WO2017101206A1 - Coa型阵列基板的制备方法 - Google Patents

Coa型阵列基板的制备方法 Download PDF

Info

Publication number
WO2017101206A1
WO2017101206A1 PCT/CN2016/072785 CN2016072785W WO2017101206A1 WO 2017101206 A1 WO2017101206 A1 WO 2017101206A1 CN 2016072785 W CN2016072785 W CN 2016072785W WO 2017101206 A1 WO2017101206 A1 WO 2017101206A1
Authority
WO
WIPO (PCT)
Prior art keywords
green
red
tft substrate
electrode
sub
Prior art date
Application number
PCT/CN2016/072785
Other languages
English (en)
French (fr)
Inventor
邓炜佳
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/023,692 priority Critical patent/US9904128B2/en
Publication of WO2017101206A1 publication Critical patent/WO2017101206A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136222Colour filters incorporated in the active matrix substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136231Active matrix addressed cells for reducing the number of lithographic steps
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a method for preparing a COA type array substrate.
  • Quantum Dots are usually spherical or spheroidal semiconductor nanoparticles composed of II-VI or III-V elements, and the particle size is generally between several nanometers and several tens of nanometers. Since the particle size of the quantum dot is smaller or closer to the exciton Boolean radius of the corresponding bulk material, a quantum confinement effect is generated, and the energy level structure changes from the quasi-continuous structure of the bulk material to the discrete structure of the quantum dot material, resulting in quantum dot display. The performance of special stimulated radiation.
  • the band gap of the energy level increases, and the energy required for the corresponding quantum dot to be stimulated and the energy released by the quantum dot to return to the ground state are correspondingly increased, which is manifested by the excitation of the quantum dot.
  • the luminescence spectrum can cover the entire visible region. For example, the size of cadmium selenide (CdSe) is reduced from 6.6 nm to 2.0 nm, and its emission wavelength is "blue shifted" from the red light region 635 nm to 460 nm in the blue light region.
  • CdSe cadmium selenide
  • the quantum dot material has the advantages of concentrated luminescence spectrum, high color purity, and easy adjustment of the luminescent color by the size, structure or composition of the quantum dot material, and is applied to the display device to effectively improve the color gamut of the display device. And color reproduction capabilities.
  • TFT-LCD Thin Film Transistor Liquid Crystal Display
  • the use of quantum dots instead of traditional color photoresists can greatly increase the color gamut and transmittance of TFT-LCDs, resulting in better display.
  • quantum dot composite resin to make photoresist, and then used to fabricate quantum dot color film, has the following problems:
  • COA Color Filter on Array
  • the display panel of the COA structure does not have a color film substrate and array
  • the problem of the alignment of the substrate can reduce the difficulty of the process of the display in the preparation process of the display panel, and avoid the error in the case of the box. Therefore, the black matrix can be designed as a narrow line width and the aperture ratio is improved.
  • 3,4-substituted polythiophenes such as PEDOT (poly 3,4-ethylenedioxythiophene) and PProDOT (poly 3,4-propene dioxythiophene) are stable and transparent in a class of high conductivity and oxidation states.
  • Conductive polymer material Graphene and PEDOT are mixed, and the graphene nanosheet with high conductivity and mechanical properties can effectively improve the conductivity, weather resistance and hardness of the PEDOT transparent conductive film, and the graphene nanosheet solution can be uniformly mixed with the PEDOT solution.
  • Film formation by ordinary solution coating method has practical industrial application prospects.
  • Graphene/PEDOT transparent conductive film has a wide range of raw materials, simple fabrication and excellent performance. It can effectively replace the ITO which is gradually lacking in indium source, and can reduce the use of PVD and reduce the production cost. It also has a huge market and application prospects in flexible devices. .
  • An object of the present invention is to provide a method for preparing a COA type array substrate, which forms a quantum dot color filter film including a red, green, and blue filter layer on a TFT substrate by an electrochemical deposition method, and an existing quantum Compared with the preparation method of the point color filter film, the quantum dot usage is saved, the cost is low, and the environment is protected.
  • the present invention provides a method for preparing a COA type array substrate, comprising the following steps:
  • Step 1 providing a TFT substrate, the TFT substrate comprising a base substrate, a TFT layer disposed on the base substrate, and a pixel electrode layer disposed on the TFT layer, wherein the pixel electrode layer includes a number of intervals a red sub-pixel electrode, a plurality of green sub-pixel electrodes, and a plurality of blue sub-pixel electrodes;
  • the material of the pixel electrode layer is PEDOT, PProDOT, PEDOT derivative or PProDOT derivative doped with or without graphene;
  • Step 2 providing a counter electrode, a reference electrode, a first electrolyte, a second electrolyte, and a third electrolyte;
  • the counter electrode includes an insulating substrate, and a plurality of counter electrode units disposed on the insulating substrate, The plurality of counter electrode units are respectively disposed corresponding to the plurality of red, green, and blue sub-pixel electrodes on the TFT substrate;
  • the first electrolyte solution is an organic electrolyte solution containing a red quantum dot modified by a modifier
  • the second electrolyte is an organic electrolyte solution containing a green quantum dot modified with a modifier, the third electrolyte being an organic electrolyte solution containing scattering particles modified by a modifier;
  • the reference electrode is used before use Ferrocene is calibrated;
  • the chemical structure of the modifier is:
  • R1, R2, and R3 are a hydrocarbon group of 1 to 20 carbon atoms
  • Step 3 The counter electrode and the reference electrode are immersed in the first electrolyte together with the TFT substrate, and the TFT substrate, the counter electrode and the reference electrode are connected to the control circuit by using the wires, and all the red sub-pixels on the TFT substrate are connected.
  • a positive voltage is applied to the electrode, and after electrification, under the oxidation of the positive electric field, the modifier on the red quantum dot in the first electrolyte near the red sub-pixel electrode on the TFT substrate is cross-linked with the red sub-pixel electrode.
  • the modifiers also cross-link with each other, and the red quantum dots are deposited on the red sub-pixel electrodes, thereby forming several red filter layers on the plurality of red sub-pixel electrodes respectively; controlling the electrochemical deposition time, After the thickness of the red filter layer reaches a certain value, the power is turned off, and the TFT substrate, the counter electrode, and the reference electrode are taken out, and the organic solvent is used for cleaning;
  • Step 4 immersing the counter electrode and the reference electrode together with the TFT substrate into the second electrolyte, and connecting the TFT substrate, the counter electrode and the reference electrode to the control circuit using the wires, and all the green sub-pixels on the TFT substrate A positive voltage is applied to the electrode, and after electrification, under the oxidation of the positive electric field, the modifier on the green quantum dot in the second electrolyte near the green sub-pixel electrode on the TFT substrate is cross-linked with the green sub-pixel electrode.
  • the modifiers also cross-link with each other, and the green quantum dots are deposited on the green sub-pixel electrodes, thereby forming several green filter layers on the plurality of green sub-pixel electrodes respectively; controlling the electrochemical deposition time, After the thickness of the green filter layer reaches a certain value, the power is turned off, and the TFT substrate, the counter electrode, and the reference electrode are taken out, and the organic solvent is used for cleaning;
  • Step 5 immersing the counter electrode and the reference electrode together with the TFT substrate into the third electrolyte, and connecting the TFT substrate, the counter electrode and the reference electrode to the control circuit using the wires, and all the blue sub-pixels on the TFT substrate Applying a positive voltage to the pixel electrode, after energization, under the oxidation of the positive electric field, the modifier on the scattering particles in the third electrolyte near the blue sub-pixel electrode on the TFT substrate intersects with the blue sub-pixel electrode Coupling reaction, at the same time, the modifiers also cross-link with each other to drive the scattering particles to deposit on the blue sub-pixel electrodes, thereby forming several blue filter layers on the plurality of blue sub-pixel electrodes respectively; Chemical deposition time, to the blue filter layer After the thickness reaches a certain value, the power is turned off, and the TFT substrate, the counter electrode, and the reference electrode are taken out, and the organic solvent is used for cleaning;
  • the step 3, the step 4, and the step 5 may be performed in any order; after the step 3-5, a plurality of red filter layers, a plurality of green filter layers, and A plurality of blue filter color quantum dot color filter films are used to produce a COA type array substrate.
  • the material of the pixel electrode layer is PEDOT doped with graphene
  • the red quantum dots, the green quantum dots, and the scattering particles have a particle diameter of 2 nm to 10 nm; the red quantum dots are ZnS-coated InP quantum dots; and the green quantum dots are ZnS-coated InAs quantum dots;
  • the scattering particles are white, blue, or transparent particles.
  • the positive potential applied to the red/green/blue sub-pixel electrode on the TFT substrate is a constant voltage stable potential of 0.7 V to 2 V with respect to the reference electrode, and the application time is long. It is from 0.1s to 100min.
  • the positive potential applied to the red/green/blue sub-pixel electrode on the TFT substrate is a pulse potential with a maximum voltage of 0.7 V to 2 V, and the application time is 0.1 s. 100min.
  • the positive potential applied to the red/green/blue sub-pixel electrode on the TFT substrate is a peak of 1.1 V, a peak duration of 0.1 s, and a valley of 0.4 V.
  • a square wave pulse with a trough duration of 1 s is applied cyclically for 15 cycles.
