WO2017099256A1 - 生体状態推定装置、生体状態推定方法、コンピュータプログラム及び記録媒体 - Google Patents

生体状態推定装置、生体状態推定方法、コンピュータプログラム及び記録媒体 Download PDF

Info

Publication number
WO2017099256A1
WO2017099256A1 PCT/JP2016/086958 JP2016086958W WO2017099256A1 WO 2017099256 A1 WO2017099256 A1 WO 2017099256A1 JP 2016086958 W JP2016086958 W JP 2016086958W WO 2017099256 A1 WO2017099256 A1 WO 2017099256A1
Authority
WO
WIPO (PCT)
Prior art keywords
biological state
waveform
biological
pseudo
estimating
Prior art date
Application number
PCT/JP2016/086958
Other languages
English (en)
French (fr)
Inventor
藤田 悦則
小倉 由美
竜一 内川
可南子 中島
Original Assignee
デルタ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デルタ工業株式会社 filed Critical デルタ工業株式会社
Priority to JP2017555181A priority Critical patent/JP6876331B2/ja
Priority to EP16873148.7A priority patent/EP3387988B1/en
Priority to US16/061,250 priority patent/US20180360315A1/en
Publication of WO2017099256A1 publication Critical patent/WO2017099256A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0024Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system for multiple sensor units attached to the patient, e.g. using a body or personal area network
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7242Details of waveform analysis using integration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7246Details of waveform analysis using correlation, e.g. template matching or determination of similarity
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • A61B5/0006ECG or EEG signals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/015Input arrangements based on nervous system activity detection, e.g. brain waves [EEG] detection, electromyograms [EMG] detection, electrodermal response detection

