WO2017098960A1 - ステップシール,シール構造,ターボ機械及びステップシールの製造方法 - Google Patents

ステップシール,シール構造,ターボ機械及びステップシールの製造方法 Download PDF

Info

Publication number
WO2017098960A1
WO2017098960A1 PCT/JP2016/085351 JP2016085351W WO2017098960A1 WO 2017098960 A1 WO2017098960 A1 WO 2017098960A1 JP 2016085351 W JP2016085351 W JP 2016085351W WO 2017098960 A1 WO2017098960 A1 WO 2017098960A1
Authority
WO
WIPO (PCT)
Prior art keywords
seal
protrusion
step seal
fin
sharp
Prior art date
Application number
PCT/JP2016/085351
Other languages
English (en)
French (fr)
Inventor
豊治 西川
祥弘 桑村
大山 宏治
雄久 ▲浜▼田
椙下 秀昭
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to CN201680070955.1A priority Critical patent/CN108368743B/zh
Priority to US15/780,752 priority patent/US10718434B2/en
Priority to DE112016005643.5T priority patent/DE112016005643T5/de
Priority to KR1020187015323A priority patent/KR102035952B1/ko
Publication of WO2017098960A1 publication Critical patent/WO2017098960A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/14Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding turbine blades, propeller blades or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • F01D11/025Seal clearance control; Floating assembly; Adaptation means to differential thermal dilatations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/20Specially-shaped blade tips to seal space between tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/28Arrangement of seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/44Free-space packings
    • F16J15/447Labyrinth packings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/44Free-space packings
    • F16J15/447Labyrinth packings
    • F16J15/4472Labyrinth packings with axial path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/10Manufacture by removing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/11Shroud seal segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/55Seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/23Three-dimensional prismatic
    • F05D2250/232Three-dimensional prismatic conical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/31Arrangement of components according to the direction of their main axis or their axis of rotation
    • F05D2250/314Arrangement of components according to the direction of their main axis or their axis of rotation the axes being inclined in relation to each other

