WO2017101491A1 - 3d尼龙风管成型阻燃弯梁的成型工艺和制作模具 - Google Patents

3d尼龙风管成型阻燃弯梁的成型工艺和制作模具 Download PDF

Info

Publication number
WO2017101491A1
WO2017101491A1 PCT/CN2016/096335 CN2016096335W WO2017101491A1 WO 2017101491 A1 WO2017101491 A1 WO 2017101491A1 CN 2016096335 W CN2016096335 W CN 2016096335W WO 2017101491 A1 WO2017101491 A1 WO 2017101491A1
Authority
WO
WIPO (PCT)
Prior art keywords
retardant
mold
nylon
flame
curved beam
Prior art date
Application number
PCT/CN2016/096335
Other languages
English (en)
French (fr)
Inventor
朱家强
王滨
唐辉
王明
谢长志
罗剑岚
刘永凯
Original Assignee
上海晋飞新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海晋飞新材料科技有限公司 filed Critical 上海晋飞新材料科技有限公司
Priority to SG11201702925RA priority Critical patent/SG11201702925RA/en
Priority to JP2018532022A priority patent/JP6603809B2/ja
Priority to US16/063,251 priority patent/US10821683B2/en
Publication of WO2017101491A1 publication Critical patent/WO2017101491A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/462Moulding structures having an axis of symmetry or at least one channel, e.g. tubular structures, frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/542Placing or positioning the reinforcement in a covering or packaging element before or during moulding, e.g. drawing in a sleeve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/22Tubes or pipes, i.e. rigid