Definitions

  • the present invention relates to a biological state estimation device, a biological state estimation method, a computer program, and a recording medium that estimate a biological state from a biological signal.
  • the present inventors have proposed a technique for detecting a vibration generated on the body surface of the back in a human upper body with a biological signal measuring device and analyzing a human state.
  • Sound / vibration information detected from the heart and aorta motion detected from the upper back of a person is pressure vibration generated from the heart and aorta motion.
  • Information on ventricular systole and diastole, circulation auxiliary pump, It includes elasticity information of the blood vessel wall and reflected wave information.
  • vibrations including the back body surface pulse wave (Aortic Pulse Wave (APW)) around 1 Hz generated on the back surface from the motion of the heart and the aorta, and the sound transmitted to the back side with the heartbeat (“pseudo-heart sound” (this specification)
  • the book includes information on the heart sound, which is a heart sound collected from the chest side, as a “pseudo heart sound”).
  • the signal waveform associated with heart rate variability includes sympathetic nervous system and parasympathetic nervous system nerve activity information
  • the signal waveform associated with aortic oscillation includes sympathetic nerve activity information.
  • slide calculation is performed by applying a predetermined time width to a time series waveform of a back body surface pulse wave (APW) near 1 Hz extracted from a collected biological signal (sound / vibration information), and a frequency slope is calculated.
  • a time-series waveform is obtained, and the biological state is estimated from the tendency of the change depending on, for example, whether the amplitude tends to be amplified or attenuated.
  • the biological signal is subjected to frequency analysis, and the power spectrum of each frequency corresponding to the function adjustment signal, fatigue acceptance signal, and activity adjustment signal belonging to a predetermined ULF band (very low frequency band) to VLF band (very low frequency band). And determining the state of a person from the time series change of each power spectrum.
  • the fatigue acceptance signal indicates the degree of progress of fatigue in the normal activity state, in addition to this, by comparing the degree of dominance of the power spectrum of the function adjustment signal and the activity adjustment signal, Status, parasympathetic dominant status, etc.).
  • the distribution rate of each frequency component is obtained in a time series when the sum of the power spectrum values of the frequency components corresponding to these three signals is set to 100, and the human condition is obtained using the time series change of the distribution rate. Is also disclosed.
  • Patent Document 2 proposes a technique for displaying a biological state as a physical condition map and a sensory map as a quantification method of the biological state.
  • This is a frequency analysis of the above-mentioned back body surface pulse wave (APW), and the analysis waveform is shown in a logarithmic axis display for the target analysis section, and the analysis waveform is divided into a low frequency band, a medium frequency band, and a high frequency band.
  • the analysis waveform is scored on the basis of a fixed standard from the divided and divided analysis waveform slopes and the shape of the entire analysis waveform, and plotted on the coordinate axes.
  • the physical condition map is a state in which the state of control of the autonomic nervous system is viewed as a balance between the sympathetic nerve and the parasympathetic nerve, and the sensory map is obtained by superimposing the state of change of heartbeat variability on the physical condition map.
  • Patent Documents 3 to 5 disclose means for determining the homeostasis maintenance function level.
  • Consistency maintenance function level judgment means uses positive / negative of differential waveform of frequency gradient time series waveform, positive / negative of integral waveform integrating frequency gradient time series waveform, frequency gradient time series waveform using zero cross method and peak detection method The determination is made using at least one of the absolute values of the frequency gradient time series waveforms obtained by performing absolute value processing on the frequency gradient time series waveforms. Based on these combinations, the level of the homeostasis maintenance function is determined.
  • Each of the above-described technologies is to determine each person's state by analyzing each element that varies due to fluctuations related to the bioregulatory function, such as a sleep onset phenomenon, an imminent sleep phenomenon, a low consciousness driving state, and homeostasis.
  • Various biological states such as maintenance function level, initial fatigue state, and mood determination can be captured.
  • a biological signal including sound and vibration of a living body collected from the trunk is processed to obtain a pseudo-cardiogram, and this pseudo-cardiogram is analyzed to compare a predetermined waveform component in the pseudo-cardiogram, It is not performed to estimate a human biological state.
  • no attempt has been made to capture the state of blood pressure fluctuations and physiological phenomena associated with blood pressure fluctuations, particularly urine intention.
  • the present invention has been made in view of the above, and a biological state in which a biological state can be captured by analyzing a pseudo-cardiogram obtained by processing a biological signal including sound and vibration of a biological body collected from the trunk
  • a biological state estimation method in particular, the state of blood pressure fluctuation itself, or the estimation of physiological phenomena accompanying blood pressure fluctuation, particularly the state of urinary intention including presence or absence of urinary intention
  • a biological state estimation device a biological state estimation method, a computer program, and a recording medium.
  • a biological state estimation device of the present invention is a biological state estimation device that estimates a biological state using a biological signal, Using the pseudo-cardiogram corresponding to the period of the heart sound obtained by processing the back body sound / vibration information collected from the back of the person that fluctuates corresponding to the flow rate of blood delivered from the heart as the biological signal, It has a biological state estimation means for estimating a biological state by comparing predetermined waveform components in the pseudo-cardiogram.
  • the biological state estimating means estimates the biological state by comparing the amplitudes of two waveform components included in one cardiac cycle of the pseudo-cardiac sound waveform.
  • the biological state estimating means plots the two amplitudes (i, i + 1) of the waveform component in a time series in a coordinate system in which one is on the abscissa axis and the other is on the ordinate axis, and the variance of each plotted point cloud It is preferable to estimate the biological state from the situation.
  • the biological state estimating means preferably estimates the biological state from the slope of each plotted point group.
  • the biological state estimating means preferably estimates the biological state by comparing patterns of amplitude changes in each cardiac cycle of the pseudo-cardiogram.
  • the biological state estimating means as a pattern of amplitude change in each cardiac cycle of the pseudo-cardiogram, the lowest bottom having the lowest amplitude in each cardiac cycle is immediately after the highest peak. It is preferable to divide into a positive waveform pattern appearing at 1 and a negative waveform pattern appearing immediately before, and estimate the biological state from the appearance ratio of the two waveform patterns at a certain time.
  • the biological state estimating unit includes a blood pressure fluctuation estimating unit that estimates a blood pressure fluctuation state as the biological state from the pseudo-cardiogram.
  • the biological state estimating means preferably includes physiological phenomenon estimating means for estimating a physiological phenomenon as the biological state from the pseudo-cardiogram.
  • the physiological phenomenon estimating means is preferably means for estimating urinary intention.
  • the computer program of the present invention is a computer program that causes a computer to execute a procedure for processing a biological signal and estimating a state of the living body, Pseudocardiographic waveform corresponding to the period of the heart sound obtained by processing the back body sound / vibration information collected from the back of the person that fluctuates in response to the flow rate of blood sent out from the heart as the biological signal in the computer And performing a biological state estimation procedure for estimating a biological state by comparing predetermined waveform components in the pseudo-cardiogram.
  • the biological state estimation procedure estimates the biological state by comparing the amplitudes of two waveform components included in one cardiac cycle of the pseudo-cardiogram.
  • the two amplitudes (i, i + 1) of the waveform component are plotted in time series in a coordinate system in which one is on the abscissa axis and the other is on the ordinate axis, and the variance of each plotted point cloud It is preferable to estimate the biological state from the situation. It is preferable that the biological state estimation procedure estimates the biological state from the slope of each plotted point group. It is preferable that the biological state estimation manual agitation estimates a biological state by comparing amplitude change patterns in each cardiac cycle of the pseudo-cardiographic waveform.
  • the biological state estimation procedure is such that, as the pattern of amplitude change in each cardiac cycle of the pseudo-cardiogram, the lowest bottom with the lowest amplitude is immediately after the highest peak with respect to the highest peak with the highest amplitude in each cardiac cycle. It is preferable to divide into a positive waveform pattern appearing at 1 and a negative waveform pattern appearing immediately before, and estimate the biological state from the appearance ratio of the two waveform patterns at a certain time. It is preferable that the biological state estimation procedure executes a blood pressure fluctuation estimation procedure for estimating a blood pressure fluctuation state as the biological state from the pseudo-cardiogram. Preferably, the biological state estimation procedure executes a physiological phenomenon estimation procedure for estimating a physiological phenomenon as the biological state from the pseudo-cardiogram.
  • the physiological phenomenon estimation procedure executes a procedure for estimating urinary intention.
  • the present invention also provides a computer-readable recording medium on which the computer program described above is recorded, which causes a computer as a biological state estimation apparatus to execute a procedure for processing a biological signal and estimating a biological state.
  • the biological state estimation method of the present invention is a biological state estimation method that estimates a biological state using a biological signal, and the biological signal is a signal of a person that varies according to the flow rate of blood delivered from the heart. Using a pseudo-cardiogram corresponding to a period of a heart sound obtained by processing back body sound / vibration information collected from the back, and comparing a predetermined waveform component in the pseudo-cardiogram to estimate a living state Features.
  • the biological state estimation method of the present invention preferably estimates the biological state by comparing the amplitudes of two waveform components included in one cardiac cycle of the pseudo-cardiogram, and It is preferable that the amplitude (i, i + 1) is plotted in time series in a coordinate system in which one is on the abscissa axis and the other is on the ordinate axis, and the biological state is estimated from the dispersion state of each plotted point group. It is preferable to estimate the biological state from the slope of each plotted point group. It is also preferable to estimate the biological state by comparing the amplitude change patterns in each cardiac cycle of the pseudo-cardiogram.
  • a positive waveform pattern in which the lowest bottom with the lowest amplitude appears immediately after the highest peak with respect to the highest peak with the highest amplitude in each cardiac cycle And the negative waveform pattern appearing immediately before it is preferable to estimate the biological state from the appearance ratio of the two waveform patterns at a certain time. It is preferable to estimate at least one state of physiological phenomena including blood pressure fluctuations and urinary intention as the biological state from the pseudo-cardiogram.
  • the present invention uses a time-series waveform of a biological signal (back sound / vibration information) including a sound and vibration of a living body collected from a human back.
  • the back sound / vibration information is pressure vibration generated from the motion of the heart and aorta, and includes information on the ventricular systole and diastole and elasticity information of the blood vessel wall that serves as an auxiliary pump for circulation. It can be regarded as a vibration system including both types of damping and solid friction.
  • the back sound / vibration information fluctuates in accordance with the flow rate of blood (stroke volume) delivered from the heart, and the fluctuation in the flow rate is reflected in the amplitude of the time series waveform of the back sound / vibration information.
  • the back sound / vibration information in which the amount of blood from the heart is reflected includes waveform components (pseudo I sound, pseudo II sound) whose period corresponds to the waveform of the heart sound collected from the chest side by the heart sound meter.
  • waveform components prseudo I sound, pseudo II sound
  • the human biological state it is possible to grasp the human biological state.
  • FIG. 1A is an exploded view showing an example of a biological signal measuring apparatus for measuring back sound / vibration information used in one embodiment of the present invention
  • FIG. FIG. FIG. 2 is a diagram schematically showing the configuration of the biological state estimation apparatus according to one embodiment of the present invention
  • FIG. 3 is a flowchart of a back sound / vibration information processing procedure which is a computer program that functions as a back sound / vibration information processing means.
  • 4 (a) to 4 (f) are diagrams showing respective time series waveforms obtained by the back sound / vibration information processing means, the pseudo-cardiac sound waveform computing means, and the low frequency time series waveform computing means.
  • FIG. 5 is a diagram showing the physical characteristics of the subject in Experimental Example 1.
  • FIG. 6 (a) to 6 (l) are diagrams showing experimental results of subject C in Experimental Example 1.
  • FIG. 7 (a) to 7 (l) are diagrams showing the experimental results of subject A in Experimental Example 1.
  • FIG. 8 (a) to 8 (l) are diagrams showing the experimental results of the subject F in Experimental Example 1.
  • FIG. 9 is a correlation diagram between the RRI of each subject and the PPWg-D obtained from the pseudocardiogram in Experimental Example 1, (a) is subject A, (b) is subject B, and (c) is subject C. , (D) is a correlation diagram of the subject D, (e) is a correlation diagram of the subject E, and (f) is a correlation diagram of the subject F.
  • FIG. 9 is a correlation diagram between the RRI of each subject and the PPWg-D obtained from the pseudocardiogram in Experimental Example 1, (a) is subject A, (b) is subject B, and (c) is subject C.
  • (D) is a correlation diagram of the subject D
  • (e)
  • FIG. 10 is a correlation diagram between RRI and PPWg-DRRI calculated by the average value of each subject for 5 seconds in Experimental Example 1, (a) is subject A, (b) is subject B, and (c) is subject. C, (d) is subject D, (e) is subject E, and (f) is subject F.
  • FIG. 11 is a correlation diagram between PCG-PPWg-D and RRI of each subject in Experimental Example 1, (a) is subject A, (b) is subject B, (c) is subject C, (d) is Subject D (note that “No data” is displayed), (e) is subject E (note that “No data” is displayed), and (f) is a correlation diagram of subject F.
  • FIG. 11 is a correlation diagram between PCG-PPWg-D and RRI of each subject in Experimental Example 1, (a) is subject A, (b) is subject B, (c) is subject C, (d) is Subject D (note that “No data” is displayed), (e) is subject E (note that “No data” is
  • FIG. 12 is a correlation diagram between the average value of PCG-PPWg-D for 5 seconds and RRI for each subject in Experimental Example 1, (a) is subject A, (b) is subject B, and (c) is subject. C, (d) is subject D (provided “No data” is displayed), (e) is subject E (provided “No data” is displayed), and (f) is a correlation diagram of subject F.
  • FIG. 13 is a correlation diagram between PPG-2nd and RRI of each subject in Experimental Example 1.
  • (a) is subject A
  • (b) is subject B
  • (c) is subject C
  • (d) is subject D.
  • (E) is the correlation diagram of the subject E
  • (f) is the correlation diagram of the subject F.
  • FIG. 14 is a correlation diagram between the average value of PPG-2nd for each subject for 5 seconds and RRI in Experimental Example 1, (a) is subject A, (b) is subject B, (c) is subject C, (D) is subject D, (e) is subject E, and (f) is subject F correlation diagram.
  • FIG. 15 is a diagram showing the relationship between each frequency of PCG-PPWg-D and PPG-2nd normalized with the maximum amplitude value and the transfer function with respect to PPWg-D normalized with the maximum amplitude value.
  • Subjects A, (b) are subjects B, (c) are subjects C, (d) are subjects D, (e) are subjects E, and (f) are subjects F.
  • FIG. 16 is a diagram illustrating an example of a time-series waveform of PPWg-D.
  • FIG. 17 is a diagram showing an example of a dispersion state of points plotted in time series on a coordinate system in which one of two adjacent amplitudes (i, i + 1) is on the abscissa axis and the other is on the ordinate axis.
  • FIG. 18A is a diagram showing a dispersion state of points plotted in the same manner as FIG. 17 for PCG-PPWg-D
  • FIG. 18B is a diagram plotted in the same manner as FIG. 17 for PPG-2nd. It is the figure which showed the dispersion
  • FIG. 19 is a graph showing the relationship between the angle of inclination of the point cloud plotted in amplification (2) and the blood pressure in PPWg-D, where (a) shows the maximum blood pressure and (b) shows the relationship with the minimum blood pressure.
  • FIG. FIG. 20 is a diagram showing the correlation between the PCG-PPWg-D result of FIG. 18A and blood pressure, where FIG. 20A is a diagram showing the relationship with systolic blood pressure, and FIG. 20B is a diagram showing the relationship with the systolic blood pressure.
  • FIG. 21 is a diagram showing the correlation between the PPG-2nd result and the blood pressure in FIG. 18B, where FIG. 21A shows the relationship with the systolic blood pressure, and FIG.
  • FIG. 21B shows the relationship with the diastolic blood pressure.
  • FIG. 22 is a diagram schematically showing a configuration of a biological state estimation apparatus according to another embodiment of the present invention.
  • FIG. 23 is a diagram for explaining an estimation method by physiological phenomenon estimation means of the biological state estimation apparatus according to the other embodiment.
  • FIGS. 24A and 24B are diagrams for explaining a method of estimating urinary intention based on the distribution density of plots.
  • FIGS. 25A to 25C are diagrams showing the analysis results of the subject A in Experimental Example 2.
  • FIG. FIGS. 26 (a) to (e) show urine estimation results obtained by the physiological phenomenon estimation means of the other embodiment.
  • FIG. 27 (a) shows the relationship between urinary intention and systolic blood pressure, and FIG.
  • FIG. 27 (b) shows the relationship between urinary intention and systolic blood pressure.
  • FIG. 28 is a diagram for explaining a method of estimating urinary intention using the appearance ratio of a negative waveform pattern.
  • FIG. 29 is a diagram showing the experimental results of subject A, FIG. 29 (a) shows the subjective evaluation of urinary intention and sleepiness, FIG. 29 (b) shows the systolic blood pressure and the diastolic blood pressure, and FIG. (C) shows HF and LF / HF, and FIG. 29 (d) shows the appearance ratio of the negative waveform pattern.
  • FIG. 30 is a diagram for explaining an example of a determination criterion for determining the presence or absence of urine in the appearance ratio of a negative waveform pattern.
  • FIG. 30 is a diagram for explaining an example of a determination criterion for determining the presence or absence of urine in the appearance ratio of a negative waveform pattern.
  • FIG. 31 is a diagram showing the experimental results of subject B