Definitions

  • the present invention relates to a step seal, a seal structure, a turbomachine using the step seal, and a method for manufacturing the step seal, which suppress fluid leakage between two structures.
  • a non-contact type seal structure such as a labyrinth seal is used in order to prevent leakage of the working fluid.
  • the labyrinth seal there is a step type having a seal member such as a seal fin extending toward the moving blade on the inner periphery of the casing that forms the outer shell of the turbomachine, and a step-like shroud provided at the tip of the moving blade.
  • a seal member such as a seal fin extending toward the moving blade on the inner periphery of the casing that forms the outer shell of the turbomachine
  • a step-like shroud provided at the tip of the moving blade.
  • the conventional step-type labyrinth seal as disclosed in Patent Document 1 cannot be said to have a sufficient leak suppression effect and, in turn, a turbo machine leak loss suppression effect.
  • This is a shape in which the upstream radial wall that forms the corner of the step seal is a straight shape extending in the radial direction, and the main fluid is actively generated (ie swirled) in the working fluid. It was not enough.
  • the seal fin and the step seal When the height of the step seal cannot be secured due to layout restrictions, or when the shroud is extended in the axial direction (turborotation direction of the turbomachine) due to heat during operation of the turbomachine, the seal fin and the step seal When the distance deviates from the design point, the above shape tends to affect the development of the main vortex, and the main vortex does not develop sufficiently.
  • the present invention has been devised in view of the above-described problems.
  • a step seal, a seal structure which can stably obtain a high leakage suppressing effect and can stably reduce the leakage loss of a turbomachine. It is an object of the present invention to provide a method for manufacturing a turbomachine and a step seal.
  • the step seal of the present invention is configured such that the gap between the first structure and the second structure that are opposed to each other in the radial direction with a gap therebetween and that rotates relative to each other about the axis.
  • the protrusion is a sharp protrusion with a sharp tip.
  • the length along the axis of the protrusion is 1.5 times or less of the length of the seal fin, the angle of the protrusion is 75 degrees or less, and the protrusion It is preferable that the inclination angle is set within a range of ⁇ 30 degrees to 150 degrees.
  • the protrusion is convex toward the second structure.
  • the protrusion is convex toward the upstream side.
  • a length dimension along the axis of the protrusion is 0.1 to 0.5 times the length dimension of the seal fin.
  • the seal structure of the present invention is configured such that the gap between the first structure and the second structure that are opposed to each other in the radial direction with a gap therebetween and that rotates relative to each other about the axis.
  • the step seal according to any one of (1) to (6), which is provided in the first structure, and the step difference between the step seal and the seal structure that suppresses fluid leakage
  • a seal fin that extends toward the facing surface of the step seal on the downstream side in the flow direction of the fluid from the surface, and is provided in the second structure with a clearance between the surface and the facing surface. It is characterized by that.
  • the turbomachine of the present invention is characterized by including the seal structure described in (7).
  • the step seal manufacturing method of the present invention provides a gap between the first structure and the second structure that are opposed to each other in the radial direction with a gap therebetween and that rotate relative to each other about the axis.
  • a manufacturing method of a step seal provided in the first structure by opening a clearance in the seal fin provided in the second structure.
  • the thickness from the surface with respect to any one of the first surface and the second surface is set as a part to be cut, and by cutting the part to be cut in a cutting direction that intersects the thickness direction, a surface that intersects the cutting direction is projected in the cutting direction.
  • Forming a protrusion It is characterized by comprising a cutting step.
  • the fluid flow toward the clearance between the step seal and the seal fin is deviated from the clearance by the protrusion provided on the step seal on the upstream side of the seal fin, thereby weakening the fluid toward the clearance.
  • the promotion of the development of separation vortices on the upstream side of the clearance (that is, the promotion of the improvement of the contraction effect) is actively performed.
  • the protrusion can be provided by utilizing the generation of burrs associated with cutting, the protrusion can be provided inexpensively and easily, and an increase in manufacturing cost due to the provision of the protrusion can be suppressed. .
  • FIG. 1 is a schematic longitudinal sectional view showing an overall configuration of a steam turbine according to each embodiment of the present invention.
  • 2 is a cross-sectional view of a main part of the steam turbine according to the first embodiment of the present invention, and is an enlarged cross-sectional view of a portion I in FIG.
  • FIG. 3 is a schematic cross-sectional view showing the configuration of the step seal according to the first embodiment of the present invention (the hatched lines indicating the cross section of the step seal are omitted).
  • 4A and 4B are schematic cross-sectional views for explaining the operation of the step seal according to the first embodiment of the present invention, and FIG. 4A is a diagram related to the step seal according to the first embodiment of the present invention.
  • FIG. 1 is a schematic longitudinal sectional view showing an overall configuration of a steam turbine according to each embodiment of the present invention.
  • 2 is a cross-sectional view of a main part of the steam turbine according to the first embodiment of the present invention, and is an enlarged cross-sectional view
  • FIG. 4B is a diagram relating to a conventional step seal (in FIG. 4A and FIG. 4B, the hatched lines indicating the cross section of the step seal are omitted).
  • FIG. 5 is a schematic diagram for explaining the setting range of the main dimensions of the step seal according to the first embodiment of the present invention, in which the leakage flow rate suppressing effect E and the length of the sharp protrusion in the axial direction A are illustrated. It is a figure which shows the analysis result of the correlation with the dimension L1 and angle (theta) 1 of a sharp protrusion part.
  • 6A, 6B, and 6C are schematic cross-sectional views for explaining the manufacturing method of the step seal according to the first embodiment of the present invention, in which FIG. 6A shows a cutting step, and FIG.
  • FIG. 6B shows polishing.
  • FIG. 6C is a diagram showing a step
  • FIG. 6C is a diagram showing a completed product state after the polishing step (in FIG. 6A, FIG. 6C and FIG. 6B, the oblique lines showing the cross section of the step seal are omitted).
  • FIG. 7 is a schematic cross-sectional view showing the configuration of the step seal according to the second embodiment of the present invention (the hatched lines indicating the cross-section of the step seal are omitted).
  • FIG. 8 is a schematic cross-sectional view for explaining the action of the step seal according to the second embodiment of the present invention (the hatched lines indicating the cross section of the step seal are omitted).
  • FIGS. 9A, 9B, and 9C are schematic cross-sectional views for explaining a method of manufacturing a step seal according to the second embodiment of the present invention, in which FIG. 9A shows a cutting step, and FIG. 9B shows polishing.
  • FIGS. 9C and 9C are diagrams showing a completed product state after the polishing step (in FIG. 9A, FIG. 9B and FIG. 9C, the oblique line showing the cross section of the step seal is omitted).
  • 1 to 4B and 6A to 9C is the upstream side, and the right side is the downstream side. Further, the direction toward the axis CL of the steam turbine will be described as the inner peripheral side or the inner side, and the opposite side, the direction away from the axis CL will be described as the outer peripheral side or the outer side.
  • a steam turbine (turbo machine) 1 of the present embodiment is a casing (second structure) 10 and a machine such as a generator (not shown) that is rotatably provided inside the casing 10 and does not show power.
  • a rotating shaft 30 that transmits the rotating shaft 30, a stationary blade 40 provided on the casing 10, a moving blade 50 provided on the rotating shaft 30, and a bearing portion 70 that rotatably supports the rotating shaft 30 about the axis CL. It is prepared for.
  • the stationary blade 40 and the moving blade 50 are blades extending in the radial direction R of the rotating shaft 30. While the casing 10 is stationary, the rotor blade 50 rotates about the axis CL. That is, the casing 10 and the moving blade 50 (including a shroud 51 described later) rotate relative to each other.
  • Steam (fluid) S is introduced from a main inlet 21 formed in the casing 10 via a steam supply pipe 20 connected to a steam supply source (not shown), and is connected to a downstream side of the steam turbine 1. 22 is discharged.
  • the internal space of the casing 10 is hermetically sealed and is a flow path for the steam S.
  • a ring-shaped partition plate outer ring 11 through which the rotation shaft 30 is inserted is firmly fixed to the inner wall surface of the casing 10.
  • the bearing unit 70 includes a journal bearing device 71 and a thrust bearing device 72, and supports the rotary shaft 30 in a freely rotatable manner.
  • the stationary blades 40 extend from the casing 10 toward the inner peripheral side and constitute a group of annular stationary blades arranged radially so as to surround the rotary shaft 30, and are respectively held by the partition plate outer ring 11 described above. ing.
  • a plurality of annular vanes 40 composed of a plurality of vanes 40 are formed at intervals in the axial direction (hereinafter simply referred to as the axial direction) A of the rotary shaft 30, and the pressure energy of the steam S is used as velocity energy.
  • the steam S having the increased velocity energy is converted into the moving blade 50 adjacent to the downstream side.
  • the moving blades 50 are firmly attached to the outer peripheral portion of the rotating shaft main body 31 of the rotating shaft 30, and a large number of the moving blades 50 are radially arranged on the downstream side of each annular stationary blade group to constitute an annular moving blade group.
  • These annular stator blade groups and annular rotor blade groups are grouped into one stage.
  • the tips of the moving blades 50 adjacent in the circumferential direction of the rotating shaft 30 (hereinafter simply referred to as the circumferential direction) are connected by a ring-shaped shroud (first structure) 51.
  • the shroud 51 may be used to connect not only the final stage blade group, but also other blade groups, and even the stationary blade group.
  • leak steam a part of the steam S (for example, about several percent) steam (hereinafter referred to as leak steam) SL does not flow into the rotor blade 50 but leaks into the annular groove 12. Since the energy of the leak steam SL is not converted into rotational energy, the leak steam SL causes a leak loss that reduces the efficiency of the steam turbine 1.
  • a seal structure (step-type labyrinth seal) 2 as the first embodiment of the present invention is provided in the gap Gd between the casing 10 and the moving blade 50.
