110779277A (zh) * 2019-11-25 2020-02-11 杭州杭氧股份有限公司 一种利用lng冷能和混合制冷工质循环的生产液氮的空分节能装置
CN110779277B (zh) * 2019-11-25 2023-05-23 杭氧集团股份有限公司 一种利用lng冷能和混合制冷工质循环的生产液氮的空分节能装置
CN111057583A (zh) * 2019-12-03 2020-04-24 中国船舶重工集团公司第七一一研究所 气体分离装置
CN114183996A (zh) * 2021-11-04 2022-03-15 灵谷化工集团有限公司 一种优化氩系统开车时长的液化氩制备方法
CN116099318A (zh) * 2022-12-22 2023-05-12 瑞燃(上海)环境工程技术有限公司 化学品罐区废气及多组分化工尾气处理方法和系统

Also Published As

Publication number Publication date
CN105423703A (zh) 2016-03-23
CN105423703B (zh) 2017-08-25

Similar Documents

Publication Publication Date Title
WO2017101776A1 (zh) 外冷式单级精馏空分装置及方法
CN109186179B (zh) 全精馏提氩富氧空分装置及工艺
JP7355978B2 (ja) 深冷空気分離装置
KR102389110B1 (ko) 제동을 위한 질소 팽창기와 연결된 팽창기 부스터에 의해 가압된 공기를 생산하기 위한 극저온 증류 방법 및 장치
US20120036892A1 (en) Air separation method and apparatus
CN104755360B (zh) 用于通过低温蒸馏进行空气分离的方法和设备
CN108731379A (zh) 一种液体量可调且同时产多规格氧气产品的空分设备及生产方法
JP2011511246A (ja) 低温空気分離方法及び装置
CN101886871A (zh) 一种空气分离制取压力氧气的方法及装置
WO2019127343A1 (zh) 一种基于深冷精馏生产空气产品的方法及设备
US20200149808A1 (en) Air separation method and apparatus
TW202117248A (zh) 高純度氧生產系統
JPH04283390A (ja) 可変量のガス状酸素を製造する空気精留方法及び設備
JPH06300435A (ja) 空気の精留により圧力下のガス状酸素及び/又はガス状窒素を製造する方法並びに設備
CN105473968B (zh) 用于以可变的能量消耗通过空气的低温分离产生氧的方法和装置
CN105378411B (zh) 生产至少一种空气产品的方法、空分设备、产生电能的方法和装置
WO2019137359A1 (zh) 一种基于氩循环的lng冷能利用系统及方法
TW202117249A (zh) 空氣的低溫分離方法與設備
CN114413570B (zh) 一种双塔落地式制氮装置
WO2019127180A1 (zh) 一种基于深冷精馏工艺生产空气产品的方法及空分系统
CN1038514A (zh) 生产高压氧和高压氮的空气分离流程
CN216790655U (zh) 一种低能耗的单塔纯氮制取的装置
US20120125044A1 (en) Feed compression method and apparatus for air separation process
CN207751222U (zh) 一种lng冷能利用的热集成精馏空分系统
CN108036585B (zh) 一种lng冷能利用的热泵空气分离系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16874833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/11/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16874833

Country of ref document: EP

Kind code of ref document: A1