  • FIG. 31 (a) shows the subjective evaluation of urinary intention and sleepiness
  • FIG. 31 (b) shows the systolic blood pressure and the systolic blood pressure
  • FIG. (C) shows HF and LF / HF
  • FIG.31 (d) is a figure which showed the appearance ratio of the negative waveform pattern.
  • FIGS. 32A to 32E are diagrams for explaining a method for quickly determining urinary intention from the appearance ratio of a negative waveform pattern.
  • 33 (a) to 33 (f) are diagrams showing an example in which urinary intention is determined by the method of FIG. FIGS.
  • FIGS. 35 (a) to 35 (f) are diagrams showing an example of a subject who has determined a biological state including urinary intention by the method of FIG. 36 (a) to 36 (f) are diagrams showing another example of the same subject as that of FIG. 35 in which the biological state including urinary intention is determined by the method of FIG.
  • FIGS. 37A to 37F are diagrams showing examples of different subjects who have determined the biological state including urinary intention by the method of FIG. 38 (a) to 38 (e) are diagrams showing examples of still different subjects who have determined the biological state including urinary intention by the technique of FIG.
  • FIGS. 39 (a) to (f) are diagrams showing an example of a case in which a different subject who has determined the biological state including urinary intention by the method of FIG. 34 is accompanied by strong sleepiness.
  • the biological signal collected in the present invention is back sound / vibration information.
  • Back sound / vibration information is sound / vibration information generated from the motion of the heart and aorta detected from the upper back of a person as described above, information on ventricular systole and diastole, and blood circulation assistance. It includes the elasticity information of the blood vessel wall serving as a pump, the elasticity information by blood pressure, and the information of the reflected wave. Therefore, by processing the time series waveform of the back sound / vibration information, a pseudo heart sound waveform approximate to the heart sound waveform measured by the heart sound meter can be created. It is possible to grasp the amount and the state of resistance of blood vessels, that is, the state of blood pressure fluctuation.
  • the biological signal measuring device for collecting back sound / vibration information preferably uses the biological signal measuring device 1 used in the doze driving warning device (Sleep Buster (registered trademark)) manufactured by Delta Touring Co., Ltd. .
  • FIG. 1 shows a schematic configuration of the biological signal measuring apparatus 1.
  • This biological signal measuring apparatus 1 can be used by being incorporated in a measurement chair, bed, or driver's seat of a vehicle, and can collect biological signals without restraining fingers.
  • the biological signal measuring apparatus 1 will be briefly described. As shown in FIGS. 1A and 1B, the first layer 11, the second layer 12, and the third layer 13 are stacked in order from the upper layer side.
  • the first layer 11 made of a layer structure and made of a three-dimensional solid knitted fabric or the like is used by being positioned on the human body side that is a detection target of a biological signal. Therefore, biological signals from the back of the trunk of the human body, in particular, back sound / vibration information including biological sounds (direct trunk sound or bioacoustic signal) generated along with vibrations of the ventricle, atrium, and large blood vessels It is first propagated to the first layer 11 which is an input system.
  • the second layer 12 functions as a resonance layer that emphasizes the back sound / vibration information propagated from the first layer 11 by a resonance phenomenon or a beating phenomenon. It has a three-dimensional solid knitted fabric 122 and a film 123 that generates membrane vibration. A microphone sensor 14 is disposed in the second layer 12 to detect back sound / vibration information.
  • the third layer 13 is laminated on the opposite side of the first layer 11 via the second layer 12 to reduce external sound / vibration input.
  • the biological state estimation apparatus 100 includes biological state estimation means 200.
  • the biological state estimation unit 200 includes a back sound / vibration information processing unit 210, a pseudo-cardiogram calculation unit 220, a low frequency time-series waveform calculation unit 230, and a blood pressure fluctuation estimation unit 240.
  • the biological state estimation device 100 is configured by a computer (including a microcomputer), and the computer includes a back sound / vibration information processing unit 210, a pseudo-cardiogram calculation unit 220, a low-frequency time-series waveform calculation unit 230, and a blood pressure.
  • a computer program to be executed is set in the storage unit.
  • the biological state estimation means 200 is an electronic device that operates the back sound / vibration information processing means 210, the pseudo-cardiogram calculation means 220, the low frequency time series waveform calculation means 230, and the blood pressure fluctuation estimation means 240 in a predetermined procedure by the computer program.
  • It can also be configured as a back sound / vibration information processing circuit, a pseudo heart sound waveform arithmetic circuit, a low frequency time series waveform arithmetic circuit, and a blood pressure fluctuation estimation circuit, which are circuits.
  • “means” is attached except for the biological state estimating means 200, the back sound / vibration information processing means 210, the pseudo-cardiac sound waveform calculating means 220, the low frequency time series waveform calculating means 230, and the blood pressure fluctuation estimating means 240.
  • the configuration expressed as described above can also be configured as an electronic circuit component.
  • the computer program may be stored in a computer-readable recording medium. If this recording medium is used, the program can be installed in the computer, for example.
  • the recording medium storing the program may be a non-transitory recording medium.
  • the non-transitory recording medium is not particularly limited, and examples thereof include a recording medium such as a flexible disk, a hard disk, a CD-ROM, an MO (magneto-optical disk), a DVD-ROM, and a memory card. It is also possible to install the program by transmitting it to the computer through a communication line.
  • the back sound / vibration information processing means 210 is the back sound / vibration information (hereinafter referred to as “original waveform”) obtained from the sensor 14 of the biological signal measuring apparatus 1, but the original waveform here is used for analysis of body movement and the like. This includes means for applying a predetermined process to a waveform after pre-processing components that are not used, such as filtering, and processing them into pseudo-cardiograms.
  • the back sound / vibration information processing procedure which is a computer program that functions as the back sound / vibration information processing means 210, is specifically executed by the steps shown in the flowchart of FIG.
  • the original waveform RC0 (the waveform of FIG. 4A) of the back sound / vibration information is obtained from the sensor 14 (S10).
  • a band pass filter having a center frequency of about 20 Hz, for example, a band pass filter of 10 to 30 Hz is applied to obtain a waveform RC1 (waveform of FIG. 4B) (S11).
  • a waveform component having a relatively large amplitude appears in a period of about 1 second.
  • the standard heart rate is about 1 to 1.5 Hz, and the period of the waveform component with a large amplitude of the waveform RC1 corresponds to the cardiac cycle.
  • the pseudo I sound and II sound of the amplitude are included. include. Therefore, in the present embodiment, this waveform RC1 becomes the first pseudo-cardiogram.
  • the pseudo-cardiac sound waveform calculation means 220 uses the waveform RC1 (first pseudo-cardiogram) obtained by the back sound / vibration information processing means 210, the pseudo-I sound corresponding to the heart sound I and II sounds in the heart sound waveform, II In order to cut out the period of the sound, distortion is applied by applying clip processing, and a time-series waveform (waveform in FIG. 4C) having an odd multiple frequency is obtained (S12). Note that the threshold value of the amplitude during the clipping process is provided at a position where a time width corresponding to the heart sounds I and II sounds can be secured.
  • the pseudo I sound and II sound are emphasized and a high-pass filter is applied in order to further approximate the heart sound waveform (S13), and the pseudo I sound and II sound are revealed.
  • a second pseudo-cardiac sound waveform (the waveform of FIG. 4D) is obtained (S14).
  • the low-frequency time-series waveform calculation means 230 makes the period of the pseudo I sound and the pseudo II sound manifest from the second pseudo heart sound waveform (the waveform of FIG. 4D) obtained by the pseudo heart sound waveform calculation means 220. Therefore, this is means for converting the second pseudo-cardiogram into a low-frequency time-series waveform (so-called third pseudo-cardiogram) (the waveforms shown in FIGS. 4E and 4F) having a predetermined frequency or less.
  • the low-frequency time-series waveform calculation procedure which is a computer program that functions as the low-frequency time-series waveform calculation means 230, is half-wave rectified into a second pseudo-cardiac waveform (see FIG. 3).
  • S15) and detection (S16) are applied to obtain a pseudo heart sound gauge waveform (Gauge Waveform of Pseudo Phonocardiogram, hereinafter referred to as “PPWg”, waveform of FIG. 4E) (S17).
  • PPWg is first-order differentiated (S18) to obtain a PPWg first-order derivative signal waveform (hereinafter referred to as “PPWg-D”) (S19).
  • the blood pressure fluctuation estimating means 240 may be the above-described pseudo heart waveform (RC1 waveform (the waveform of FIG. 4B) that is the first pseudo heart waveform), the second pseudo heart waveform (the waveform of FIG. 4D), or its This is a means for analyzing the amplitude fluctuation of the processing waveform (the waveforms in FIGS. 4E and 4F) to estimate the state of blood pressure fluctuation.
  • the back sound / vibration information is a biological signal including biological sound and vibration in the body, and its strength appears in the amplitude of the pseudo-cardiogram and is affected by the stroke volume and the blood vessel resistance. For this reason, by analyzing the amplitude fluctuation of the pseudo-cardiogram, it is possible to estimate the state of blood pressure fluctuation, which is a fluctuation in stroke volume and blood vessel resistance.
  • the back sound / vibration information is pressure vibration generated from the motion of the heart and the aorta, and includes information on the systole and diastole of the ventricle and elasticity information of the blood vessel wall serving as an auxiliary pump for circulation. It is out. Therefore, it can be regarded as a vibration system including both types of damping of viscous damping friction and solid friction, and a graphical solution method for calculating the damping ratio of the free damping vibration waveform can be applied to this.
  • the present invention uses a logarithmic amplification factor representing the amplification characteristic of the pseudo-cardiogram as an index instead of d / a of the acceleration pulse wave. Then, the logarithmic amplification factor is expressed using only the apparent damping ratio obtained from the self-excited vibration of the one-degree-of-freedom system, and a method of calculating the damping ratio of the free-damping vibration waveform is applied.
  • the blood pressure fluctuation estimating means 240 is between the start point of the waveform component of the pseudo I sound and the end point of the waveform component of the pseudo II sound corresponding to one cardiac cycle in any one of the above pseudo heart sound waveforms.
  • the blood pressure fluctuation estimating means 240 is between the start point of the waveform component of the pseudo I sound and the end point of the waveform component of the pseudo II sound corresponding to one cardiac cycle in any one of the above pseudo heart sound waveforms.
  • two adjacent amplitudes i, i + 1
  • one is plotted in time series on a coordinate system in which one is on the abscissa axis and the other is on the ordinate axis
  • the state of blood pressure fluctuation is estimated from the dispersion state of each plotted point cloud. (See FIG. 17).
  • the blood pressure fluctuation estimation means 240 of the present embodiment is adjacent as a predetermined waveform component of the pseudo-cardiogram between the start point of the pseudo I sound waveform component and the end point of the pseudo II sound waveform component.
  • the blood pressure fluctuations are estimated using two adjacent amplitudes in the amplification period of the pseudo-I sound as described later.
  • the calculation process for estimation by the computer only needs to analyze a specific waveform component after extracting the pseudo-cardiogram.
  • the time series waveform change pattern is compared with In comparison, if the correlation data between the blood pressure and the inclination angle of the approximate line is stored in the storage unit in advance, it can be compared with the inclination angle of the approximate line to be judged, reducing the load on the computer at the time of judgment, and calculating This method leads to an improvement in processing speed.
  • Experimental example 1 As a biological signal measuring device, the biological signal measuring device 1 seats a subject on an experimental automobile seat mounted on the seat back portion, and collects back sound / vibration information by the biological signal measuring device 1 in a resting state and a sitting posture. did. The back sound / vibration information data was analyzed by the biological state estimating apparatus 100 which is a computer.
  • an electrocardiogram (hereinafter “ECC”, measuring instrument: manufactured by Nihon Kohden Co., Ltd., bedside monitor BSM-2300 Series Lifescope I), an electrocardiogram (hereinafter “PCG”, measuring instrument: Nihon Koden Kogyo Co., Ltd.)
  • ECC electrocardiogram
  • PCG electrocardiogram
  • PPG fingertip volume pulse wave
  • the measurement with a heart sound meter was performed from the front of a person's chest.
  • the subjects were 6 healthy male volunteers in their 20s (25.0 ⁇ 2.9 years old) who obtained written consent after informed consent. Physical characteristics such as physique were as shown in FIG. there were. In all cases, the body mass index (BMI value) was 18.5 or more and less than 25, and the subjects were standard physiques.
  • BMI value body mass index
  • the measurement time was 15 minutes, and periodic / continuous measurement was performed with an A / D converter (Power Lab 8/30 manufactured by Nihon Kohden Co., Ltd.) at a sampling frequency of 1000 Hz. Note that measurement data for 5 minutes from the start of measurement was not measured, and data for 10 minutes after the start of measurement considered to have become familiar with the measurement environment was used as the measurement target. In addition, the analysis target is considered to have been able to measure stable data with little body movement, etc., for 480 seconds after 5 minutes from the start of measurement, and further from 60 seconds to 540 seconds (ie, from 6 minutes to 14 minutes after the start of measurement). It was.
  • SBP upper arm systolic blood pressure
  • DBP diastolic blood pressure
  • Example result 6 to 8 show examples of subjects C, A, and F as experimental results.
  • the subject C in FIG. 6 has a heart rate of 56 times / minute, SBP is 114 mmgHg, DBP is 68 mmHg, and subject A in FIG. 7 has the highest heart rate among all subjects, the heart rate is 68 times / minute, SBP was 121 mmHg and DBP was 73 mmHg.
  • the subject F in FIG. 8 is a case where the heart rate is 63 times / minute, the SBP is 111 mmHg, the DBP is 67 mmHg, and both the SBP and DBP are low.
  • (a) shows the ECG
  • (b) is the back sound / vibration information RC0 collected from the back of the chest, which is the back of the person, by the biological signal measuring device 1 (FIG. 3).
  • S10) is an RC1 waveform that is the first pseudo-cardiogram obtained by applying a 10-30 Hz band-pass filter to RC0 (S11 in FIG. 3), and (d) is a clip process applied to RC1.
  • (E) is a second pseudo-cardiogram (including pseudo-I sound and pseudo-II sound) obtained by applying a high-pass filter at a cut-off frequency of 40 Hz (S12 in FIG. 3). S13, S14).
  • (F) half-wave rectifies the second pseudo-cardiogram of (e) (S15 in FIG. 3), and a bandpass filter from the dominant frequency (0.93 Hz) to 5 times (4.65 Hz) PPWg obtained by application (S16 and S17 in FIG. 3), and (g) is PPWg-D obtained by differentiating PPWg in (f) (S18 and S19 in FIG. 3).
  • (H) is a PCG time-series waveform, and (i) is a half-wave rectification applied to the PCG, and a bandpass filter from the dominant frequency (0.93 Hz) to 5 times (4.65 Hz) is applied.
  • (J) is the differential waveform (hereinafter “PCG-PPWg-D”).
  • (K) is a time series waveform of PPG
  • (l) is a second-order differential waveform (hereinafter referred to as “PPG-2nd”) of (k).
  • Table 1 shows the cardiac cycle correlation between the RRI for 6 subjects A to F and PPWg-D obtained from the pseudocardiogram. The correlation coefficient for all subjects was p ⁇ 0.05, indicating a significant correlation.
  • FIG. 9 shows a correlation diagram, where the horizontal axis is RRI and the vertical axis is PPWg-D.
  • Table 2 shows the correlation between the RRI calculated with the average value for 5 seconds and the PPWg-D obtained from the pseudocardiogram. The correlation coefficient for all subjects was p ⁇ 0.05, indicating a significant correlation.
  • FIG. 10 shows a correlation diagram, where the horizontal axis is RRI and the vertical axis is PPWg-D.
  • the cardiac cycle calculated with an average value for 5 seconds showed a correlation coefficient and slope of 0.9 or more in all subjects. From the above results, it can be said that when capturing heart rate variability, using a time-series waveform obtained from an average value for 5 seconds can provide a significant correlation in biological analysis.
  • Table 3 shows the correlation between PCG-PPWg-D and RRI.
  • FIG. 11 shows a correlation diagram, where the horizontal axis is RRI and the vertical axis is PCG-PPWg-D.
  • Table 4 shows the correlation between the average value of PCG-PPWg-D for 5 seconds and RRI.
  • FIG. 12 shows a correlation diagram, where the horizontal axis is RRI and the vertical axis is PCG-PPWg-D.
  • Table 5 shows the correlation between PPG-2nd and RRI.
  • FIG. 13 shows a correlation diagram, where the horizontal axis is RRI and the vertical axis is PPG-2nd.
  • the correlation coefficient of all subjects was 0.9 or more and high correlation with p ⁇ 0.05.
  • Table 6 shows the correlation between the average value of PPG-2nd for 5 seconds and RRI.
  • FIG. 14 shows a correlation diagram, where the horizontal axis is RRI and the vertical axis is PPG-2nd.
  • the correlation coefficient of all subjects was 0.9 or more and high correlation with p ⁇ 0.05. However, in PPG-2nd, the correlation coefficient is 0.994 (Table 5 and FIG. 13) for each beat, and 0.981 (Table 6 and FIG. 14) for an average of 5 seconds. The value was lower. Accordingly, when a delay occurs due to the pulse wave velocity or the like, the accuracy may be improved if the average value for 5 seconds is not used when mechanically processing.
  • FIG. 15 is made dimensionless by dividing each frequency band of PCG-PPWg-D and PPG-2nd normalized by the maximum amplitude value with respect to PPWg-D normalized by the maximum amplitude value.
  • a frequency of 1 to 5 times is appropriate.
  • FIG. 16 shows an example of the PPWg-D time series waveform obtained by the low frequency time series waveform computing means 230 based on the second pseudo heart sound waveform obtained by the pseudo heart sound waveform computing means 220 (data of the subject C).
  • FIG. 17 shows a case where a technique for calculating the attenuation ratio of the free-damping vibration waveform in the blood pressure fluctuation estimating means 240 is applied to the amplitude fluctuation of the time-series waveform of FIG.
  • a (N) and A (N + 1) in FIG. 16 are set as amplification (1), A (N + 1) and A (N + 2) are set as amplification (2), and A (N + 2) and A (N + 3) are damped.
  • a (N + 3) and A (N + 4) are dampening (2), A (N + 4) and A (N + 5) are dampening (3), and this is one cardiac cycle (pseudo I sound waveform component From the start point to the end point of the waveform component of the pseudo II sound) and plotted.
  • points plotted below the broken line B mean amplitude amplification, and points plotted above the broken line B mean amplitude attenuation.
  • the blood pressure fluctuation estimation means 240 paid attention to the place corresponding to the pseudo-I sound when evaluating the dispersion state of the plotted point cloud.
  • the heart sound I measured by a heart sound meter corresponding to the pseudo-I sound has a high correlation with blood pressure, and among them, the amplification period corresponds to self-excited vibration.