  • the seal structure 2 will be described.
  • the ring-shaped shroud 51 is disposed at the tip of the moving blade 50 as described above.
  • the shroud 51 has a stepwise cross-sectional shape (cross-sectional shape perpendicular to the circumferential direction) shown in FIG. 2 throughout the circumference, and here, three step seals 5A, 5B, and 5C are provided. I have.
  • step seals 5A, 5B, and 5C are not distinguished from each other, they are referred to as step seals 5.
  • the step seal 5A has a radial wall surface (step surface) 511a along the radial direction R facing the upstream side and an axial wall surface (opposite) along the axial direction A facing the bottom surface 13 (in other words, the inner wall surface of the casing 10).
  • the radial wall surface 511a is generally annular with a width in the radial direction R
  • the axial wall surface 512a is generally cylindrical with a width in the axial direction A
  • the protrusion 513a is generally wide in the radial direction R. It has an annular shape with
  • the step seals 5B and 5C are configured similarly to the step seal 5A.
  • the step seal 5B has a protruding portion formed between the radial wall surface (step surface) 511b facing the upstream side, the axial wall surface (opposing surface) 512b facing the bottom surface 13, and the wall surfaces 511b and 512b.
  • the step seal 5C includes a radial wall surface (step surface) 511c facing the upstream side, an axial wall surface (opposing surface) 512c facing the bottom surface 13, and the wall surfaces 511c and 512c. And a projecting portion 513c formed on the surface.
  • the radial wall surfaces 511a, 511b, and 511c are not particularly distinguished, the radial wall surfaces 511a, 511b, and 511c are represented as radial wall surfaces 511.
  • the axial wall surfaces 512a, 512b, and 512c are not particularly distinguished, they are represented as axial wall surfaces 512,
  • the protrusions 513a, 513b, and 513c are not particularly distinguished, they are expressed as the protrusions 513.
  • the cross-sectional shape of the shroud 51 is not limited to that of the present embodiment, and can be appropriately changed.
  • the number of step seals 5 provided on the shroud 51 may be one or more, and is limited to three. It is not a thing.
  • annular groove 12 described above is formed on the inner peripheral surface of the partition plate outer ring 11 shown in FIG.
  • the bottom surface 13 of the annular groove 12 is provided with three seal fins 6A, 6B, 6C so as to protrude in the radial direction R, respectively.
  • the seal fin 6A located on the most upstream side in the flow direction of the steam S is provided slightly downstream of the radial wall surface 511a of the step seal 5A of the shroud 51, and the tip thereof and the axial wall surface 512a of the shroud 51. Between the two, a minute gap ma is formed in the radial direction R.
  • the seal fin 6 ⁇ / b> B which is positioned second upstream, is provided slightly downstream of the radial wall surface 511 b of the step seal 5 ⁇ / b> B, and its tip and the axial wall surface 512 b of the shroud 51. Between these, a minute gap mb is formed in the radial direction R.
  • the seal fin 6 ⁇ / b> C located on the most downstream side is provided slightly downstream of the radial wall surface 511 c of the step seal 5 ⁇ / b> C, and the tip and the axial wall surface 512 c of the shroud 51. Also in the middle, a minute gap mc is formed in the radial direction.
  • the lengths of the seal fin 6A, the seal fin 6B, and the seal fin 6C are shortened in this order (the length of the seal fin 6A> the length of the seal fin 6B> the length of the seal fin 6C).
  • seal fins 6A, 6B, and 6C are not distinguished from each other, they are hereinafter referred to as seal fins 6.
  • the minute gaps ma, mb, and mc are not distinguished from each other, they are expressed as the minute gap m hereinafter.
  • the length, shape, installation position, number, and the like of the seal fins 6 are not limited to the present embodiment, and the design can be appropriately changed according to the cross-sectional shape of the shroud 51 and / or the partition plate outer ring 11.
  • the dimension of the minute gap m is within a safe range in which the seal fin 6 and the shroud 51 do not contact each other in consideration of the thermal elongation amount of the casing 10 and the moving blade 50, the centrifugal elongation amount of the moving blade, and the like. Therefore, it is preferable to set the minimum value.
  • the three minute gaps m are all set to the same size, but the minute gaps m may be set to different dimensions by the seal fins 6 as necessary.
  • step seal 5 has a great feature in that the protrusion 513 is provided.
  • the structure of the protrusion 513 will be described with reference to FIGS.
  • the step seal 5 is formed between a step seal body 510 having a radial wall surface 511 and an axial wall surface 512, and the radial wall surface 511 and the axial wall surface 512 of the step seal body 510. And a protruding portion 513.
  • the protrusion tip 516 of the protrusion 513 (where the upstream surface (hereinafter referred to as the front surface) 514 continuous with the radial wall surface 511 intersects with the downstream surface (hereinafter referred to as the back surface) 515) is left as it is (not yet).
  • the protrusion 513 is also referred to as a sharp protrusion 513.
  • the sharp protrusion 513 refers to a protrusion having a sharpened protrusion tip 516 that is relatively sharpened by sharpening compared to an unprocessed case.
  • the sharp protrusion 513 extends to the outer peripheral side along the radial direction R, and the front surface 514 is formed flush with the radial wall surface 511 of the step seal body 510. As indicated by the dotted line, the angle may be inclined with respect to the radial wall surface 511 (may be inclined with respect to the radial direction R).
  • the step seal 5 ′ of the conventional shroud 51 ′ without the sharp protrusion 513 is not shaped to give sufficient pressure loss to the leak steam SL, and the corner portion 516 ′ is rounded. Therefore, the leaked steam SL flows as indicated by the one-dot chain line arrow, and the contraction effect is low.
  • the leak steam SL flows against the outer peripheral side by the radial wall surface 511 ′ of the step seal 5 ′, so that the leak steam near the corner portion 516 ′ of the step seal 5 ′.
  • a peeling vortex is generated by SL.
  • the leaked steam SL flows toward the outer peripheral side, so that the flow toward the minute gap m is weakened, and a certain leak suppressing effect should be obtained by the synergistic effect of the contraction effect of the separation vortex.
  • the corner portion 516 ' is rounded, the leaked steam SL flows along this roundness, so that the leaked steam SL only slightly warps to the outer peripheral side as indicated by the dashed line arrow.
  • the force toward the downstream side flows into the minute gap m without being sufficiently weakened.
  • a space for forming a separation vortex (see the separation vortex SS in FIG. 4A) is not generated between the flow of the leaked steam SL and the facing surface 512 ′, and the separation vortex is not sufficiently developed. If the separation vortex is sufficiently developed, this separation vortex causes a high-speed flow toward the lower side in FIG. 4B on the upstream side of the minute gap m, and a contraction effect is obtained, but the separation vortex is not sufficiently developed.
  • the contraction effect cannot be obtained.
  • the contraction effect is lowered.
  • the leak steam SL flows as indicated by the one-dot chain line arrow, so that the effective height h1 of the flow of the leak steam SL is the conventional shroud.
  • the sharp protrusion 513 of the step seal 5 has a sharp tip 516, it has a leakage suppressing effect due to the rounded corner 516 'like the step seal 5' of the conventional shroud 51 '. There is no loss of eyes.
  • FIG. 5 shows the correlation between the leakage flow suppression effect E, the length dimension L1 of the sharp protrusion 513 in the axial direction A, and the angle (angle formed by the front surface 514 and the rear surface 515) ⁇ 1 of the sharp protrusion 513.
  • the analysis result is shown.
  • the suppression effect E is obtained when the angle ⁇ 1 is 45 degrees [degree], and the length dimension L1 of the sharp protrusion 513 is 0.25 times the length dimension L0 in the axial direction A of the seal fin 6. This shows the amount of leakage reduction with the maximum leakage reduction amount being 100%.
  • FIG. 5 shows the relationship between the length L1 and the effect E of suppressing the leakage flow rate.
  • the length dimension L1 of the sharp protrusion 513 is preferably 1.5 times or less the length dimension L0 in the axial direction A of the seal fin 6 since the suppression effect E of 50% or more is obtained.
  • the dimension L0 is 0.1 to 0.5 times (0.1 ⁇ L0 ⁇ L1 ⁇ 0. 5 ⁇ L0).
  • the angle ⁇ 1 of the sharp protrusion 513 contributes to fixing the peeling point of the leak vapor SL and the traveling direction of the leak vapor SL at the peeling point.
  • the sharp protrusion 513 preferably has a small angle ⁇ 1 and is preferably thin.
  • the angle ⁇ 1 is 75 degrees [degree] or less, the sharp protrusion 513 can sufficiently function as a fixing point for the peeling point and is 45 degrees [degree] or less. The sharpening is improved, and the traveling direction of the leaked steam SL at the peeling point can be controlled with high accuracy. Therefore, the angle ⁇ 1 is preferably 75 degrees [degree] or less ( ⁇ 1 ⁇ 75), more preferably 45 degrees [degree] or less ( ⁇ 1 ⁇ 45).
  • ⁇ 2 is the inclination angle of the sharp protrusion 513, and the angle of intersection between the bisector B that bisects the angle ⁇ 1 of the sharp protrusion 513 and the parallel line P of the axial wall surface 512 (that is, (Intersection angle between the bisector B and the axial wall surface 512).
  • the intersection angle such that the bisector B is below the parallel line P is negative (minus)
  • a crossing angle at which the bisector B is above the parallel line P is positive (plus). Therefore, in the example shown in FIG. 3, the inclination angle ⁇ 2 of the sharp protrusion 513 is positive.
  • the inclination angle ⁇ 2 also contributes to fixing the separation point of the leak vapor SL and the traveling direction of the leak vapor SL at the separation point.
  • the sharp protrusion 513 is too opposite to the leakage steam SL flow, and the flow direction of the leakage steam SL at the protrusion tip 516, that is, the separation point, is very small. Since it becomes too far to the gap m, a strong contracted flow cannot be formed.
  • the angle ⁇ 2 is larger than 150 degrees, the flow direction of the leaked steam SL becomes too much toward the minute gap m, and a strong contracted flow cannot be formed.
  • the range of the angle ⁇ 2 is preferably ⁇ 30 degrees [degree] or more and 150 degrees [degree] or less ( ⁇ 30 ⁇ ⁇ 2 ⁇ 150).
  • the analysis results shown in FIG. 5 are for the case where the inclination angle ⁇ 2 of the sharp protrusion 513 is 75 degrees.
  • Step seal manufacturing method The manufacturing method of the step seal as the first embodiment of the present invention will be described with reference to FIGS. 6A, 6B and 6C.
  • the cutting step shown in FIG. The polishing step shown in FIG. 6B is performed, the processing in step 5 is completed as shown in FIG. 6C, and the manufacture of the step seal 5 is completed.
  • a portion 102 to be cut (the portion indicated by a halftone dot in FIG. 6A) provided in the step portion 101 of the raw material (step seal raw material) 100 is cut using the cutting blade 200 of the cutting machine.
  • the step portion 101 includes a step surface 101a and an opposing surface 101b that intersects the step surface 101a.