Definitions

  • the invention relates to a forming process and a manufacturing mold, in particular to a forming process and a manufacturing mold of a 3D nylon air duct forming flame-retardant curved beam.
  • carbon fiber composites Compared with traditional metal materials, carbon fiber composites have many excellent properties, such as light weight, high specific strength, good dimensional stability, and excellent chemical stability. Therefore, the application range is more extensive and the production process is becoming more mature. According to the final use and structural shape of the product, many carbon fiber composite molding processes have been widely developed.
  • the 3D nylon air duct integrally forms a flame-retardant high-strength high-iron curved beam. Compared with the traditional metal high-iron curved beam, there is no need for complicated processes such as opening, bending, and welding, and the contoured shape of the formed product is unified (mold guarantee). Metal-opening, bending, and welding of hand-formed products have different contours.
  • the invention is mainly for solving a product with complicated manufacturing structure, unique shape, weight reduction and mechanical properties.
  • the main object of the present invention is to provide a molding process and a mold for making the same, and more particularly to a molding process and a mold for forming a 3D nylon air duct forming flame-retardant curved beam.
  • a molding process of a 3D nylon air duct forming flame-retardant curved beam and the forming process of the 3D nylon air duct forming flame-retardant curved beam comprises the following steps:
  • Step 1 Make a 3D nylon air duct; cut the nylon air duct with a width of 300-500mm into a prototype air duct of the shape of the inner cavity of the curved beam to be produced, and then seal the periphery of the prototype air duct with a sealing machine, leaving Venting the mouth, thus forming a 3D nylon duct;
  • Step 2 selection of flame retardant carbon fiber pre-dyed dipped material; material pre-impregnated with epoxy flame retardant resin and carbon fiber precursor is called flame retardant carbon fiber prepreg;
  • Step 3 Lamination and pre-forming of the prepreg; the carbon fiber prepreg of the cut size is sequentially attached into the cavity and the slider according to the design of the layup structure, and the plastic scraper is used for compaction during the laying process. ;
  • Step 4 solidification molding of the composite material; after the product in the step (3) is combined, the mold is placed on the hot press table, and the product is thermoformed according to the temperature and pressure parameters set by the bending beam forming control standard.
  • the parameters are as follows:
  • Molding time 3600S, holding time of 1.2MPa;
  • the thickness of the 3D nylon duct is 20um, 40um, 60um depending on the shape and size of the product.
  • the paving process is compacted with a plastic squeegee, the material of which is a mixture of one or more of PVC, PET, PTFE, and rubber.
  • the manufacturing mold of the beam comprises: an upper mold, a lower mold, a slider, a nozzle device mouth, a nozzle device mouth is located on the lower mold, the slider comprises two pieces; the nozzle device mouth is placed with a 3D nylon air duct nozzle; As the product placement reference, the two blocks are placed on the left and right sides of the lower mold, and the upper mold cover is fixed on the lower mold and the two blocks to mold the flame-retardant curved beam.
  • the upper mold includes an upper mold body having an arc-shaped space, and the upper mold body is provided with an arc-shaped groove, and the left and right sides of the curved space are provided with a cutting plate and an arc shape.
  • a baffle is arranged on the upper and lower sides of the space, and one of the baffles is provided with a step, and the step and the other baffle are provided with an upper die groove matched with the lower die, and the flame-retardant curved beam to be produced is located on the cutting plate Between the baffle and the baffle, the entire upper mold is integrally formed.
  • the arcuate groove has a length in the range of 380-440 mm and the arcuate groove has a width in the range of 2-4 mm.
  • the lower die is a product placement reference surface
  • the lower die includes a lower die base, a step at the upper and lower ends, and a boss in the middle of the two steps, and the nozzle device opening is in the step at the upper and lower ends
  • the lower mold is provided with a ridge corresponding to the groove on the slider, and the entire lower mold is integrally formed, and a rim is provided at the joint of the opening of the opening device and the lower mold base.
  • the two sliders are completely symmetrical in structure, the slider includes a convex surface and a convex surface, and the side has a screw hole, and the screw is screwed through the screw hole to lock the slider on the lower mold.
  • the nylon air duct is formed into a 3D effect shape with the same inner shape of the high iron bent beam.
  • the 3D nylon air duct is placed as a liner on the carbon fiber composite material.
  • the thermoforming is pressurized to the inside of the product through the nozzle, so that the carbon fiber composite high-iron bent beam is integrally molded and solidified.
  • the molding process and the manufacturing mold of the 3D nylon air duct forming flame-retardant curved beam provided by the invention have the following advantages:
  • the invention is a flame-retardant high-strength high-iron bend integrally formed by using a 3D nylon air duct.
  • Beam, thermoforming mainly uses 3D nylon air duct to assist carbon fiber prepreg molding. It relates to the manufacture of a 3D nylon duct, which is mainly used to assist in the forming of composite products with complex curved surfaces.
  • the flame-retardant high-strength high-iron curved beam integrally formed by using 3D nylon air duct has the same flame retarding effect as the traditional metal-formed curved beam, and has simple operation, flexible product design, higher strength, lighter weight and corrosion resistance.
  • FIG. 1 is a schematic view showing the overall structure of a mold for forming a flame-retardant curved beam of a 3D nylon air duct according to the present invention.
  • Figure 2-1 is a perspective view showing the overall structure of the upper mold in the present invention.
  • 2-2 is a front view showing the overall structure of the upper mold in the present invention.
  • Figure 2-3 is a left side view showing the overall structure of the upper mold in the present invention.
  • Figure 2-4 is a bottom plan view showing the overall structure of the upper mold in the present invention.
  • Figure 3-1 is a perspective view showing the overall structure of the lower mold of the present invention.
  • 3-2 is a front view showing the overall structure of the lower mold of the present invention.