  • the first, second, and third electrolytes are prepared by first modifying red quantum dots, green quantum dots, and dispersive particles with pyridine, and respectively inputting them into an organic electrolyte solution in an amount of 1 ⁇ M to 10 mM, and then A modifier of 1 ⁇ M to 10 mM was added to the organic electrolyte solution, and after stirring for 10 minutes to 12 hours, red quantum dots, green quantum dots, and scattered particles modified by the modifier were respectively obtained.
  • the organic electrolyte solution is an ionic liquid or an organic solvent containing an organic salt;
  • the reference electrode is an Ag/Ag+ reference electrode.
  • the organic electrolyte solution is a tetrahydrofuran/acetonitrile solution containing 0.01 M silver nitrate and 0.1 M tetrabutylammonium hexafluorophosphate, wherein the volume ratio of tetrahydrofuran to acetonitrile is 2:1; the internal liquid of the reference electrode is 0.15 M tetrabutylammonium hexafluorophosphate and 0.001 M silver nitrate in tetrahydrofuran/acetonitrile solution, wherein the volume ratio of tetrahydrofuran to acetonitrile is 2:1.
  • the organic solvent for cleaning the TFT substrate, the counter electrode, and the reference electrode is acetonitrile.
  • the invention also provides a preparation method of a COA type array substrate, comprising the following steps:
  • Step 1 providing a TFT substrate, the TFT substrate comprising a base substrate, a TFT layer disposed on the base substrate, and a pixel electrode layer disposed on the TFT layer, wherein the pixel electrode layer includes a number of intervals a red sub-pixel electrode, a plurality of green sub-pixel electrodes, and a plurality of blue sub-pixel electrodes;
  • the material of the pixel electrode layer is PEDOT, PProDOT, PEDOT derivative or PProDOT derivative doped with or without graphene;
  • Step 2 providing a counter electrode, a reference electrode, a first electrolyte, a second electrolyte, and a third electrolyte;
  • the counter electrode includes an insulating substrate, and a plurality of counter electrode units disposed on the insulating substrate, The plurality of counter electrode units are respectively disposed corresponding to the plurality of red, green, and blue sub-pixel electrodes on the TFT substrate;
  • the first electrolyte solution is an organic electrolyte solution containing a red quantum dot modified by a modifier
  • the second electrolyte is an organic electrolyte solution containing a green quantum dot modified with a modifier, the third electrolyte being an organic electrolyte solution containing scattering particles modified by a modifier;
  • the reference electrode is used before use Ferrocene is calibrated;
  • the chemical structure of the modifier is:
  • R1, R2, and R3 are a hydrocarbon group of 1 to 20 carbon atoms
  • Step 3 The counter electrode and the reference electrode are immersed in the first electrolyte together with the TFT substrate, and the TFT substrate, the counter electrode and the reference electrode are connected to the control circuit by using the wires, and all the red sub-pixels on the TFT substrate are connected.
  • a positive voltage is applied to the electrode, and after electrification, under the oxidation of a positive electric field,
  • the modifying agent on the red quantum dot in the first electrolyte near the red sub-pixel electrode on the TFT substrate cross-links with the red sub-pixel electrode, and the modifier also cross-links with each other to drive red
  • the quantum dots are deposited on the red sub-pixel electrodes to form a plurality of red filter layers on the plurality of red sub-pixel electrodes respectively; controlling the electrochemical deposition time, and after the thickness of the red filter layer reaches a certain value, the power is turned off. Removing the TFT substrate, the counter electrode, and the reference electrode, and cleaning with an organic solvent;
  • Step 4 immersing the counter electrode and the reference electrode together with the TFT substrate into the second electrolyte, and connecting the TFT substrate, the counter electrode and the reference electrode to the control circuit using the wires, and all the green sub-pixels on the TFT substrate A positive voltage is applied to the electrode, and after electrification, under the oxidation of the positive electric field, the modifier on the green quantum dot in the second electrolyte near the green sub-pixel electrode on the TFT substrate is cross-linked with the green sub-pixel electrode.
  • the modifiers also cross-link with each other, and the green quantum dots are deposited on the green sub-pixel electrodes, thereby forming several green filter layers on the plurality of green sub-pixel electrodes respectively; controlling the electrochemical deposition time, After the thickness of the green filter layer reaches a certain value, the power is turned off, and the TFT substrate, the counter electrode, and the reference electrode are taken out, and the organic solvent is used for cleaning;
  • Step 5 immersing the counter electrode and the reference electrode together with the TFT substrate into the third electrolyte, and connecting the TFT substrate, the counter electrode and the reference electrode to the control circuit using the wires, and all the blue sub-pixels on the TFT substrate
  • the chemical deposition time after the thickness of the blue filter layer reaches a certain value, the power is turned off, and the TFT substrate, the counter electrode, and the reference electrode are taken out, and the organic solvent is used for cleaning;
  • the step 3, the step 4, and the step 5 may be performed in any order; after the step 3-5, a plurality of red filter layers, a plurality of green filter layers, and a plurality of blue filter color quantum dot color filter films to obtain a COA type array substrate;
  • the material of the pixel electrode layer is PEDOT doped with graphene; the chemical structural formula of the modifier is Wherein R1 is CH 3, R2 is CH 2, R3 is
  • the red quantum dots, the green quantum dots, and the scattering particles have a particle diameter of 2 nm to 10 nm; the red quantum dots are ZnS-coated InP quantum dots; and the green quantum dots are ZnS-coated InAs quantum dots.
  • the scattering particles are white, blue, or transparent particles;
  • the first, second and third electrolytes are prepared by first modifying the red quantum dots, the green quantum dots, and the dispersive particles with pyridine, and respectively inputting them into the organic electrolyte solution in an amount of from 1 ⁇ M to 10 mM. Then, 1 ⁇ M to 10 mM of the modifier is added, and after stirring for 10 minutes to 12 hours, red quantum dots, green quantum dots, and scattered particles modified by the modifier are respectively obtained;
  • the organic electrolyte solution is an ionic liquid or an organic solvent containing an organic salt
  • the reference electrode is an Ag/Ag+ reference electrode
  • a method for preparing a COA type array substrate of the present invention using PEDOT, PProDOT, PEDOT derivatives, or PProDOT derivatives doped with or without graphene instead of conventional ITO as a conductive electrode of a pixel electrode
  • Materials using a carboxyl group-containing ProDOT derivative or an EDOT derivative to modify quantum dots, using a property capable of polymerization under the action of an electric field, and a pixel electrode pattern on a TFT substrate, and forming on a TFT substrate by electrochemical deposition
  • the quantum dot color filter film including the red filter layer, the green filter layer, and the blue filter layer, the quantum dots are dispersed in the electrolyte before the film formation, and the quantum dot concentration of the electrolyte is reduced before and after the film formation.
  • the electrolyte can still be used after supplementing the quantum dots, so zero waste of quantum dots can be realized, and compared with the existing preparation method of the color filter film, the high-temperature process is not needed, and the quantum dot utilization is effectively improved. Rate, while saving two to three lithography processes, thereby reducing costs and protecting the environment; and the resulting quantum dot color film is connected to the electrode layer by chemical bonds It has a high connection strength and avoids the occurrence of defects such as peeling due to insufficient connection strength between the photoresist and the substrate.
  • FIG. 1 is a schematic flow chart of a method for preparing a COA type array substrate of the present invention
  • 2-3 is a schematic view showing the first step of the method for preparing a COA type array substrate of the present invention
  • FIG. 4-5 is a schematic view showing the step 3 of the method for preparing a COA type array substrate of the present invention
  • FIG. 6-7 are schematic views showing the step 4 of the method for preparing a COA type array substrate of the present invention.
  • FIGS. 8-9 are schematic diagrams showing the fifth step of the method for preparing a COA type array substrate of the present invention.
  • Fig. 10 is a schematic view showing a COA type array substrate produced by the present invention for color display.
  • the invention is based on the following principles:
  • ProDOT and EDOT are monomers of two conductive polymers, PProDOT and PEDOT, respectively. They can crosslink with PProDOT, PEDOT, PEDOT derivatives or PProDOT derivatives under the oxidation of positive electric field.
  • the chemical structure of PEDOT for The chemical structure of PProDOT is at the same time, ProDOT and EDOT can also crosslink under the same conditions.
  • the carboxyl group can coordinate with the quantum dot, and the EDOT derivative or ProDOT derivative containing a carboxyl group can be used to modify the quantum dot, and can also be cross-linked with PProDOT, PEDOT, PEDOT derivative or PProDOT derivative. .
  • PProDOT, PEDOT, PEDOT derivative or PProDOT derivative is used as an electrode (hereinafter referred to as PEDOT-based electrode) in a solution containing EDOT-containing or ProDOT-modified carboxyl group-modified quantum dots, and a positive voltage is applied to the electrode.
  • the quantum dots are electrodeposited on the PEDOT-type electrode; in the TFT-LCD, the TFT array substrate is covered with pixel electrodes, and each pixel electrode corresponds to one sub-pixel, and the voltage of the gate and the voltage of the source in the corresponding TFT are controlled.
  • the voltage and current of the pixel electrode corresponding to each sub-pixel can be precisely controlled; therefore, the pixel electrode pattern of the existing TFT array substrate itself can be used to form a corresponding pixel electrode corresponding to each sub-pixel by electrochemical deposition.
  • the color of the monochromatic quantum dot film forms a quantum dot color filter film.
  • the present invention provides a method for preparing a COA type array substrate, comprising the following steps:
  • a TFT substrate 10 is provided.
  • the TFT substrate 10 includes a base substrate 11, a TFT layer 21 disposed on the base substrate 11, and a pixel electrode layer 22 disposed on the TFT layer 21.