  • the part to be cut 102 is constant with respect to the thickness direction T (the direction that coincides with the axial direction A when attached to the steam turbine 1) from the step surface (any one of the first surface and the second surface) 101a. (That is, a predetermined thickness ⁇ T from the step surface 101a).
  • the dimensions of the step portion 101 of the raw material 100 are set in consideration of the thickness ⁇ T of the cut portion 102 with respect to the finished product (step seal 5).
  • the cutting blade 200 is propelled as indicated by the broken-line arrow, and is first propelled along the thickness direction T to bite into the boundary between the step surface 101a and the facing surface 103, and then the thickness direction T Proceeding in a direction away from the facing surface 103 along the intersecting cutting direction C (the direction along the radial direction R at the time of attachment to the steam turbine 1), the workpiece 102 is cut.
  • the remaining portion of the portion to be cut 102 becomes small, the remaining portion does not resist the propulsive force of the cutting blade 200 and is bent toward the cutting direction C to become a protruding portion 102 ′ (that is, remains as a burr).
  • 100 becomes the intermediate product 100 '.
  • the cutting process may be performed by electric discharge machining.
  • the surface (hereinafter referred to as an unprocessed surface) 105 opposite to the cutting surface 104 of the protrusion 102 ′ is not processed and is therefore polished by the polishing machine 201.
  • the protrusion 102 ′ is formed as a sharp protrusion 513 having a sharp tip, and the manufacture of the step seal 5 is completed.
  • the angle ⁇ 1 (see FIG. 3) of the sharp protrusion 513 can be adjusted according to the polishing amount and the polishing angle.
  • the inclination angle ⁇ 2 see FIG.
  • a processing step such as bending for adjusting the inclination angle ⁇ 2 of the sharp protrusion 513 may be provided.
  • the flow of the leaked steam SL toward the minute gap m is deflected to the outer peripheral side, thereby weakening the flow of the leaked steam SL toward the minute gap m and the minute gap m.
  • the development of the separation vortex SS on the upstream side ie, the enhancement of the contraction effect
  • the positional relationship between the seal fin 6 and the step seal 5 deviates from the design point. By offsetting this, a high leak suppression effect can be obtained stably.
  • the protrusion 513 is formed as a sharp protrusion with a sharp tip, the leakage suppressing effect due to the round tip of the protrusion 513 can be prevented from being reduced.
  • an inclination is provided at the corner of the step seal 5 by bending, and the leak flow is guided by the inclination like the protrusion 513, or the protrusion 513 provided with the protrusion in advance is manufactured by casting.
  • the protruding portion 513 can be provided by utilizing the generation of burrs that accompany cutting, the protruding portion 513 can be provided at low cost.
  • step seals 5A, 5B, and 5C are replaced with step seals 15 shown in FIG. 7 with respect to the shroud 51 in FIG.
  • the step seal 15 is formed between a step seal body 510 having a radial wall surface 511 and an axial wall surface 512, and the radial wall surface 511 and the axial wall surface 512 of the step seal body 510. And a protruding portion 513A.
  • the protrusion 513A has an upstream surface (hereinafter referred to as a front surface) 514 that is continuous with the radial wall surface 511 of the step seal body 510, and a surface (hereinafter referred to as a back surface) 515 that faces the bottom surface 13 (see FIG. 2) of the casing 10.
  • the protrusion tip 516 that intersects with is processed into a pointed shape without roundness. Therefore, hereinafter, the protrusion 513A is also referred to as a sharp protrusion 513A.
  • the sharp protrusion 513 ⁇ / b> A refers to a protrusion having a sharpened tip that is relatively sharpened by sharpening as compared to an unprocessed case.
  • the sharp protrusion 513 ⁇ / b> A extends upstream along the axial direction A, and its back surface 515 is flush with the axial wall surface 512 of the step seal body 510.
  • the length dimension L1 is preferably not more than 1.5 times the length dimension L0 in the axial direction A of the seal fin 6 (L1 ⁇ 1.5 ⁇ L0), more preferably 0.1 times the dimension L0.
  • the angle ⁇ 1 of the sharp protrusion 513A is preferably 75 degrees or less ( ⁇ 1 ⁇ 75), more preferably 45.
  • the angle of inclination [theta] 2 of the sharp protrusion 513 is preferably -30 [deg.] Or more and 150 [deg.] Or less.
  • leak steam SL is guided to the upstream side (that is, the side opposite to the minute gap m) in addition to receiving a large flow resistance by the sharp protrusion 513A that is convex on the upstream side. Is done.
  • the leaked steam SL has a weaker flow toward the minute gap m than the sharp protrusion 513 that protrudes toward the outer peripheral side of the first embodiment, and moreover deviates more than the first embodiment.
  • the leakage flow rate can be reduced compared to the conventional step seal 5 ′ shown in FIG. 4B.
  • the effective height h2 of the flow of the leak steam SL is lower than the effective height h1 ′ when the conventional step seal 5 ′ is used, and the gap dimension h between the seal fin 6 and the axial wall surface 512 is reduced.
  • the sharp protrusion 513A of the step seal 5A has a sharp shape at the protrusion tip 516, like the sharp protrusion 513 of the first embodiment, so that there is no reduction in the leakage suppressing effect.
  • Step seal manufacturing method A step seal manufacturing method as a second embodiment of the present invention will be described with reference to FIGS. 9A, 9B, and 9C.
  • the cutting step shown in FIG. 9A is performed.
  • the polishing step shown in FIG. 9B is performed, and the manufacture of the step seal 15 is completed as shown in FIG. 9C.
  • a part to be cut 152 (a part indicated by a halftone dot in FIG. 9A) provided in the step part 151 of the raw material 150 is cut using the cutting blade 200 of the cutting machine.
  • the step portion 151 includes a step surface 151b and a facing surface 151a that intersects the step surface 151b, and the cut portion 152 includes a facing surface (any one of the first surface and the second surface) 151a, It is set to a certain range (that is, a predetermined thickness ⁇ T1 from the facing surface 151a) with respect to the thickness direction T1 (radial direction R when attached to the steam turbine 1).
  • the size of the step portion 151 of the raw material 150 is set with respect to the thickness ⁇ T1 of the cut portion 152 with respect to the step seal 15 of the finished product.
  • the cutting blade 200 is propelled as indicated by the dashed arrow, and first, propelled toward the opposing surface 151a along the thickness direction T1, and bites into the boundary between the opposing surface 151a and the stepped surface 153,
  • the portion to be cut 152 is cut by propelling in a direction away from the step surface 153 along the cutting direction C1 (axial direction A when attached to the steam turbine 1) intersecting the thickness direction T1.
  • the remaining portion of the portion to be cut 152 becomes small, the remaining portion does not resist the propulsive force of the cutting blade 200 and bends in the cutting direction C side to become a protruding portion 152 ′ (that is, remains as a burr).
  • the cutting process may be performed by electric discharge machining.
  • the surface (hereinafter referred to as an unprocessed surface) 155 opposite to the cutting surface 154 of the protrusion 152 ′ is not processed and is polished by the polishing machine 201.
  • the protrusion 152 ′ is formed as a sharp protrusion 513A having a sharp tip as shown in FIG. 9C, and the manufacture of the step seal 15 is completed.
  • the angle ⁇ 1 (see FIG. 7) of the sharp protrusion 513A can be adjusted according to the polishing amount and the polishing angle.
  • the inclination angle ⁇ 2 see FIG.
  • the sharp protrusion 513A is adjusted by the pressing force applied to the protrusion 152 ′ by the polishing machine 201 when the protrusion 152 ′ is polished by the polishing machine 201 to be the sharp protrusion 513A. can do.
  • a processing step such as bending for adjusting the inclination angle ⁇ 2 of the sharp protrusion 513A may be provided.
  • the manufacturing method of the step seal of the present embodiment is not limited to the method shown in FIGS. 9A to 9C.
  • the unprocessed surface 105 is polished as shown in FIG. 6B, and a polishing machine is used for this polishing.
  • the step seal 15 of the second embodiment shown in FIG. 7 can be manufactured by polishing the protrusion 102 ′ with 201 and pushing down the protrusion 102 ′ so as to be parallel to the facing surface 103.
  • the sharp projection 513 is directed to the outer peripheral side by the sharp projection 513A directed to the upstream side (that is, the side opposite to the minute gap m).
  • the manufacturing method of the step seal as 2nd Embodiment of this invention is performed as mentioned above, the effect similar to the manufacturing method of the step seal of 1st Embodiment is acquired.
  • the shroud 51 is the first structure of the present invention
  • the casing 10 is the second structure of the present invention
  • the step seals 5 and 15 are provided on the shroud 51
  • the casing 10 is provided with seal fins.
  • the casing 10 may be the first structure of the present invention and the shroud 51 may be the second structure of the present invention. That is, the step seals 5 and 15 may be provided on the casing 10 and the seal fins 6 may be attached to the shroud 51.
  • the seal structure of the present invention is applied to the seal structure between the casing 10 and the moving blade 50, but is applied to the seal structure between the rotary shaft main body 31 and the stationary blade 40. You can also.
  • step seals 5A, 5B, 5C of the shroud are provided with sharp projections 513
  • all the step seals 5A, 5B, 5C of the shroud are sharp projections.
  • the portion 513A is provided, the sharp protrusion 513 or the sharp protrusion 513A may be provided on at least one of the step seals 5A, 5B, and 5C.
  • a step seal provided with the sharp protrusion 513 and a step seal provided with the sharp protrusion 513A may be mixed.
  • the protrusions 513 and 513A are polished by the polishing step to obtain a sharp protrusion having a sharp tip, but the polishing step may be omitted.
  • the intermediate product 100 ′ before polishing shown in FIG. 6B and the intermediate product 150 ′ before polishing shown in FIG. 9B are used as finished products of the shroud having the protrusions 102 ′ and 152 ′. It may be used for a turbo machine. Even if the protrusions 102 ′ and 152 ′ are not sharp protrusions, the leakage steam SL can be guided upstream by the protrusions 102 ′ and 152 ′. Therefore, the effect of suppressing leakage can be obtained by offsetting the influence of roundness.
  • the shape of the sharp protrusion and its processing are not limited to those of the above embodiment.
  • the present invention can also be applied to a seal of a turbo machine other than a steam turbine, such as a gas turbine or a turbo compressor. Furthermore, as long as the seal is between two relatively rotating structures, it can also be applied to a seal other than a turbo machine (for example, a rotary joint).
  • Segment C Cutting direction CL Axis Gd Gap h Size of gap between seal fin 6 and shroud 51 h1, h1 'Effective height of leak steam SL L0 Length of fin main body 61 in axial direction A L1 Axis of sharp projection 513 Length dimension in direction A m, ma, mb, mc Minute gap (clearance) R radial direction S steam (fluid) SL Leak Vapor SS Separation Vortex T, T1 Thickness direction ⁇ T Thickness of cut portion 102 ⁇ T1 Thickness of cut portion 152 ⁇ 1 Angle of sharp projection 513 ⁇ 2 Inclination angle of sharp projection 513