  • 3-3 is a left side view showing the overall structure of the lower mold of the present invention.
  • Figure 3-4 is a bottom plan view showing the overall structure of the lower mold of the present invention.
  • Figure 4-1 is a perspective view showing the overall structure of the slider of the present invention.
  • 4-2 is a front elevational view showing the overall structure of the slider of the present invention.
  • 4-3 is a left side view showing the overall structure of the slider of the present invention.
  • 4-4 is a bottom view of the overall structure of the slider of the present invention.
  • Fig. 5 is a schematic view showing the structure of a flame-retardant curved beam produced by a mold in the present invention.
  • the beam forming process includes the following steps:
  • Step 1 Make a 3D nylon air duct; cut the nylon air duct with a width of 300-500mm into a prototype air duct of the shape of the inner cavity of the curved beam to be produced, and then seal the periphery of the prototype air duct with a sealing machine, leaving Venting the mouth, thus forming a 3D nylon duct;
  • Step 2 selection of flame retardant carbon fiber pre-dyed dipped material; material pre-impregnated with epoxy flame retardant resin and carbon fiber precursor is called flame retardant carbon fiber prepreg;
  • Step 3 Lamination and pre-forming of the prepreg; the carbon fiber prepreg of the cut size is sequentially attached into the cavity and the slider according to the design of the layup structure, and the plastic scraper is used for compaction during the laying process. ;
  • Step 4 Curing and molding of the composite material; after the product is pasted, the inspection is the same.
  • the mold is clamped (ensure that there is no clamping)
  • the mold is placed on the hot press table and the temperature and pressure parameters are set according to the bending beam forming control standard.
  • the product is thermoformed, and after the molding time is reached, the mold is pulled out from the hot press table, placed in a cooling table for mold cooling, and after the mold is cooled, the mold is opened and the product is taken out.
  • the high-strength flame-retardant curved beam 5 in Fig. 5 is obtained.
  • the specific parameters are as follows:
  • Molding time 3600S (molding time of 1.2MPa)
  • the material used in the product is a high-strength, high-modulus carbon fiber composite material, and at the same time, a flame retardant effect can be achieved. And the carbon fiber curved beam directly loses 40% compared with the metal curved beam.
  • the thickness of the 3D nylon air duct may be 20 um, 40 um, or 60 um depending on the shape and size of the product.
  • the paving process is compacted with a plastic scraper.
  • the material of the plastic sheet is a mixture of one or more of PVC, PET, PTFE, and rubber.
  • the mold comprises: an upper mold 1, a lower mold 2, a slider 3, and a nozzle device port 4.
  • the nozzle device port 4 is located on the lower mold 2, the slider 3 includes two pieces; the nozzle device port 4 is placed with a 3D nylon air duct nozzle; the lower mold 2 is used as a product placement reference, and two sliders 3 are placed in the lower mold 2
  • the upper mold 1 is placed on the lower mold 2 and the two sliders 3 to fix the mold to form the flame-retardant curved beam.
  • FIG. 2-1 is a perspective view showing the overall structure of the upper mold of the present invention
  • FIG. 2-2 is a front view showing the overall structure of the upper mold of the present invention
  • FIG. 2-3 is a schematic view showing the overall structure of the upper mold of the present invention.
  • Left side view, Fig. 2-4 is a bottom view showing the overall structure of the upper mold in the present invention.
  • the structural feature of the upper mold 1 for making the mold is to ensure the shape and appearance of the upper surface of the flame-retardant curved beam.
  • the upper mold 1 has two conformal grooves as a product and is strong.
  • the upper mold 1 includes an upper mold body 101 having a curved space 104.
  • the upper mold body 101 is provided with an arcuate groove 102.
  • the left and right sides of the curved space 104 are provided with a cutting plate 103, and an arc space.
  • the upper and lower sides of the 104 are provided with a baffle 105.
  • One of the baffles 105 is provided with a step 106.
  • the step 106 and the other baffle 105 are provided with an upper die groove 107 matched with the lower die 2, which needs to be fabricated.
  • the flame-retardant curved beam is located between the cutting plate 103 and the baffle 105, and the entire upper mold 1 is integrally formed.
  • the length of the arcuate groove 102 ranges from 380 to 440 mm during the specific manufacturing process, and the width of the arcuate groove 102 ranges from 2 to 4 mm.
  • FIG. 3-1 is a perspective view showing the overall structure of the lower mold of the present invention
  • FIG. 3-2 is a front view showing the overall structure of the lower mold of the present invention
  • FIG. 3-3 is a schematic view showing the overall structure of the lower mold of the present invention.
  • Left side view Figure 3-4 is a bottom view of the overall structure of the lower mold of the present invention.
  • the structural feature of the lower mold 2 is to ensure the basic shape and appearance of the lower surface of the product (flame-resistant curved beam).
  • the lower mold 2 is a product placement reference surface, and the lower mold 2 includes a lower mold base 205 and upper and lower ends of the steps 201 and 202.
  • a boss 203 in the middle of the two steps the nozzle device opening 4 is opened on one of the steps in the steps of the upper and lower ends, and the lower mold 2 is provided with a rib 205 corresponding to the groove 304 on the slider 3, and the whole lower portion
  • the mold 2 is integrally formed.
  • a rim 206 is provided at the junction of the step 202 of the open nozzle device port 4 and the lower die base 205 (the rim 206 corresponds to the upper die groove 107 when the upper and lower dies are combined).
  • FIG. 4-1 is a perspective view showing the overall structure of the slider of the present invention
  • FIG. 4-2 is a front view showing the overall structure of the slider of the present invention
  • 4-3 is a left side view showing the overall structure of the slider of the present invention
  • 4-4 is a bottom view of the overall structure of the slider of the present invention.
  • the structural feature of the slider 3 is to ensure the basic shape and appearance of the two sides of the product (flame-resistant curved beam).
  • the structure of the two sliders 3 is completely symmetrical.
  • the slider 3 includes a convex surface 301 and a projection 302.
  • the side surface has a screw hole 303.
  • the slider 3 is screwed to the lower mold 2 through a screw hole 303.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Moulding By Coating Moulds (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Building Environments (AREA)