  • the pixel electrode layer 22 includes a plurality of red sub-pixel electrodes 221, a plurality of green sub-pixel electrodes 222, and a plurality of blue sub-pixel electrodes 223;
  • the material of the pixel electrode layer 22 is PEDOT, PProDOT, PEDOT derivative, or PProDOT derivative doped with or without graphene; preferably, the material of the pixel electrode layer 22 is doped. PEDOT with graphene;
  • a black matrix 23 is formed in the spacer region of the plurality of red, green, and blue sub-pixel electrodes 221, 222, and 223 on the TFT layer 21 to pass through the sub-pixel electrode gaps on the TFT substrate 10.
  • the black matrix 23 is pre-formed to define the extent of electrodeposition in subsequent steps, and edge irregularities that may occur with electrodeposition have been addressed.
  • the TFT layer 21 includes a plurality of TFTs respectively corresponding to the plurality of red, green, and blue sub-pixel electrodes 221, 222, and 223.
  • Step 2 as shown in FIG. 4, FIG. 6, and FIG. 8, providing a counter electrode 50, a reference electrode 70, a first electrolyte solution 61, a second electrolyte solution 62, and a third electrolyte solution 63; the counter electrode 50
  • the insulating substrate 51 includes a plurality of counter electrode units 52 disposed on the insulating substrate 51, and the plurality of counter electrode units 52 and the plurality of red, green, and blue sub-pixel electrodes 221 on the TFT substrate 10, respectively.
  • the first electrolyte 61 is an organic electrolyte solution containing a red quantum dot modified by a modifier
  • the second electrolyte 62 is an organic electrolyte containing a green quantum dot modified by a modifier.
  • the third electrolyte 63 is an organic electrolyte solution containing scattering particles modified with a modifier
  • the reference electrode is pre-calibrated with ferrocene before use;
  • the chemical structure of the modifier is:
  • R1, R2, and R3 are a hydrocarbon group of 1 to 20 carbon atoms; preferably, the chemical structural formula of the modifier is
  • R1 is CH 3
  • R2 is CH 2
  • R3 is
  • the material of the counter electrode unit 52 may be a conductive material insoluble in an organic solvent, including but not limited to indium tin oxide (ITO), aluminum-doped zinc oxide (AZO), nickel (Ni), stainless steel, silver, gold. Or platinum; preferably, the material of the electrode unit 52 is gold or platinum.
  • ITO indium tin oxide
  • AZO aluminum-doped zinc oxide
  • Ni nickel
  • stainless steel silver, gold.
  • silver gold
  • platinum platinum
  • the material of the electrode unit 52 is gold or platinum.
  • the pair of electrode units 52 and the red, green, and blue sub-pixel electrodes 221, 222, and 223 have the same size and shape;
  • the red quantum dot is a quantum dot capable of emitting red fluorescence, preferably an ZnS-coated InP quantum dot
  • the green quantum dot is a quantum dot capable of emitting green fluorescence, preferably, a coated ZnS
  • the InAs quantum dots are white, blue, or transparent particles.
  • the scattering particles are resin particles.
  • the red quantum dots, the green quantum dots, and the scattering particles have a particle diameter of 2 nm to 10 nm.
  • the first, second, and third electrolytes 61, 62, and 63 are prepared by first modifying red quantum dots, green quantum dots, and dispersive particles with pyridine, and respectively, in an amount of 1 ⁇ M to 10 mM.
  • the organic electrolyte solution is put into the organic electrolyte solution, and then a modifier of 1 ⁇ M to 10 mM is added to the organic electrolyte solution, and after stirring for 10 minutes to 12 hours, red quantum dots, green quantum dots, and scattered particles modified by the modifier are respectively obtained.
  • the amount of the modifier added is calculated according to the surface modification density of the quantum dot/scatter particles of 10 -10 mol/cm 2 , for example, for quantum dots/dispersed particles having a particle diameter of 5 nm, the amount of the modifier added is The molar amount of the quantum dot/scattering particles was added 50 times, and the modified reaction time was 30 min.
  • the concentration of the red quantum dots, the green quantum dots, and the discolored particles in the first, second, and third electrolytes 61, 62, and 63 is 1 ⁇ M to 10 mM, preferably 10 ⁇ M.
  • the organic electrolyte solution is an ionic liquid or an organic solvent containing an organic salt
  • the reference electrode is an Ag/Ag+ reference electrode
  • the organic electrolyte solution contains 0.01 M silver nitrate and 0.1 M.
  • a tetrahydrofuran/acetonitrile solution of tetrabutylammonium hexafluorophosphate wherein the volume ratio of tetrahydrofuran to acetonitrile is 2:1
  • the inner liquid of the reference electrode 70 is 0.15 M tetrabutylammonium hexafluorophosphate and 0.001 M nitric acid.
  • a silver tetrahydrofuran/acetonitrile solution in which the volume ratio of tetrahydrofuran to acetonitrile is 2:1.
  • Step 3 as shown in FIG. 4-5, the counter electrode 50 and the reference electrode 70 are immersed in the first electrolyte 61 together with the TFT substrate 10, and the TFT substrate 10, the counter electrode 70 and the reference electrode are used by using a wire.
  • 70 is connected to the control circuit to apply a positive voltage to all of the red sub-pixel electrodes 221 on the TFT substrate 10, and after energization, the first electrolysis near the red sub-pixel electrode 221 on the TFT substrate 10 under the action of a positive electric field oxidation
  • the modifier on the red quantum dot in the liquid 61 cross-links with the red sub-pixel electrode 221, and the modifier also cross-links with each other, causing the red quantum dots to be deposited on the red sub-pixel electrode 221, thereby respectively
  • a plurality of red filter layers 31 are formed on the plurality of red sub-pixel electrodes 221; the electrochemical deposition time is controlled, and after the thickness of the red filter layer 31 reaches a certain value, the power is turned off, and the
  • Step 4 as shown in FIG. 6-7, the counter electrode 50 and the reference electrode 70 are immersed in the second electrolyte 62 together with the TFT substrate 10, and the TFT substrate 10, the counter electrode 70 and the reference electrode are used by using the wires.
  • 70 is connected to the control circuit to apply a positive voltage to all of the green sub-pixel electrodes 222 on the TFT substrate 10, and after energization, the second electrolysis near the green sub-pixel electrode 222 on the TFT substrate 10 under the action of a positive electric field oxidation
  • the modifying agent on the green quantum dot in the liquid 62 cross-links with the green sub-pixel electrode 222, and the modifying agent also cross-links with each other, and the green quantum dots are deposited on the green sub-pixel electrode 222, thereby respectively
  • a plurality of green filter layers 32 are formed on the plurality of green sub-pixel electrodes 222.
  • the electrochemical deposition time is controlled. After the thickness of the green filter layer 32 reaches a certain value, the power is
  • Step 5 as shown in FIG. 8-9, the counter electrode 50 and the reference electrode 70 are immersed together with the TFT substrate 10 into the third electrolyte 63, and the TFT substrate 10, the counter electrode 50 and the reference electrode are used by using the wires. 70 is connected to the control circuit to apply all of the blue sub-pixel electrodes 223 on the TFT substrate 10.
  • the modifier on the scattering particles in the third electrolyte 63 in the vicinity of the blue sub-pixel electrode 223 on the TFT substrate 10 and the blue sub-pixel electrode 223 A cross-linking reaction occurs, and at the same time, the modifiers also cross-link with each other to drive the scattering particles onto the blue sub-pixel electrode 223, thereby forming a plurality of blue filters on the plurality of blue sub-pixel electrodes 223, respectively.
  • the layer 33 is controlled to control the electrochemical deposition time. After the thickness of the blue filter layer 33 reaches a certain value, the power is turned off, and the TFT substrate 10, the counter electrode 50, and the reference electrode 70 are taken out and washed with an organic solvent;
  • the step 3, the step 4, and the step 5 may be performed in any order; after the step 3-5, a plurality of red filter layers 31 and a plurality of green filter layers are obtained on the pixel electrode layer 22. 32.
  • the quantum dot color filter film 30 of the plurality of blue filter layers 33 is used to prepare a COA type array substrate.
  • the positive potential applied to the red/green/blue sub-pixel electrode 221/222/223 on the TFT substrate 10 may be 0.7 relative to the reference electrode 70.
  • the constant voltage stable potential of V ⁇ 2V may also be a pulse potential of a maximum voltage of 0.7V ⁇ 2V, and the application time is 0.1s-100min; preferably, the film surface of the obtained color filter film 30 is relatively flat and the pixels are kept.
  • the electrical properties of the material of the electrode layer 22 were as follows: a peak of 1.1 V, a time of 0.1 s, a valley of 0.4 V, and a square wave pulse of 1 s (the purpose is to wait for a state balance in the solution) to red on the TFT substrate 10.
  • the /green/blue sub-pixel electrode 221/222/223 applies a positive potential, and the number of applications is 15 times.
  • the first, second, and third electrolytes 61, 62, and 63 further include a free modifier, wherein the amount of the free modifier added is 0 to 100 mM, preferably, 20 ⁇ M.
  • the organic solvent for cleaning the TFT substrate 10, the counter electrode 50, and the reference electrode 70 is an organic solvent having high polarity, preferably acetonitrile.
  • the red quantum dots in the red filter layer 31 emit red light and red when excited by the blue backlight.
  • the green quantum dots in the green light filter layer 32 emit green light and emit green under the excitation of the blue backlight.
  • the blue filter layer 33 does not emit light, and the blue backlight passes through the blue filter layer 33. It is blue, which enables color display.
  • the method for preparing a COA type array substrate of the present invention utilizes a pixel electrode pattern on a TFT substrate and a property in which the solubility of chitosan changes with a change in pH value, using an electrochemical deposition method on the TFT substrate.
  • Forming a quantum dot color filter film including a red filter layer, a green filter layer, and a blue filter layer the quantum dots are dispersed in the electrolyte before film formation, and the concentration of the quantum dots of the electrolyte is reduced before and after film formation.
  • the COA type array substrate of the invention forms a quantum dot color filter film on the pixel electrode layer, and the color display effect is good, which can avoid the alignment problem between the conventional CF substrate and the TFT substrate, and reduce the process of the box during the preparation process of the display panel. Difficulty, increase pixel aperture rate.

