WO2017101435A1 - Procédé de fabrication de bande de soudure sans grille principale pour cellule solaire - Google Patents

Procédé de fabrication de bande de soudure sans grille principale pour cellule solaire Download PDF

Info

Publication number
WO2017101435A1
WO2017101435A1 PCT/CN2016/089966 CN2016089966W WO2017101435A1 WO 2017101435 A1 WO2017101435 A1 WO 2017101435A1 CN 2016089966 W CN2016089966 W CN 2016089966W WO 2017101435 A1 WO2017101435 A1 WO 2017101435A1
Authority
WO
WIPO (PCT)
Prior art keywords
melt adhesive
adhesive film
hot melt
hot
solar cell
Prior art date
Application number
PCT/CN2016/089966
Other languages
English (en)
Chinese (zh)
Inventor
何凤琴
杨振英
李嘉亮
Original Assignee
王能青
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王能青 filed Critical 王能青
Publication of WO2017101435A1 publication Critical patent/WO2017101435A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to the field of solar cell manufacturing technology, and in particular to a method for preparing a non-main gate solder ribbon for a solar cell.
  • a crystalline silicon solar cell is an electronic component that converts solar energy into electrical energy.
  • the electrode structure In the front electrode of the crystalline silicon solar cell, the electrode structure generally includes a main gate line and a sub-gate line which are criss-crossed, and the main gate line is electrically connected to the sub-gate line.
  • the battery When there is light, the battery generates a current, and the current flows through the internal emitter to the surface electrode sub-gate line, collects through the sub-gate line and then flows to the battery main grid for export. The current will be lost during the collection of the secondary gate line, which we call the power loss of the resistor.
  • the main grid line and the sub-gate line of the battery are on the light-receiving surface of the battery, which inevitably blocks a part of the light from being irradiated on the surface of the battery, thereby reducing the effective light-receiving area of the battery, which is called optical loss.
  • Increasing the number of main gate lines and sub-gate lines can improve the collection ability of the current generated by the solar cell and improve the conversion efficiency of the battery, but if the width of the gate line is not lowered, the increased amount increases the occlusion loss. Therefore, the core of the gate line design of the electrode structure is a balance between shading and conduction.
  • the proposed solution is to increase the number of main gates of the front electrode, from two or three thick main gates over 2 mm wide to multiple ones less than one.
  • the millimeter-wide narrow-line main grid row even uses overlapping layers of two silver grid lines to improve the conductive effect. From a technical point of view, these methods can slightly improve photovoltaic efficiency.
  • the cost of the silver material required to invest is much higher than the return that can be earned by efficiency gains, and it does not benefit the industry. From the perspective of production cost, crystalline silicon and silver paste are the two most expensive materials, which can improve battery efficiency without increasing production costs. It is a technical problem that needs to be solved urgently in the current market environment with narrow profit margins.
  • the present invention provides a method for preparing a non-main gate strip for a solar cell, which is prepared by a hot pressing process using a copper wire and a hot melt adhesive film as a material.
  • the gate soldering strip is applied to a solar cell without a main gate, which can satisfy the shading while satisfying the guide.
  • the requirements of the preparation method are simple, meet the technical problems of reducing the material cost, and simplify the complicated process of realizing high photovoltaic efficiency battery structure and high conductivity low light-shielding electrode structure on the surface of the silicon wafer in the solar cell production process. .
  • a method for preparing a non-main gate strip for a solar cell comprising: discharging a plurality of copper wires from a copper wire take-up rack to a hot pressing device, wherein the plurality of copper wires are located in the same horizontal plane and mutually Disposed in parallel; the first hot melt adhesive film and the second hot melt adhesive film are respectively discharged by the first unwinding mechanism and the second unwinding mechanism, and the first hot melt adhesive film is cut by the first cutting device to form a plurality of a hot melt adhesive film, the second hot melt adhesive film is cut by the second cutting device to form a plurality of second hot melt adhesive film; wherein the first hot melt adhesive film and the second hot melt adhesive film