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
  • Turning (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

安定して高いリーク抑制効果が得られ、ひいては安定してターボ機械のリーク損失を低減することができる、ステップシール,シール構造,ターボ機械及びステップシールの製造方法を提供する。 互いに隙間(Gd)を空けて径方向(R)に対向し軸線回りに相対回転する第一構造体(51)と第二構造体(10)との間の隙間(Gd)から、流体(SL)がリークすることを抑制し、第二構造体(10)に設けられたシールフィン(6)にクリアランス(m)をあけて、第一構造体(10)に設けられるステップシール(5)であって、流体(SL)の流通方向上流側に向く段差面(511)と第二構造体(10)に向く対向面(512)とを有するステップシール本体と、段差面(511)と対向面(512)との間に形成された突起部(513)とを備えて構成される。

Description

ステップシール,シール構造,ターボ機械及びステップシールの製造方法
 本発明は、二つ構造体の相互間からの流体のリークを抑制するステップシール,シール構造、それを使用したターボ機械及びステップシールの製造方法に関する。
 蒸気タービン,ガスタービン及びターボ圧縮機などのターボ機械においては、静止側と回転側との間にできる隙間から蒸気などの作動流体がリークすると、このリークがターボ機械における効率の損失(リーク損失)を引き起こす。このため、ターボ機械では、作動流体のリークを防止するために、ラビリンスシールなどの非接触型のシール構造が用いられている。
 ラビリンスシールとしては、ターボ機械の外郭をなすケーシングの内周に動翼に向かって伸びるシールフィン等のシール部材と、動翼の先端に設けられたステップ状のシュラウドとを有するステップ型のものが知られている(例えば特許文献1)。
 このようなステップ型のラビリンスシールでは、シュラウドのステップ部(ステップシール)の径方向に沿った径方向壁面により作動流体に主渦が発生すると共に、シールフィンの上流側において、ステップ部の角部の作用により主渦から剥離渦(剥離流の渦)が発生する。この剥離渦によって、いわゆる縮流効果が得られ、シールフィンとシュラウドとの微小間隙から作動流体のリーク量を低減させることができる。
特開2012-072689号公報
 しかしながら、特許文献1に開示されたような従来のステップ型のラビリンスシールでは、リーク抑制効果ひいてはターボ機械のリーク損失抑制効果が十分とはいえない。これは、ステップシールの角部を構成する、上流側に向く径方向壁面が、径方向に延在する真っ直ぐな形状であり、作動流体に積極的に主渦を発生させる(すなわち旋回させる)形状としては十分ではなかった。
 レイアウト上の制約から十分なステップシールの高さを確保できない場合や、シュラウドが、ターボ機械の運転時に、熱により軸方向(ターボ機械の回軸方向)に伸びて、シールフィンとステップシールとの距離が設計点からずれてしまう場合には、上記形状では特に主渦の発達に影響が出やすく、主渦が十分に発達しない。
 このため、ステップ部の角部において主渦からの剥離が不十分となり、剥離渦が十分に発達せずに期待通りの縮流効果を得ることができず、ひいては作動流体のリーク抑制効果及びターボ機械のリーク損失抑制効果を十分に得られないことがあった。
 本発明は、上記のような課題に鑑み創案されたもので、安定して高いリーク抑制効果が得られ、ひいては安定してターボ機械のリーク損失を低減することができる、ステップシール,シール構造,ターボ機械及びステップシールの製造方法を提供することを目的とする。
 (1)上記の目的を達成するために、本発明のステップシールは、互いに隙間を空けて径方向に対向し軸線回りに相対回転する第一構造体と第二構造体との間の前記隙間から、流体がリークすることを抑制するシール構造において、前記第二構造体に設けられたシールフィンにクリアランスをあけて、前記第一構造体に設けられるステップシールであって、前記流体の流通方向上流側に向く段差面と前記第二構造体に向く対向面とを有するステップシール本体と、前記段差面と前記対向面との間に形成された突起部とを備えて構成されたことを特徴としている。
 (2)前記突起部が先端の尖った尖鋭突起部であることが好ましい。
 (3)前記突起部における前記軸線に沿った長さ寸法が、前記シールフィンにおける前記長さ寸法の1.5倍以下であり、前記突起部の角度が75度以下であり、前記突起部の傾斜角度が、-30度以上、150度以下の範囲内に設定されたことが好ましい。
 (4)前記突起部が、前記第二構造体に向かって凸となることが好ましい。
 (5)前記突起部が、前記上流側に向かって凸となることが好ましい。
 (6)前記突起部における前記軸線に沿った長さ寸法が、前記シールフィンにおける前記長さ寸法の0.1倍以上且つ0.5倍以下であることが好ましい。
 (7)上記の目的を達成するために、本発明のシール構造は、互いに隙間を空けて径方向に対向し軸線回りに相対回転する第一構造体と第二構造体との間の前記隙間から、流体がリークすることを抑制する、シール構造であって、前記第一構造体に設けられた、(1)~(6)の何れかに記載のステップシールと、前記ステップシールの前記段差面よりも前記流体の流通方向下流側で前記ステップシールの前記対向面に向かって延在し、前記対向面との間にクリアランスをあけて前記第二構造体に設けられたシールフィンとを備えたことを特徴としている。
 (8)上記の目的を達成するために、本発明のターボ機械は、(7)に記載のシール構造を備えることを特徴としている。
 (9)上記の目的を達成するために、本発明のステップシールの製造方法は、互いに隙間を空けて径方向に対向し軸線回りに相対回転する第一構造体と第二構造体との間の前記隙間から、流体がリークすることを抑制するシール構造において、前記第二構造体に設けられたシールフィンにクリアランスをあけて、前記第一構造体に設けられるステップシールの製造方法であって、第一の面と、前記第一の面と交差する第二の面とを有するステップシール原材料において、前記第一の面及び前記第二の面の何れか一方の面に対し、表面から厚さ方向に関して一定の範囲を被切削部として設定し、前記被切削部を、前記厚さ方向と交差する切削方向に切削を行うことで、前記切削方向と交差する面に前記切削方向に凸となる突起部を形成する、切削ステップを備えたことを特徴としている。
 (10)前記突起部を研磨して先端の尖った尖鋭突起部に形成する、研磨ステップを備えることが好ましい。
 本発明によれば、ステップシールとシールフィンとの間のクリアランスに向かう流体の流れを、シールフィンの上流側において、ステップシールに設けた突起部によりクリアランスから逸らすことで、クリアランスに向かう流体の弱体化と、クリアランスの上流側における剥離渦の発達の促進(つまり縮流効果の向上の促進)とを積極的に行うようにしている。これにより、シール構造によるリーク抑制効果、ひいてはターボ機械のリーク損失の低減効果を安定して得ることができる。
 また、切削加工に伴うバリの発生を利用して突起部を設けることができるので、安価且つ容易に突起部を設けることができ、突起部を設けることによる製造コストの上昇を抑制することができる。
図1は、本発明の各実施形態に係る蒸気タービンの全体構成を示す模式的な縦断面図である。 図2は、本発明の第1実施形態に係る蒸気タービンの要部断面図であり、図1のI部の拡大断面図である。 図3は、本発明の第1実施形態に係るステップシールの構成を示す模式的断面図である(ステップシールの断面を示す斜線は省略している)。 図4A及び図4Bは、本発明の第1実施形態に係るステップシールの作用を説明するための模式的断面図であって、図4Aは本発明の第1実施形態に係るステップシールに関する図、図4Bは従来のステップシールに関する図である(図4A及び図4B共にステップシールの断面を示す斜線は省略している)。 図5は、本発明の第1実施形態に係るステップシールの主要寸法の設定範囲を説明するための模式図であって、リーク流量の抑制効果Eと、尖鋭突起部の軸方向Aに関する長さ寸法L1と、尖鋭突起部の角度θ1との相関関係の解析結果を示す図である。 図6A,図6B及び図6Cは、本発明の第1実施形態に係るステップシールの製造方法を説明するための模式的断面図であって、図6Aは切削ステップを示す図、図6Bは研磨ステップを示す図、図6Cは研磨ステップ後の製品完成状態を示す図である(図6A,図6C及び図6B共にステップシールの断面を示す斜線は省略している)。 図7は、本発明の第2実施形態に係るステップシールの構成を示す模式的断面図である(ステップシールの断面を示す斜線は省略している)。 図8は、本発明の第2実施形態に係るステップシールの作用を説明するための模式的断面図である(ステップシールの断面を示す斜線は省略している)。 図9A,図9B及び図9Cは、本発明の第2実施形態に係るステップシールの製造方法を説明するための模式的断面図であって、図9Aは切削ステップを示す図、図9Bは研磨ステップを示す図、図9Cは研磨ステップ後の製品完成状態を示す図である(図9A,図9B及び図9C共にステップシールの断面を示す斜線は省略している)。
 以下、図面を参照して、本発明の実施の形態について説明する。
 本実施形態では、本発明のステップシール,シール構造,ターボ機械及びシールフィンの製造方法を蒸気タービンに適用した例を説明する。
 なお、以下に示す実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。以下の実施形態の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができると共に、必要に応じて取捨選択することができ、あるいは適宜組み合わせることが可能である。
 以下の説明では上流,下流と記載した場合は、特段の説明がない限り、蒸気タービン内の蒸気Sの流れに対して上流,下流を意味するものとする。すなわち、図1~図4B,図6A~図9Cにおける左側を上流側、右側を下流側とする。
 また、蒸気タービンの軸線CLに向く方向を内周側又は内側とし、その反対側、軸線CLから離れる方向を外周側又は外側として説明する。
[1.第1実施形態]
 [1-1.蒸気タービンの全体構成]
 図1に示すように、本実施形態の蒸気タービン(ターボ機械)1は、ケーシング(第二構造体)10と、ケーシング10の内部に回転自在に設けられ、動力を図示しない発電機等の機械に伝達する回転軸30と、ケーシング10に設けられた静翼40と、回転軸30に設けられた動翼50と、軸線CLを中心に回転軸30を回転可能に支持する軸受部70とを備えて構成されている。静翼40及び動翼50は回転軸30の径方向Rに延びるブレードである。
 ケーシング10は静止しているのに対し、動翼50は軸線CLを中心に回転する。つまり、ケーシング10と動翼50(後述のシュラウド51を含む)とは互いに相対回転する。
 蒸気(流体)Sは、図示しない蒸気供給源と接続された蒸気供給管20を介して、ケーシング10に形成された主流入口21から導入され、蒸気タービン1の下流側に接続された蒸気排出管22から排出される。
 ケーシング10の内部空間は、気密に封止されていると共に蒸気Sの流路とされている。このケーシング10の内壁面には、回転軸30が挿通されるリング状の仕切板外輪11が強固に固定されている。
 軸受部70は、ジャーナル軸受装置71及びスラスト軸受装置72を備えており、回転軸30を回転自在に支持している。
 静翼40は、ケーシング10から内周側に向かって伸び、回転軸30を囲繞するように放射状に多数配置される環状静翼群を構成しており、それぞれ上述した仕切板外輪11に保持されている。
 これら複数の静翼40からなる環状静翼群は、回転軸30の軸方向(以下、単に軸方向と呼ぶ)Aに間隔を空けて複数形成されており、蒸気Sの圧力エネルギーを速度エネルギーに変換して、速度エネルギーの増加した蒸気Sを下流側に隣接する動翼50に流入させる。
 動翼50は、回転軸30の回転軸本体31の外周部に強固に取り付けられ、各環状静翼群の下流側において、放射状に多数配置されて環状動翼群を構成している。
 これら環状静翼群と環状動翼群とは、一組一段とされている。このうち、最終段の動翼群では、回転軸30の周方向(以下、単に周方向と呼ぶ)に隣接する動翼50の先端部同士がリング状のシュラウド(第一構造体)51により連結されている。最終段の動翼群のみなならず他の動翼群、さらには静翼群についてもシュラウド51により連結するようにしても良い。
 [1-2.シール構造]
  [1-2-1.シール構造の全体構造]
 図2に示すように、仕切板外輪11の軸方向下流側には、仕切板外輪11から拡径されケーシング10の内周面を底面(以下、ケーシング底面ともいう)13とする円環状の溝(以下、環状溝と呼ぶ)12が形成されている。環状溝12には、シュラウド51が収容され、ケーシング底面13は、シュラウド51と隙間Gdを介して径方向Rに対向している。
 蒸気Sのうち大部分の蒸気SMは、動翼50に流入し、そのエネルギーが回転エネルギーに変換され、この結果、回転軸30に回転が付与される。その一方、蒸気Sのうち一部(例えば、約数%)の蒸気(以下、リーク蒸気と呼ぶ)SLは、動翼50に流入せずに環状溝12にリークする。リーク蒸気SLのエネルギーは回転エネルギーに変換されないので、リーク蒸気SLは、蒸気タービン1の効率を低下させるリーク損失を招く。
 そこで、ケーシング10と動翼50との間の隙間Gdには、本発明の第1実施形態としてのシール構造(ステップ型のラビリンスシール)2が設けられている。以下、シール構造2について説明する。