Abstract

一种COA型阵列基板的制备方法,使用掺杂有或未掺杂有石墨烯的PEDOT、PProDOT、PEDOT衍生物、或PProDOT衍生物代替传统的ITO作为像素电极的导电材料,使用含有羧基的ProDOT衍生物或EDOT衍生物修饰量子点,利用在电场作用下二者能够发生聚合的性质、以及TFT基板上的像素电极图案,使用电化学沉积的方法在TFT基板上形成包括红色滤光层、绿色滤光层、及蓝色滤光层的量子点彩色滤光膜,可实现量子点的零浪费,节约量子点的使用量,节约铟的使用量,降低生产和研发成本,保护环境;且得到的量子点彩膜通过化学键与电极层连接,具有较高的连接强度,避免了传统工艺中光刻胶与基板连接强度不够导致的剥落等不良的产生。

Description

COA型阵列基板的制备方法 技术领域
本发明涉及显示技术领域,尤其涉及一种COA型阵列基板的制备方法。
背景技术
随着显示技术的不断发展,人们对显示装置的显示质量要求也越来越高。量子点(Quantum Dots,简称QDs)通常是由Ⅱ-Ⅵ、或Ⅲ-Ⅴ族元素组成的球形或类球形的半导体纳米微粒,粒径一般在几纳米至数十纳米之间。由于量子点的粒径尺寸小于或者接近相应体材料的激子波尔半径,会产生量子限域效应,其能级结构从体材料的准连续变为量子点材料的离散结构,导致量子点展示出特殊的受激辐射发光的性能。随着量子点的尺寸减小,其能级带隙增加,相应的量子点受激所需要的能量以及量子点受激后回到基态放出的能量都相应的增大,表现为量子点的激发与荧光光谱的“蓝移”现象,通过控制量子点的尺寸,使其发光光谱可以覆盖整个可见光区域。如硒化镉(CdSe)的尺寸从6.6nm减小至2.0nm,其发光波长从红光区域635nm“蓝移”至蓝光区域的460nm。
利用量子点材料具有发光光谱集中,色纯度高、且发光颜色可通过量子点材料的尺寸、结构或成分进行简易调节等这些优点,将其应用在显示装置中可有效地提升显示装置的色域及色彩还原能力。目前,已有多篇文献和专利报道了量子点在薄膜晶体管液晶显示器(Thin Film Transistor Liquid Crystal Display,TFT-LCD)中的应用,其中使用量子点替代传统TFT-LCD的彩膜材料尤为受到人们的关注。使用量子点代替传统的彩色光阻,可以大幅度的提高TFT-LCD的色域和穿透率,带来更好的显示效果。
然而,使用量子点复合树脂制成光刻胶,进而用于制造量子点彩膜存在以下几个问题:首先,量子点耐热性能较差,而传统的TFT光刻制程需经历200度以上的高温,因而为使量子点光刻胶成为可能,必须要将量子点光刻胶的烘烤温度降低,这使得量子点光刻胶的成分势必与传统的光刻胶材料有很大不同,需要大量的研发成本;其次,量子点价格昂贵且多有毒性,而光刻制程中大量的量子点在显影过程中被洗去,造成浪费和环境污染;再次,使用量子点光刻胶仍需使用两到三次成本高昂的光刻制程。
COA(Color Filter on Array)技术是将彩色层制备在阵列基板上的技术,以形成彩色滤光片。由于COA结构的显示面板不存在彩膜基板与阵列 基板的对位问题,因此可以降低显示面板制备过程中对盒制程的难度,避免了对盒时的误差,因此黑色矩阵可以设计为窄线宽,提高了开口率。
PEDOT(聚3,4-乙撑二氧噻吩)和PProDOT(聚3,4-丙撑二氧噻吩)等3,4取代的聚噻吩,是一类高电导率、氧化态下稳定而透明的导电高分子材料。将石墨烯与PEDOT进行混合,高导电性和力学性能优异的石墨烯纳米片能够有效的提高PEDOT透明导电膜的导电性,耐候性和硬度,另外石墨烯纳米片溶液能够与PEDOT溶液混合均匀,可以采用普通溶液涂布法成膜,具有实际工业应用前景。石墨烯/PEDOT透明导电膜原材料来源广泛,制作简单,性能优异,可以有效的取代铟源逐渐匮乏的ITO,并且可以减少PVD的使用,降低生产成本,在柔性器件方面也有巨大的市场和应用前景。
发明内容
本发明的目的在于提供一种COA型阵列基板的制备方法,通过电化学沉积方法在TFT基板上形成包括红色、绿色、及蓝色滤光层的量子点彩色滤光膜,与现有的量子点彩色滤光膜的制备方法相比,节约量子点使用量,成本低,且保护环境。
为实现上述目的,本发明提供了一种COA型阵列基板的制备方法,包括如下步骤:
步骤1、提供一TFT基板,所述TFT基板包括衬底基板、设于衬底基板上的TFT层、以及设于TFT层上的像素电极层,其中,所述像素电极层包括间隔设置的数个红色子像素电极、数个绿色子像素电极、及数个蓝色子像素电极;
其中,所述像素电极层的材料为掺杂有或未掺杂有石墨烯的PEDOT、PProDOT、PEDOT衍生物、或PProDOT衍生物;
在所述TFT层上位于数个红、绿、蓝子像素电极的间隔区域内形成黑色矩阵;
步骤2、提供对电极、参比电极、第一电解液、第二电解液、及第三电解液;所述对电极包括绝缘基板、及设于所述绝缘基板上的数个对电极单元,所述数个对电极单元分别与所述TFT基板上的数个红、绿、蓝子像素电极相对应设置;所述第一电解液为包含被修饰剂修饰的红色量子点的有机电解质溶液,所述第二电解液为包含被修饰剂修饰的绿色量子点的有机电解质溶液,所述第三电解液为包含被修饰剂修饰的散射颗粒的有机电解质溶液;所述参比电极使用前预先用二茂铁进行校准;
所述修饰剂的化学结构式为:
Figure PCTCN2016072785-appb-000001
其中,R1、R2、R3为1~20个碳原子的烃基;
步骤3、将对电极、参比电极与所述TFT基板一同浸入到第一电解液中,使用导线将TFT基板、对电极与参比电极连接到控制电路,对TFT基板上的所有红色子像素电极施加正电压,通电后,在正电场的氧化作用下,所述TFT基板上的红色子像素电极附近的第一电解液内的红色量子点上的修饰剂与红色子像素电极发生交联反应,同时修饰剂彼此之间也会发生交联反应,带动红色量子点沉积到红色子像素电极上,从而分别在数个红色子像素电极上形成数个红色滤光层;控制电化学沉积时间,待所述红色滤光层的厚度达到一定值后,断电,取出TFT基板、对电极、和参比电极,并使用有机溶剂进行清洗;
步骤4、将对电极、参比电极与所述TFT基板一同浸入到第二电解液中,使用导线将TFT基板、对电极与参比电极连接到控制电路,对TFT基板上的所有绿色子像素电极施加正电压,通电后,在正电场的氧化作用下,所述TFT基板上的绿色子像素电极附近的第二电解液内的绿色量子点上的修饰剂与绿色子像素电极发生交联反应,同时修饰剂彼此之间也会发生交联反应,带动绿色量子点沉积到绿色子像素电极上,从而分别在数个绿色子像素电极上形成数个绿色滤光层;控制电化学沉积时间,待所述绿色滤光层的厚度达到一定值后,断电,取出TFT基板、对电极、和参比电极,并使用有机溶剂进行清洗;
步骤5、将对电极、参比电极与所述TFT基板一同浸入到第三电解液中,使用导线将TFT基板、对电极与参比电极连接到控制电路,对TFT基板上的所有蓝色子像素电极施加正电压,通电后,在正电场的氧化作用下,所述TFT基板上的蓝色子像素电极附近的第三电解液内的散射颗粒上的修饰剂与蓝色子像素电极发生交联反应,同时修饰剂彼此之间也会发生交联反应,带动散射颗粒沉积到蓝色子像素电极上,从而分别在数个蓝色子像素电极上形成数个蓝色滤光层;控制电化学沉积时间,待所述蓝色滤光层 的厚度达到一定值后,断电,取出TFT基板、对电极、和参比电极,并使用有机溶剂进行清洗;
所述步骤3、步骤4、和步骤5可以按任意顺序进行;经过所述步骤3-5后,在所述像素电极层上得到包括数个红色滤光层、数个绿色滤光层、及数个蓝色滤光层的量子点彩色滤光膜,从而制得一COA型阵列基板。
所述像素电极层的材料为掺杂有石墨烯的PEDOT;
所述修饰剂的化学结构式为
Figure PCTCN2016072785-appb-000002
其中R1为CH3,R2为CH2,R3为
所述红色量子点、绿色量子点、及散射颗粒的粒径为2nm~10nm;所述红色量子点为包覆ZnS的InP量子点;所述绿色量子点为包覆ZnS的InAs量子点;所述散射颗粒为白色、蓝色、或透明的颗粒。
所述步骤3-5中,电沉积过程中,对所述TFT基板上的红/绿/蓝子像素电极施加的正电势为相对参比电极为0.7V~2V的恒压稳定电势,施加时长为0.1s~100min。
所述步骤3-5中,电沉积过程中,对所述TFT基板上的红/绿/蓝子像素电极施加的正电势为最高电压为0.7V~2V的脉冲电势,施加时长为0.1s~100min。
所述步骤3-5中,电沉积过程中,对所述TFT基板上的红/绿/蓝子像素电极施加的正电势为波峰为1.1V、波峰时长为时间为0.1s、波谷为0.4V、波谷时长为1s的方波脉冲,循环施加15个周期。