  • the sheets are respectively alternately transported to the hot pressing device by the first conveying device and the second conveying device, wherein the first hot melt adhesive film is located above the plurality of copper wires, and the second hot melt adhesive film The sheet is located below the plurality of copper wires, and the first hot melt adhesive film and the second hot melt adhesive film have
  • the plurality of copper wires are arranged in parallel with each other at equal intervals, and a spacing between two adjacent copper wires is 6 to 10 mm.
  • the pay-off tension of each of the copper wires is separately adjusted by the copper wire pay-off frame, and the tension of the wire is in the range of 5 to 50N.
  • first unwinding mechanism and the second unwinding mechanism respectively release the first hot melt adhesive film and the second hot melt adhesive film in a manner of constant linear velocity.
  • the linear velocity of the first unwinding mechanism for discharging the first hot melt adhesive film is 5 to 10 m/min
  • the linear velocity of the second unwinding mechanism for discharging the second hot melt adhesive film is 5 to 10 m/ Min.
  • first unwinding mechanism and the second unwinding mechanism have the same linear velocity.
  • the distance between the first hot melt adhesive film and the second hot melt adhesive film in the conveying direction is 2 to 3 mm.
  • the copper wire is a tinned copper wire
  • the first hot melt adhesive film and the second hot melt adhesive film are respectively PO film.
  • the copper wire has a wire diameter of 0.2 to 0.3 mm, and the first hot melt adhesive film and the second hot melt adhesive film The thickness is 0.09 to 0.11 mm, respectively.
  • first hot melt adhesive film has the same length and width
  • second hot melt adhesive film has the same length and width
  • the invention provides a method for preparing a non-main gate strip for a solar cell, which is prepared by using a copper wire and a hot melt film as a material, and is obtained by a hot pressing process to obtain a main gateless strip.
  • the preparation process is simple, meets the technical problem of reducing the material cost, and simplifies the surface of the silicon wafer in the solar cell production process.
  • a complex process that achieves a high photovoltaic efficiency cell structure and a high conductivity low light-shielded electrode structure.
  • FIG. 1 is a process flow diagram of a method for preparing a main gateless strip according to an embodiment of the present invention
  • FIG. 2 is an exemplary diagram of a process of a method for fabricating a main gateless strip according to an embodiment of the present invention
  • FIG 3 is a schematic structural view of a main gateless ribbon according to an embodiment of the present invention.
  • This embodiment provides a method for preparing a non-main gate strip for a solar cell. Referring to Figure 1 in conjunction with Figures 2 and 3, the method includes the following steps:
  • a plurality of copper wires are discharged from the copper wire take-up frame and sent to the hot pressing device, wherein the plurality of copper wires are located in the same horizontal plane and arranged in parallel with each other.
  • the copper wire take-up frame 1 discharges a plurality of copper wires 10 to the hot pressing device 2, and the wire tension of each copper wire 10 can be separately adjusted by the copper wire paying frame 1
  • the wire tension can range from 5 to 50N.
  • the plurality of copper wires 10 are arranged in parallel at equal intervals, and the spacing d1 between the adjacent two copper wires 10 may be selected to be 6 to 10 mm. In the present embodiment, the pitch d1 is set to 8 mm.
  • the number of copper wires 10 is mainly set according to the width of the solder ribbon to be prepared and the pitch d1.
  • a wire comb is disposed in the copper wire take-up frame 1, and the size of the distance d1 can be adjusted by adjusting the wire comb.
  • the first unwinding mechanism and the second unwinding mechanism respectively provide a plurality of first hot melt adhesive film sheets and a plurality of second hot melt adhesive film sheets to be transported into the hot pressing device. Specifically, as shown in FIG. 2 and referring to FIG. 3, the first hot melt adhesive film 21 is discharged by the first unwinding mechanism 3a, and the first hot melt adhesive film 21 is cut by the first cutting device 4a to form a plurality of first hot melts.