 図2に示すように、動翼50の先端部には、前述のとおりリング状のシュラウド51が配設されている。このシュラウド51は、図2に示す階段状の横断面形状(周方向に垂直な断面の形状)を全周に亘って一定に有しており、ここでは3つのステップシール5A,5B,5Cを備えている。以下、ステップシール5A,5B,5Cを区別しない場合はステップシール5と表記する。
 ステップシール5Aは、上流側を向き径方向Rに沿った径方向壁面(段差面)511aと、底面13(換言すればケーシング10の内壁面)に向き軸方向Aに沿った軸方向壁面(対向面)512aと、これらの壁面511a,512aとの間に形成される突起部513aとを備えて構成される。径方向壁面511aは全体的に径方向Rに幅を持った円環状、軸方向壁面512aは全体的に軸方向Aに幅を持った円筒状、突起部513aは全体的に径方向Rに幅を持った円環状をなしている。
 ステップシール5B,5Cは、それぞれステップシール5Aと同様に構成される。つまり、ステップシール5Bは、上流側を向く径方向壁面(段差面)511bと、底面13に向く軸方向壁面(対向面)512bと、これらの壁面511b,512bとの間に形成される突起部513bとを備えて構成され、ステップシール5Cは、上流側を向く径方向壁面(段差面)511cと、底面13に向く軸方向壁面(対向面)512cと、これらの壁面511c,512cとの間に形成される突起部513cとを備えて構成される。
 以下、径方向壁面511a,511b,511cを特に区別しない場合には、径方向壁面511と表記し、軸方向壁面512a,512b,512cを特に区別しない場合には、軸方向壁面512と表記し、突起部513a,513b,513cを特に区別しない場合には、突起部513と表記する。
 なお、シュラウド51の断面形状は、本実施形態のものに限定されず適宜設計変更が可能であり、シュラウド51に設けるステップシール5の個数は、1つ以上あれば良く、3個に限定されるものではない。
 一方、図2に示す仕切板外輪11の内周面には、上述の環状溝12が形成されている。そして、この環状溝12の底面13には、3つのシールフィン6A,6B,6Cが、径方向Rに突出するようにしてそれぞれ設けられている。
 ここで、蒸気Sの流通方向で最も上流側に位置するシールフィン6Aは、シュラウド51のステップシール5Aの径方向壁面511aよりも若干下流側に設けられ、その先端とシュラウド51の軸方向壁面512aとの間には、微小間隙maが径方向Rに形成されている。また、3つのシールフィン6のうち、2番目に上流側に位置するシールフィン6Bは、ステップシール5Bの径方向壁面511bよりも若干下流側に設けられ、その先端とシュラウド51の軸方向壁面512bとの間にも、微小間隙mbが径方向Rに形成されている。更に、3つのシールフィン6のうち、最も下流側に位置するシールフィン6Cは、ステップシール5Cの径方向壁面511cよりも若干下流側に設けられ、その先端とシュラウド51の軸方向壁面512cとの間にも、微小間隙mcが径方向に形成されている。シールフィン6A,シールフィン6B,及びシールフィン6Cはこの順にその長さが短くなっている(シールフィン6Aの長さ>シールフィン6Bの長さ>シールフィン6Cの長さ)。
 シールフィン6A,6B,6Cを区別しない場合は、以下、シールフィン6と表記する。また、微小間隙ma,mb,mcを区別しない場合は、以下、微小間隙mと表記する。
 なお、シールフィン6の長さや形状や設置位置や個数等は、本実施形態に限定されず、シュラウド51および/または仕切板外輪11の断面形状等に応じて適宜設計変更が可能である。また、微小間隙mの寸法は、ケーシング10や動翼50の熱伸び量、動翼の遠心伸び量等を考慮した上で、シールフィン6とシュラウド51とが接触することがない安全な範囲内で、最小の値に設定することが好適である。本実施形態では、3つの微小間隙mを全て同じ寸法に設定しているが、必要に応じて、各シールフィン6によって微小間隙mを異なる寸法に設定してもよい。
  [1-2-2.ステップシール]
 上述したようにステップシール5は突起部513を備えたことに大きな特徴がある。この突起部513の構造について図3及び図4を参照して説明する。
 図3に示すように、ステップシール5は、径方向壁面511と軸方向壁面512とを有するステップシール本体510と、ステップシール本体510の径方向壁面511と軸方向壁面512との間に形成された突起部513とを備えて構成されている。
 突起部513の突起先端516〔径方向壁面511に連続する上流側の面(以下、前面という)514と、下流側の面(以下、背面という)515とが交わる箇所〕には、そのまま(未加工のまま)では丸み(ここで言う「丸み」とは、流体の流れに影響を与えうる一定曲率半径以上の丸み)があるため、尖鋭加工が施されている。そこで、以下、突起部513を尖鋭突起部513ともいう。換言すれば、尖鋭突起部513とは、尖鋭加工により、未加工の場合に比べて相対的に突起先端516が尖鋭化された突起部をいう。
 本実施形態では、尖鋭突起部513は、径方向Rに沿って外周側に延設されており、その前面514がステップシール本体510の径方向壁面511に面一に形成されているが、二点鎖線で示すように、径方向壁面511に対して傾斜させてもよい(径方向Rに対して傾斜させてもよい)。
 図4Bに示すように、尖鋭突起部513のない従来のシュラウド51′のステップシール5′では、そもそもリーク蒸気SLに圧力損失を十分に与えるような形状でない上に、その角部516′が丸みを帯びているため、リーク蒸気SLが一点鎖線の矢印で示すように流れ、縮流効果が低い。本来であれば(丸みを帯びていなければ)、リーク蒸気SLが、ステップシール5′の径方向壁面511′により外周側に反れて流れるため、ステップシール5′の角部516′付近でリーク蒸気SLによる剥離渦が発生する。これにより、リーク蒸気SLが外周側に反れて流れることで微小間隙mへ向かう流れが弱まることと、剥離渦の縮流効果との相乗効果により一定のリーク抑制効果が得られるはずである。
 しかし、角部516′は丸みを帯びているので、リーク蒸気SLがこの丸みに沿って流れてしまうため、リーク蒸気SLは、一点鎖線の矢印で示すように僅かに外周側に反れるだけで、下流側に向かう力が十分に弱まらないまま微小間隙mに流れ込んでしまう。
 さらに、リーク蒸気SLの流れと対向面512′との間に、剥離渦〔図4Aの剥離渦SS参照〕が形成されるための空間が十分に生成されず、剥離渦が十分に発達しない。剥離渦が十分に発達すれば、この剥離渦によって、微小隙間mの上流側において図4Bで下側に向かう高速流れが起こされ、縮流効果が得られるが、剥離渦が十分に発達しないため縮流効果が得られない。換言すれば、リーク蒸気SLの流れの有効高さh1´が比較的高く、シールフィン6とステップシール5′との隙間寸法hに対する有効高さh1´の比である縮流効果(=h1′/h)が十分ではない。
 特に、「発明が解決しようとする課題」の欄で説明したように、ステップシールの高さを確保できない場合や、熱によりシュラウド51′に軸方向Aへの伸びが生じて、シールフィン6とステップシール5′との位置関係が最適点である設計点からずれてしまう場合には、縮流効果が低くなる。
 これに対し、図4Aに本発明の第1実施形態のシュラウド51においては、リーク蒸気SLが一点鎖線の矢印で示すように流れるため、リーク蒸気SLの流れの有効高さh1が、従来のシュラウド51′を使用した時の有効高さh1´よりも低く、シールフィン6とシュラウド51との隙間寸法hに対する有効高さh1の比である縮流効果(=h1/h)が、従来のシュラウド51′を使用した時の縮流効果(=h1′/h)よりも向上している〔(h1/h)<(h1′/h)〕。
 これは、径方向Rで外周側に凸となる尖鋭突起部513の存在により、リーク蒸気SLに対する流通抵抗が大きくなることに加え、リーク蒸気SLが、図4A中に一点鎖線で示すように積極的に外周側に案内されるので、下流側に向かう力が十分に弱まる上に、剥離渦SSの生成が誘発され、生成した剥離渦SSにより、微小間隙mの上流側に、図4Aにおいて下方向に向かう高速流れが起こされることで縮流効果が得られるためである。つまり、リーク蒸気SLが、大きく迂回してシールフィン6とシュラウド51との微小間隙mに流れ込むようになるため、リーク蒸気SLの流れと対向面512との間に、従来よりも広い空間が形成され、この広い空間により剥離渦SSの発達が促進され、発達した剥離渦SSにより高い縮流効果が得られるからである。
 しかも、ステップシール5の尖鋭突起部513は、突起先端516が尖鋭形状となっているので、従来のシュラウド51′のステップシール5′ように角部516′に丸みがあることによるリーク抑制効果の目減りがない。
 ここで、尖鋭突起部513の主な寸法L1,θ1,θ2の好ましい範囲を、図3及び図5を参照して説明する。
 図5は、リーク流量の抑制効果Eと、尖鋭突起部513の軸方向Aに関する長さ寸法L1と、尖鋭突起部513の角度(前面514と背面515とが成す角度)θ1との相関関係の解析結果を示すものである。抑制効果Eとは、角度θ1が45度[degree]で、尖鋭突起部513の長さ寸法L1が、シールフィン6の軸方向Aに関する長さ寸法L0に対して0.25倍のときに得られる最大のリーク低減量を100%としてリーク低減量を示すものである。
 尖鋭突起部513の長さ寸法L1は、長すぎると、リーク蒸気SLが尖鋭突起部513から剥離する点(剥離点)がシールフィン6よりも上流側に離れすぎるため剥離渦SSが弱くなり(シールフィン6を通過しようとするリーク蒸気SLに対する影響が弱くなり)、長さ寸法L1とリーク流量の抑制効果Eとの関係は図5に示すようになる。
 図5より、尖鋭突起部513の長さ寸法L1は、50%以上の抑制効果Eが得られることから、好ましくは、シールフィン6の軸方向Aに関する長さ寸法L0の1.5倍以下(L1≦1.5×L0)、80%以上の抑制効果Eが得られることから、より好ましくは寸法L0の0.1倍以上且つ0.5倍以下(0.1×L0≦L1≦0.5×L0)である。
 また、尖鋭突起部513の角度θ1は、リーク蒸気SLの剥離点の固定と、剥離点でのリーク蒸気SLの進行方向に寄与する。角度θ1が大きすぎると、リーク蒸気SLが尖鋭突起部513を回り込んでしまって剥離点を固定するため角(突起)としての機能を果たすことができず、リーク蒸気SLが尖鋭突起部513に沿って流れてしまい、剥離渦によって生まれる縮流が弱くなる。
 すなわち、尖鋭突起部513は、角度θ1が小さく薄いほうが好ましく、角度θ1が75度[degree]以下だと剥離点の固定点としての機能を十分に果たすことができ、45度[degree]以下だと尖鋭化が向上して剥離点でのリーク蒸気SLの進行方向を精度よく制御することができる。したがって、角度θ1は、好ましくは75度[degree]以下(θ1≦75)、より好ましくは45度[degree]以下(θ1≦45)である。
 図3におけるθ2は、尖鋭突起部513の傾斜角度であり、尖鋭突起部513の角度θ1を二等分する二等分線Bと、軸方向壁面512の平行線Pとの交差角度(つまりは二等分線Bと軸方向壁面512との交差角度)である。
 ここで、二等分線Bと平行線Pとの交点よりも左側の交差角に着目した場合、平行線Pよりも二等分線Bが下方となるような交差角を負(マイナス)、平行線Pよりも二等分線Bが上方となるような交差角を正(プラス)とする。したがって、図3に示す例では尖鋭突起部513の傾斜角度θ2は正である。
 傾斜角度θ2も、角度θ1と同様に、リーク蒸気SLの剥離点の固定と、剥離点でのリーク蒸気SLの進行方向に寄与する。傾斜角度θ2が-30度[degree]よりも小さいと、尖鋭突起部513がリーク蒸気SLの流れに対して対抗方向に向きすぎて突起先端516すなわち剥離点でのリーク蒸気SLの流れ方向が微小間隙mに向かいすぎるようになるため、強い縮流を形成することができない。同様に、角度θ2が150度[degree]よりも大きいとリーク蒸気SLの流れ方向が微小間隙mに向かいすぎるようになり、強い縮流を形成することができない。
 このため、角度θ2の範囲は、-30度[degree]以上、150度[degree]以下が好ましい(-30≦θ2≦150)。
 なお、図5に示す解析結果は、鋭突起部513の傾斜角度θ2が75度[degree]の場合のものである。
 [1-3.ステップシールの製造方法]
 本発明の第1実施形態としてのステップシールの製造方法を、図6A,図6B及び図6Cを参照して説明すると、本製造方法では、先ず、図6Aに示す切削ステップが行われ、次いで図6Bに示す研磨ステップが行われて、図6Cに示すようにステップ5の加工が完了し、ステップシール5の製造が完了する。
 図6Aに示す切削ステップでは、原材料(ステップシール原材料)100のステップ部101に設けられた被切削部102(図6A中、網点で示す部分)を、切削機の切削刃200を使用して切削する。ステップ部101は、段差面101aと、段差面101aと交差する対向面101bを備える。被切削部102は、段差面(第一の面及び第二の面の何れか一方の面)101aから、厚さ方向T(蒸気タービン1への取り付け時に軸方向Aと一致する方向)に関して一定の範囲(つまり段差面101aから所定厚み分ΔT)に設定されている。異なる言い方をすれば、原材料100のステップ部101は、完成品(ステップシール5)に対して、被切削部102の厚みΔT分を見込んで寸法が設定されている。
 そして、切削刃200を、破線の矢印で示すように推進し、先ず、厚さ方向Tに沿って推進して段差面101aと対向面103との境界に食い込ませた後、厚さ方向Tと交差する切削方向C(蒸気タービン1への取り付け時における径方向Rに沿った方向)に沿って対向面103から離隔する方向に推進し、被切削部102を切削する。切削が進んで被切削部102の残部が僅かになると、この残部が、切削刃200の推進力に抗しきれずに切削方向C側に折れ曲がり突起部102′となり(つまりバリとして残り)、シュラウド原材料100が中間製品100′となる。なお、切削加工は放電加工により行うようにしても良い。