所述第一、二、三电解液的制备方法为:首先将红色量子点、绿色量子点、及散色颗粒用吡啶进行修饰,并按1μM~10mM的量分别投入有机电解质溶液中,然后在有机电解质溶液中加入1μM~10mM的修饰剂,搅拌10min~12h后,分别得到被修饰剂修饰的红色量子点、绿色量子点、及散色颗粒。
所述有机电解质溶液为离子液体、或含有机盐的有机溶剂;所述参比电极为Ag/Ag+参比电极。
所述有机电解质溶液为含0.01M硝酸银和0.1M四丁基六氟磷酸铵的四氢呋喃/乙腈溶液,其中,四氢呋喃与乙腈的体积比为2:1;所述参比电极的内液为含0.15M四丁基六氟磷酸铵和0.001M硝酸银的四氢呋喃/乙腈溶液,其中,四氢呋喃与乙腈的体积比为2:1。
所述步骤3-5中,对所述TFT基板、对电极、和参比电极进行清洗的有机溶剂为乙腈。
本发明还提供一种COA型阵列基板的制备方法,包括如下步骤:
步骤1、提供一TFT基板,所述TFT基板包括衬底基板、设于衬底基板上的TFT层、以及设于TFT层上的像素电极层,其中,所述像素电极层包括间隔设置的数个红色子像素电极、数个绿色子像素电极、及数个蓝色子像素电极;
其中,所述像素电极层的材料为掺杂有或未掺杂有石墨烯的PEDOT、PProDOT、PEDOT衍生物、或PProDOT衍生物;
在所述TFT层上位于数个红、绿、蓝子像素电极的间隔区域内形成黑色矩阵;
步骤2、提供对电极、参比电极、第一电解液、第二电解液、及第三电解液;所述对电极包括绝缘基板、及设于所述绝缘基板上的数个对电极单元,所述数个对电极单元分别与所述TFT基板上的数个红、绿、蓝子像素电极相对应设置;所述第一电解液为包含被修饰剂修饰的红色量子点的有机电解质溶液,所述第二电解液为包含被修饰剂修饰的绿色量子点的有机电解质溶液,所述第三电解液为包含被修饰剂修饰的散射颗粒的有机电解质溶液;所述参比电极使用前预先用二茂铁进行校准;
所述修饰剂的化学结构式为:
Figure PCTCN2016072785-appb-000003
其中,R1、R2、R3为1~20个碳原子的烃基;
步骤3、将对电极、参比电极与所述TFT基板一同浸入到第一电解液中,使用导线将TFT基板、对电极与参比电极连接到控制电路,对TFT基板上的所有红色子像素电极施加正电压,通电后,在正电场的氧化作用下, 所述TFT基板上的红色子像素电极附近的第一电解液内的红色量子点上的修饰剂与红色子像素电极发生交联反应,同时修饰剂彼此之间也会发生交联反应,带动红色量子点沉积到红色子像素电极上,从而分别在数个红色子像素电极上形成数个红色滤光层;控制电化学沉积时间,待所述红色滤光层的厚度达到一定值后,断电,取出TFT基板、对电极、和参比电极,并使用有机溶剂进行清洗;
步骤4、将对电极、参比电极与所述TFT基板一同浸入到第二电解液中,使用导线将TFT基板、对电极与参比电极连接到控制电路,对TFT基板上的所有绿色子像素电极施加正电压,通电后,在正电场的氧化作用下,所述TFT基板上的绿色子像素电极附近的第二电解液内的绿色量子点上的修饰剂与绿色子像素电极发生交联反应,同时修饰剂彼此之间也会发生交联反应,带动绿色量子点沉积到绿色子像素电极上,从而分别在数个绿色子像素电极上形成数个绿色滤光层;控制电化学沉积时间,待所述绿色滤光层的厚度达到一定值后,断电,取出TFT基板、对电极、和参比电极,并使用有机溶剂进行清洗;
步骤5、将对电极、参比电极与所述TFT基板一同浸入到第三电解液中,使用导线将TFT基板、对电极与参比电极连接到控制电路,对TFT基板上的所有蓝色子像素电极施加正电压,通电后,在正电场的氧化作用下,所述TFT基板上的蓝色子像素电极附近的第三电解液内的散射颗粒上的修饰剂与蓝色子像素电极发生交联反应,同时修饰剂彼此之间也会发生交联反应,带动散射颗粒沉积到蓝色子像素电极上,从而分别在数个蓝色子像素电极上形成数个蓝色滤光层;控制电化学沉积时间,待所述蓝色滤光层的厚度达到一定值后,断电,取出TFT基板、对电极、和参比电极,并使用有机溶剂进行清洗;
所述步骤3、步骤4、和步骤5可以按任意顺序进行;经过所述步骤3-5后,在所述像素电极层上得到包括数个红色滤光层、数个绿色滤光层、及数个蓝色滤光层的量子点彩色滤光膜,从而制得一COA型阵列基板;
其中,所述像素电极层的材料为掺杂有石墨烯的PEDOT;所述修饰剂的化学结构式为
Figure PCTCN2016072785-appb-000004
其中R1为CH3,R2为CH2,R3为
其中,所述红色量子点、绿色量子点、及散射颗粒的粒径为2nm~10nm;所述红色量子点为包覆ZnS的InP量子点;所述绿色量子点为包覆ZnS的InAs量子点;所述散射颗粒为白色、蓝色、或透明的颗粒;
其中,所述第一、二、三电解液的制备方法为:首先将红色量子点、绿色量子点、及散色颗粒用吡啶进行修饰,并按1μM~10mM的量分别投入有机电解质溶液中,然后加入1μM~10mM的修饰剂,搅拌10min~12h后,分别得到被修饰剂修饰的红色量子点、绿色量子点、及散色颗粒;
其中,所述有机电解质溶液为离子液体、或含有机盐的有机溶剂;所述参比电极为Ag/Ag+参比电极。
本发明的有益效果:本发明的COA型阵列基板的制备方法,使用掺杂有或未掺杂有石墨烯的PEDOT、PProDOT、PEDOT衍生物、或PProDOT衍生物代替传统的ITO作为像素电极的导电材料,使用含有羧基的ProDOT衍生物或EDOT衍生物修饰量子点,利用在电场作用下二者能够发生聚合的性质、以及TFT基板上的像素电极图案,使用电化学沉积的方法在TFT基板上形成包括红色滤光层、绿色滤光层、及蓝色滤光层的量子点彩色滤光膜,量子点在成膜前分散在电解液中,成膜前后除电解液的量子点浓度降低外无其他性质变化,补充量子点后电解液仍可继续使用,故可实现量子点的零浪费,且与现有的彩色滤光膜的制备方法相比,无需使用高温工序,有效提高了量子点利用率,同时能够节省两到三次光刻工艺,从而降低成本、保护环境;且得到的量子点彩膜通过化学键与电极层连接,具有较高的连接强度,避免了光刻胶与基板连接强度不够导致的剥落等不良的产生。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其他有益效果显而易见。
附图中,
图1为本发明的COA型阵列基板的制备方法的示意流程图;
图2-3为本发明的COA型阵列基板的制备方法的步骤1的示意图;
图4-5为本发明的COA型阵列基板的制备方法的步骤3的示意图;
图6-7为本发明的COA型阵列基板的制备方法的步骤4的示意图;
图8-9为本发明的COA型阵列基板的制备方法的步骤5的示意图;
图10为本发明制得的COA型阵列基板用于彩色显示的示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
本发明基于以下原理实现:
ProDOT、EDOT分别是PProDOT、PEDOT两种导电聚合物的单体,它们在正电场的氧化作用下可以与PProDOT、PEDOT、PEDOT衍生物或PProDOT衍生物等发生交联反应,其中,PEDOT的化学结构式为
Figure PCTCN2016072785-appb-000005
PProDOT的化学结构式为
Figure PCTCN2016072785-appb-000006
同时,ProDOT、EDOT彼此之间也可以在同样条件下发生交联反应。另外,羧基可以与量子点发生配位作用,那么含有羧基的EDOT衍生物或ProDOT衍生物可以用来修饰量子点,并且还可以与PProDOT、PEDOT、PEDOT衍生物或PProDOT衍生物等发生交联反应。因而,将PProDOT、PEDOT、PEDOT衍生物或PProDOT衍生物作为电极(以下简称PEDOT类电极)浸入含有EDOT的或ProDOT的羧基衍生物修饰的量子点的溶液中,并对电极加以正电压,可以将量子点电沉积在PEDOT类电极上;而在TFT-LCD中,TFT阵列基板上布满了像素电极,每个像素电极对应一个子像素,通过控制相应TFT中栅极的电压和源极的电压、电流,可以精确控制每个子像素对应的像素电极的电压、电流;因此,利用现有TFT阵列基板本身的像素电极图案,通过电化学沉积的方法可实现各子像素对应的像素电极上形成对应颜色的单色量子点膜,从而形成量子点彩色滤光膜。
含有羧基的ProDOT衍生物与PEDOT在电场作用下发生交联反应的化学式为:
Figure PCTCN2016072785-appb-000007
含有羧基的ProDOT衍生物在电场作用下发生交联反应的化学式为:
Figure PCTCN2016072785-appb-000008
请参阅图1,本发明提供一种COA型阵列基板的制备方法,包括如下步骤:
步骤1、如图2所示,提供一TFT基板10,所述TFT基板10包括衬底基板11、设于衬底基板11上的TFT层21、以及设于TFT层21上的像素电极层22,其中,所述像素电极层22包括间隔设置的数个红色子像素电极221、数个绿色子像素电极222、及数个蓝色子像素电极223;
其中,所述像素电极层22的材料为为掺杂有或未掺杂有石墨烯的PEDOT、PProDOT、PEDOT衍生物、或PProDOT衍生物;优选的,所述像素电极层22的材料为掺杂有石墨烯的PEDOT;
如图3所示,在所述TFT层21上位于数个红、绿、蓝子像素电极221、222、223的间隔区域内形成黑色矩阵23;以通过在TFT基板10上各子像素电极间隙预先形成黑色矩阵23来限定后续步骤中电沉积的范围,已解决电沉积可能出现的边缘不规则问题。
具体的,所述TFT层21包括分别与数个红、绿、蓝子像素电极221、222、223相对应的数个TFT。
步骤2、如图4、图6、及图8所示,提供对电极50、参比电极70、第一电解液61、第二电解液62、及第三电解液63;所述对电极50包括绝缘基板51、及设于所述绝缘基板51上的数个对电极单元52,所述数个对电极单元52分别与所述TFT基板10上的数个红、绿、蓝子像素电极221、222、223相对应设置;所述第一电解液61为包含被修饰剂修饰的红色量子点的有机电解质溶液,所述第二电解液62为包含被修饰剂修饰的绿色量子点的有机电解质溶液,所述第三电解液63为包含被修饰剂修饰的散射颗粒的有机电解质溶液;所述参比电极使用前预先用二茂铁进行校准;
所述修饰剂的化学结构式为:
Figure PCTCN2016072785-appb-000009
其中,R1、R2、R3为1~20个碳原子的烃基;优选的,所述修饰剂的化学结构式为
Figure PCTCN2016072785-appb-000010
其中,R1为CH3,R2为CH2,R3为
Figure PCTCN2016072785-appb-000011
具体的,所述对电极单元52的材料可以是不溶于有机溶剂的导电材料,包括但不限于氧化铟锡(ITO)、掺铝氧化锌(AZO)、镍(Ni)、不锈钢、银、金或铂;优选的,所述电极单元52的材料为金或铂。
优选的,所述对电极单元52与所述红、绿、蓝子像素电极221、222、223的大小和形状相同;
具体的,所述红色量子点为能发射红色荧光的量子点,优选的,为包覆ZnS的InP量子点;所述绿色量子点为能发射绿色荧光的量子点,优选的,为包覆ZnS的InAs量子点;所述散射颗粒为白色、蓝色、或透明的颗粒,优选的,所述散射颗粒为树脂颗粒。
具体的,所述红色量子点、绿色量子点、及散射颗粒的粒径为2nm~10nm。
具体的,所述第一、二、三电解液61、62、63的制备方法为:首先将红色量子点、绿色量子点、及散色颗粒用吡啶进行修饰,并按1μM~10mM的量分别投入有机电解质溶液中,然后在有机电解质溶液中加入1μM~10mM的修饰剂,搅拌10min~12h后,分别得到被修饰剂修饰的红色量子点、绿色量子点、及散色颗粒。优选的,加入修饰剂的量按照量子点/散 色颗粒的表面修饰密度为10-10mol/cm2计算,例如,对于粒径为5nm的量子点/散色颗粒,加入修饰剂的量为加入量子点/散色颗粒的摩尔量的50倍,修饰的反应时间为30min。
优选的,所述第一、二、三电解液61、62、63中红色量子点、绿色量子点、及散色颗粒的浓度为1μM~10mM,优选的为10μM。
具体的,所述有机电解质溶液为离子液体、或含有机盐的有机溶剂;所述参比电极为Ag/Ag+参比电极;优选的,所述有机电解质溶液为含0.01M硝酸银和0.1M四丁基六氟磷酸铵的四氢呋喃/乙腈溶液,其中,四氢呋喃与乙腈的体积比为2:1;所述参比电极70的内液为含0.15M四丁基六氟磷酸铵和0.001M硝酸银的四氢呋喃/乙腈溶液,其中,四氢呋喃与乙腈的体积比为2:1。
步骤3、如图4-5所示,将对电极50、参比电极70与所述TFT基板10一同浸入到第一电解液61中,使用导线将TFT基板10、对电极70与参比电极70连接到控制电路,对TFT基板10上的所有红色子像素电极221施加正电压,通电后,在正电场的氧化作用下,所述TFT基板10上的红色子像素电极221附近的第一电解液61内的红色量子点上的修饰剂与红色子像素电极221发生交联反应,同时修饰剂彼此之间也会发生交联反应,带动红色量子点沉积到红色子像素电极221上,从而分别在数个红色子像素电极221上形成数个红色滤光层31;控制电化学沉积时间,待所述红色滤光层31的厚度达到一定值后,断电,取出TFT基板10、对电极50、和参比电极70,并使用有机溶剂进行清洗;
步骤4、如图6-7所示,将对电极50、参比电极70与所述TFT基板10一同浸入到第二电解液62中,使用导线将TFT基板10、对电极70与参比电极70连接到控制电路,对TFT基板10上的所有绿色子像素电极222施加正电压,通电后,在正电场的氧化作用下,所述TFT基板10上的绿色子像素电极222附近的第二电解液62内的绿色量子点上的修饰剂与绿色子像素电极222发生交联反应,同时修饰剂彼此之间也会发生交联反应,带动绿色量子点沉积到绿色子像素电极222上,从而分别在数个绿色子像素电极222上形成数个绿色滤光层32;控制电化学沉积时间,待所述绿色滤光层32的厚度达到一定值后,断电,取出TFT基板10、对电极50、和参比电极70,并使用有机溶剂进行清洗;
步骤5、如图8-9所示,将对电极50、参比电极70与所述TFT基板10一同浸入到第三电解液63中,使用导线将TFT基板10、对电极50与参比电极70连接到控制电路,对TFT基板10上的所有蓝色子像素电极223施 加正电压,通电后,在正电场的氧化作用下,所述TFT基板10上的蓝色子像素电极223附近的第三电解液63内的散射颗粒上的修饰剂与蓝色子像素电极223发生交联反应,同时修饰剂彼此之间也会发生交联反应,带动散射颗粒沉积到蓝色子像素电极223上,从而分别在数个蓝色子像素电极223上形成数个蓝色滤光层33;控制电化学沉积时间,待所述蓝色滤光层33的厚度达到一定值后,断电,取出TFT基板10、对电极50、和参比电极70,并使用有机溶剂进行清洗;
所述步骤3、步骤4、和步骤5可以按任意顺序进行;经过所述步骤3-5后,在所述像素电极层22上得到包括数个红色滤光层31、数个绿色滤光层32、及数个蓝色滤光层33的量子点彩色滤光膜30,从而制得一COA型阵列基板。
具体的,所述步骤3-5中,电沉积过程中,对所述TFT基板10上的红/绿/蓝子像素电极221/222/223施加的正电势可以为相对参比电极70为0.7V~2V的恒压稳定电势,也可以为最高电压为0.7V~2V的脉冲电势,施加时长为0.1s~100min;优选的,为使得到的彩色滤光膜30膜面较为平整和保持像素电极层22材料的电学性质,使用波峰为1.1V,时间为0.1s,波谷为0.4V,时间为1s的方波脉冲(目的是等待溶液中的状态平衡)对所述TFT基板10上的红/绿/蓝子像素电极221/222/223施加正电势,施加次数为15次。
具体的,为保证彩色滤光膜30的膜厚,所述第一、二、三电解液61、62、63中还包含有游离的修饰剂,其中,游离的修饰剂的添加量为0~100mM,优选的,为20μM。
具体的,所述步骤3-5中,对所述TFT基板10、对电极50、和参比电极70进行清洗的有机溶剂为具有高极性的有机溶剂,优选为乙腈。
如图10所示,所得到的量子点彩色滤光膜30用于彩色显示时,所述红光滤光层31内的红色量子点在蓝光背光的光激发下发出红光而显红色,所述绿光滤光层32内的绿色量子点在蓝光背光的光激发下发出绿光而显绿色,所述蓝色滤光层33不发光,蓝光背光穿过所述蓝色滤光层33而显蓝色,从而实现了彩色显示。
综上所述,本发明的COA型阵列基板的制备方法,利用TFT基板上的像素电极图案、以及壳聚糖的溶解度随pH值变化而改变的性质,使用电化学沉积的方法在TFT基板上形成包括红色滤光层、绿色滤光层、及蓝色滤光层的量子点彩色滤光膜,量子点在成膜前分散在电解液中,成膜前后除电解液的量子点浓度降低外无其他性质变化,补充量子点后电解液仍可继 续使用,故可实现量子点的零浪费,且与现有的量子点彩色滤光膜的制备方法相比,无需使用高温工序,有效提高了量子点利用率,同时能够节省两到三次光刻工艺,从而降低成本、保护环境。本发明的COA型阵列基板,在像素电极层上形成量子点彩色滤光膜,色彩显示效果好,可避免传统的CF基板与TFT基板的对位问题,降低显示面板制备过程中对盒制程的难度,提高像素开口率。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (16)