Abstract

一种3D尼龙风管成型阻燃弯梁的成型工艺和制作模具,3D尼龙风管成型阻燃弯梁的成型工艺包括以下步骤:步骤1:制作3D尼龙风管;步骤2:阻燃碳纤维预染浸料的选材;步骤3:预浸料的铺层、预成型;步骤4:复合材料的固化成型。制作模具包括:上模(1),下模(2),滑块(3),气嘴装置口(4),气嘴装置口(4)位于下模(2)上,滑块(3)包括两块;气嘴装置口(4)放置3D尼龙风管气嘴;下模(2)作为产品放置基准,将两块滑块(3)放置在下模(2)的左右两边,再将上模(1)盖在下模(2)及两块滑块(3)上固定模具进行阻燃弯梁的成型。3D尼龙风管一体成型阻燃弯梁相比传统金属成型的弯梁同样达到阻燃的效果,且操作简单、产品造型灵活、强度更高、重量更轻、耐腐蚀。

Description

3D尼龙风管成型阻燃弯梁的成型工艺和制作模具 技术领域
本发明涉及一种成型工艺和制作模具,具体涉及一种3D尼龙风管成型阻燃弯梁的成型工艺和制作模具。
背景技术
较之传统金属材料,碳纤维复合材料拥有众多优异的性能,例如质量轻、比强度高、良好的尺寸稳定性、优秀的化学稳定性,因此其应用范围越发广泛,制作工艺也趋于成熟。而根据产品最终的用途和结构造型的不同,也广泛应运而生了许多碳纤维复合材料成型工艺。用3D尼龙风管一体成型阻燃高强度高铁弯梁相比传统金属高铁弯梁无需开口、折弯、烧焊等复杂工序,而且成型出来的产品轮廓造型得到了统一的标准(模具保证),金属开口、折弯、烧焊纯手工成型出来的产品存在轮廓造型不一的现象。
本发明的提出主要是为了解决制造结构复杂、造型独特、减轻重量、增强力学性能的产品。
发明内容
针对上述问题,本发明的主要目的在于提供一种成型工艺和制作模具,具体涉及一种3D尼龙风管成型阻燃弯梁的成型工艺和制作模具。
本发明是通过下述技术方案来解决上述技术问题的:一种3D尼龙风管成型阻燃弯梁的成型工艺,所述3D尼龙风管成型阻燃弯梁的成型工艺包括以下步骤:
步骤1:制作3D尼龙风管;将宽度为300-500mm的尼龙风管裁剪成需要制作的弯梁的内腔形状大小的原型风管,然后再利用封口机将原型风管周边密封起来,留出气嘴口,这样便形成了3D尼龙风管;
步骤2:阻燃碳纤维预染浸料的选材;使用环氧阻燃树脂跟碳纤维原丝预浸而成的材料称之为阻燃碳纤维预浸料;
步骤3:预浸料的铺层、预成型;将裁好尺寸的碳纤维预浸料依设计铺层结构顺序依次贴入模腔里及滑块上,铺料过程中要用塑料刮板压实;
然后将3D尼龙风管放入弯梁中间的空心位置,再给3D尼龙风管施加安全气压:0.1MPa,查看风管是否通气;
步骤4:复合材料的固化成型;将步骤(3)中的产品合好模后将模具放入热压机台上根据弯梁成型管制标准设定的温度、气压参数对产品进行热成型,具体参数如下:
成型时间:3600S,保压1.2MPa的成型时间;
成型温度:145±5℃
机台外压:4MPa
3D尼龙风管加压程式:0-50S时慢加压至0.2MPa,
                    50-300S时慢加压至0.6MPa,
                    300-600S时慢加压至1.0MPa,
                    600-3600S时慢加压至1.2MPa。
在本发明的一个具体实施例子中,所述3D尼龙风管的厚度根据产品形状大小的不同有:20um、40um、60um。
在本发明的一个具体实施例子中,铺料过程中要用塑料刮板压实,塑料板的材质是:PVC、PET、PTFE、和橡胶中的一种和多种的混合物。
一种3D尼龙风管成型阻燃弯梁的制作模具,所述3D尼龙风管成型阻燃弯 梁的制作模具包括:上模,下模,滑块,气嘴装置口,气嘴装置口位于下模上,滑块包括两块;所述气嘴装置口放置3D尼龙风管气嘴;下模作为产品放置基准,将两块滑块放置在下模的左右两边,再将上模盖在下模及两块滑块上固定模具进行阻燃弯梁的成型。
在本发明的一个具体实施例子中,所述上模包括带有弧形空间的上模本体,上模本体上开有弧形凹槽,弧形空间的左右两侧设置有切板,弧形空间的上下两侧设置有挡板,挡板中的其中一块上设置有台阶,台阶和另一块挡板上设置有和下模配套的上模凹槽,需要制作的阻燃弯梁位于切板和挡板之间,整个上模一体成型。
在本发明的一个具体实施例子中,所述弧形凹槽的长度范围为380-440mm,弧形凹槽的宽度范围为2-4mm。
在本发明的一个具体实施例子中,所述下模为产品放置基准面,下模包括下模底座、上下两端的台阶和两台阶中间的凸台,气嘴装置口开在上下两端的台阶中的台阶之一上,下模上开有和滑块上的凹槽对应的凸条,整个下模一体成型,在开气嘴装置口的台阶和下模底座结合处设置有边沿。
在本发明的一个具体实施例子中,两块滑块的结构完全对称,滑块包括凸面和凸起,侧面有螺丝孔,采用螺钉穿过螺丝孔将滑块锁紧在下模上。
在本发明的一个具体实施例子中,将尼龙风管做成高铁弯梁内部形状一样的3D效果形状,在碳纤维复合材料模压成型时,将3D尼龙风管作为内胆放置在铺有碳纤维复合材料的模腔中,热成型时通过气嘴加压至产品内部,使碳纤维复合材料高铁弯梁达到一体成型固化。
本发明的积极进步效果在于:本发明提供的3D尼龙风管成型阻燃弯梁的成型工艺和制作模具具有以下优点:本发明为一种使用3D尼龙风管一体成型阻燃高强度的高铁弯梁,热成型主要是利用3D尼龙风管辅助碳纤维预浸料模压成型, 其中涉及一种3D尼龙风管的制作,主要用于辅助成型曲面复杂结构的复合材料产品。使用3D尼龙风管一体成型出来的阻燃高强度高铁弯梁相比传统金属成型的弯梁同样达到阻燃的效果,且操作简单、产品造型灵活、强度更高、重量更轻、耐腐蚀。
附图说明