  • the rubber film sheet 21a, the plurality of first hot melt adhesive film sheets 21a are sequentially conveyed to the heat pressing device 2 by the first conveying device 5a; likewise, the second hot melt adhesive film 22 is discharged by the second unwinding mechanism 3b, The second hot melt adhesive film 22 is cut by the second cutting device 4b to form a plurality of second hot melt adhesive film sheets 22a, and the plurality of second hot melt adhesive film sheets 22a are sequentially conveyed to the hot pressing device 2 by the second transfer device 5b. Further, the first hot melt adhesive film 21a and the second hot melt adhesive film 22a are sequentially alternately transported to the hot pressing device 2 by the first conveying device 5a and the second conveying device 5b, respectively.
  • a hot melt adhesive film 21a is conveyed above the plurality of copper wires 10, the second hot melt adhesive film 22a is conveyed under the plurality of copper wires 10, and the first heat
  • the melt film 21a and the second hot melt film 22a have a separation distance d2 in the conveying direction.
  • the plurality of copper wires are respectively thermocompression bonded to the first hot melt adhesive film and the second hot melt adhesive film by a hot pressing device.
  • a hot pressing device Specifically, referring to FIG. 2 and FIG. 3, after the copper wire 10, the first hot melt adhesive film 21a and the second hot melt adhesive film 22a are respectively transported to the hot pressing device 2, the hot pressing device 2 will be the copper wire 10, the first A hot melt adhesive film 21a and a second hot melt adhesive film 22a are thermocompression bonded to form a solder ribbon, and FIG. 3 is a schematic structural view of the main gateless solder ribbon obtained by thermocompression bonding, and the dotted line portion of the figure indicates the first hot melt.
  • the film 21a is located above the copper wire 10.
  • the winding mechanism rotates the plurality of copper wires that are combined with the first hot melt adhesive film and the second hot melt adhesive film. Specifically, referring to FIG. 2 and FIG. 3, after the non-main gate strip obtained by thermocompression bonding in step S103, the winding mechanism 6 performs a winding operation to recover the finished product.
  • the first unwinding mechanism 3a and the second unwinding mechanism 3b release the first hot melt adhesive film 21 and the second hot melt adhesive film 22 by using a constant linear velocity.
  • the linear velocity of the first hot-melt adhesive film 21 may be 5 to 10 m/min, and the linear velocity range of the second unwinding mechanism 3b for discharging the second hot melt adhesive film 22 may be 5 ⁇ 10m / min.
  • the linear velocity of the first unwinding mechanism 3a and the second unwinding mechanism 3b are the same.
  • the distance d2 between the first hot melt adhesive film 21a and the second hot melt adhesive film 22a in the transport direction may be 2 to 3 mm.
  • the first hot melt adhesive film 21a and the second hot melt adhesive film 22a have a separation distance d2, which facilitates the use of the solder ribbon during use. Cropped.
  • the copper wire 10 used in the embodiment is a tinned copper wire, and the wire diameter may be 0.2 to 0.3 mm.
  • Place The first hot melt adhesive film 21 and the second hot melt adhesive film 22 are respectively PO (polyolefin) adhesive films, and the first hot melt adhesive film 21 and the second hot melt adhesive film 22 have a thickness of 0.09, respectively. ⁇ 0.11mm.
  • the width of the first hot melt adhesive film 21 is D1
  • a hot melt adhesive film 21a has a width D1 and a length L1.
  • the width of the second hot melt adhesive film 22 is D2, and the width of the second hot melt adhesive film 22 after the second hot melt adhesive film 22 is cut by the second cutting device 4b to form the second hot melt adhesive film 22a.
  • the length is L2.
  • D1 D2
  • the invention provides a method for preparing a non-main gate strip for a solar cell, which is prepared by using a copper wire and a hot melt film as a material, and is obtained by a hot pressing process to obtain a main gateless strip.
  • the preparation process is simple, meets the technical problem of reducing the material cost, and simplifies the surface of the silicon wafer in the solar cell production process.
  • a complex process that achieves a high photovoltaic efficiency cell structure and a high conductivity low light-shielded electrode structure.
  • the first hot melt adhesive film and the second hot melt adhesive film are disposed on both sides of the copper wire, and are arranged in a staggered manner, which is effective compared to placing the adhesive film on one side. Avoid copper wire breaks, provide work efficiency and reduce costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)
  • Sustainable Energy (AREA)