  1. 一种COA型阵列基板的制备方法,包括如下步骤:
    步骤1、提供一TFT基板,所述TFT基板包括衬底基板、设于衬底基板上的TFT层、以及设于TFT层上的像素电极层,其中,所述像素电极层包括间隔设置的数个红色子像素电极、数个绿色子像素电极、及数个蓝色子像素电极;
    其中,所述像素电极层的材料为掺杂有或未掺杂有石墨烯的PEDOT、PProDOT、PEDOT衍生物、或PProDOT衍生物;
    在所述TFT层上位于数个红、绿、蓝子像素电极的间隔区域内形成黑色矩阵;
    步骤2、提供对电极、参比电极、第一电解液、第二电解液、及第三电解液;所述对电极包括绝缘基板、及设于所述绝缘基板上的数个对电极单元,所述数个对电极单元分别与所述TFT基板上的数个红、绿、蓝子像素电极相对应设置;所述第一电解液为包含被修饰剂修饰的红色量子点的有机电解质溶液,所述第二电解液为包含被修饰剂修饰的绿色量子点的有机电解质溶液,所述第三电解液为包含被修饰剂修饰的散射颗粒的有机电解质溶液;所述参比电极使用前预先用二茂铁进行校准;
    所述修饰剂的化学结构式为:
    Figure PCTCN2016072785-appb-100001
    其中,R1、R2、R3为1~20个碳原子的烃基;
    步骤3、将对电极、参比电极与所述TFT基板一同浸入到第一电解液中,使用导线将TFT基板、对电极与参比电极连接到控制电路,对TFT基板上的所有红色子像素电极施加正电压,通电后,在正电场的氧化作用下,所述TFT基板上的红色子像素电极附近的第一电解液内的红色量子点上的修饰剂与红色子像素电极发生交联反应,同时修饰剂彼此之间也会发生交联反应,带动红色量子点沉积到红色子像素电极上,从而分别在数个红色 子像素电极上形成数个红色滤光层;控制电化学沉积时间,待所述红色滤光层的厚度达到一定值后,断电,取出TFT基板、对电极、和参比电极,并使用有机溶剂进行清洗;
    步骤4、将对电极、参比电极与所述TFT基板一同浸入到第二电解液中,使用导线将TFT基板、对电极与参比电极连接到控制电路,对TFT基板上的所有绿色子像素电极施加正电压,通电后,在正电场的氧化作用下,所述TFT基板上的绿色子像素电极附近的第二电解液内的绿色量子点上的修饰剂与绿色子像素电极发生交联反应,同时修饰剂彼此之间也会发生交联反应,带动绿色量子点沉积到绿色子像素电极上,从而分别在数个绿色子像素电极上形成数个绿色滤光层;控制电化学沉积时间,待所述绿色滤光层的厚度达到一定值后,断电,取出TFT基板、对电极、和参比电极,并使用有机溶剂进行清洗;
    步骤5、将对电极、参比电极与所述TFT基板一同浸入到第三电解液中,使用导线将TFT基板、对电极与参比电极连接到控制电路,对TFT基板上的所有蓝色子像素电极施加正电压,通电后,在正电场的氧化作用下,所述TFT基板上的蓝色子像素电极附近的第三电解液内的散射颗粒上的修饰剂与蓝色子像素电极发生交联反应,同时修饰剂彼此之间也会发生交联反应,带动散射颗粒沉积到蓝色子像素电极上,从而分别在数个蓝色子像素电极上形成数个蓝色滤光层;控制电化学沉积时间,待所述蓝色滤光层的厚度达到一定值后,断电,取出TFT基板、对电极、和参比电极,并使用有机溶剂进行清洗;
    所述步骤3、步骤4、和步骤5可以按任意顺序进行;经过所述步骤3-5后,在所述像素电极层上得到包括数个红色滤光层、数个绿色滤光层、及数个蓝色滤光层的量子点彩色滤光膜,从而制得一COA型阵列基板。
  2. 如权利要求1所述的COA型阵列基板的制备方法,其中,所述像素电极层的材料为掺杂有石墨烯的PEDOT;所述修饰剂的化学结构式为
    Figure PCTCN2016072785-appb-100002
    其中R1为CH3,R2为CH2,R3为
    Figure PCTCN2016072785-appb-100003
  3. 如权利要求1所述的COA型阵列基板的制备方法,其中,所述红色量子点、绿色量子点、及散射颗粒的粒径为2nm~10nm;所述红色量子点为包覆ZnS的InP量子点;所述绿色量子点为包覆ZnS的InAs量子点;所述散射颗粒为白色、蓝色、或透明的颗粒。
  4. 如权利要求1所述的COA型阵列基板的制备方法,其中,所述步骤3-5中,电沉积过程中,对所述TFT基板上的红/绿/蓝子像素电极施加的正电势为相对参比电极为0.7V~2V的恒压稳定电势,施加时长为0.1s~100min。
  5. 如权利要求1所述的COA型阵列基板的制备方法,其中,所述步骤3-5中,电沉积过程中,对所述TFT基板上的红/绿/蓝子像素电极施加的正电势为最高电压为0.7V~2V的脉冲电势,施加时长为0.1s~100min。
  6. 如权利要求5所述的COA型阵列基板的制备方法,其中,所述步骤3-5中,电沉积过程中,对所述TFT基板上的红/绿/蓝子像素电极施加的正电势为波峰为1.1V、波峰时长为时间为0.1s、波谷为0.4V、波谷时长为1s的方波脉冲,循环施加15个周期。
  7. 如权利要求1所述的COA型阵列基板的制备方法,其中,所述第一、二、三电解液的制备方法为:首先将红色量子点、绿色量子点、及散色颗粒用吡啶进行修饰,并按1μM~10mM的量分别投入有机电解质溶液中,然后加入1μM~10mM的修饰剂,搅拌10min~12h后,分别得到被修饰剂修饰的红色量子点、绿色量子点、及散色颗粒。
  8. 如权利要求1所述的COA型阵列基板的制备方法,其中,所述有机电解质溶液为离子液体、或含有机盐的有机溶剂;所述参比电极为Ag/Ag+参比电极。
  9. 如权利要求8所述的COA型阵列基板的制备方法,其中,所述有机电解质溶液为含0.01M硝酸银和0.1M四丁基六氟磷酸铵的四氢呋喃/乙腈溶液,其中,四氢呋喃与乙腈的体积比为2:1;所述参比电极的内液为含0.15M四丁基六氟磷酸铵和0.001M硝酸银的四氢呋喃/乙腈溶液,其中,四氢呋喃与乙腈的体积比为2:1。
  10. 如权利要求1所述的COA型阵列基板的制备方法,其中,所述步骤3-5中,对所述TFT基板、对电极、和参比电极进行清洗的有机溶剂为乙腈。
  11. 一种COA型阵列基板的制备方法,包括如下步骤:
    步骤1、提供一TFT基板,所述TFT基板包括衬底基板、设于衬底基板上的TFT层、以及设于TFT层上的像素电极层,其中,所述像素电极层 包括间隔设置的数个红色子像素电极、数个绿色子像素电极、及数个蓝色子像素电极;
    其中,所述像素电极层的材料为掺杂有或未掺杂有石墨烯的PEDOT、PProDOT、PEDOT衍生物、或PProDOT衍生物;
    在所述TFT层上位于数个红、绿、蓝子像素电极的间隔区域内形成黑色矩阵;
    步骤2、提供对电极、参比电极、第一电解液、第二电解液、及第三电解液;所述对电极包括绝缘基板、及设于所述绝缘基板上的数个对电极单元,所述数个对电极单元分别与所述TFT基板上的数个红、绿、蓝子像素电极相对应设置;所述第一电解液为包含被修饰剂修饰的红色量子点的有机电解质溶液,所述第二电解液为包含被修饰剂修饰的绿色量子点的有机电解质溶液,所述第三电解液为包含被修饰剂修饰的散射颗粒的有机电解质溶液;所述参比电极使用前预先用二茂铁进行校准;
    所述修饰剂的化学结构式为:
    Figure PCTCN2016072785-appb-100004
    其中,R1、R2、R3为1~20个碳原子的烃基;
    步骤3、将对电极、参比电极与所述TFT基板一同浸入到第一电解液中,使用导线将TFT基板、对电极与参比电极连接到控制电路,对TFT基板上的所有红色子像素电极施加正电压,通电后,在正电场的氧化作用下,所述TFT基板上的红色子像素电极附近的第一电解液内的红色量子点上的修饰剂与红色子像素电极发生交联反应,同时修饰剂彼此之间也会发生交联反应,带动红色量子点沉积到红色子像素电极上,从而分别在数个红色子像素电极上形成数个红色滤光层;控制电化学沉积时间,待所述红色滤光层的厚度达到一定值后,断电,取出TFT基板、对电极、和参比电极,并使用有机溶剂进行清洗;
    步骤4、将对电极、参比电极与所述TFT基板一同浸入到第二电解液中,使用导线将TFT基板、对电极与参比电极连接到控制电路,对TFT基板上的所有绿色子像素电极施加正电压,通电后,在正电场的氧化作用下, 所述TFT基板上的绿色子像素电极附近的第二电解液内的绿色量子点上的修饰剂与绿色子像素电极发生交联反应,同时修饰剂彼此之间也会发生交联反应,带动绿色量子点沉积到绿色子像素电极上,从而分别在数个绿色子像素电极上形成数个绿色滤光层;控制电化学沉积时间,待所述绿色滤光层的厚度达到一定值后,断电,取出TFT基板、对电极、和参比电极,并使用有机溶剂进行清洗;
    步骤5、将对电极、参比电极与所述TFT基板一同浸入到第三电解液中,使用导线将TFT基板、对电极与参比电极连接到控制电路,对TFT基板上的所有蓝色子像素电极施加正电压,通电后,在正电场的氧化作用下,所述TFT基板上的蓝色子像素电极附近的第三电解液内的散射颗粒上的修饰剂与蓝色子像素电极发生交联反应,同时修饰剂彼此之间也会发生交联反应,带动散射颗粒沉积到蓝色子像素电极上,从而分别在数个蓝色子像素电极上形成数个蓝色滤光层;控制电化学沉积时间,待所述蓝色滤光层的厚度达到一定值后,断电,取出TFT基板、对电极、和参比电极,并使用有机溶剂进行清洗;
    所述步骤3、步骤4、和步骤5可以按任意顺序进行;经过所述步骤3-5后,在所述像素电极层上得到包括数个红色滤光层、数个绿色滤光层、及数个蓝色滤光层的量子点彩色滤光膜,从而制得一COA型阵列基板;
    其中,所述像素电极层的材料为掺杂有石墨烯的PEDOT;所述修饰剂的化学结构式为
    Figure PCTCN2016072785-appb-100005
    其中R1为CH3,R2为CH2,R3为
    Figure PCTCN2016072785-appb-100006
    其中,所述红色量子点、绿色量子点、及散射颗粒的粒径为2nm~10nm;所述红色量子点为包覆ZnS的InP量子点;所述绿色量子点为包覆ZnS的InAs量子点;所述散射颗粒为白色、蓝色、或透明的颗粒;
    其中,所述第一、二、三电解液的制备方法为:首先将红色量子点、绿色量子点、及散色颗粒用吡啶进行修饰,并按1μM~10mM的量分别投入有机电解质溶液中,然后加入1μM~10mM的修饰剂,搅拌10min~12h 后,分别得到被修饰剂修饰的红色量子点、绿色量子点、及散色颗粒;
    其中,所述有机电解质溶液为离子液体、或含有机盐的有机溶剂;所述参比电极为Ag/Ag+参比电极。
  12. 如权利要求11所述的COA型阵列基板的制备方法,其中,所述步骤3-5中,电沉积过程中,对所述TFT基板上的红/绿/蓝子像素电极施加的正电势为相对参比电极为0.7V~2V的恒压稳定电势,施加时长为0.1s~100min。
  13. 如权利要求11所述的COA型阵列基板的制备方法,其中,所述步骤3-5中,电沉积过程中,对所述TFT基板上的红/绿/蓝子像素电极施加的正电势为最高电压为0.7V~2V的脉冲电势,施加时长为0.1s~100min。
  14. 如权利要求13所述的COA型阵列基板的制备方法,其中,所述步骤3-5中,电沉积过程中,对所述TFT基板上的红/绿/蓝子像素电极施加的正电势为波峰为1.1V、波峰时长为时间为0.1s、波谷为0.4V、波谷时长为1s的方波脉冲,循环施加15个周期。
  15. 如权利要求11所述的COA型阵列基板的制备方法,其中,所述有机电解质溶液为含0.01M硝酸银和0.1M四丁基六氟磷酸铵的四氢呋喃/乙腈溶液,其中,四氢呋喃与乙腈的体积比为2:1;所述参比电极的内液为含0.15M四丁基六氟磷酸铵和0.001M硝酸银的四氢呋喃/乙腈溶液,其中,四氢呋喃与乙腈的体积比为2:1。
  16. 如权利要求11所述的COA型阵列基板的制备方法,其中,所述步骤3-5中,对所述TFT基板、对电极、和参比电极进行清洗的有机溶剂为乙腈。
PCT/CN2016/072785 2015-12-17 2016-01-29 Coa型阵列基板的制备方法 WO2017101206A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/023,692 US9904128B2 (en) 2015-12-17 2016-01-29 Manufacturing method for COA substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510955635.1A CN105388660B (zh) 2015-12-17 2015-12-17 Coa型阵列基板的制备方法
CN201510955635.1 2015-12-17