 図6Bに示す研磨ステップでは、突起部102′の切削面104とは反対側の面(以下、未加工面という)105は加工が施されていないので、研磨機201により研磨される。これにより、図6Cに示すように、突起部102′が先端の尖った尖鋭突起部513として形成されて、ステップシール5の製造が完了する。
 尖鋭突起部513の角度θ1(図3参照)は、研磨量や研磨角度に応じて調節することができる。尖鋭突起部513の傾斜角度θ2(図3参照)は、研磨機201により突起部102′を研磨して尖鋭突起部513とする際に、研磨機201により突起部102′に掛ける押圧力により調整することができる。研磨ステップとは別に、尖鋭突起部513の傾斜角度θ2を調節する曲げ加工などの加工ステップを設けても良い。
 [1-4.効果]
 本発明の第1実施形態としてのステップシール,シール構造,蒸気タービン及びシュラウドの製造方法によれば以下の利点がある。
 ステップシール5に突設された突起部513の案内により、微小隙間mに向かうリーク蒸気SLの流れを外周側に逸らすことで、微小隙間mに向かうリーク蒸気SLの流れの弱体化と微小隙間mの上流側における剥離渦SSの発達の促進(つまり縮流効果の向上の促進)を積極的に行うようにしている。これにより、ステップシールの高さを確保できない場合や、熱によりシュラウド51に軸方向Aへの伸びが生じて、シールフィン6とステップシール5との位置関係が設計点からずれてしまう場合でも、これを相殺して、高いリーク抑制効果を安定して得ることができる。
 さらに、突起部513が、先端の尖った尖鋭突起部として形成されているので、突起部513の先端が丸みを帯びることによるリーク抑制効果が目減りを防止することができる。
 さらに、尖鋭突起部513の主要寸法である長さ寸法L1,角度θ1及び傾斜角度θ2を適宜の範囲に設定することで、より高いリーク抑制効果を得ることができる。
 また、このようなリーク抑制効果の高いステップシール5を使用することで、蒸気タービン1のリーク損失を抑制して高いタービン効率を得ることができる。
 また、ステップシール5の角部に折曲加工により傾斜を設けて、この傾斜により突起部513のようにリーク流を案内することや、鋳造により予め突起部を備えた突起部513を製造することも考えられるが、本発明では、切削加工に伴うバリの発生を利用して突起部513を設けることができるので、安価に突起部513を設けることができる。
[2.第2実施形態]
 本実施形態は、第1実施形態に対しステップシールの構成が異なるだけなので、ステップシールの構成のみ説明する。
 [2-1.ステップシール]
 本実施形態は、図2におけるシュラウド51に対し、ステップシール5A,5B,5Cを、それぞれ図7に示すステップシール15に置き換えて構成される。
 図7に示すように、ステップシール15は、径方向壁面511と軸方向壁面512とを有するステップシール本体510と、ステップシール本体510の径方向壁面511と軸方向壁面512との間に形成された突起部513Aとを備えて構成されている。
 突起部513Aは、ステップシール本体510の径方向壁面511に連続する上流側の面(以下、前面という)514と、ケーシング10の底面13(図2参照)に向く面(以下、背面という)515とが交わる突起先端516を、丸みの無い先の尖った形状に加工されている。そこで、以下、突起部513Aを尖鋭突起部513Aともいう。換言すれば、尖鋭突起部513Aとは、尖鋭加工により、未加工の場合に比べて相対的に突起先端が尖鋭化された突起部をいう。
 本実施形態では、尖鋭突起部513Aは、軸方向Aに沿って上流側に延設されており、その背面515がステップシール本体510の軸方向壁面512に面一に形成されている。
 尖鋭突起部513Aの主な寸法L1,θ1,θ2の好ましい範囲は、第1実施形態と同様である。つまり、長さ寸法L1は、好ましくは、シールフィン6の軸方向Aに関する長さ寸法L0の1.5倍以下(L1≦1.5×L0)、より好ましくは上記寸法L0の0.1倍以上且つ0.5倍以下(0.1×L0≦L1≦0.5×L0)、尖鋭突起部513Aの角度θ1は、好ましくは75度[degree]以下(θ1≦75)、より好ましくは45度[degree]以下(θ1≦45)、鋭突起部513の傾斜角度θ2は、好ましくは-30度[degree]以上、150度[degree]以下である。
 図8に一点鎖線で示すように、リーク蒸気SLは、上流側に凸となる尖鋭突起部513Aにより、大きな流通抵抗を受けることに加え、上流側(すなわち微小隙間mとは反対側)に案内される。これにより、リーク蒸気SLは、第1実施形態の外周側に凸となる尖鋭突起部513よりも、微小隙間mに向かう流れが弱体化され、その上、上記の第1実施形態よりも大きく迂回して微小隙間mに流れるようになるのでリーク蒸気SLの流れと対向面512との間に一層大きな空間が形成され、この空間により剥離渦SSの発達が促進されて剥離渦SSによる高い縮流効果が得られる。したがって、上記の第1実施形態よりもさらに高いリーク抑制効果が得られる。
 この結果、本発明の第2実施形態のステップシール15では、第1実施形態のステップシール5と同様に、図4Bに示す従来のステップシール5′よりもリーク流量を低減できる。換言すれば、リーク蒸気SLの流れの有効高さh2が、従来のステップシール5′を使用した時の有効高さh1´よりも低く、シールフィン6と軸方向壁面512との隙間寸法hに対する有効高さh2の比である縮流効果(=h2/h)が、従来のステップシール5′を使用した時の縮流効果(=h1′/h)よりも向上している〔(h2/h)<(h1′/h)〕。
 加えて、ステップシール5Aの尖鋭突起部513Aは、第1実施形態の尖鋭突起部513と同様に、突起先端516が尖鋭形状となっているのでリーク抑制効果の目減りがない。
 [2-2.ステップシールの製造方法]
 本発明の第2実施形態としてのステップシールの製造方法を、図9A,図9B及び図9Cを参照して説明すると、本ステップシールの製造方法では、先ず、図9Aに示す切削ステップが行われ、次いで図9Bに示す研磨ステップが行われて、図9Cに示すようにステップシール15の製造が完了する。
 図9Aに示す切削ステップでは、原材料150のステップ部151に設けられた被切削部152(図9A中、網点で示す部分)を、切削機の切削刃200を使用して切削する。ステップ部151は、段差面151bと、段差面151bと交差する対向面151aを備え、被切削部152は、対向面(第一の面及び第二の面の何れか一方の面)151aから、厚さ方向T1(蒸気タービン1への取り付け時における径方向R)に関して一定の範囲(つまり対向面151aから所定厚み分ΔT1)に設定されている。異なる言い方をすれば、原材料150のステップ部151は、完成品のステップシール15に対して、被切削部152の厚みΔT1分を見込んで寸法が設定されている。
 そして、切削刃200を、破線の矢印で示すように推進し、先ず、厚さ方向T1に沿って対向面151aに向けて推進し、対向面151aと段差面153と境界に食い込ませた後、厚さ方向T1と交差する切削方向C1(蒸気タービン1への取り付け時における軸方向A)に沿って段差面153から離隔する方向に推進し、被切削部152を切削する。切削が進んで被切削部152の残部が僅かになると、この残部が、切削刃200の推進力に抗しきれずに切削方向C側に折れ曲がり突起部152′となり(つまりバリとして残り)、原材料150が中間製品150′となる。なお、切削加工は放電加工により行うようにしても良い。
 図9Bに示す研磨ステップでは、突起部152′の切削面154とは反対側の面(以下、未加工面という)155は加工が施されていないので、研磨機201により研磨される。これにより、突起部152′が、図9Cに示すように先端の尖った尖鋭突起部513Aとして形成されて、ステップシール15の製造が完了する。
 尖鋭突起部513Aの角度θ1(図7参照)は、研磨量や研磨角度に応じて調節することができる。尖鋭突起部513Aの傾斜角度θ2(図7参照)は、研磨機201により突起部152′を研磨して尖鋭突起部513Aとする際に、研磨機201により突起部152′に掛ける押圧力により調整することができる。もちろん、研磨ステップとは別に、尖鋭突起部513Aの傾斜角度θ2を調節する曲げ加工などの加工ステップを設けても良い。
 本実施形態のステップシールの製造方法は、上記の図9A~図9Cに示す方法に限
定されない。例えば、第1実施形態と同様に、図6Aに示すように段差面101aの切削部102を切削した後、図6Bに示すように未加工面105を研磨し、この研磨の際に、研磨機201によって、突起部102′に研磨を掛けると共に突起部102′を対向面103と平行になるように押し倒すことにより、図7に示す本第2実施形態のステップシール15を製造することもできる。
 [2-3.効果]
 本発明の第2実施形態としてのステップシール,シール構造,蒸気タービンによれば、上流側(すなわち微小隙間mとは反対側)に向く尖鋭突起部513Aにより、尖鋭突起部513が外周側に向く第1実施形態よりも、リーク蒸気SLに大きな流通抵抗を付与すると共に剥離流を発達させることができるので、第1実施形態よりも高いリーク抑制効果及び高いタービン効率を得ることができる。
 また、本発明の第2実施形態としてのステップシールの製造方法は上述したように行われるので、第1実施形態のステップシールの製造方法と同様の効果が得られる。
[3.その他]
 (1)上記各実施形態では、シュラウド51を本発明の第一構造体とすると共にケーシング10を本発明の第二構造体として、シュラウド51にステップシール5,15を設け、ケーシング10にシールフィン6を設けたが、逆に、ケーシング10を本発明の第一構造体とすると共にシュラウド51を本発明の第二構造体としてもよい。つまり、ステップシール5,15をケーシング10に設け、シールフィン6をシュラウド51に取り付けてもよい。
 (2)上記各実施形態では、本発明のシール構造を、ケーシング10と動翼50との間のシール構造に適用したが、回転軸本体31と静翼40との間のシール構造に適用することもできる。
 (3)上記第1実施形態では、シュラウドの全てのステップシール5A,5B,5Cに尖鋭突起部513を設け、上記第2実施形態では、シュラウドの全てのステップシール5A,5B,5Cに尖鋭突起部513Aを設けたが、ステップシール5A,5B,5Cの少なくとも1つに尖鋭突起部513又は尖鋭突起部513Aを設ければよい。また、一つのシュラウドにおいて、尖鋭突起部513を備えたステップシールと、尖鋭突起部513Aを備えたステップシールとを混在させても良い。
 (4)上記各実施形態では、突起部513,513Aを研磨ステップにより研磨して先端の尖った尖鋭突起部としたが、研磨ステップを省くこともできる。換言すれば、図6Bに示す研磨前の中間製品100′や図9Bに示す研磨前の中間製品150′を、突起部102′,152′を有するシュラウドの完成品として、本発明のシール構造やターボ機械に使用しても良い。突起部102′,152′を尖鋭突起部としなくとも、突起部102′,152′によりリーク蒸気SLを上流に案内することができるので、丸みの影響を相殺してリーク抑制効果が得られる。
 (4)尖鋭突起部の形状及びその加工は上記実施形態のものに限定されない。例えば、図7に二点鎖線で示す尖鋭突起部513Bとしてもよい。
 (5)上記各実施形態では、蒸気タービンに本発明を適用した例を説明したが、本発明は、ガスタービンやターボ圧縮機など、蒸気タービン以外のターボ機械のシールにも適用することができ、さらには、相対的に回転する二つの構造体の間のシールであれば、ターボ機械以外のもの(例えばロータリージョイント)のシールにも適用できるものである。
 1 蒸気タービン(ターボ機械)
 2 シール構造
 5,5A,5B,5C,15 ステップシール
 6,6A,6B,6C シールフィン
 10 ケーシング(第二構造体又は第一構造体)
 11 仕切板外輪
 12 環状溝
 13 底面
 15 ステップシール
 30 回転軸
 31 回転軸本体
 40 静翼
 50 動翼
 51 シュラウド(第一構造体又は第二構造体)
 100 原材料(ステップシール原材料)
 100′ 中間製品
 101 ステップ部
 101a 段差面(第一の面及び第二の面の何れか一方の面)
 101b 対向面
 102 被切削部
 102′ 突起部(バリ)
 103 対向面
 104 切削面
 105 未加工面
 150 原材料(ステップシール原材料)
 150′ 中間製品
 151 ステップ部
 151a 対向面
 151b 段差面
 152 被切削部
 152′ 突起部(バリ)
 153 段差面
 154 切削面
 155 未加工面
 200 切削刃
 201 研磨機
 510 ステップシール本体
 511,511a,511b,511c ステップシール5の径方向壁面(段差面)
 512,512a,512b,512c ステップシール5の軸方向壁面(対向面)
 513,513a,513b,513c ステップシール5の尖鋭突起部
 513A,513B ステップシール15の尖鋭突起部
 514 尖鋭突起部513の前面
 515 尖鋭突起部513の背面
 516 突起先端
 A 軸方向
 B 角度θ1の二等分線
 C 切削方向 CL 軸線
 Gd 隙間
 h シールフィン6とシュラウド51との隙間寸法
 h1,h1′ リーク蒸気SLの有効高さ
 L0 フィン本体61の軸方向Aに関する長さ寸法
 L1 尖鋭突起部513の軸方向Aに関する長さ寸法
 m,ma,mb,mc 微小間隙(クリアランス)
 R 径方向
 S 蒸気(流体)
 SL リーク蒸気
 SS 剥離渦
 T,T1 厚さ方向
 ΔT 被切削部102の厚み
 ΔT1 被切削部152の厚み
 θ1 尖鋭突起部513の角度
 θ2 鋭突起部513の傾斜角度
 