Abstract

L'invention concerne un procédé de fabrication de bandes de soudure sans grille principale pour une cellule solaire. Le procédé comprend les étapes suivantes : un support de libération de fil de cuivre (1) libère une pluralité de fils de cuivre (10) dans un dispositif de presse à chaud (2) ; un premier mécanisme de déroulement (3a) et un second mécanisme de déroulement (3b) libèrent respectivement un premier film adhésif thermofusible (21) et un second film adhésif thermofusible (21) ; le premier film adhésif thermofusible (21) est découpé en une pluralité de premières feuilles de film adhésif thermofusible (21a), et le second film adhésif thermofusible (22) est découpé en une pluralité de secondes feuilles de film adhésif thermofusible (22a) ; les premières feuilles de film adhésif thermofusible (21a) et les secondes feuilles de film adhésif thermofusible (22a) sont transportées de façon séquentielle et alternée jusqu'au dispositif de presse à chaud (2), les premières feuilles de film adhésif thermofusible (21a) se situant au-dessus de la pluralité de fils de cuivre (10), et les secondes feuilles de film adhésif thermofusible (22a) étant situées au-dessous de la pluralité de fils de cuivre (10) ; la thermocompression du dispositif de presse à chaud (2) lie la pluralité de fils de cuivre (10) respectivement aux premières feuilles de film adhésif thermofusible (21a) et aux secondes feuilles de film adhésif thermofusible (22a) ; un mécanisme d'enroulement (6) enroule la pluralité de fils de cuivre (10) qui sont liés par thermocompression aux premières feuilles de film adhésif thermofusible (21a) et aux secondes feuilles de film adhésif thermofusible (22a).
PCT/CN2016/089966 2015-12-15 2016-07-14 Procédé de fabrication de bande de soudure sans grille principale pour cellule solaire WO2017101435A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510933299.0 2015-12-15
CN201510933299.0A CN105576046B (zh) 2015-12-15 2015-12-15 一种用于太阳能电池的无主栅焊带的制备方法

Publications (1)

Publication Number Publication Date
WO2017101435A1 true WO2017101435A1 (fr) 2017-06-22

Family

ID=55885975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/089966 WO2017101435A1 (fr) 2015-12-15 2016-07-14 Procédé de fabrication de bande de soudure sans grille principale pour cellule solaire

Country Status (2)