图1为本发明中3D尼龙风管成型阻燃弯梁的制作模具的整体结构示意图。
图2-1为本发明中上模的整体结构示意图的立体图。
图2-2为本发明中上模的整体结构示意图的主视图。
图2-3为本发明中上模的整体结构示意图的左视图。
图2-4为本发明中上模的整体结构示意图的仰视图。
图3-1为本发明中下模的整体结构示意图的立体图。
图3-2为本发明中下模的整体结构示意图的主视图。
图3-3为本发明中下模的整体结构示意图的左视图。
图3-4为本发明中下模的整体结构示意图的仰视图。
图4-1为本发明中滑块的整体结构示意图的立体图。
图4-2为本发明中滑块的整体结构示意图的主视图。
图4-3为本发明中滑块的整体结构示意图的左视图。
图4-4为本发明中滑块的整体结构示意图的仰视图。
图5为本发明中的模具制作的阻燃弯梁的结构示意图。
具体实施方式
下面结合附图给出本发明较佳实施例,以详细说明本发明的技术方案。
一种3D尼龙风管成型阻燃弯梁的成型工艺,所述3D尼龙风管成型阻燃弯 梁的成型工艺包括以下步骤:
步骤1:制作3D尼龙风管;将宽度为300-500mm的尼龙风管裁剪成需要制作的弯梁的内腔形状大小的原型风管,然后再利用封口机将原型风管周边密封起来,留出气嘴口,这样便形成了3D尼龙风管;
步骤2:阻燃碳纤维预染浸料的选材;使用环氧阻燃树脂跟碳纤维原丝预浸而成的材料称之为阻燃碳纤维预浸料;
步骤3:预浸料的铺层、预成型;将裁好尺寸的碳纤维预浸料依设计铺层结构顺序依次贴入模腔里及滑块上,铺料过程中要用塑料刮板压实;
然后将3D尼龙风管放入弯梁中间的空心位置,再给3D尼龙风管施加小量气压,查看风管是否通气;
步骤4:复合材料的固化成型;产品贴模好后检查无异,合模后(确保无夹模)将模具放入热压机台上根据弯梁成型管制标准设定的温度、气压参数对产品进行热成型,在成型时间到后将模具从热压机台上拉出,放进冷却台进行模具冷却,待模具冷却后打开模具取出产品。得到图5中的高强度阻燃弯梁5。具体参数如下:
成型时间:3600S(保压1.2MPa的成型时间)
成型温度:145±5℃
机台外压:4MPa
3D尼龙风管加压程式:0-50S时慢加压至0.2MPa,
                    50-300S时慢加压至0.6MPa,
                    300-600S时慢加压至1.0MPa,
                    600-3600S时慢加压至1.2MPa。
所述产品使用的材料为高强度、高模量的碳纤维复合材料,同时能够达到阻燃效果。且碳纤维弯梁相比金属弯梁直接减重了40%。
所述3D尼龙风管的厚度根据产品形状大小的不同可以有:20um、40um、60um。
所述铺料过程中要用塑料刮板压实,塑料板的材质是:PVC、PET、PTFE、和橡胶中的一种和多种的混合物。
图1为本发明中3D尼龙风管成型阻燃弯梁的制作模具的整体结构示意图,如图1所示,制作模具包括:上模1,下模2,滑块3,气嘴装置口4,气嘴装置口4位于下模2上,滑块3包括两块;气嘴装置口4放置3D尼龙风管气嘴;下模2作为产品放置基准,将两块滑块3放置在下模2的左右两边,再将上模1盖在下模2及两块滑块3上固定模具进行阻燃弯梁的成型。
图2-1为本发明中上模的整体结构示意图的立体图,图2-2为本发明中上模的整体结构示意图的主视图,图2-3为本发明中上模的整体结构示意图的左视图,图2-4为本发明中上模的整体结构示意图的仰视图。如图2-1到2-4所示,制作模具的上模1的结构特点是保证阻燃弯梁上表面的形状及外观,上模1有两条随形凹槽作为产品加强劲。具体如下图:上模1包括带有弧形空间104的上模本体101,上模本体101上开有弧形凹槽102,弧形空间104的左右两侧设置有切板103,弧形空间104的上下两侧设置有挡板105,挡板105中的其中一块上设置有台阶106,台阶106和另一块挡板105上设置有和下模2配套的上模凹槽107,需要制作的阻燃弯梁位于切板103和挡板105之间,整个上模1一体成型。在具体的制作过程中弧形凹槽102的长度范围为380-440mm,弧形凹槽102的宽度范围为2-4mm。
图3-1为本发明中下模的整体结构示意图的立体图,图3-2为本发明中下模的整体结构示意图的主视图,图3-3为本发明中下模的整体结构示意图的左视图,图3-4为本发明中下模的整体结构示意图的仰视图。如图3-1到3-4所示,下模2的结构特点是保证产品(阻燃弯梁)下表面的基本形状及外观。下模2为产品放置基准面,下模2包括下模底座205、上下两端的台阶201、202 和两台阶中间的凸台203,气嘴装置口4开在上下两端的台阶中的台阶之一上,下模2上开有和滑块3上的凹槽304对应的凸条205,整个下模2一体成型。在开气嘴装置口4的台阶202和下模底座205结合处设置有边沿206(在上下模结合时,边沿206和上模凹槽107对应)。
图4-1为本发明中滑块的整体结构示意图的立体图,图4-2为本发明中滑块的整体结构示意图的主视图。图4-3为本发明中滑块的整体结构示意图的左视图。图4-4为本发明中滑块的整体结构示意图的仰视图。如图4-1到4-4所示,滑块3的结构特点是保证产品(阻燃弯梁)两侧面的基本形状及外观。两块滑块3的结构完全对称,滑块3包括凸面301和凸起302,侧面有螺丝孔303,采用螺钉穿过螺丝孔303将滑块3锁紧在下模2上。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内,本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (8)