Claims (10)

  1.  互いに隙間を空けて径方向に対向し軸線回りに相対回転する第一構造体と第二構造体との間の前記隙間から、流体がリークすることを抑制し、前記第二構造体に設けられたシールフィンにクリアランスをあけて、前記第一構造体に設けられるステップシールであって、
     前記流体の流通方向上流側に向く段差面と、前記第二構造体に向く対向面とを有するステップシール本体と、
     前記段差面と前記対向面との間に形成された突起部とを備えて構成された
    ことを特徴とするステップシール。
  2.  前記突起部が先端の尖った尖鋭突起部である
    ことを特徴とする、請求項1記載のステップシール。
  3.  前記突起部における前記軸線に沿った長さ寸法が、前記シールフィンにおける前記長さ寸法の1.5倍以下であり、前記突起部の角度が75度以下であり、前記突起部の傾斜角度が、-30度以上、150度以下の範囲内に設定された
    ことを特徴とする、請求項1又は2に記載のステップシール。
  4.  前記突起部が、前記第二構造体に向かって凸となる
    ことを特徴とする、請求項1~3の何れか一項に記載のステップシール。
  5.  前記突起部が、前記上流側に向かって凸となる
    ことを特徴とする、請求項1~4の何れか一項に記載のステップシール。
  6.  前記突起部における前記軸線に沿った長さ寸法が、前記シールフィンにおける前記長さ寸法の0.1倍以上且つ0.5倍以下である
    ことを特徴とする、請求項1~5の何れか一項に記載のステップシール。
  7.  互いに隙間を空けて径方向に対向し軸線回りに相対回転する第一構造体と第二構造体との間の前記隙間から、流体がリークすることを抑制する、シール構造であって、
     前記第一構造体に設けられた、請求項1~6の何れか一項に記載のステップシールと、
     前記ステップシールの前記段差面よりも前記流体の流通方向下流側で前記ステップシールの前記対向面に向かって延在し、前記対向面との間にクリアランスをあけて前記第二構造体に設けられたシールフィンとを備えた
    ことを特徴とする、シール構造。
  8.  請求項7に記載のシール構造を備えたことを特徴とする、ターボ機械。
  9.  互いに隙間を空けて径方向に対向し軸線回りに相対回転する第一構造体と第二構造体との間の前記隙間から、流体がリークすることを抑制するシール構造において、前記第二構造体に設けられたシールフィンにクリアランスをあけて、前記第一構造体に設けられるステップシールの製造方法であって、
     第一の面と、前記第一の面と交差する第二の面とを有するステップシール原材料において、前記第一の面及び前記第二の面の何れか一方の面に対し、表面から厚さ方向に関して一定の範囲を被切削部として設定し、前記被切削部を、前記厚さ方向と交差する切削方向に切削を行うことで、前記切削方向と交差する面に前記切削方向に凸となる突起部を形成する、切削ステップを備えた
    ことを特徴とする、ステップシールの製造方法。
  10.  前記突起部を研磨して先端の尖った尖鋭突起部に形成する、研磨ステップを備えた
    ことを特徴とする、請求項9記載のステップシールの製造方法。
     
PCT/JP2016/085351 2015-12-09 2016-11-29 ステップシール,シール構造,ターボ機械及びステップシールの製造方法 WO2017098960A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680070955.1A CN108368743B (zh) 2015-12-09 2016-11-29 阶梯型密封体、密封结构、透平机械及阶梯型密封体的制造方法
US15/780,752 US10718434B2 (en) 2015-12-09 2016-11-29 Step seal, seal structure, turbo machine, and method for manufacturing step seal
DE112016005643.5T DE112016005643T5 (de) 2015-12-09 2016-11-29 Stufendichtung, Dichtungsstruktur, Turbomaschine, und Verfahren zur Herstellung einer Stufendichtung
KR1020187015323A KR102035952B1 (ko) 2015-12-09 2016-11-29 스텝 시일, 시일 구조, 터보 기계 및 스텝 시일의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-240488 2015-12-09
JP2015240488A JP6209200B2 (ja) 2015-12-09 2015-12-09 ステップシール,シール構造,ターボ機械及びステップシールの製造方法

Publications (1)

Publication Number Publication Date
WO2017098960A1 true WO2017098960A1 (ja) 2017-06-15

Family

ID=59013121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085351 WO2017098960A1 (ja) 2015-12-09 2016-11-29 ステップシール,シール構造,ターボ機械及びステップシールの製造方法

Country Status (6)

Country Link
US (1) US10718434B2 (ja)
JP (1) JP6209200B2 (ja)
KR (1) KR102035952B1 (ja)
CN (1) CN108368743B (ja)
DE (1) DE112016005643T5 (ja)
WO (1) WO2017098960A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3473809A1 (en) * 2017-10-17 2019-04-24 Rolls-Royce plc Fluid seal
CN113424361A (zh) * 2018-12-07 2021-09-21 柯锐世德国有限责任公司 用于蓄电池的连接极和蓄电池壳体

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6530918B2 (ja) * 2015-01-22 2019-06-12 三菱日立パワーシステムズ株式会社 タービン
JP6227572B2 (ja) * 2015-01-27 2017-11-08 三菱日立パワーシステムズ株式会社 タービン
JP6510915B2 (ja) * 2015-07-03 2019-05-08 株式会社神戸製鋼所 ラビリンスシール
JP6637385B2 (ja) * 2016-05-31 2020-01-29 株式会社神戸製鋼所 ラビリンスシール
US10690251B2 (en) * 2016-09-23 2020-06-23 General Electric Company Labyrinth seal system and an associated method thereof
JP6623138B2 (ja) * 2016-10-13 2019-12-18 株式会社神戸製鋼所 ラビリンスシール
JP6650383B2 (ja) * 2016-10-13 2020-02-19 株式会社神戸製鋼所 ラビリンスシール
JP6436187B2 (ja) * 2016-12-26 2018-12-12 富士電機株式会社 タービン
JP6706585B2 (ja) * 2017-02-23 2020-06-10 三菱重工業株式会社 軸流回転機械
KR101943748B1 (ko) * 2017-08-29 2019-01-30 주식회사 세아엔지니어링 누기 유입방지 터보 송풍장치
US20190072185A1 (en) * 2017-09-07 2019-03-07 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Labyrinth seal and labyrinth seal structure
CN109519544A (zh) * 2018-12-19 2019-03-26 常熟长城轴承有限公司 一种电主轴密封结构
CN110296204A (zh) * 2019-07-26 2019-10-01 株洲齿轮有限责任公司 轴密封结构及一体化驱动系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02245581A (ja) * 1988-12-14 1990-10-01 General Electric Co <Ge> ラビリンスシール装置
US20080124215A1 (en) * 2006-11-29 2008-05-29 United Technologies Corporation Gas turbine engine with concave pocket with knife edge seal
US7445213B1 (en) * 2006-06-14 2008-11-04 Florida Turbine Technologies, Inc. Stepped labyrinth seal
WO2014010052A1 (ja) * 2012-07-11 2014-01-16 株式会社日立製作所 軸流流体機械

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196522A (ja) 2007-02-08 2008-08-28 Toshiba Corp シール装置
JP2011080452A (ja) 2009-10-09 2011-04-21 Mitsubishi Heavy Ind Ltd タービン
JP5709447B2 (ja) 2010-09-28 2015-04-30 三菱日立パワーシステムズ株式会社 タービン
US20120091662A1 (en) * 2010-10-19 2012-04-19 General Electric Company Labyrinth seal system
GB2492546A (en) 2011-07-04 2013-01-09 Alstom Technology Ltd A labyrinth seal for an axial fluid flow turbomachine
JP6296649B2 (ja) 2014-03-04 2018-03-20 三菱日立パワーシステムズ株式会社 シール構造、及び回転機械

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02245581A (ja) * 1988-12-14 1990-10-01 General Electric Co <Ge> ラビリンスシール装置
US7445213B1 (en) * 2006-06-14 2008-11-04 Florida Turbine Technologies, Inc. Stepped labyrinth seal
US20080124215A1 (en) * 2006-11-29 2008-05-29 United Technologies Corporation Gas turbine engine with concave pocket with knife edge seal
WO2014010052A1 (ja) * 2012-07-11 2014-01-16 株式会社日立製作所 軸流流体機械

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3473809A1 (en) * 2017-10-17 2019-04-24 Rolls-Royce plc Fluid seal
CN113424361A (zh) * 2018-12-07 2021-09-21 柯锐世德国有限责任公司 用于蓄电池的连接极和蓄电池壳体

Also Published As

Publication number Publication date
CN108368743A (zh) 2018-08-03
US10718434B2 (en) 2020-07-21
JP6209200B2 (ja) 2017-10-04
DE112016005643T5 (de) 2018-09-06
JP2017106376A (ja) 2017-06-15
US20180355979A1 (en) 2018-12-13
KR20180078282A (ko) 2018-07-09
KR102035952B1 (ko) 2019-10-23
CN108368743B (zh) 2020-07-03

Similar Documents

Publication Publication Date Title
JP6209200B2 (ja) ステップシール,シール構造,ターボ機械及びステップシールの製造方法
JP6131177B2 (ja) シール構造、及び回転機械
KR102031510B1 (ko) 시일 구조 및 터빈
JP2007321721A (ja) 軸流タービン段落および軸流タービン
US11187097B2 (en) Rotary machine
WO2017098959A1 (ja) シールフィン,シール構造,ターボ機械及びシールフィンの製造方法
JP2011106474A (ja) 軸流タービン段落および軸流タービン
US10590904B2 (en) Guide vane of hydraulic machinery and hydraulic machine
JP6167158B2 (ja) シール構造及びターボ機械
JP2009079493A (ja) 可動翼軸流ポンプ
US11136897B2 (en) Seal device and turbomachine
JP6846374B2 (ja) 動翼側シール装置、静翼側シール装置及び回転機械
JP2009036112A (ja) 回転機械の翼
WO2021039811A1 (ja) スワールブレーカ組立体及び回転機械
JP6662661B2 (ja) シール構造及びターボ機械
WO2021220950A1 (ja) シール装置及び回転機械
JP6986426B2 (ja) タービン
RU2684067C1 (ru) Центростремительная турбина
JP2020139464A (ja) 軸流タービン
JPH08144707A (ja) ラジアルタービン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872860

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187015323

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016005643

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16872860

Country of ref document: EP

Kind code of ref document: A1