  • the group distribution status is correlated with blood pressure, and amplification that shows a remarkable amplification tendency with the highest peak (the part that shows the highest amplitude on the positive side of the reference line in the waveform component of one cardiac cycle) Paying attention to the distribution of the point cloud plotted in (2), the biological state is estimated.
  • the blood pressure fluctuation estimating means 240 draws an approximate line by the least square method to the plotted point group of amplification (2), and calculates the angle of the inclination with the X axis, Estimate the correlation with blood pressure.
  • FIG. 18 (a) is a diagram showing a dispersion state of points plotted by the same processing as FIG. 17 for PCG-PPWg-D
  • FIG. 18 (b) is a diagram of FIG. 17 for PPG-2nd. It is the figure which showed the dispersion
  • FIG. 19 is a diagram showing the relationship between the inclination angle of the plotted point group and the blood pressure in the amplification (2) in PPWg-D obtained from the back body surface pulse wave of this embodiment for all six subjects.
  • (A) shows the maximum blood pressure
  • (b) shows the relationship with the minimum blood pressure.
  • the arrows indicate the data (inclination angle) of the subject C taken up in FIG.
  • the correlation coefficient with SBP was 0.941
  • the correlation coefficient with DBP was 0.849, and both showed high correlation.
  • FIG. 20 is a diagram showing the correlation between the PCG-PPWg-D result of FIG. 18A and the blood pressure, where FIG. 20A shows the relationship with the systolic blood pressure, and FIG. 20B shows the relationship with the diastolic blood pressure. Similar to FIG. 19 obtained from the back sound / vibration information used in the present embodiment, there is a correlation with blood pressure.
  • FIG. 21 is a diagram showing the correlation between the PPG-2nd result and the blood pressure in FIG. 18B, where (a) shows the relationship with the systolic blood pressure, and (b) shows the relationship with the diastolic blood pressure. Was not so expensive.
  • the biological state estimation device 100 of this embodiment further includes a physiological phenomenon estimation unit 250 as the biological state estimation unit 200.
  • the physiological phenomenon estimation means 250 of the present embodiment estimates a physiological phenomenon that is highly relevant to blood pressure fluctuations. Specifically, a urinary intention in which an increase in blood pressure is generally observed due to the progress of urine accumulation is estimated.
  • the measured back sound / vibration information is subjected to a band pass filter having a center frequency of about 20 Hz, for example, a band pass filter having a frequency of 10 to 30 Hz, by the back sound / vibration information processing means 210 to obtain a first pseudo A waveform RC1 having a heart sound waveform is obtained (see steps S10 and S11 in FIG. 3).
  • the physiological phenomenon estimation means 250 of the present embodiment uses the waveform RC1 that is the first pseudo-cardiographic waveform as an analysis target.
  • the analysis processing method is the same as that of the blood pressure fluctuation estimation unit 240 described above, and the amplitudes (i, i + 1) of two adjacent waveform components in the waveform component corresponding to one cardiac cycle of the waveform RC1 which is the first pseudo-cardiogram. ) Is plotted in time series on a coordinate system with one on the abscissa axis and the other on the ordinate axis, and the urinary intention is estimated from the dispersion status of each plotted point group (see FIGS. 23 and 24).
  • Urine intention correlates with fluctuations in blood pressure, and can be estimated from the second pseudo-cardiac sound waveform in which the pseudo-heart sound of the above-described embodiment is further clarified.
  • Waveform RC1 which is one pseudo-cardiogram, is an analysis target.
  • two amplitudes (i, i + 1) have a minimum bottom (in a waveform component of one cardiac cycle, a minimum amplitude) in waveform components included in one cardiac cycle. (Locations showing values)
  • the amplitudes (A1, A2) of two waveform components sandwiching the bottom B2 located immediately before B1 were selected.
  • the amplitudes of the waveform components before and after the highest peak may be used as in the above embodiment. In any case, it is preferable to select and use two waveform components having a large amplitude in the amplification period on a constant basis.
  • Physiological phenomenon estimation means 250 plots the amplitude ratio in the coordinate system using the amplitudes (A1 (i), A2 (i + 1)) of the two waveform components in the amplification period shown in FIG.
  • FIG. 24 (a) shows an example thereof, which corresponds to a point group indicated by a dark color in the drawing.
  • the other point groups indicated in light colors are plots of the amplitude ratios of the specific waveform component before the amplitude (A1 (i), A2 (i + 1)) and after the decay period, respectively.
  • FIG. 24B clarifies the plot of the ratio of the amplitudes (A1 (i), A2 (i + 1)) of the waveform components used for estimation of urinary intention.
  • the distribution density of the blot was calculated, and the distribution density contour map of the number of blots was obtained.
  • MDV maximum urinary urgency
  • SDV strong urinary urinary sensation
  • a biological signal measuring device 1 manufactured by Delta Touring Co., Ltd. and used under the trade name “Sleep Buster” is seated on a test vehicle seat mounted on the seat back, and a resting state, a sitting posture Then, back sound and vibration information was collected.
  • the back sound / vibration information data was analyzed by the biological state estimating apparatus 100 which is a computer.
  • an electrocardiogram hereinafter referred to as “ECC”, measuring instrument: Nihon Kohden Co., Ltd., bedside monitor BSM-2300 Series Lifescope I
  • OMRON HEM home sphygmomanometer for upper arm
  • the systolic blood pressure (maximum blood pressure) and the diastolic blood pressure (minimum blood pressure) of the upper arm were measured.
  • the subject sits on the above-mentioned vehicle seat for urination after urination and starts the experiment. After 45 minutes from the start of the experiment, take 500 ml of water over 15 minutes and keep the rest until the declaration of maximum urine (at the limit). After the declaration of urine, urination was performed, the amount of urination was measured, and the experiment was terminated.
  • FIG. 25 is a diagram showing an analysis result of the subject A who is relatively less affected by sleepiness.
  • Fig. 25 (a) shows time series waveforms of HF and LF / HF of an electrocardiogram
  • Fig. 25 (b) shows changes in time series of systolic blood pressure and diastolic blood pressure, and changes in heart rate obtained every 15 minutes.
  • FIG. 25 (c) is a graph showing the level of urinary and sleepiness self-report. From this graph, it can be seen that, at the “limit time”, HF increases at the time when LF / HF is relatively stable, and both the maximum blood pressure and the minimum blood pressure increase. Further, “after perception”, “at the time of patience”, and “at the limit” tend to be higher in both maximum blood pressure and minimum blood pressure than in “normal time” and “before perception”.
  • FIGS. 26A to 26E shows output results obtained by the physiological phenomenon estimation means 250 of the present embodiment, where (a) is “normal time”, (b) is “before perception”, (c) is “after perception”, ( d) shows an output result of “at endurance” and (e) shows an output result of “at the limit”, respectively.
  • the left column in each of FIGS. 26A to 26E shows a plot of the amplitude ratio
  • the right column of each diagram shows a predetermined amplitude (A1 (i) created from the plot of the left column. ), A2 (i + 1)) ratio point cloud distribution density contour map.
  • the width of the point group of the amplitude (A1 (i), A2 (i + 1)) ratio becomes smaller than the previous state, and the distribution becomes one point. There is a tendency to concentrate.
  • the stronger the sense of urine the more the center of this point group tends to move toward the coordinate origin. Therefore, by setting threshold values on the coordinates for the area of these point groups, the position of the center point, etc., the physiological state estimating means 250 can estimate the level of urinary intention.
  • FIG. 27 shows the inclination of the approximate line of the point group of the amplitude (A1 (i), A2 (i + 1)) ratio obtained in FIG. 26 and the maximum blood pressure (FIG. 27 (a)) or the minimum blood pressure (FIG. 27 (b)).
  • FIG. The blood pressure data is the blood pressure at 75 minutes after “normal time”, the blood pressure at 90 minutes after “perception”, the blood pressure at 105 minutes after “perception”, "” Adopted the average value of blood pressure at the time of 135 minutes and 150 minutes, and "time limit” adopted the blood pressure at the time of 180 minutes and 195 minutes. From FIG. 27, it is understood that both the maximum blood pressure and the minimum blood pressure deviate from the approximate line of FIG.
  • the physiological state estimation unit 250 shows the appearance of singular points that deviate greatly from the correlation between the slope of the approximate line of the point group of the amplitude (A1 (i), A2 (i + 1)) ratio obtained in FIG. 26 and the blood pressure. Can be estimated as the “urinary” urinary level.
  • the blood pressure is measured using a sphygmomanometer, but the singularity as shown in FIG. 27 is obtained using the output result of the blood pressure fluctuation estimated by the blood pressure fluctuation estimating means 240 of the above embodiment.
  • the will of urine can also be estimated by the method of the physiological phenomenon estimation means 250 of the present embodiment that is obtained.
  • the physiological phenomenon estimation means 250 of this embodiment employs means for estimating urinary intention by comparing the amplitude change patterns in each cardiac cycle of the pseudo-cardiographic waveform rather than the amplitude ratio of the two waveform components.
  • the pseudo heart sound waveform to be analyzed also in the present embodiment is the RC1 waveform that is the first pseudo heart sound waveform described above.
  • a waveform pattern (hereinafter referred to as “positive waveform pattern”) showing a change in which the lowest point (lowest bottom) appears immediately after the appearance of the highest amplitude point (highest peak) among the waveform components of
  • a waveform pattern (hereinafter referred to as a “negative waveform pattern”) in a region (b) indicating a change in which the lowest point (lowest bottom) appears just before the appearance of the highest amplitude point (highest peak).
  • the urinary intention is estimated using these two types of waveform patterns.
  • the physiological phenomenon estimation means 250 of the present embodiment is set so as to estimate urine from the appearance ratio of a positive waveform pattern and a negative waveform pattern at a certain time. This will be described using the data of the subject A in the above embodiment.
  • FIG. 29 shows subjective evaluation of subject A's urinary intention and sleepiness (FIG. 29 (a)), systolic blood pressure (SBP) and diastolic blood pressure (DBP) (FIG. 29 (b)), HF, from 60 minutes to 200 minutes after the start of the experiment. And LF / HF (FIG. 29 (c)) are shown as time series changes, and FIG. 29 (d) shows time series changes in the appearance ratio of the negative waveform pattern. The time-series change in the appearance ratio of the negative waveform pattern is obtained by calculating and plotting the appearance ratio of the negative waveform pattern for 180 seconds every 30 seconds.
  • the appearance ratio of the negative waveform pattern showed little fluctuation from the start of the experiment until the onset of initial urination, but the appearance ratio changed greatly after the onset of initial urine. This change coincides with the timing in FIG. 29 (c) that HF shows a remarkable decreasing tendency from the onset of initial urination. This is because the parasympathetic nerve is involved in bladder contraction and sphincter relaxation. If the appearance ratio of a negative waveform pattern in which remarkable fluctuation similar to HF is seen from the expression of urinary intention is used, Change will be captured.
  • the physiological phenomenon estimation unit 250 obtains the appearance ratio of the negative waveform pattern, and is set so as to determine “there is urinary intention” when it corresponds to a predetermined criterion.
  • the criterion include an increase rate of the appearance ratio of the negative waveform pattern in a predetermined time range.
  • the difference between the minimum value and the maximum value of the negative waveform pattern appearance ratio is increased by 30% or more in the last 20 minutes, the “urinary intention” is indicated. It was set to judge.
  • Table 7 shows the correlation between the case where the presence or absence of urine is determined according to the determination criteria shown in FIG. 30 and the subjective evaluation of each subject regarding the data of each subject in Experimental Example 2 described above.
  • the “state without urine” in the subjective evaluation is after ingestion of 500 ml of water, and the “state with urine” indicates the initial urinary intention (when weak urine is felt) and the maximum urine intention (strong urine intention).
  • the physiological phenomenon estimation unit 250 adopting the determination criterion of FIG. 30 is used as a reference, and the two are compared.
  • FIG. 29 shows the accuracy of judgment differs to some extent depending on the subject.
  • the subject A who showed the experimental results in FIG. 29 had a high correct answer rate.
  • FIG. 31 shows the experimental result of the subject B whose correct answer rate was relatively low. Comparing the two, as shown in FIG. 29, subject A shows the influence of urinary intentions such as a decrease in HF and an increase in blood pressure from the onset of initial urine in each biological index, and the appearance ratio of the negative waveform pattern Remarkable fluctuations are also thought of as an indication of changes in the body condition accompanying urinary intention.
  • the subject B as shown in FIG.
  • the blood pressure repeatedly fluctuates until 135 minutes when drowsiness becomes strong and rises when it becomes weak, but is strong at the time of maximum urination. Blood pressure has risen despite sleepiness.
  • HF and LF / HF show a tendency for HF to decrease and LF / HF to increase before the declaration of maximum urine, although there is not much change from the start of the experiment. ing.
  • subject B shows the influence of urinary intention on the biometric index at the time of maximal urination, but sleepiness stronger than the urinary effect on the change in the state of the body wins, so at the time of initial urination, It is considered that the appearance ratio of the negative waveform pattern did not fluctuate so much that urine was not captured.
  • the appearance ratio of the negative waveform pattern obtained from the pseudo-cardiogram in the present embodiment changes under the influence of the reflected wave of the pulse wave generated from the heart, that is, due to the hardening of the arterial wall due to the influence of an increase in blood pressure, etc. It is thought that it changes as the propagation speed of the reflected wave increases. Therefore, the early return of the reflected wave due to an increase in blood pressure accompanying the appearance of urine appears as a large fluctuation in the appearance ratio of the negative waveform pattern, and the urinary intention can be detected.
  • the difference between the maximum value and the minimum value of the negative waveform appearance ratio is obtained for a predetermined time range in the same manner as described above.
  • it is set to 20 minutes, but in the calculation example of FIG. 32, it is set to 15 minutes, and further, this is sequentially obtained by using data obtained by sliding every 2 minutes (n (1) to n (I)).
  • the difference between 15 minutes from 2 minutes to 17 minutes is sequentially calculated as 15%.
  • FIG. 33 shows an example in which the method of FIG. 32 is applied to the experimental data.
  • the reference difference X was set to 14%.
  • the graph shown in FIG. 33 (f) is the result. From this graph, it can be seen that the fluctuation rate at normal time increases as the urinary intention increases. Therefore, by using the graph of FIG. 33 (f), it is possible to quickly determine that urinary intention has occurred at the time when the normal fluctuation rate increases while sequentially determining the appearance ratio of the negative waveform pattern.
  • a time-series waveform of the appearance ratio of the negative waveform is obtained (FIG. 34 (a)).
  • the moving average calculation is performed with the time window set to 240 seconds to obtain the moving average waveform of the appearance ratio of the negative waveform (FIG. 34B).
  • the moving average waveform is differentiated and the bottom point of the amplitude is extracted (FIG. 34C).
  • the bottom point extracted in FIG. 34C is plotted on the moving average waveform of the appearance ratio of the negative waveform in FIG. 34B (FIG. 34D), and the data in FIG. Use it to capture fluctuations in the amplitude, period, and baseline of the moving average waveform of the negative waveform appearance ratio.
  • FIG. 35 shows experimental data of the same subject as in FIG. 33
  • FIG. 35 (f) shows a graph in which the bottom point, which is the start point of the cycle, is plotted on the moving average waveform of the appearance ratio of the negative waveform.
  • the baseline is almost constant, the frequency is stable, and the amplitude is small.
  • the fluctuation occurs from the time of initial urination declaration, and the amplitude becomes longer and the period becomes longer.
  • the amplitude tends to converge as it approaches the maximum urine time (limit time).
  • FIG. 36 shows different experimental data of the same subject as FIG. Similarly, looking at the graph in the lowermost column of FIG. 36 (f), the frequency is almost constant, although the baseline is unstable until the first urine declaration.
  • the amplitude is greatly changed once and the cycle is changed. After that, although the period is stabilized, the amplitude increases again around 140 to 150 minutes.
  • the urinary / sleepiness graph (FIG. 36 (d))
  • fluctuations in sleepiness occur and urinary sensation is temporarily reduced.
  • the maximum urinary intention at the limit
  • FIG. 37 shows data of different subjects, as shown in FIG. 37 (f), there are fluctuations in the amplitude and period when reporting the intention to urinate for the first time. There are fluctuations in amplitude and period at the timing when time passes. And, it tends to converge as it approaches the maximum urine time (at the limit).
  • FIG. 38 shows data of still different subjects, and from FIG. 38 (e), changes in amplitude, period, and baseline inclination are seen around 50 minutes. At this point in time, he does not feel urine, but the change corresponds to the fact that sympathetic nerve activity is activated with LF / HF being dominant. The amplitude and period also fluctuate even when the initial urine declaration near 90 minutes is present, and the amplitude tends to converge near the limit.
  • FIG. 39 shows further different subject data.
  • this subject has increased drowsiness from 30 minutes after the start of the experiment until near the time of reporting the intention to urinate.
  • the slope of the baseline increases to the right with increasing sleepiness until around 70 minutes. After that, the slope of the baseline changes and the fluctuation of the cycle is observed as it approaches the time of reporting the intention of first urination, and the amplitude tends to converge near the limit time.
  • the fluctuation of fluctuation such as the amplitude, period, baseline, etc. of the moving average waveform of the negative waveform appearance ratio, appears as shown above, and it is suggested that urinary intention can be captured. Not only that, but also changes corresponding to changes in sleepiness and autonomic nerve activity, it is an index that can be used to capture various changes in the biological state.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Data Mining & Analysis (AREA)
  • Vascular Medicine (AREA)
  • Primary Health Care (AREA)
  • Databases & Information Systems (AREA)
  • Epidemiology (AREA)
  • Signal Processing (AREA)
  • Psychiatry (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Ophthalmology & Optometry (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Developmental Disabilities (AREA)
  • Child & Adolescent Psychology (AREA)
  • Educational Technology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychology (AREA)
  • Social Psychology (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本発明は、人の背部から採取される生体の音及び振動を含む生体信号情報(背部体表脈波)の時系列波形を用いる。背部体表脈波は、心臓と大動脈の運動から生じる圧力振動であり、心室の収縮期及び拡張期の情報と、循環の補助ポンプとなる血管壁の弾力情報を含んでおり、粘性減衰摩擦と固体摩擦の両種の減衰を含む振動系と捉えられる。また、心臓から送り出される血液の流量(1回拍出量)に対応して変動し、この流量の変動は、背部体表脈波の時系列波形の振幅に反映される。そこで、自由減衰振動波形の減衰比を算出する解法を応用し、1心周期内の所定の波形成分、好ましくは増幅期における2つの波形成分の振幅を対比することで、生体状態、特に、血圧と関連した生体状態を把握することができる。