  1. 一种3D尼龙风管成型阻燃弯梁的成型工艺,其特征在于:所述3D尼龙风管成型阻燃弯梁的成型工艺包括以下步骤:
    步骤1:制作3D尼龙风管;将宽度为300-500mm的尼龙风管裁剪成需要制作的弯梁的内腔形状大小的原型风管,然后再利用封口机将原型风管周边密封起来,留出气嘴口,这样便形成了3D尼龙风管;
    步骤2:阻燃碳纤维预染浸料的选材;使用环氧阻燃树脂跟碳纤维原丝预浸而成的材料称之为阻燃碳纤维预浸料;
    步骤3:预浸料的铺层、预成型;将裁好尺寸的碳纤维预浸料依设计铺层结构顺序依次贴入模腔里及滑块上,铺料过程中要用塑料刮板压实;
    然后将3D尼龙风管放入弯梁中间的空心位置,再给3D尼龙风管施加安全气压:0.1 MPa,查看风管是否通气;
    步骤4:复合材料的固化成型;将步骤(3)中的产品合好模后将模具放入热压机台上根据弯梁成型管制标准设定的温度、气压参数对产品进行热成型,具体参数如下:
    成型时间:3600S,保压1.2 MPa的成型时间;
    成型温度:145±5℃
    机台外压:4 MPa
    3D尼龙风管加压程式:0-50S 时慢加压至0.2 MPa,
    50-300S 时慢加压至0.6 MPa,
    300-600S 时慢加压至1.0 MPa,
    600-3600S 时慢加压至1.2 MPa。
  2. 根据权利要求1所述的3D尼龙风管成型阻燃弯梁的成型工艺,其特征在于:所述3D尼龙风管的厚度根据产品形状大小的不同有:20um、40um、60um。
  3. 根据权利要求1所述的3D尼龙风管成型阻燃弯梁的成型工艺,其特征在于:铺料过程中要用塑料刮板压实,塑料板的材质是:PVC、PET、PTFE、和橡胶中的一种和多种的混合物。
  4. 一种3D尼龙风管成型阻燃弯梁的制作模具,其特征在于:所述3D尼龙风管成型阻燃弯梁的制作模具包括:上模,下模,滑块,气嘴装置口,气嘴装置口位于下模上,滑块包括两块;所述气嘴装置口放置3D尼龙风管气嘴;下模作为产品放置基准,将两块滑块放置在下模的左右两边,再将上模盖在下模及两块滑块上固定模具进行阻燃弯梁的成型。
  5. 根据权利要求4所述的3D尼龙风管成型阻燃弯梁的制作模具,其特征在于:所述上模包括带有弧形空间的上模本体,上模本体上开有弧形凹槽,弧形空间的左右两侧设置有切板,弧形空间的上下两侧设置有挡板,挡板中的其中一块上设置有台阶,台阶和另一块挡板上设置有和下模配套的上模凹槽,需要制作的阻燃弯梁位于切板和挡板之间,整个上模一体成型。
  6. 根据权利要求5所述的3D尼龙风管成型阻燃弯梁的制作模具,其特征在于:所述弧形凹槽的长度范围为380-440mm,弧形凹槽的宽度范围为2-4mm。
  7. 根据权利要求4所述的3D尼龙风管成型阻燃弯梁的制作模具,其特征在于:所述下模为产品放置基准面,下模包括下模底座、上下两端的台阶和两台阶中间的凸台,气嘴装置口开在上下两端的台阶中的台阶之一上,下模上开有和滑块上的凹槽对应的凸条,整个下模一体成型,在开气嘴装置口的台阶和下模底座结合处设置有边沿。
  8. 根据权利要求4所述的3D尼龙风管成型阻燃弯梁的制作模具,其特征在于:两块滑块的结构完全对称,滑块包括凸面和凸起,侧面有螺丝孔,采用螺钉穿过螺丝孔将滑块锁紧在下模上。
PCT/CN2016/096335 2015-12-16 2016-08-23 3d尼龙风管成型阻燃弯梁的成型工艺和制作模具 WO2017101491A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SG11201702925RA SG11201702925RA (en) 2015-12-16 2016-08-23 The molding technique and mould making process for a flame retardant bending beam with a 3d nylon air duct
JP2018532022A JP6603809B2 (ja) 2015-12-16 2016-08-23 3dナイロンエアダクト成形の難燃性曲がり梁の成形プロセスおよび製作用金型
US16/063,251 US10821683B2 (en) 2015-12-16 2016-08-23 Method for molding flame-retardant bending beam integrated with three-dimensional nylon air duct and production mould thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510947278.4A CN105415709B (zh) 2015-12-16 2015-12-16 3d尼龙风管成型阻燃弯梁的成型工艺和制作模具
CN201510947278.4 2015-12-16