Country Link
CN (1) CN105576046B (fr)
WO (1) WO2017101435A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107887476A (zh) * 2017-12-08 2018-04-06 无锡奥特维科技股份有限公司 电池片串焊机和电池片串焊方法
CN107887477A (zh) * 2017-12-11 2018-04-06 无锡奥特维科技股份有限公司 一种电池片串焊机和电池片串焊方法
CN108183148A (zh) * 2017-12-25 2018-06-19 无锡奥特维科技股份有限公司 一种膜带分离机构和焊带处理装置
CN109755345A (zh) * 2018-11-28 2019-05-14 米亚索能光伏科技有限公司 一种太阳能电池板及其制作方法
CN112289889A (zh) * 2020-10-20 2021-01-29 无锡奥特维科技股份有限公司 电池串生产方法
CN112786727A (zh) * 2021-02-01 2021-05-11 无锡市联鹏新能源装备有限公司 无主栅异质结太阳能电池组件互联用复合膜及其制备方法
CN114283998A (zh) * 2021-12-28 2022-04-05 苏州光汇新能源科技有限公司 导线网生产装置、太阳能电池互联系统及其方法
CN115224158A (zh) * 2022-06-30 2022-10-21 无锡奥特维科技股份有限公司 一种电池串贴膜装置及贴膜方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105576046B (zh) * 2015-12-15 2017-08-11 黄河水电光伏产业技术有限公司 一种用于太阳能电池的无主栅焊带的制备方法
CN106393815B (zh) * 2016-08-31 2018-04-06 西安泰力松新材料股份有限公司 一种金属丝/膜复合机及其控制装置和方法
CN110246929B (zh) * 2019-06-06 2021-12-07 苏州迈展自动化科技有限公司 一种太阳能光伏组件热链接工艺方法
CN110165022A (zh) * 2019-06-06 2019-08-23 苏州迈展自动化科技有限公司 一种太阳能电池金属线膜的制备设备
CN110277474B (zh) * 2019-06-06 2021-12-07 苏州迈展自动化科技有限公司 一种太阳能电池金属线膜的制备方法
CN112349805B (zh) * 2019-08-08 2022-09-13 苏州阿特斯阳光电力科技有限公司 光伏组件制备方法
CN112226177B (zh) * 2020-09-18 2022-08-16 苏州赛伍应用技术股份有限公司 一种焊带载体膜、焊带复合体及电池片复合体
CN112226169B (zh) * 2020-09-25 2022-11-18 苏州赛伍应用技术股份有限公司 一种焊带载体膜、其制备方法及焊带复合体、电池片复合体
CN115352939A (zh) * 2022-10-19 2022-11-18 常州盛沅新材料科技有限公司 一种包装膜卷放装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288278A (ja) * 2007-05-15 2008-11-27 Sharp Corp 太陽電池モジュールの製造方法
CN201362018Y (zh) * 2009-03-13 2009-12-16 无锡朗盛线缆材料有限公司 金属箔带覆膜二次热压工艺装置
CN103325875A (zh) * 2013-06-23 2013-09-25 深圳市华光达科技有限公司 一种新型太阳能电池片的电流汇集装置及其制备工艺
CN105576046A (zh) * 2015-12-15 2016-05-11 黄河水电光伏产业技术有限公司 一种用于太阳能电池的无主栅焊带的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10239845C1 (de) * 2002-08-29 2003-12-24 Day4 Energy Inc Elektrode für fotovoltaische Zellen, fotovoltaische Zelle und fotovoltaischer Modul
CA2708536A1 (fr) * 2007-12-18 2009-06-25 Day4 Energy Inc. Module photovoltaique avec acces par le bord a des chaines photovoltaiques, procede d'interconnexion, appareil et systeme
CN103325848A (zh) * 2013-06-22 2013-09-25 深圳市华光达科技有限公司 一种覆膜焊带及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288278A (ja) * 2007-05-15 2008-11-27 Sharp Corp 太陽電池モジュールの製造方法
CN201362018Y (zh) * 2009-03-13 2009-12-16 无锡朗盛线缆材料有限公司 金属箔带覆膜二次热压工艺装置
CN103325875A (zh) * 2013-06-23 2013-09-25 深圳市华光达科技有限公司 一种新型太阳能电池片的电流汇集装置及其制备工艺
CN105576046A (zh) * 2015-12-15 2016-05-11 黄河水电光伏产业技术有限公司 一种用于太阳能电池的无主栅焊带的制备方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107887476A (zh) * 2017-12-08 2018-04-06 无锡奥特维科技股份有限公司 电池片串焊机和电池片串焊方法
CN107887476B (zh) * 2017-12-08 2024-03-01 无锡奥特维科技股份有限公司 电池片串焊机和电池片串焊方法
CN107887477A (zh) * 2017-12-11 2018-04-06 无锡奥特维科技股份有限公司 一种电池片串焊机和电池片串焊方法
CN107887477B (zh) * 2017-12-11 2024-03-01 无锡奥特维科技股份有限公司 一种电池片串焊机和电池片串焊方法
CN108183148B (zh) * 2017-12-25 2024-03-01 无锡奥特维科技股份有限公司 一种膜带分离机构和焊带处理装置
CN108183148A (zh) * 2017-12-25 2018-06-19 无锡奥特维科技股份有限公司 一种膜带分离机构和焊带处理装置
CN109755345A (zh) * 2018-11-28 2019-05-14 米亚索能光伏科技有限公司 一种太阳能电池板及其制作方法
CN112289889A (zh) * 2020-10-20 2021-01-29 无锡奥特维科技股份有限公司 电池串生产方法
CN112786727B (zh) * 2021-02-01 2022-11-22 无锡市联鹏新能源装备有限公司 无主栅异质结太阳能电池组件互联用复合膜及其制备方法
CN112786727A (zh) * 2021-02-01 2021-05-11 无锡市联鹏新能源装备有限公司 无主栅异质结太阳能电池组件互联用复合膜及其制备方法
CN114283998A (zh) * 2021-12-28 2022-04-05 苏州光汇新能源科技有限公司 导线网生产装置、太阳能电池互联系统及其方法
CN114283998B (zh) * 2021-12-28 2024-04-12 苏州光汇新能源科技有限公司 导线网生产装置、太阳能电池互联系统及其方法
CN115224158A (zh) * 2022-06-30 2022-10-21 无锡奥特维科技股份有限公司 一种电池串贴膜装置及贴膜方法