Description

生体状態推定装置、生体状態推定方法、コンピュータプログラム及び記録媒体
 本発明は、生体信号から生体状態を推定する生体状態推定装置、生体状態推定方法、コンピュータプログラム及び記録媒体に関する。
 本発明者らは、特許文献1~5等において、人の上体の中で背部の体表面に生じる振動を生体信号測定装置により検出し、人の状態を解析する技術を提案している。人の上体背部から検出される心臓と大動脈の運動から生じる音・振動情報は、心臓と大動脈の運動から生じる圧力振動であり、心室の収縮期及び拡張期の情報と、循環の補助ポンプとなる血管壁の弾力情報及び反射波の情報を含んでいる。すなわち、心臓と大動脈の運動から背部表面に生じる1Hz近傍の背部体表脈波(Aortic Pulse Wave(APW))を含む振動や、心拍に伴って背部側に伝わる音(「疑似心音」(本明細書では胸部側から採取される心臓の音である心音に対して、背部側で採取される心臓の音を「疑似心音」とする))の情報を含んでいる。そして、心拍変動に伴う信号波形は交感神経系及び副交感神経系の神経活動情報を含み、大動脈の揺動に伴う信号波形は交感神経活動の情報を含んでいる。
 特許文献1では、採取した生体信号(音・振動情報)から抽出した1Hz近傍の背部体表脈波(APW)の時系列波形に所定の時間幅を適用してスライド計算を行って周波数傾きの時系列波形を求め、その変化の傾向から、例えば、振幅が増幅傾向にあるか、減衰傾向にあるかなどによって生体状態の推定を行っている。また、生体信号を周波数解析し、予め定めたULF帯域(極低周波帯域)からVLF帯域(超低周波帯域)に属する機能調整信号、疲労受容信号及び活動調整信号に相当する各周波数のパワースペクトルを求め、各パワースペクトルの時系列変化から人の状態を判定することも開示している。疲労受容信号は、通常の活動状態における疲労の進行度合いを示すため、これに併せて、機能調整信号や活動調整信号のパワースペクトルの優勢度合いを比較することにより、人の状態(交感神経優位の状態、副交感神経優位の状態など)を判定することができる。また、これら3つの信号に相当する周波数成分のパワースペクトルの値の合計を100とした際の各周波成分の分布率を時系列に求め、その分布率の時系列変化を利用して人の状態を判定することも開示している。
 特許文献2では、生体状態の定量化手法として、生体状態を体調マップ及び感覚マップとして表示する技術を提案している。これは、上記した背部体表脈波(APW)を周波数分析し、対象となる解析区間について、解析波形を両対数軸表示に表し、その解析波形を低周波帯域、中周波帯域、高周波帯域に分け、区分けした解析波形の傾きと、全体の解析波形の形とから一定の基準に基づいて解析波形の点数化を行い、それを座標軸にプロットしたものである。体調マップは、自律神経系の制御の様子を交感神経と副交感神経のバランスとして見たものであり、感覚マップは、体調マップに心拍変動の変化の様子を重畳させたものである。
 特許文献3~5では、恒常性維持機能レベルを判定する手段を開示している。恒常性維持機能レベル判定する手段は、周波数傾き時系列波形の微分波形の正負、周波数傾き時系列波形を積分した積分波形の正負、ゼロクロス法を利用した周波数傾き時系列波形とピーク検出法を利用した周波数傾き時系列波形をそれぞれ絶対値処理して得られた各周波数傾き時系列波形の絶対値等のうち、少なくとも1つ以上を用いて判定する。これらの組み合わせにより、恒常性維持機能のレベルがいずれに該当するかを求める。
特開2011-167362号公報 特開2012-239480号公報 WO2011/046178号公報 特開2014-117425号公報 特開2014-223271号公報
 上記した技術は、いずれも、生体調節機能に関してゆらぎに起因して変動する各要素を分析して人の状態を判定するものであり、入眠予兆現象、切迫睡眠現象、覚低走行状態、恒常性維持機能レベル、初期疲労状態、気分判定など、様々な生体状態を捉えることができる。しかしながら、体幹から採取される生体の音及び振動を含む生体信号を加工処理して疑似心音波形を求め、この疑似心音波形を分析して、疑似心音波形における所定の波形成分を比較して、人の生体状態を推定することは行われていない。また、血圧変動の状態、並びに、血圧変動を伴う生理現象、特に尿意を捉える試みも行われていない。
 本発明は上記に鑑みなされたものであり、体幹から採取される生体の音及び振動を含む生体信号を加工処理して求めた疑似心音波形を分析して生体状態を捉えることができる生体状態推定装置、生体状態推定方法、コンピュータプログラム及び記録媒体を提供することを課題とし、特に、血圧変動そのものの状態、あるいは、血圧変動を伴う生理現象の推定、特に、尿意の有無を含む尿意の状態を捉えることができる生体状態推定装置、生体状態推定方法、コンピュータプログラム及び記録媒体を提供することを課題とする。
 上記課題を解決するため、本発明の生体状態推定装置は、生体信号を用いて生体の状態を推定する生体状態推定装置であって、
 前記生体信号として、心臓から送り出される血液の流量に対応して変動する人の背部から採取される背部生体音・振動情報を処理して得られる心音の周期に対応した疑似心音波形を用い、前記疑似心音波形における所定の波形成分を比較して、生体状態を推定する生体状態推定手段を有することを特徴とする。
 前記生体状態推定手段は、前記疑似心音波形の1心周期内に含まれる2つの波形成分の振幅を比較して生体状態を推定することが好ましい。
 前記生体状態推定手段は、前記波形成分の2つの振幅(i,i+1)について、一方を横座標軸に他方を縦座標軸にとった座標系に時系列にプロットし、各プロットされた点群の分散状況から生体状態を推定することが好ましい。
 前記生体状態推定手段は、前記各プロットされた点群の傾きから生体状態を推定することが好ましい。
 前記生体状態推定手段は、前記疑似心音波形の各心周期における振幅変化のパターンを比較して生体状態を推定することが好ましい。
 前記生体状態推定手段は、前記疑似心音波形の各心周期における振幅変化のパターンとして、各心周期において振幅が最も高くなる最高ピークに対し、振幅が最も低くなる最低ボトムが、前記最高ピークの直後に出現する正の波形パターンと直前に出現する負の波形パターンとに分け、2つの波形パターンの一定時間における出現比率から生体状態を推定することが好ましい。
 前記生体状態推定手段は、前記疑似心音波形から、前記生体状態として、血圧変動の状態を推定する血圧変動推定手段を有することが好ましい。
 前記生体状態推定手段は、前記疑似心音波形から、前記生体状態として、生理現象を推定する生理現象推定手段を有することが好ましい。
 前記生理現象推定手段が、尿意を推定する手段であることが好ましい。
 また、本発明のコンピュータプログラムは、コンピュータに、生体信号を処理して生体の状態を推定する手順を実行させるコンピュータプログラムであって、
 前記コンピュータに、前記生体信号として、心臓から送り出される血液の流量に対応して変動する人の背部から採取される背部生体音・振動情報を処理して得られる心音の周期に対応した疑似心音波形を用い、前記疑似心音波形における所定の波形成分を比較して、生体状態を推定する生体状態推定手順を実行させることを特徴とする。
 前記生体状態推定手順は、前記疑似心音波形の1心周期内に含まれる2つの波形成分の振幅を比較して生体状態を推定することが好ましい。
 前記生体状態推定手順は、前記波形成分の2つの振幅(i,i+1)について、一方を横座標軸に他方を縦座標軸にとった座標系に時系列にプロットし、各プロットされた点群の分散状況から生体状態を推定することが好ましい。
 前記生体状態推定手順は、前記各プロットされた点群の傾きから生体状態を推定することが好ましい。
 前記生体状態推定手俊は、前記疑似心音波形の各心周期における振幅変化のパターンを比較して生体状態を推定することが好ましい。
 前記生体状態推定手順は、前記疑似心音波形の各心周期における振幅変化のパターンとして、各心周期において振幅が最も高くなる最高ピークに対し、振幅が最も低くなる最低ボトムが、前記最高ピークの直後に出現する正の波形パターンと直前に出現する負の波形パターンとに分け、2つの波形パターンの一定時間における出現比率から生体状態を推定することが好ましい。
 前記生体状態推定手順は、前記疑似心音波形から、前記生体状態として、血圧変動の状態を推定する血圧変動推定手順を実行することが好ましい。
 前記生体状態推定手順は、前記疑似心音波形から、前記生体状態として、生理現象を推定する生理現象推定手順を実行することが好ましい。
 前記生理現象推定手順が、尿意を推定する手順を実行することが好ましい。
 また、本発明は、生体状態推定装置としてのコンピュータに、生体信号を処理して生体の状態を推定する手順を実行させる前記に記載のコンピュータプログラムが記録されたコンピュータ読み取り可能な記録媒体を提供する。
 また、本発明の生体状態推定方法は、生体信号を用いて生体の状態を推定する生体状態推定方法であって、前記生体信号として、心臓から送り出される血液の流量に対応して変動する人の背部から採取される背部生体音・振動情報を処理して得られる心音の周期に対応した疑似心音波形を用い、前記疑似心音波形における所定の波形成分を比較して、生体状態を推定することを特徴とする。
 また、本発明の生体状態推定方法は、前記疑似心音波形の1心周期内に含まれる2つの波形成分の振幅を比較して生体状態を推定することが好ましく、また、前記波形成分の2つの振幅(i,i+1)について、一方を横座標軸に他方を縦座標軸にとった座標系に時系列にプロットし、各プロットされた点群の分散状況から生体状態を推定することが好ましい。前記各プロットされた点群の傾きから生体状態を推定することが好ましい。前記疑似心音波形の各心周期における振幅変化のパターンを比較して生体状態を推定することも好ましい。前記疑似心音波形の各心周期における振幅変化のパターンとして、各心周期において振幅が最も高くなる最高ピークに対し、振幅が最も低くなる最低ボトムが、前記最高ピークの直後に出現する正の波形パターンと直前に出現する負の波形パターンとに分け、2つの波形パターンの一定時間における出現比率から生体状態を推定することが好ましい。前記疑似心音波形から、前記生体状態として、血圧変動、尿意を含む生理現象のいずれか少なくとも一つの状態を推定することが好ましい。
 本発明は、人の背部から採取される生体の音及び振動を含む生体信号(背部音・振動情報)の時系列波形を用いる。背部音・振動情報には、心臓と大動脈の運動から生じる圧力振動であり、心室の収縮期及び拡張期の情報と、循環の補助ポンプとなる血管壁の弾力情報を含んでおり、粘性減衰摩擦と固体摩擦の両種の減衰を含む振動系と捉えられる。背部音・振動情報は、心臓から送り出される血液の流量(1回拍出量)に対応して変動し、この流量の変動は、背部音・振動情報の時系列波形の振幅に反映される。すなわち、心臓からの血液の拍出量が反映された背部音・振動情報は、胸部側より心音計により採取される心音の波形に周期が対応する波形成分(疑似I音、疑似II音)を含んでおり、この波形成分を持つ波形(疑似心音波形)を分析することにより、人の生体状態を把握することができる。なかでも、心臓からの血液の拍出量の変動に対応する血圧変動に関連した生体状態を把握するのに適している。
 また、血圧変動の状態を推定に適するため、特に、血圧変動を伴う人の生理現象の状態の推定に好適である。例えば、蓄尿時には、通常、血圧が上昇する傾向にあるが、血圧変動の状態を捉えることで、尿意を推定することができる。
図1(a)は、本発明の一の実施形態において用いた背部音・振動情報を測定する生体信号測定装置の一例を示した分解図であり、図1(b)は、その要部断面図である。 図2は、本発明の一の実施形態に係る生体状態推定装置の構成を模式的に示した図である。 図3は、背部音・振動情報加工手段として機能するコンピュータプログラムである背部音・振動情報加工手順のフローチャートである。 図4(a)~(f)は、背部音・振動情報加工手段、疑似心音波形演算手段、低周波時系列波形演算手段により得られる各時系列波形を示した図である。 図5は、実験例1の被験者の身体的特徴を示した図である。 図6(a)~(l)は、実験例1における被験者Cの実験結果を示した図である。 図7(a)~(l)は、実験例1における被験者Aの実験結果を示した図である。 図8(a)~(l)は、実験例1における被験者Fの実験結果を示した図である。 図9は、実験例1における各被験者のRRIと疑似心音波形から得られたPPWg-Dとの相関図であり、(a)は被験者A、(b)は被験者B、(c)は被験者C、(d)は被験者D、(e)は被験者E、(f)は被験者Fの相関図である。 図10は、実験例1における各被験者の5秒間の平均値で計算したRRIとPPWg-DRRIとの相関図であり、(a)は被験者A、(b)は被験者B、(c)は被験者C、(d)は被験者D、(e)は被験者E、(f)は被験者Fの相関図である。 図11は、実験例1における各被験者のPCG-PPWg-DとRRIとの相関図であり、(a)は被験者A、(b)は被験者B、(c)は被験者C、(d)は被験者D(但し、「No data」と表示)、(e)は被験者E(但し、「No data」と表示)、(f)は被験者Fの相関図である。 図12は、実験例1における各被験者のPCG-PPWg-Dの5秒間の平均値とRRIとの相関図であり、(a)は被験者A、(b)は被験者B、(c)は被験者C、(d)は被験者D(但し、「No data」と表示)、(e)は被験者E(但し、「No data」と表示)、(f)は被験者Fの相関図である。 図13は、実験例1における各被験者のPPG-2ndとRRIとの相関図であり、(a)は被験者A、(b)は被験者B、(c)は被験者C、(d)は被験者D、(e)は被験者E、(f)は被験者Fの相関図である。 図14は、実験例1における各被験者のPPG-2ndの5秒間の平均値とRRIとの相関図であり、(a)は被験者A、(b)は被験者B、(c)は被験者C、(d)は被験者D、(e)は被験者E、(f)は被験者Fの相関図である。 図15は、最大振幅値で正規化したPPWg-Dに対する最大振幅値で正規化したPCG-PPWg-D及びPPG-2ndの各周波数と伝達関数の関係を示した図であり、(a)は被験者A、(b)は被験者B、(c)は被験者C、(d)は被験者D、(e)は被験者E、(f)は被験者Fに関する図である。 図16は、PPWg-Dの時系列波形の一例を示した図である。 図17は、隣接する2つの振幅(i,i+1)について、一方を横座標軸に他方を縦座標軸にとった座標系に時系列にプロットした点の分散状況の一例を示した図である。 図18(a)は、PCG-PPWg-Dについて図17と同様にプロットした点の分散状況を示した図であり、図18(b)は、PPG-2ndについて図17と同様にプロットした点の分散状況を示した図である。 図19は、PPWg-Dにおけるamplification (2)のプロットされた点群の傾き角度と血圧との関係を示した図であり、(a)は最高血圧、(b)は最低血圧との関係を示した図である。 図20は、図18(a)のPCG-PPWg-Dの結果と血圧との相関を示した図で、(a)は最高血圧、(b)は最低血圧との関係を示した図である。 図21は、図18(b)のPPG-2ndの結果と血圧との相関を示した図で、(a)は最高血圧、(b)は最低血圧との関係を示した図である。 図22は、本発明の他の実施形態に係る生体状態推定装置の構成を模式的に示した図である。 図23は、上記他の実施形態に係る生体状態推定装置の生理現象推定手段による推定手法を説明するための図である。 図24(a),(b)は、プロットの分布密度により尿意を推定する手法を説明するための図である。 図25(a)~(c)は、実験例2における被験者Aの解析結果を示した図である。 図26(a)~(e)は、上記他の実施形態の生理現象推定手段により求めた尿意の推定結果である。 図27(a)は、尿意と最高血圧との関係を示し、図27(b)は、尿意と最低血圧との関係を示した図である。 図28は、負の波形パターンの出現比率を用いて尿意を推定する手法を説明するための図である。 図29は、被験者Aの実験結果を示した図であり、図29(a)は、尿意と眠気との主観評価を示し、図29(b)は、最高血圧と最低血圧を示し、図29(c)は、HFとLF/HFを示し、図29(d)は、負の波形パターンの出現比率を示した図である。 図30は、負の波形パターンの出現比率において尿意の有無を判定する判定基準の一例を説明するための図である。 図31は、被験者Bの実験結果を示した図であり、図31(a)は、尿意と眠気との主観評価を示し、図31(b)は、最高血圧と最低血圧を示し、図31(c)は、HFとLF/HFを示し、図31(d)は、負の波形パターンの出現比率を示した図である。 図32(a)~(e)は、負の波形パターンの出現比率から尿意を迅速に判定する方法を説明するための図である。 図33(a)~(f)は、図32の手法により尿意を判定した例を示した図である。 図34(a)~(d)は、負の波形パターンの出現比率から生体状態を推定する他の手法説明するための図である。 図35(a)~(f)は、図34の手法により尿意を含む生体状態を判定したある被験者の例を示した図である。 図36(a)~(f)は、図34の手法により尿意を含む生体状態を判定した図35と同じ被験者の他の例を示した図である。 図37(a)~(f)は、図34の手法により尿意を含む生体状態を判定した異なる被験者の例を示した図である。 図38(a)~(e)は、図34の手法により尿意を含む生体状態を判定したさらに異なる被験者の例を示した図である。 図39 (a)~(f)は、図34の手法により尿意を含む生体状態を判定したさらに異なる被験者であって強い眠気を伴う場合の事例を示した図である。
 以下、図面に示した本発明の実施形態に基づき、本発明をさらに詳細に説明する。本発明において採取する生体信号は、背部音・振動情報である。背部音・振動情報は、上記のように、人の上体背部から検出される心臓と大動脈の運動から生じる音・振動情報であり、心室の収縮期及び拡張期の情報と、血液循環の補助ポンプとなる血管壁の弾性情報及び血圧による弾性情報並びに反射波の情報を含んでいる。従って、この背部音・振動情報の時系列波形を加工処理することで、心音計により測定される心音波形に近似した疑似心音波形を作ることができ、それを解析することで、1回拍出量及び血管の抵抗の様子、すなわち、血圧変動の状態を把握することができる。