Publications (1)

Publication Number Publication Date
WO2017101206A1 true WO2017101206A1 (zh) 2017-06-22

Family

ID=55421096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/072785 WO2017101206A1 (zh) 2015-12-17 2016-01-29 Coa型阵列基板的制备方法

Country Status (3)

Country Link
US (1) US9904128B2 (zh)
CN (1) CN105388660B (zh)
WO (1) WO2017101206A1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004065575A2 (en) 2003-01-15 2004-08-05 Research Institute For Genetic And Human Therapy (Right) Dna compositon and uses thereof
CN106328094B (zh) * 2016-11-18 2019-01-08 厦门天马微电子有限公司 一种液晶显示设备的显示控制方法
CN106773287A (zh) * 2016-12-06 2017-05-31 青岛海信电器股份有限公司 一种封装量子点材料显示面板以及包含该面板的背光模组
CN107329314A (zh) * 2017-08-24 2017-11-07 深圳市华星光电半导体显示技术有限公司 彩膜基板及其制作方法、显示面板及显示器
CN107778458A (zh) * 2017-09-29 2018-03-09 安徽建筑大学 聚二溴丙氧基噻吩品红色‑透明电致变色材料及制备方法、组件与应用
CN107739429A (zh) * 2017-09-29 2018-02-27 安徽建筑大学 聚二溴甲基乙撑二氧噻吩蓝色‑透明电致变色材料及制备方法、组件与应用
CN107778459A (zh) * 2017-10-13 2018-03-09 安徽建筑大学 可水溶液喷涂丙撑二氧噻吩聚合物蓝色‑透明电致变色材料及制备方法、组件与应用
CN107652417A (zh) * 2017-10-13 2018-02-02 安徽建筑大学 聚二乙氧甲基丙撑二氧噻吩蓝紫色‑透明电致变色材料及制备方法、组件与应用
CN108615742A (zh) * 2018-07-10 2018-10-02 南方科技大学 一种显示面板制作方法、显示面板及显示装置
TWI827639B (zh) * 2018-08-09 2024-01-01 美商凱特伊夫公司 具有光耦合及轉換層的發光二極體與形成像素之方法
CN110161743B (zh) * 2019-05-17 2021-08-10 京东方科技集团股份有限公司 一种基板及其制备方法、液晶显示面板及液晶显示装置
CN112447916B (zh) * 2019-09-04 2022-04-01 Tcl华星光电技术有限公司 一种量子点薄膜的制备方法
CN112736212A (zh) * 2019-10-28 2021-04-30 Tcl华星光电技术有限公司 一种纳米粒子图案化装置及纳米粒子图案化方法
CN112820190B (zh) * 2019-11-18 2022-07-12 Tcl华星光电技术有限公司 量子点基板制作方法
CN112965287B (zh) * 2020-05-08 2022-11-29 重庆康佳光电技术研究院有限公司 一种彩膜基板的制备方法、显示装置与显示背板
CN112542501A (zh) * 2020-12-04 2021-03-23 Tcl华星光电技术有限公司 量子点光转换片及其制作方法、量子点显示装置
CN112649991A (zh) * 2020-12-21 2021-04-13 深圳扑浪创新科技有限公司 一种量子点彩膜及其制备方法和应用
CN112510076A (zh) * 2020-12-21 2021-03-16 深圳扑浪创新科技有限公司 一种量子点显示装置及其应用
CN112635695B (zh) * 2020-12-21 2023-07-21 深圳扑浪创新科技有限公司 一种量子点发光层及其制备方法和应用
CN112802947A (zh) * 2020-12-21 2021-05-14 深圳扑浪创新科技有限公司 一种量子点显示器件及其制备方法
CN113934045A (zh) * 2021-09-29 2022-01-14 厦门天马微电子有限公司 滤光膜、滤光膜的制备方法、显示面板和显示装置
CN114265230A (zh) * 2021-12-29 2022-04-01 绵阳惠科光电科技有限公司 显示面板及其制作方法和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000138133A (ja) * 1998-10-30 2000-05-16 Nippon Chemicon Corp 固体電解コンデンサとその製造方法
CN102650777A (zh) * 2011-08-25 2012-08-29 京东方科技集团股份有限公司 一种显示器及其制备方法
CN102778779A (zh) * 2012-07-16 2012-11-14 京东方科技集团股份有限公司 Tft-lcd彩膜阵列基板、制作方法及液晶显示装置
CN104375312A (zh) * 2014-11-11 2015-02-25 深圳市华星光电技术有限公司 一种coa阵列基板及液晶显示面板
CN104656325A (zh) * 2015-03-18 2015-05-27 深圳市华星光电技术有限公司 Coa型液晶面板的制作方法及coa型液晶面板
WO2015088900A1 (en) * 2013-12-10 2015-06-18 Dolby Laboratories Licensing Corporation Laser diode driven lcd quantum dot hybrid displays

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1164885A (ja) * 1997-08-21 1999-03-05 Sharp Corp アクティブマトリクス基板
CN1332065C (zh) * 2005-01-24 2007-08-15 武汉大学 量子点纳米二氧化钛复合膜的制备方法
CN101846648A (zh) * 2010-04-20 2010-09-29 上海大学 石墨烯量子点修饰的电化学生物传感器及其制备方法
WO2012050621A1 (en) * 2010-10-15 2012-04-19 Los Alamos National Security, Llc Quantum dot sensitized solar cell
CN102338746A (zh) * 2011-06-20 2012-02-01 苏州大学 一种电化学发光电极的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000138133A (ja) * 1998-10-30 2000-05-16 Nippon Chemicon Corp 固体電解コンデンサとその製造方法
CN102650777A (zh) * 2011-08-25 2012-08-29 京东方科技集团股份有限公司 一种显示器及其制备方法
CN102778779A (zh) * 2012-07-16 2012-11-14 京东方科技集团股份有限公司 Tft-lcd彩膜阵列基板、制作方法及液晶显示装置
WO2015088900A1 (en) * 2013-12-10 2015-06-18 Dolby Laboratories Licensing Corporation Laser diode driven lcd quantum dot hybrid displays
CN104375312A (zh) * 2014-11-11 2015-02-25 深圳市华星光电技术有限公司 一种coa阵列基板及液晶显示面板
CN104656325A (zh) * 2015-03-18 2015-05-27 深圳市华星光电技术有限公司 Coa型液晶面板的制作方法及coa型液晶面板

Also Published As

Publication number Publication date
CN105388660B (zh) 2018-05-01
US9904128B2 (en) 2018-02-27
CN105388660A (zh) 2016-03-09
US20180011364A1 (en) 2018-01-11

Similar Documents

Publication Publication Date Title
WO2017101206A1 (zh) Coa型阵列基板的制备方法
US10281789B2 (en) Method for manufacturing COA array substrate and COA array substrate
Gu et al. Emerging electrochromic materials and devices for future displays
Zhao et al. Preparation of WO3 films with controllable crystallinity for improved near-infrared electrochromic performances
CN107540708B (zh) 电致变色材料以及包含其的透射率可变面板和显示装置
Hong et al. A red-to-gray poly (3-methylthiophene) electrochromic device using a zinc hexacyanoferrate/PEDOT: PSS composite counter electrode
Rai et al. Reversible electrochemical silver deposition over large areas for smart windows and information display
WO2006129429A1 (ja) 表示素子
Yang et al. Asymmetrically Enhanced Coplanar‐Electrode Electroluminescence for Information Encryption and Ultrahighly Stretchable Displays
CN114730116A (zh) 制造柔性电致变色器件的方法
KR20180124405A (ko) 플렉시블 투명전극 및 이의 제조방법
WO2006061980A1 (ja) 表示素子
CN1900746A (zh) 彩色光阻的制造方法
CN110129850B (zh) 一种亚铁氰化铁薄膜的分步沉积制备方法
León-Silva et al. Effect of modified ITO substrate on electrochromic properties of polyaniline films
US11292029B2 (en) Dynamic glass and method of formation
US20200363690A1 (en) Dynamic Windows Comprising Aqueous Electrolytes Having Enhanced Temperature Stability
Zhang et al. Multi-color poly (3-methylthiophene) films prepared by a novel pre-nucleation electrodeposition grown method for enhancing electrochromic stability
WO2010050318A1 (ja) 透明導電性基板、透明導電性基板の製造方法、及び電気化学表示素子
US20230063383A1 (en) Electrochromic device and electrochromic method therefor
WO2007010653A1 (ja) 常温溶融塩および表示素子
CN102890381B (zh) 一种电致变色器件及其制备方法
Dulgerbaki et al. Poly (3-methylthiophene)/Tungsten oxide hybrid materials for highly efficient electrochromic devices
KR20180125324A (ko) 전기 변색 소자
JP4506171B2 (ja) 電気化学調光装置及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15023692

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16874272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16874272

Country of ref document: EP

Kind code of ref document: A1