Also Published As

Publication number Publication date
CN105576046B (zh) 2017-08-11
CN105576046A (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
WO2017101435A1 (fr) Procédé de fabrication de bande de soudure sans grille principale pour cellule solaire
JP5377019B2 (ja) 太陽電池モジュールの製造方法
CN107195719B (zh) 叠瓦式太阳能光伏组件的生产设备
US8883282B2 (en) Electrode tape
US9530926B2 (en) Automated flexible solar cell fabrication and interconnection utilizing rolls expanded metallic mesh
KR101739404B1 (ko) 태양 전지 패널
US20090194144A1 (en) Solar cell module and method of manufacturing the same
JP4633173B2 (ja) 太陽電池モジュールの製造方法
EP2525395A1 (fr) Machine de fabrication de bandes d'électrode
US20120279546A1 (en) Solar cell connector electrode, solar cell module and method for electrically connecting a plurality of solar cells
CN113678263A (zh) 光伏电池和光伏电池串及相关方法
US20130247958A1 (en) Solar cell module, and method of manufacturing solar cell module
WO2022041515A1 (fr) Procédé de fabrication et appareil de fabrication pour élément d'interconnexion
KR101441264B1 (ko) 태양전지 모듈, 태양전지 모듈의 제조 방법, 태양전지 셀 및 탭선의 접속 방법
US20180145192A1 (en) Solar cell module production method
JP2011082431A (ja) 配線シート、配線シート付き太陽電池セル、太陽電池モジュールおよび配線シートロール
CN113037210A (zh) 电池串结构和光伏组件及其制造方法
JP2010016246A (ja) 太陽電池モジュール及びその製造方法
JP5089456B2 (ja) 圧着装置及び太陽電池モジュールの製造方法
WO2024108996A1 (fr) Ruban de soudage à basse température segmenté, chaîne de cellules ibc sans barre omnibus, et ensemble de cellules et procédé d'emballage associé
WO2015008646A1 (fr) Ruban adhésif conducteur, procédé de connexion d'un ruban adhésif conducteur, module de cellules solaires et procédé de production correspondant
WO2010150735A1 (fr) Feuille de câblage, pile solaire dotée de la feuille de câblage attachée, rouleau de feuille de câblage, module de pile solaire et procédé de production de feuille de câblage
US9741892B2 (en) Solar cell module production method, and solar cell module adhesive application system
WO2023236408A1 (fr) Matériau électroconducteur, module photovoltaïque et procédé de préparation d'un matériau électroconducteur
WO2024016805A1 (fr) Ensemble à bardeaux photovoltaïques et son procédé de préparation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16874496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 12/02/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16874496

Country of ref document: EP

Kind code of ref document: A1