Publications (1)

Publication Number Publication Date
WO2017101491A1 true WO2017101491A1 (zh) 2017-06-22

Family

ID=55494452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096335 WO2017101491A1 (zh) 2015-12-16 2016-08-23 3d尼龙风管成型阻燃弯梁的成型工艺和制作模具

Country Status (5)

Country Link
US (1) US10821683B2 (zh)
JP (1) JP6603809B2 (zh)
CN (1) CN105415709B (zh)
SG (1) SG11201702925RA (zh)
WO (1) WO2017101491A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105415709B (zh) * 2015-12-16 2018-08-31 上海晋飞碳纤科技股份有限公司 3d尼龙风管成型阻燃弯梁的成型工艺和制作模具
CN105856543A (zh) * 2016-05-25 2016-08-17 上海瑞河企业集团有限公司 大型塑料管件折弯机
CN106426668A (zh) * 2016-11-29 2017-02-22 中国直升机设计研究所 一种直升机复合材料进气道用模具
CN108481761A (zh) * 2018-05-03 2018-09-04 上海晋飞碳纤科技股份有限公司 一种一体袋压成型出来的高铁卧铺梯子和扶手及其成型工艺
CN109703069B (zh) * 2018-12-11 2024-02-13 惠阳航空螺旋桨有限责任公司 一种叶片模具顶块定位方法
CN109676972B (zh) * 2018-12-12 2024-04-09 惠阳航空螺旋桨有限责任公司 一种碳纤维叶片整体成型模具
CN113320055A (zh) * 2021-05-19 2021-08-31 上海航天化工应用研究所 一种飞行器舵面前缘防热材料的成型模具
CN113708331B (zh) * 2021-07-27 2022-11-22 河钢股份有限公司承德分公司 一种防爆胶泥整形装置
CN114407384A (zh) * 2021-12-14 2022-04-29 中电科芜湖钻石飞机制造有限公司 一种显控台支臂及其成型方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201856381U (zh) * 2010-11-15 2011-06-08 上海晋飞复合材料科技有限公司 预浸料模压成型模具
CN202572715U (zh) * 2012-05-03 2012-12-05 东华大学 一种用于制作碳纤维轮毂的模具
CN105415709A (zh) * 2015-12-16 2016-03-23 上海晋飞新材料科技有限公司 3d尼龙风管成型阻燃弯梁的成型工艺和制作模具
CN205343846U (zh) * 2015-12-16 2016-06-29 上海晋飞新材料科技有限公司 3d尼龙风管成型阻燃弯梁的制作模具