 背部音・振動情報を採取するための生体信号測定装置は、好ましくは、(株)デルタツーリング製の居眠り運転警告装置(スリープバスター(登録商標))で使用されている生体信号測定装置1を用いる。図1は生体信号測定装置1の概略構成を示したものである。この生体信号測定装置1は、測定用の椅子、ベッド、あるいは、乗物の運転席等に組み込んで使用することができ、手指を拘束することなく生体信号を採取できる。
 生体信号測定装置1を簡単に説明すると、図1(a),(b)に示したように、上層側から順に、第一層11、第二層12及び第三層13が積層された三層構造からなり、三次元立体編物等からなる第一層11を生体信号の検出対象である人体側に位置させて用いられる。従って、人体の体幹背部からの生体信号、特に、心室、心房、大血管の振動に伴って発生する生体音(体幹直接音ないしは生体音響信号)を含む背部音・振動情報は、生体信号入力系である第一層11にまず伝播される。第二層12は、第一層11から伝播される背部音・振動情報を共鳴現象又はうなり現象によって強調させる共鳴層として機能し、ビーズ発泡体等からなる筐体121、固有振動子の機能を果たす三次元立体編物122、膜振動を生じるフィルム123を有して構成される。第二層12内において、マイクロフォンセンサ14が配設され、背部音・振動情報を検出する。第三層13は、第二層12を介して第一層11の反対側に積層され、外部からの音・振動入力を低減する。
 次に、本実施形態の生体状態推定装置100の構成について図2に基づいて説明する。生体状態推定装置100は、生体状態推定手段200を有して構成される。生体状態推定手段200は、背部音・振動情報加工手段210、疑似心音波形演算手段220、低周波時系列波形演算手段230及び血圧変動推定手段240を有して構成されている。生体状態推定装置100は、コンピュータ(マイクロコンピュータ等も含む)から構成され、このコンピュータには、背部音・振動情報加工手段210、疑似心音波形演算手段220、低周波時系列波形演算手段230及び血圧変動推定手段240を有する生体状態推定手段200として機能する、生体状態推定手順を実施する背部音・振動情報加工手順、疑似心音波形演算手順、低周波時系列波形演算手順及び血圧変動推定手順を実行させるコンピュータプログラムが記憶部に設定されている。生体状態推定手段200は、背部音・振動情報加工手段210、疑似心音波形演算手段220、低周波時系列波形演算手段230及び血圧変動推定手段240を、上記コンピュータプログラムにより所定の手順で動作する電子回路である背部音・振動情報加工回路、疑似心音波形演算回路、低周波時系列波形演算回路及び血圧変動推定回路として構成することもできる。なお、以下の説明において、生体状態推定手段200、背部音・振動情報加工手段210、疑似心音波形演算手段220、低周波時系列波形演算手段230及び血圧変動推定手段240以外で「手段」が付されて表現された構成も、電子回路部品として構成することが可能であることはもちろんである。
 なお、コンピュータプログラムは、コンピュータ読み取り可能な記録媒体に記憶させてもよい。この記録媒体を用いれば、例えば上記コンピュータに上記プログラムをインストールすることができる。ここで、上記プログラムを記憶した記録媒体は、非一過性の記録媒体であっても良い。非一過性の記録媒体は特に限定されないが、例えば フレキシブルディスク、ハードディスク、CD-ROM、MO(光磁気ディスク)、DVD-ROM、メモリカードなどの記録媒体が挙げられる。また、通信回線を通じて上記プログラムを上記コンピュータに伝送してインストールすることも可能である。
 背部音・振動情報加工手段210は、生体信号測定装置1のセンサ14から得られる背部音・振動情報(以下、「原波形」というが、ここでいう原波形には、体動等の分析に使用しない成分をフィルタリング等による前処理した後の波形の場合も含む))に所定の処理を施し、疑似心音波形に加工する手段である。
 背部音・振動情報加工手段210として機能するコンピュータプログラムである背部音・振動情報加工手順は、具体的には、図3のフローチャートに示したステップによって実行される。まず、背部音・振動情報の原波形RC0(図4(a)の波形)をセンサ14から得る(S10)。次に、中心周波数20Hz近傍のバンドパスフィルタ、例えば、10~30Hzのバンドパスフィルタをかけ、波形RC1(図4(b)の波形)を得る(S11)。このフィルタリング処理により得られる波形RC1には、図4(b)に示したように、約1秒周期で相対的に大きな振幅の波形成分が出現している。心拍数は約1~1.5Hz前後が標準的な範囲であり、波形RC1の大きな振幅の波形成分の周期は心周期に相当し、この波形成分中に、振幅の疑似I音、II音が含まれている。従って、本実施形態では、この波形RC1が第1の疑似心音波形となる。
 疑似心音波形演算手段220は、背部音・振動情報加工手段210により得られた波形RC1(第1の疑似心音波形)に対し、心音波形における心音I音、II音に相当する疑似I音、II音の周期を切り出すために、クリップ処理を適用して歪みを与え、奇数倍の周波数を持つ時系列波形(図4(c)の波形)を求める(S12)。なお、クリップ処理時の振幅の閾値は心音I音、II音に相当する時間幅が確保できる位置に設ける。次に、クリップした箇所以外の信号を除き、疑似I音、II音を強調し、心音の波形にさらに近似させるため、ハイパスフィルタを適用し(S13)、疑似I音、II音を顕在化させた第2の疑似心音波形(図4の(d)の波形)を得る(S14)。
 低周波時系列波形演算手段230は、疑似心音波形演算手段220により求められた第2の疑似心音波形(図4(d)の波形)から、疑似I音及び疑似II音の周期を顕在化させるため、第2の疑似心音波形を所定周波数以下の低周波時系列波形(いわば第3の疑似心音波形)(図4(e),(f)の波形)に変換する手段である。
 低周波時系列波形演算手段230として機能するコンピュータプログラムである低周波時系列波形演算手順は、具体的には、図3のフローチャートに示したように、第2の疑似心音波形に半波整流(S15)、検波(S16)を適用し、疑似心音ゲージ波形(Gauge Waveform of Pseudo Phonocardiogram 、以下、「PPWg」、図4(e)の波形)を得る(S17)。なお、検波の範囲は、人の血圧の変動状態を捉えるため、1Hz近傍の卓越周波数から該卓越周波数の5倍までとする。この点については後述の実験例1でも説明する。次に、PPWgを一階微分して(S18)、PPWgの一階微分信号波形(以下、「PPWg-D」)を得る(S19)。
 血圧変動推定手段240は、上記の疑似心音波形(第1の疑似心音波形であるRC1波形(図4(b)の波形)、第2の疑似心音波形(図4(d)の波形)又はその処理波形(図4(e),(f)の波形))の振幅変動を解析して、血圧変動の状態を推定する手段である。上記のように、背部音・振動情報は、体内の生体音及び振動を含む生体信号であり、その強弱は疑似心音波形の振幅に現れ、1回拍出量及び血管の抵抗に影響を受ける。このため、疑似心音波形の振幅変動を分析することで、1回拍出量及び血管の抵抗の変動である血圧変動の状態を推定できる。
 また、背部音・振動情報は、上記のように、心臓と大動脈の運動から生じる圧力振動であり、心室の収縮期及び拡張期の情報と、循環の補助ポンプとなる血管壁の弾力情報を含んでいる。従って、粘性減衰摩擦と固体摩擦の両種の減衰を含む振動系と捉えることができ、これに自由減衰振動波形の減衰比を算出する図式解法を応用できる。すなわち、加速度脈波に関しては、高血圧により反射波が増大して、収縮後期再下降波成分(d波)が増大し、加速度脈波のd/a(a波:収縮初期陽性波)と収縮期血圧(SBP)との間に相関があることが知られているが、本発明は、加速度脈波のd/aに代わる指標として、疑似心音波形の増幅特性を表す対数増幅率を用いる。そして、対数増幅率を、1自由度系の自励振動から求めた見かけの減衰比だけを用いて表し、自由減衰振動波形の減衰比を算出する手法を適用する。
 より具体的には、血圧変動推定手段240は、上記のいずれかの疑似心音波形における1心周期に相当する疑似I音の波形成分の始点から疑似II音の波形成分の終点までの間において、隣接する2つの振幅(i,i+1)について、一方を横座標軸に他方を縦座標軸にとった座標系に時系列にプロットし、各プロットされた点群の分散状況から血圧変動の状態を推定する(図17参照)。
 このように本実施形態の血圧変動推定手段240は、疑似心音波形のうちの所定の波形成分として、疑似I音の波形成分の始点から疑似II音の波形成分の終点までの間において、隣接する2つの振幅(i,i+1))を用いて、好ましくは、後述のように疑似I音の増幅期において隣接する2つの振幅を用いて血圧変動を推定している。すなわち、コンピュータによる推定のための演算処理は、疑似心音波形を抽出した後は、特定の波形成分に関してのみ解析すればよい。そして、このようにして求めた振幅比を示す点群の分散状況を後述のように近似線の傾き角度を用いて血圧との関係を推定できるため、時系列波形の変化パターンで比較する場合と比べ、血圧と近似線の傾き角度との相関データを予め記憶部に記憶させておけば、それを判定対象の近似線の傾き角度と比較すればよく、判定時におけるコンピュータの負荷の軽減、演算処理速度の向上につながる手法である。
・実験例1
(実験方法)
 生体信号測定装置として生体信号測定装置1がシートバック部に装着された実験用の自動車用シートに被験者を着座させ、安静状態、座位姿勢で、生体信号測定装置1により背部音・振動情報を採取した。コンピュータである生体状態推定装置100によって背部音・振動情報のデータを分析した。同時に、心電図(以下「ECC」、計測機器:日本光電工業(株)製、ベッドサイドモニタ BSM-2300シリーズライフスコープI)、心音図(以下、「PCG」、計測機器:日本光電工業(株)製、心音脈波アンプ AS101D及びTA701T)、指尖容積脈波(以下、「PPG」、計測機器:(株)アムコ製 フィンガークリッププローブSR-5C)を測定して比較した。なお、心音計による計測は人の胸部前面から行った。被験者はインフォームドコンセント後に書面にて同意を得た健常な20歳代の男性ボランティア6名(25.0±2.9歳)であり、体格等の身体的特徴は図5に示したとおりであった。いずれも、肥満指数(BMI値)は、18.5以上25未満であり、標準体格の被験者であった。
 計測時間は15分間であり、サンプリング周波数1000Hzで、A/Dコンバータ(日本光電工業(株)製 Power Lab 8/30)による周期・連続計測を実施した。なお、計測開始から5分間の計測データは計測対象とせず、計測環境に慣れたと考えられる計測開始から5分経過以降の10分間のデータを計測対象とした。また、解析対象は体動等の少ない安定したデータが計測できたと考えられる計測開始から5分間経過後さらに60秒後から540秒後まで(すなわち計測開始から6分から14分の間)の480秒間とした。図3のS12のステップで実施するクリップ処理の閾値は、S11のバンドパスフィルタによる処理により得られた第1の疑似心音波形であるRC1波形の振幅の最大値の20%とした。また、実験時における被験者の行動記録から体動が発生した箇所は解析対象外とした。
 また、15分間の計測後に、上腕用家庭用血圧計(オムロンHEM-7051)を用いて、上腕の収縮期血圧(SBP)、拡張期血圧(DBP)の計測を行った。
(実験結果)
 図6~図8は、実験結果として、被験者C、被験者A、被験者Fの事例を示したものである。図6の被験者Cは、心拍数は56回/分、SBPは114mmgHg、DBPは68mmHgであり、図7の被験者Aは、全被験者中で最も心拍数が高く、心拍数は68回/分、SBPは121mmgHg、DBPは73mmHgであった。図8の被験者Fは、心拍数は63回/分、SBPは111mmgHg、DBPは67mmHgで、SBP、DBP共に低い事例である。
 なお、図6~図8において、(a)はECGを示し、(b)は生体信号測定装置1により人の背部である胸部後面から採取したり背部音・振動情報RC0である(図3のS10)。(c)は、RC0に10~30Hzのバンドパスフィルタを適用して求めた第1の疑似心音波形であるRC1波形であり(図3のS11)、(d)は、RC1にクリップ処理を施した波形(図3のS12)で、(e)はさらに遮断周波数40Hzでハイパスフィルタを適用して求めた第2の疑似心音波形(疑似I音、疑似II音を含む)である(図3のS13,S14)。(f)は、(e)の第2の疑似心音波形を半波整流し(図3のS15)、さらに卓越周波数(0.93Hz)からその5倍(4.65Hz)までのバンドパスフィルタを適用して求めたPPWgであり(図3のS16,S17)、(g)は、(f)のPPWgを微分して求めたPPWg-Dである(図3のS18,S19)。(h)は、PCGの時系列波形であり、(i)は、PCGに半波整流を施し、卓越周波数(0.93Hz)からその5倍(4.65Hz)までのバンドパスフィルタを適用して求めた時系列波形(以下、「PCG-PPWg」)であり、(j)は、その微分波形(以下、「PCG-PPWg-D」)である。(k)は、PPGの時系列波形であり、(l)は(k)の2階微分波形(以下、「PPG-2nd」)である。
(考察)
 表1は、被験者A~Fの6名分のRRIと疑似心音波形から得られたPPWg-Dとの心周期の相関を示す。全被験者の相関係数は、p<0.05となり、有意な相関が示された。図9は、相関図を示し、横軸はRRI、縦軸はPPWg-Dである。
Figure JPOXMLDOC01-appb-T000001
 表2は、5秒間の平均値で計算したRRIと疑似心音波形から得られたPPWg-Dとの相関を示す。全被験者の相関係数は、p<0.05となり、有意な相関が示された。図10は、相関図を示し、横軸はRRI、縦軸はPPWg-Dである。
Figure JPOXMLDOC01-appb-T000002
 5秒間の平均値で計算した心周期の方が、全被験者において、相関係数並びに傾きが0.9以上を示した。以上の結果から、心拍変動を捉える場合は5秒間の平均値から求めた時系列波形を使うことが生体解析に有意な相関が得られるといえる。
 表3は、PCG-PPWg-DとRRIの相関関係を示す。 図11は、相関図を示し、横軸はRRI、縦軸はPCG-PPWg-Dである。
Figure JPOXMLDOC01-appb-T000003
 表4は、PCG-PPWg-Dの5秒間の平均値とRRIとの相関関係を示す。図12は、相関図を示し、横軸はRRI、縦軸はPCG-PPWg-Dである。
Figure JPOXMLDOC01-appb-T000004
 図11及び図12は、いずれも全被験者の相関係数0.9以上、p<0.05と高い相関を示した。
 表5は、PPG-2ndとRRIとの相関関係を示す。図13は、相関図を示し、横軸はRRI、縦軸はPPG-2ndである。
Figure JPOXMLDOC01-appb-T000005
 全被験者の相関係数は0.9以上、p<0.05と高い相関を示した。
 表6は、PPG-2ndの5秒間の平均値とRRIとの相関関係を示す。図14は、相関図を示し、横軸はRRI、縦軸はPPG-2ndである。
Figure JPOXMLDOC01-appb-T000006
 全被験者の相関係数は0.9以上、p<0.05と高い相関を示した。しかし、PPG-2ndでは、相関係数が、1拍毎で0.994(表5及び図13)、5秒間の平均値で0.981(表6及び図14)であり、5秒間の平均値の方が低かった。従って、脈波伝播速度等によって遅れが生じるものについては、機械的に処理する場合、5秒間の平均値を用いない方が精度が向上する場合がある。
 図15は、最大振幅値で正規化したPPWg-Dに対する最大振幅値で正規化したPCG-PPWg-D及びPPG-2ndの各周波数帯を除することによって無次元化したものである。縦軸の値が1に近いほどその周波数成分が同一であり、このことから、卓越周波数の3~4倍の周波数帯が重要であると考えられ、PPWgを得るためのフィルタ範囲としては、卓越周波数の1~5倍が適当である。
 図16は、疑似心音波形演算手段220により求めた第2の疑似心音波形をもとに、低周波時系列波形演算手段230により求めたPPWg-Dの時系列波形の一例(被験者Cのデータ)を示したものであり、図17は、図16の時系列波形の振幅変動に、血圧変動推定手段240において、自由減衰振動波形の減衰比を算出する手法を適用したものである。
 図17では、図16のA(N)とA(N+1)をamplification (1)とし、A(N+1)とA(N+2)をamplification (2)とし、A(N+2)とA(N+3)をdamping (1)とし、A(N+3)とA(N+4)をdamping (2)とし、A(N+4)とA(N+5)をdamping (3)とし、これを、1心周期(疑似I音の波形成分の始点から、疑似II音の波形成分の終点までの間)毎に求めてプロットした。図17中、破線Bよりも下方にプロットされた点は振幅の増幅を意味し、破線Bより上方にプロットされた点は振幅の減衰を意味する。
 ここで、血圧変動推定手段240は、プロットされた点群の分散状況を評価するにあたって、疑似I音に相当するところに注目した。疑似I音に対応する心音計により測定される心音I音が血圧に高い相関を有していることが知られており、中でも、増幅期が自励振動に相当するため、そのプロットされた点群の分散状況が血圧に相関を示すと考えられ、最高ピーク(1心周期の波形成分中、基準線よりも正側に振幅の最高値を示した箇所)を有する顕著な増幅傾向を示すamplification (2)のプロットされた点群の分散状況に着目して、生体状態を推定する。ブロットされた点群の分散状況として、血圧変動推定手段240は、amplification (2)のプロットされた点群に、最小二乗法による近似線を引き、X軸とのなす傾きの角度を算出し、血圧との相関を推定する。
 なお、図18(a)は、PCG-PPWg-Dについて図17と同様の処理によるプロットされた点の分散状況を示した図であり、図18(b)は、PPG-2ndについて図17と同様の処理によるプロットされた点の分散状況を示した図である。
 図19は、本実施形態の背部体表脈波から求めたPPWg-Dにおけるamplification (2)のプロットされた点群の傾き角度と血圧との関係を6名の全被験者について示した図である。(a)は最高血圧、(b)は最低血圧との関係を示す。なお、図中、矢印は、図17で取り上げた被験者Cのデータ(傾き角度)を示す。SBPとの相関係数は0.941、DBPとの相関係数は0.849であり、いずれも高い相関が見られた。