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4088093B2 (ja) * 2002-04-02 2008-05-21 三菱レイヨン株式会社 繊維強化樹脂成形体の成形方法
US20050044712A1 (en) * 2003-08-28 2005-03-03 Gideon David E. Sidewall panel integrated with insulation and air ducts
JP4729370B2 (ja) * 2005-09-02 2011-07-20 東邦テナックス株式会社 管状部材の成形方法
CN101778706A (zh) * 2007-08-09 2010-07-14 旭有机材工业株式会社 Frp增强氯乙烯系树脂制管接头及其制造方法
JP5172371B2 (ja) * 2008-01-28 2013-03-27 ダイキョーニシカワ株式会社 中空成形体
JP5088213B2 (ja) * 2008-04-09 2012-12-05 トヨタ自動車株式会社 内圧成形装置
US8617687B2 (en) * 2009-08-03 2013-12-31 The Boeing Company Multi-functional aircraft structures
CN103568333A (zh) * 2013-08-24 2014-02-12 厦门欧势复材科技有限公司 一种碳纤维复合材料异型产品成型工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201856381U (zh) * 2010-11-15 2011-06-08 上海晋飞复合材料科技有限公司 预浸料模压成型模具
CN202572715U (zh) * 2012-05-03 2012-12-05 东华大学 一种用于制作碳纤维轮毂的模具
CN105415709A (zh) * 2015-12-16 2016-03-23 上海晋飞新材料科技有限公司 3d尼龙风管成型阻燃弯梁的成型工艺和制作模具
CN205343846U (zh) * 2015-12-16 2016-06-29 上海晋飞新材料科技有限公司 3d尼龙风管成型阻燃弯梁的制作模具

Also Published As

Publication number Publication date
US10821683B2 (en) 2020-11-03
JP6603809B2 (ja) 2019-11-06
CN105415709A (zh) 2016-03-23
SG11201702925RA (en) 2017-07-28
CN105415709B (zh) 2018-08-31
JP2018538178A (ja) 2018-12-27
US20180370161A1 (en) 2018-12-27

Similar Documents

Publication Publication Date Title
WO2017101491A1 (zh) 3d尼龙风管成型阻燃弯梁的成型工艺和制作模具
CN102642437B (zh) 一种皮革雕花造型工艺
TWI532766B (zh) 纖維強化複合材料成形品及其製造方法
CN104589670B (zh) 一种复合材料空腔结构气囊成型的气体通道设计方法
CN102285059B (zh) 一种电缆整流罩的树脂模塑传递工艺成型方法及模具
WO2017101490A1 (zh) 复合材料制作高铁设备舱裙板的工艺
CN104608400A (zh) 由复合材料制成的模具及相应的成形单元
CN102958300A (zh) 树脂与纤维的复合体及其制造方法
CN103802333A (zh) 用树脂传递模塑工艺制造电子产品复合材料外壳的方法
CN103862682B (zh) 一种复合材料的模压设备和方法
CN109968701A (zh) 一种可重复使用双层气袋的制备方法
JP2010052389A5 (zh)
CN106891546A (zh) 一种变壁厚复合材料裙的成型方法
CN104552677A (zh) 一种热压罐用复合材料模具制作工艺
CN108688192A (zh) 一种c型梁复合材料成型工装及复合材料c型梁成型方法
JP2020032535A5 (zh)
JP6229197B2 (ja) 成型品およびその製造方法
CN109910207A (zh) 一种用于飞机壁板长桁内增压气囊
CN214820067U (zh) 一种碳纤维制品成型用模压和热压罐工艺共用模具
CN108749033A (zh) 一种预制体增强板类通用真空闭模模具
KR101463562B1 (ko) 섬유강화 복합재 제품 제조방법
CN104097282B (zh) 一种用于生产c型截面肋材料的浇注模型
TW201527081A (zh) 熱塑性纖維複合材料的成形方法及其成形模具
TW201513996A (zh) 複合材料外殼的製造方法
CN104827683A (zh) 复合材料板的制造方法及其产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16874551

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018532022

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 16874551

Country of ref document: EP

Kind code of ref document: A1