 図20は、図18(a)のPCG-PPWg-Dの結果と血圧との相関を示した図で、(a)は最高血圧、(b)は最低血圧との関係を示す。本実施形態で用いた背部音・振動情報から求めた図19と同様に血圧との相関がある。一方、図21は、図18(b)のPPG-2ndの結果と血圧との相関を示した図で、(a)は最高血圧、(b)は最低血圧との関係を示すが、相関性はそれほど高くなかった。
 従って、本実施形態の手法を用いれば、背部音・振動情報を測定するだけで、すなわち、被験者は生体信号測定装置1が装着されたシートに着席するだけで、心音計を用いた場合と同程度の精度で血圧変動を捉えることができる。
 図22~図27は、本発明の他の実施形態を説明するための図である。図22に示したように、本実施形態の生体状態推定装置100は、生体状態推定手段200として、さらに、生理現象推定手段250を有している。
 本実施形態の生理現象推定手段250は、血圧変動との関連性の高い生理現象を推定する。具体的には、蓄尿の進行により、一般的に血圧の上昇現象が見られる尿意を推定する。
 まず、測定された背部音・振動情報(RCO)に、背部音・振動情報加工手段210により、中心周波数20Hz近傍のバンドパスフィルタ、例えば、10~30Hzのバンドパスフィルタをかけ、第1の疑似心音波形である波形RC1を得る(図3のS10、S11のステップ参照)。
 本実施形態の生理現象推定手段250は、この第1の疑似心音波形である波形RC1を分析対象とする。分析処理法は、上記の血圧変動推定手段240と同様であり、第1の疑似心音波形である波形RC1の1心周期に相当する波形成分中、隣接する2つの波形成分の振幅(i,i+1)について、一方を横座標軸に他方を縦座標軸にとった座標系に時系列にプロットし、各プロットされた点群の分散状況から尿意を推定する(図23、図24参照)。
 尿意は、血圧変動と相関するものであり、上記実施形態の疑似心音をより明確化した第2の疑似心音波形から推定することも可能であるが、迅速な処理のため、本実施形態では第1の疑似心音波形である波形RC1を分析対象としている。また、本実施形態では、図23に示したように、2つの振幅(i,i+1)として、1心周期内に含まれる波形成分中、最小ボトム(1心周期の波形成分中、振幅の最低値を示した箇所)B1の直前に位置するボトムB2を挟んだ2つの波形成分の振幅(A1,A2)を選択した。1心周期内に含まれる波形成分中、上記実施形態のように、最高ピークを中心としてその前後の波形成分の振幅を用いてもよい。いずれにしても、増幅期において振幅の大きな2つの波形成分を一定の基準で選択して用いることが好ましい。
 生理現象推定手段250は、図23で示した増幅期の2つの波形成分の振幅(A1(i),A2(i+1))を用いて、その振幅比を座標系にプロットする。図24(a)は、その一例を示したものであり、図中、濃い色で示された点群が相当する。その他の薄い色で示された点群は、特定の波形成分の振幅(A1(i),A2(i+1))より前の増幅期、及び、後の減衰期の振幅比をそれぞれプロットしたものであるが、上記実施形態のように、最大ピークに近い増幅期における波形成分の振幅比が血圧変動と相関を示すことから、薄い色で示された点群の分散状況は、尿意の推定には用いない。そこで、尿意の推定に用いる波形成分の振幅(A1(i),A2(i+1))の比のプロットを明瞭化させたのが図24(b)である。ブロットの分布密度を算出し、ブロット数の分布密度等高線図としたものである。
・実験例2
(実験方法)
 20歳代から30歳代の健康な被験者(男性8名(なお、内3名は2回実験を行ったため、得られた実験データは全11例))に、水を摂取させ、尿意の感覚レベルと生理現象推定手段250により求められる上記振幅比のプロットされた点群との関係を調べた。尿意の感覚レベルは、水を摂取後、全く尿意を感じない状態を「通常時」とし、その後、尿意を知覚した時点(すなわち、初発尿意(FDV)を自覚した時点を「知覚後」とし、初発尿意を自覚する直前を「知覚前」として分類した。また、尿意の我慢限界である最大尿意(MDV)の自覚時を「限界時」とし、「知覚後」と「限界時」との間の強い尿意(SDV)を自覚している時点を「我慢時」として分類した。
 実験は、株式会社デルタツーリング製、商品名「スリープバスター」で使用されている生体信号測定装置1がシートバック部に装着された実験用の自動車用シートに被験者を座させ、安静状態、座位姿勢で、背部音・振動情報を採取した。コンピュータである生体状態推定装置100によって背部音・振動情報のデータを分析した。同時に、心電図(以下「ECC」、計測機器:日本光電工業(株)製、ベッドサイドモニタ BSM-2300シリーズライフスコープI)を計測すると共に、15分おきに、上腕用家庭用血圧計(オムロンHEM-7051)を用いて、上腕の収縮期血圧(最高血圧)、拡張期血圧(最低血圧)の計測を行った。
 被験者が、上記実験用の自動車用シートに排尿後に着座して実験を開始し、実験開始から45分後から水500mlを15分かけ摂取、最大尿意(限界時)申告まで安静状態を保ち、最大尿意申告後、排尿を行い、排尿量を測定して実験を終了した。
(実験結果)
 図25は、比較的眠気の影響が少なかった被験者Aの解析結果を示した図である。図25(a)は、心電図のHFとLF/HFの時系列波形を、図25(b)は、最高血圧、最低血圧の時系列の推移、並びに、15分おきに求めた心拍数の推移を、図25(c)は、尿意及び眠気の自己申告によるレベルを示したグラフである。このグラフから、「限界時」が、LF/HFが比較的安定した時期において、HFが亢進し、その中で最高血圧、最低血圧共に上昇していることがわかる。また、「知覚後」、「我慢時」、「限界時」は、「通常時」、「知覚前」よりも、最高血圧、最低血圧共に高くなる傾向が見られる。
 図26は、本実施形態の生理現象推定手段250により求められた出力結果であり、(a)は「通常時」、(b)は「知覚前」、(c)は「知覚後」、(d)は「我慢時」及び(e)は「限界時」の出力結果をそれぞれ示す。また、図26(a)~(e)の各図中の左列は、振幅比のプロット図を示し、各図の右列は、左列のプロット図から作成した所定の振幅(A1(i),A2(i+1))比の点群の分布密度等高線図である。
 図26から、「我慢時」、「限界時」は、振幅(A1(i),A2(i+1))比の点群の幅が、それ以前の状態と比較して小さくなり、分布が一点に集中する傾向がある。また、尿意を強く感じるほど、この点群の中心が座標原点方向に向かう傾向もある。よって、これらの点群の面積、中心点の位置等について、座標上に閾値を設定することで、生理状態推定手段250は、尿意のレベルを推定することができる。
 図27は、図26で求めた振幅(A1(i),A2(i+1))比の点群の近似線の傾きと最高血圧(図27(a))又は最低血圧(図27(b))との相関を示した図である。なお、血圧のデータは、「通常時」については75分経過時の血圧を、「知覚前」は90分経過時の血圧を、「知覚後」は105分経過時の血圧を、「我慢時」は135分経過時と150分経過時の血圧の平均値を、「限界時」は180分経過時と195分経過時の血圧を採用した。図27から、最高血圧、最低血圧共に、「限界時」のみ図27の近似線から外れていることがわかる。よって、生理状態推定手段250は、図26で求めた振幅(A1(i),A2(i+1))比の点群の近似線の傾きと血圧との相関性から、大きく外れた特異点の出現が判定できる場合に、「限界時」の尿意レベルと推定することができる。
 本実験例では、血圧を血圧計を用いて測定しているが、上記実施形態の血圧変動推定手段240によって推定される血圧変動の出力結果を用いて、図27に示したような特異点を求めるという本実施形態の生理現象推定手段250の手法により、尿意を推定することもできる。
 次に、生理現象推定手段250として、図22~図27を用いて説明した実施形態とは異なる手段を採用した実施形態について説明する。本実施形態の生理現象推定手段250では、2つの波形成分の振幅比ではなく、疑似心音波形の各心周期における振幅変化のパターンを比較して尿意を推定する手段を採用している。なお、本実施形態でも解析対象とする疑似心音波形は、上記した第1の疑似心音波形であるRC1波形である。
 図28に示したように、第1の疑似心音波形の各心周期(図28で囲みをつけた2つの領域(a),(b))に着目すると、心音I音に相当する疑似I音の波形成分中、振幅の最も高い点(最高ピーク)の出現直後に最も低い点(最低ボトム)が出現する変化を示す領域(a)の波形パターン(以下、「正の波形パターン」という)と、振幅の最も高い点(最高ピーク)の出現の直前に最も低い点(最低ボトム)が出現している変化を示す領域(b)の波形パターン(以下、「負の波形パターン」という)が存在する。本実施形態では、この2種類の波形パターンを利用して尿意の推定を行った。
 すなわち、本実施形態の生理現象推定手段250では、正の波形パターンと負の波形パターンの一定時間における出現比率から尿意の推定を行うように設定している。上記実施形態における被験者Aのデータを用いて説明する。
 図29は、実験開始後60分から200分までにおける被験者Aの尿意と眠気の主観評価(図29(a))、最高血圧(SBP)と最低血圧(DBP)(図29(b))、HFとLF/HF(図29(c))の各時系列変化を示すと共に、図29(d)に、負の波形パターンの出現比率の時系列変化を示している。負の波形パターンの出現比率の時系列変化は、30秒毎に、180秒間の負の波形パターンの出現比率を算出してプロットすることにより求めたものである。
 図29(d)に示したように、負の波形パターンの出現比率は、実験開始から初発尿意の発現までは変動が小さかったが、初発尿意の発現後は出現比率が大きく変動している。この変化は、図29(c)において、HFが初発尿意の発現から顕著な減少傾向を示すこととタイミング的に一致している。これは副交感神経が膀胱の収縮と括約筋の弛緩に関与しているためであり、尿意の発現からHFと同様の顕著な変動が見られる負の波形パターンの出現比率を用いれば、尿意による体の変化を捉えられることになる。そこで、本実施形態では、生理現象推定手段250において、負の波形パターンの出現比率を求め、それが予め設定した判定基準に該当した場合に、「尿意有り」と判定するように設定した。判定基準としては、所定時間範囲における負の波形パターンの出現比率の増加率等が挙げられる。本実施形態では、図30に示したように、判定時の直前20分間で負の波形パターンの出現比率の最低値と最高値との差が30%以上増加した場合に、「尿意有り」と判定するように設定した。
 表7は、上記実験例2の各被験者のデータに関して、図30で示した判定基準に従って尿意の有無を判定した場合と、各被験者の主観評価との相関を示したものである。具体的には、主観評価の「尿意のない状態」は、水500mlの摂取後とし、「尿意のある状態」は、初発尿意時(弱い尿意を感じた時)及び最大尿意時(強い尿意を感じた時)として、それらのタイミングを基準として図30の判定基準を採用した生理現象推定手段250による判定を行って、両者を対比した。
Figure JPOXMLDOC01-appb-T000007
 正答率は、「尿意のない状態」で82%、「尿意のある状態」で68%となった。フィッシャーの正確確率検定の結果はp=0.01であり、p<0.05の範囲であるため、被験者の主観による尿意の有無と、負の波形パターンの出現比率による尿意の有無の判定に有意な相関が認められた。
 但し、被験者により判定精度がある程度異なっており、その中では、図29に実験結果を示した被験者Aは正答率が高かった。正答率が比較的低かった被験者Bの実験結果を図31に示す。両者を比較すると、被験者Aは、図29に示したように、初発尿意の発現からHFの低下や血圧の上昇といった尿意による影響が各生体指標に表れており、負の波形パターンの出現比率の顕著な変動も尿意に伴う体の状態変化の表れと考えられる。これに対し、被験者Bの場合、図31(b)に示したように、血圧が、135分までは眠気が強くなると低下し、弱くなると上昇するといった変動を繰り返しているが、最大尿意時には強い眠気にも関わらず血圧が上昇している。また、図31(c)に示したように、HF、LF/HFは、実験開始からあまり変化が見られないものの、最大尿意申告前からHFが低下し、LF/HFが上昇する傾向を示している。これらのことから、被験者Bは最大尿意時には尿意による影響が生体指標に表れていると言えるが、体の状態変化に及ぼす影響が尿意よりも強い眠気の方が勝ったことにより、初発尿意時には、負の波形パターンの出現比率に大きな変動が生じず、尿意を捉えられなかったものと考えられる。
 本実施形態における疑似心音波形から求めた負の波形パターンの出現比率は、心臓から発生した脈波の反射波の影響を受けて変化し、すなわち、血圧の上昇などの影響による動脈壁の硬化によって反射波の伝播速度が速くなることで変化するものと考えられる。よって、尿意発現に伴う血圧の上昇による反射波の早期帰来が負の波形パターンの出現比率の大きな変動として出現し、尿意を検知できる。
 次に、図28~図31において説明した負の波形パターンの出現比率から尿意を判定する方法を利用して、尿意の生じた時点をより迅速に判定する方法について図32に基づき説明する。
 まず、図32(a)に示したように、負の波形の出現比率の最高値と最低値の差を上記と同様に所定時間範囲について求める。なお、上記実験例では20分間と設定したが、図32の計算例では15分間に設定し、さらに、これを2分ずつスライドさせたデータを用いて順次求めていく(n(1)~n(i))。例えば、図32(b)に示したように、2分から17分までの15分間の差を15%と算出することを順次行っていく。次に、図32(c)に示したように、ある15分間(n(i))のデータにおいて出力された差と、その直前15分間(n(i-1))のデータにおいて出力された差を比較して、直前変動率としてプロットしていく。また、尿意を感じる前の通常時における任意の15分間のデータから基準となる差(基準差)Xを求め(図32(d))、図32(e)に示したように、この基準差(X)に対するある15分間(n(i))の比率を算出し、これを通常時変動率としてプロットしていく。そして、図32(c)の直前変動率波形と図32(e)の通常時変動率波形とを比較する。
 図33は、図32の手法を上記実験データに適用した例を示したものである。なお、通常時におけるデータとしては、水摂取前で、負の波形の出現比率の波形が比較的安定している15分間を選択して用い、この例では基準差X=14%に設定した。図33(f)に示したグラフがその結果である。このグラフから、尿意の上昇に伴って、通常時変動率が上昇していることがわかる。よって、図33(f)のグラフを用いれば、負の波形パターンの出現比率を順次求めていきながら、通常変動率が上昇した時点で尿意を生じたと速やかに判定することができる。
 次に、負の波形パターンの出現比率を利用して、生体状態の変化を捉える他の解析手法について図34に基づき説明する。
 まず、上記と同様に、負の波形の出現比率の時系列波形を求める(図34(a))。その後、例えば、時間窓を240秒に設定して移動平均計算を行い、負の波形の出現比率の移動平均波形を求める(図34(b))。この負の波形の出現比率の移動平均波形の各周期の始点を求めるため、移動平均波形を微分し、その振幅のボトム点を抽出する(図34(c))。次いで、図34(b)の負の波形の出現比率の移動平均波形上に、図34(c)で抽出したボトム点をプロットし(図34(d))、図34(d)のデータを用いて、負の波形の出現比率の移動平均波形の振幅、周期、基線のゆらぎを捉える。
 図35は、図33と同じ被験者の実験データであり、図35(f)に、負の波形の出現比率の移動平均波形に周期の始点であるボトム点をプロットしたグラフを示している。初発尿意申告時点までは、基線がほぼ一定であると共に、周波数も安定しており振幅が小さい。これに対し、初発尿意申告時点からは、ゆらぎが生じ、振幅が大きくなって長周期化している。その一方、140分以降は最大尿意時(限界時)に近づくほど、振幅が収束する傾向が見られる。
 図36は、図35と同じ被験者の異なる実験データである。同じく図36(f)の最下欄のグラフを見ると、初発尿意申告時までは、基線が不安定であるものの周波数はほぼ一定である。これに対し、初発尿意申告時において、一旦、振幅が大きく変化して周期が変動している。その後、周期が安定するものの、140~150分付近で再び、振幅が大きくなっている。この時点は、尿意・眠気のグラフ(図36(d))から明らかなように、眠気の変動が生じ、尿意が一時的に減少している。また、最大尿意時(限界時)の前後においては、振幅の収束傾向とその後再び大きくなる傾向が出現している。すなわち、尿意を感じ始めた時、眠気に変化が生じた時、最大尿意時というように、生体状態に何らかの変化を生じたことが捉えられている。
 図37は異なる被験者のデータであるが、図37(f)に示したように、初発尿意の申告時に振幅、周期の変動があり、150分付近、190分付近における尿意を我慢してある程度の時間が経過するタイミングで振幅、周期の変動がある。そして、最大尿意時(限界時)に近づくにつれ、収束傾向を示している。
 図38はさらに異なる被験者のデータであり、図38(e)から、50分前後において、振幅、周期の変化、基線の傾きの変化が見られる。この時点では、尿意を感じていないが、LF/HFが優位となって交感神経活動が活発化していることに対応した変化となっている。そして、90分付近の初発尿意申告時においても振幅、周期の変動があり、限界時付近で振幅の収束傾向を示している。
 図39はさらに異なる被験者のデータである。この被験者は、図39(d)に示したように、実験開始30分後から、初発尿意の申告時付近まで眠気が増大している。図39(f)を見ると、70分付近まで、眠気の増大に伴って基線の傾きが右肩上がりになっている。その後、初発尿意の申告時付近に向かうに従い、基線の傾きが変化すると共に、周期の変動が見られ、さらに限界時付近で振幅の収束傾向を示している。
 負の波形の出現比率の移動平均波形の振幅、周期、基線等のゆらぎの変動は、上記のように、尿意の変化に伴って出現しており、尿意を捉えられることが示唆されるが、それのみならず、眠気や自律神経活動の変化にも対応して変動が見られ、生体状態の種々の変化を捉えることに利用できる指標である。
 1 生体信号測定装置
 11 コアパッド
 12 スペーサパッド
 13 センサ
 100 生体状態推定装置
 200 生体状態推定手段
 210 背部音・振動情報加工手段
 220 疑似心音波形演算手段
 230 低周波時系列波形演算手段
 240 血圧変動推定手段
 250 生理状態推定手段

Claims (26)

  1.  生体信号を用いて生体の状態を推定する生体状態推定装置であって、
     前記生体信号として、心臓から送り出される血液の流量に対応して変動する人の背部から採取される背部生体音・振動情報を処理して得られる心音の周期に対応した疑似心音波形を用い、前記疑似心音波形における所定の波形成分を比較して、生体状態を推定する生体状態推定手段を有することを特徴とする生体状態推定装置。
  2.  前記生体状態推定手段は、前記疑似心音波形の1心周期内に含まれる2つの波形成分の振幅を比較して生体状態を推定する請求項1記載の生体状態推定装置。
  3.  前記生体状態推定手段は、前記波形成分の2つの振幅(i,i+1)について、一方を横座標軸に他方を縦座標軸にとった座標系に時系列にプロットし、各プロットされた点群の分散状況から生体状態を推定する請求項1又は2記載の生体状態推定装置。
  4.  前記生体状態推定手段は、前記各プロットされた点群の傾きから生体状態を推定する請求項3記載の生体状態推定装置。
  5.  前記生体状態推定手段は、前記疑似心音波形の各心周期における振幅変化のパターンを比較して生体状態を推定する請求項1記載の生体状態推定装置。
  6.  前記生体状態推定手段は、前記疑似心音波形の各心周期における振幅変化のパターンとして、各心周期において振幅が最も高くなる最高ピークに対し、振幅が最も低くなる最低ボトムが、前記最高ピークの直後に出現する正の波形パターンと直前に出現する負の波形パターンとに分け、2つの波形パターンの一定時間における出現比率から生体状態を推定する請求項5記載の生体状態推定装置。
  7.  前記生体状態推定手段は、前記疑似心音波形から、前記生体状態として、血圧変動の状態を推定する血圧変動推定手段を有する請求項1~6のいずれか1に記載の生体状態推定装置。
  8.  前記生体状態推定手段は、前記疑似心音波形から、前記生体状態として、生理現象を推定する生理現象推定手段を有する請求項1~7のいずれか1に記載の生体状態推定装置。
  9.  前記生理現象推定手段が、尿意を推定する手段である請求項8記載の生体状態推定装置。
  10.  コンピュータに、生体信号を処理して生体の状態を推定する手順を実行させるコンピュータプログラムであって、
     前記コンピュータに、前記生体信号として、心臓から送り出される血液の流量に対応して変動する人の背部から採取される背部生体音・振動情報を処理して得られる心音の周期に対応した疑似心音波形を用い、前記疑似心音波形における所定の波形成分を比較して、生体状態を推定する生体状態推定手順を実行させることを特徴とするコンピュータプログラム。
  11.  前記生体状態推定手順は、前記疑似心音波形の1心周期内に含まれる2つの波形成分の振幅を比較して生体状態を推定する請求項10記載のコンピュータプログラム。
  12.  前記生体状態推定手順は、前記波形成分の2つの振幅(i,i+1)について、一方を横座標軸に他方を縦座標軸にとった座標系に時系列にプロットし、各プロットされた点群の分散状況から生体状態を推定する請求項10又は11記載のコンピュータプログラム。
  13.  前記生体状態推定手順は、前記各プロットされた点群の傾きから生体状態を推定する請求項12記載のコンピュータプログラム。
  14.  前記生体状態推定手俊は、前記疑似心音波形の各心周期における振幅変化のパターンを比較して生体状態を推定する請求項10記載のコンピュータプログラム。
  15.  前記生体状態推定手順は、前記疑似心音波形の各心周期における振幅変化のパターンとして、各心周期において振幅が最も高くなる最高ピークに対し、振幅が最も低くなる最低ボトムが、前記最高ピークの直後に出現する正の波形パターンと直前に出現する負の波形パターンとに分け、2つの波形パターンの一定時間における出現比率から生体状態を推定する請求項14記載のコンピュータプログラム。
  16.  前記生体状態推定手順は、前記疑似心音波形から、前記生体状態として、血圧変動の状態を推定する血圧変動推定手順を実行する請求項10~15のいずれか1に記載のコンピュータプログラム。
  17.  前記生体状態推定手順は、前記疑似心音波形から、前記生体状態として、生理現象を推定する生理現象推定手順を実行する請求項10~16のいずれか1に記載のコンピュータプログラム。
  18.  前記生理現象推定手順が、尿意を推定する手順を実行する請求項17記載のコンピュータプログラム。
  19.  生体状態推定装置としてのコンピュータに、生体信号を処理して生体の状態を推定する手順を実行させる請求項10~18のいずれか1に記載のコンピュータプログラムが記録されたコンピュータ読み取り可能な記録媒体。
  20.  生体信号を用いて生体の状態を推定する生体状態推定方法であって、
     前記生体信号として、心臓から送り出される血液の流量に対応して変動する人の背部から採取される背部生体音・振動情報を処理して得られる心音の周期に対応した疑似心音波形を用い、前記疑似心音波形における所定の波形成分を比較して、生体状態を推定することを特徴とする生体状態推定方法。
  21.  前記疑似心音波形の1心周期内に含まれる2つの波形成分の振幅を比較して生体状態を推定する請求項20記載の生体状態推定方法。
  22.  前記波形成分の2つの振幅(i,i+1)について、一方を横座標軸に他方を縦座標軸にとった座標系に時系列にプロットし、各プロットされた点群の分散状況から生体状態を推定する請求項20又は21記載の生体状態推定方法。
  23.  前記各プロットされた点群の傾きから生体状態を推定する請求項22記載の生体状態推定方法。
  24.  前記疑似心音波形の各心周期における振幅変化のパターンを比較して生体状態を推定する請求項20記載の生体状態推定方法。
  25.  前記疑似心音波形の各心周期における振幅変化のパターンとして、各心周期において振幅が最も高くなる最高ピークに対し、振幅が最も低くなる最低ボトムが、前記最高ピークの直後に出現する正の波形パターンと直前に出現する負の波形パターンとに分け、2つの波形パターンの一定時間における出現比率から生体状態を推定する請求項24記載の生体状態推定方法。
  26.  前記疑似心音波形から、前記生体状態として、血圧変動、尿意を含む生理現象のいずれか少なくとも一つの状態を推定する請求項20~25のいずれか1に記載の生体状態推定方法。
PCT/JP2016/086958 2015-12-12 2016-12-12 生体状態推定装置、生体状態推定方法、コンピュータプログラム及び記録媒体 WO2017099256A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017555181A JP6876331B2 (ja) 2015-12-12 2016-12-12 生体状態推定装置、コンピュータプログラム及び記録媒体
EP16873148.7A EP3387988B1 (en) 2015-12-12 2016-12-12 Biological state estimation device, biological state estimation method, computer program, and recording medium
US16/061,250 US20180360315A1 (en) 2015-12-12 2016-12-12 Biological state estimation device, biological state estimation method, computer program, and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015242756 2015-12-12
JP2015-242756 2015-12-12

Publications (1)

Publication Number Publication Date
WO2017099256A1 true WO2017099256A1 (ja) 2017-06-15

Family

ID=59013296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086958 WO2017099256A1 (ja) 2015-12-12 2016-12-12 生体状態推定装置、生体状態推定方法、コンピュータプログラム及び記録媒体

Country Status (4)

Country Link
US (1) US20180360315A1 (ja)
EP (1) EP3387988B1 (ja)
JP (1) JP6876331B2 (ja)
WO (1) WO2017099256A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019139155A1 (ja) * 2018-01-13 2019-07-18 株式会社デルタツーリング 血圧推定装置、血圧推定方法、コンピュータプログラム及び記録媒体
WO2020085512A1 (ja) * 2018-10-25 2020-04-30 株式会社デルタツーリング 生体信号測定装置、生体状態推定装置及び生体状態推定システム
JP7307432B1 (ja) 2022-10-25 2023-07-12 株式会社永和システムマネジメント 情報処理装置、排泄予測方法及びプログラム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10959681B2 (en) * 2017-04-19 2021-03-30 Vital Connect, Inc. Noninvasive blood pressure measurement and monitoring
WO2020232607A1 (zh) * 2019-05-20 2020-11-26 深圳市大耳马科技有限公司 一种心脏舒张功能评估方法、设备和系统
US20210110927A1 (en) * 2019-10-07 2021-04-15 Owlet Baby Care, Inc. Respiratory Rate Prediction from a Photoplethysmogram

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046178A1 (ja) 2009-10-14 2011-04-21 株式会社デルタツーリング 生体状態推定装置、生体状態推定システム及びコンピュータプログラム
JP2011167362A (ja) 2010-02-18 2011-09-01 Delta Tooling Co Ltd 生体状態推定装置及びコンピュータプログラム
JP2012239480A (ja) 2011-05-14 2012-12-10 Delta Tooling Co Ltd 生体状態推定装置及びコンピュータプログラム
JP2014000178A (ja) * 2012-06-16 2014-01-09 Delta Tooling Co Ltd 生体状態分析装置及びコンピュータプログラム
JP2014117425A (ja) 2012-12-14 2014-06-30 Delta Tooling Co Ltd 運転時生体状態判定装置及びコンピュータプログラム
US20140343446A1 (en) * 2013-05-15 2014-11-20 Sharp Laboratories Of America, Inc. Model-Based Method for Assessing Acoustic Signal Quality in Heart Monitoring Device
JP2014223271A (ja) 2013-04-17 2014-12-04 株式会社デルタツーリング 運転支援装置及びコンピュータプログラム
WO2015083846A1 (ja) * 2013-12-07 2015-06-11 株式会社デルタツーリング 音・振動情報収集機構、音・振動情報センシングシステム及びコンピュータプログラム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4223683A (en) * 1978-10-30 1980-09-23 Bernard Lown Heart beat cumulator
US8041417B2 (en) * 2008-01-25 2011-10-18 University Of Southern California Method and system for dynamical systems modeling of electrocardiogram data
JP5734740B2 (ja) * 2011-05-23 2015-06-17 株式会社豊田中央研究所 弾性波検出装置及び弾性波検出プログラム
KR101316497B1 (ko) * 2012-08-03 2013-10-10 현대자동차주식회사 승객의 심박수 관찰시스템 및 관찰방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046178A1 (ja) 2009-10-14 2011-04-21 株式会社デルタツーリング 生体状態推定装置、生体状態推定システム及びコンピュータプログラム
JP2011167362A (ja) 2010-02-18 2011-09-01 Delta Tooling Co Ltd 生体状態推定装置及びコンピュータプログラム
JP2012239480A (ja) 2011-05-14 2012-12-10 Delta Tooling Co Ltd 生体状態推定装置及びコンピュータプログラム
JP2014000178A (ja) * 2012-06-16 2014-01-09 Delta Tooling Co Ltd 生体状態分析装置及びコンピュータプログラム
JP2014117425A (ja) 2012-12-14 2014-06-30 Delta Tooling Co Ltd 運転時生体状態判定装置及びコンピュータプログラム
JP2014223271A (ja) 2013-04-17 2014-12-04 株式会社デルタツーリング 運転支援装置及びコンピュータプログラム
US20140343446A1 (en) * 2013-05-15 2014-11-20 Sharp Laboratories Of America, Inc. Model-Based Method for Assessing Acoustic Signal Quality in Heart Monitoring Device
WO2015083846A1 (ja) * 2013-12-07 2015-06-11 株式会社デルタツーリング 音・振動情報収集機構、音・振動情報センシングシステム及びコンピュータプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3387988A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019139155A1 (ja) * 2018-01-13 2019-07-18 株式会社デルタツーリング 血圧推定装置、血圧推定方法、コンピュータプログラム及び記録媒体
JP2019122502A (ja) * 2018-01-13 2019-07-25 株式会社デルタツーリング 血圧推定装置、血圧推定方法、コンピュータプログラム及び記録媒体
CN111655136A (zh) * 2018-01-13 2020-09-11 株式会社三角工具加工 血压推定装置、血压推定方法、计算机程序以及记录介质
WO2020085512A1 (ja) * 2018-10-25 2020-04-30 株式会社デルタツーリング 生体信号測定装置、生体状態推定装置及び生体状態推定システム
JP2020065818A (ja) * 2018-10-25 2020-04-30 株式会社デルタツーリング 生体信号測定装置、生体状態推定装置及び生体状態推定システム
JP7278566B2 (ja) 2018-10-25 2023-05-22 株式会社デルタツーリング 生体状態推定装置及び生体状態推定システム
JP7307432B1 (ja) 2022-10-25 2023-07-12 株式会社永和システムマネジメント 情報処理装置、排泄予測方法及びプログラム
JP2024062899A (ja) * 2022-10-25 2024-05-10 株式会社永和システムマネジメント 情報処理装置、排泄予測方法及びプログラム

Also Published As

Publication number Publication date
JP6876331B2 (ja) 2021-05-26
EP3387988C0 (en) 2024-02-28
EP3387988B1 (en) 2024-02-28
EP3387988A1 (en) 2018-10-17
US20180360315A1 (en) 2018-12-20
JPWO2017099256A1 (ja) 2018-09-27
EP3387988A4 (en) 2018-12-19

Similar Documents

Publication Publication Date Title
WO2017099256A1 (ja) 生体状態推定装置、生体状態推定方法、コンピュータプログラム及び記録媒体
JP5209545B2 (ja) 生体検査装置、プログラム、及び記録媒体
US11903684B2 (en) Blood pressure measuring apparatus and blood pressure measuring method
JP5929020B2 (ja) 意識状態推定装置及びプログラム
US20190175072A1 (en) Cardiovascular and cardiorespiratory fitness determination
JP6885545B2 (ja) 血圧推定装置、血圧推定方法、コンピュータプログラム及び記録媒体
JP2009089829A (ja) 生体状態推定装置及びプログラム並びに記録媒体
WO2017099257A1 (ja) 生体状態推定装置、生体状態推定方法、コンピュータプログラム及び記録媒体
KR101706197B1 (ko) 압전센서를 이용한 폐쇄성수면무호흡 선별검사를 위한 장치 및 방법
WO2020166260A1 (ja) 体調判定装置、コンピュータプログラム及び記録媒体
JP6129166B2 (ja) 動脈の閉塞/再開を検出するための方法及び装置並びに収縮期血圧を測定するためのシステム
JP6666705B2 (ja) 生体状態推定装置、生体状態推定方法及びコンピュータプログラム
JP6836265B2 (ja) 生体状態推定装置、生体状態推定方法、コンピュータプログラム及び記録媒体
TWI670046B (zh) 兼具情緒壓力指數檢測與血壓檢測之量測裝置與方法
WO2014132722A1 (ja) 生体状態推定装置、コンピュータプログラム及び記録媒体
JP2016047305A (ja) 意識状態推定装置及びプログラム
JP2021535817A (ja) 対象者の時間的情報の提供
WO2017057022A1 (ja) 生体状態推定装置、生体状態推定方法及びコンピュータプログラム
JP6557489B2 (ja) 生体状態推定装置及びコンピュータプログラム
JP7175304B2 (ja) シャント音解析装置及び方法、コンピュータプログラム並びに記憶媒体
Rinkevičius et al. Low-Exertion Testing of Autonomic Cardiovascular Integrity Through PPG Signal Analysis
JP6836264B2 (ja) 生体状態推定装置、生体状態推定方法、コンピュータプログラム及び記録媒体
Jobbágy et al. Pulse Wave Velocity as a Function of Cuff Pressure-Extra Information About the Cardiovascular System
CN116801808A (zh) 一种心肺复苏的按压检测方法、装置以及存储介质
JP2024004423A (ja) 血圧推定装置、コンピュータプログラム及び記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16873148

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017555181

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016873148

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016873148

Country of ref document: EP

Effective date: 20180712