WO2017098959A1 - シールフィン,シール構造,ターボ機械及びシールフィンの製造方法 - Google Patents

シールフィン,シール構造,ターボ機械及びシールフィンの製造方法 Download PDF

Info

Publication number
WO2017098959A1
WO2017098959A1 PCT/JP2016/085350 JP2016085350W WO2017098959A1 WO 2017098959 A1 WO2017098959 A1 WO 2017098959A1 JP 2016085350 W JP2016085350 W JP 2016085350W WO 2017098959 A1 WO2017098959 A1 WO 2017098959A1
Authority
WO
WIPO (PCT)
Prior art keywords
fin
seal
protrusion
seal fin
tip
Prior art date
Application number
PCT/JP2016/085350
Other languages
English (en)
French (fr)
Inventor
豊治 西川
祥弘 桑村
大山 宏治
雄久 ▲浜▼田
椙下 秀昭
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to KR1020187015327A priority Critical patent/KR102056994B1/ko
Priority to CN201680070948.1A priority patent/CN108291451B/zh
Priority to DE112016005645.1T priority patent/DE112016005645T5/de
Priority to US15/778,730 priority patent/US11105213B2/en
Publication of WO2017098959A1 publication Critical patent/WO2017098959A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/20Specially-shaped blade tips to seal space between tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/28Arrangement of seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/44Free-space packings
    • F16J15/447Labyrinth packings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/55Seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape

Definitions

  • the present invention relates to a seal fin that suppresses fluid leakage from between two relatively rotating structures, a seal structure using the seal fin, a turbomachine, and a seal fin manufacturing method.
  • a non-contact type seal structure such as a labyrinth seal is used in order to prevent leakage of the working fluid.
  • Patent Document 1 and Patent Document 2 There are technologies disclosed in Patent Document 1 and Patent Document 2 as technologies related to the non-contact type seal structure of such turbomachines.
  • Patent Document 1 and Patent Document 2 the techniques disclosed in Patent Document 1 and Patent Document 2 will be described.
  • reference numerals used in Patent Document 1 and Patent Document 2 are shown in parentheses for reference.
  • Patent Document 1 states that “in a sealing device for sealing between a stationary body (11) and a rotating body (12), the stationary body (11) A seal including a fin (13) protruding toward the surface (12a) of the rotating body (12) and having a sharp tip, and a rough surface portion (17) formed on the surface (12a) of the rotating body (12).
  • An apparatus is disclosed. According to Patent Literature 1, the flow around the fin (13) is disturbed by the rough surface portion (17), thereby increasing the pressure loss of the fluid (14), and the fin (13) and the rotating body (12). The amount of fluid (14) leaking from the gap can be reduced.
  • Patent Document 2 states that “in a turbomachine, a stationary casing (12) which is a stationary element and a blade shroud (11) which is a movable element.
  • the terminal element (34) that forms the tip of the sealing fin (26) provided radially inward from the stationary casing (12) is allowed to flow through the leakage flow (21).
  • a labyrinth seal inclined toward the upstream side in the direction is disclosed.
  • the circulation vortex (36) of the leakage flow (21) is formed on the upstream side of the sealing fin (26) due to the shape of the sealing fin (26), and the circulation vortex (36)
  • the effective area of the mutual gap between the casing (12) and the blade shroud (11) is reduced, and the leakage flow (21) through the mutual gap can be reduced.
  • the sealing device disclosed in Patent Document 1 cannot be said to have a sufficient leakage suppressing effect, and thus a sufficient leakage loss suppressing effect for the turbomachine.
  • This is a straight shape in which the fin (13) extends straight toward the rotating body (12), and restricts the flow (leakage) of the fluid (14) between the fin (13) and the rotating body (12). Is not a sufficient shape.
  • the tip of the fin (13) is rounded (here, "roundness" is rounded more than a certain radius of curvature that can affect the flow of fluid). Inevitable.
  • peeling point the point at which the fluid (14) peels off at the tip of the fin (13) (hereinafter referred to as “peeling point”) is the surface (12a) of the rotating body (12).
  • the direction of travel at the separation point of the fluid (14) is directed to the downstream side (side passing through the fin (13)), and the contraction flow is weakened.
  • the leakage suppression effect of the sealing device and, in turn, the leakage loss suppression effect of the turbo machine is diminished. Even in the labyrinth seal disclosed in Patent Document 2, it is inevitable that the tip end portion of the sealing fin (26) is rounded.
  • the tip portion is rounded in a shape where the tip portion is inclined like the sealing fin (26) disclosed in Patent Document 2
  • the fan angle of the roundness of the tip portion becomes 90 degrees or more. This is easy (that is, the rounded range is likely to be widened). Therefore, the “leakage of the leakage suppression effect” due to the roundness of the tip is greater than that of the straight-shaped seal fin disclosed in Patent Document 1.
  • the labyrinth seal disclosed in Patent Document 2 requires processing for making the end element (34) of the sealing fin (26) into an inclined shape. Since a certain processing accuracy is required for the sealing fin (26), it is preferable to use cutting for the shape processing. However, since burrs are generated when cutting is performed, there is a problem that an operation for removing the burrs is required, and the manufacturing cost of the sealing fin (26) becomes expensive.
  • the present invention was devised in view of the above-described problems, and a seal fin, which can obtain a high leakage suppressing effect while suppressing an increase in manufacturing cost, and thus can reduce leakage loss of a turbomachine, It is an object of the present invention to provide a seal structure, a turbomachine, and a method for manufacturing a seal fin.
  • the seal fin of the present invention is configured such that the gap between the first structure and the second structure that are opposed to each other in the radial direction with a gap therebetween and relatively rotated about the axis. From the first structure, the fluid is prevented from leaking, extending toward the second structure, and a clearance is provided between the distal end surface in the extending direction and the second structure. Seal fins provided to be opened, the fin body extending in the radial direction, the front surface of the fin body facing upstream in the fluid flow direction, and the tip of the fin body facing the second structure And a projection that is convex on the upstream side, and the length along the axis of the projection is 1.5 times the length of the fin body.
  • the angle of the protrusion is 75 degrees or less. Ri, the tip surface inclination angle of the protrusion relative to the of the fin body, -60 degrees or more, and characterized in that it is set in the range below 60 degrees.
  • the protrusion is a sharp protrusion with a sharp tip.
  • an inclined surface facing the axis is provided between the tip surface and a back surface facing the downstream side in the fluid flow direction.
  • the length dimension along the axis of the sharp protrusion is 0.1 to 0.5 times the length dimension of the fin body.
  • the projecting portion has an end surface facing the second structure formed flush with the tip surface of the fin body.
  • the seal structure of the present invention is configured such that the gap between the first structure and the second structure that are opposed to each other in the radial direction with a gap therebetween and that rotates relative to each other about the axis. From the above, it is a seal structure that suppresses the fluid from leaking, and extends to the first structure toward the second structure, and the front end surface in the extending direction and the second structure.
  • the seal fin according to any one of (1) to (5) is provided with a clearance between and
  • the turbomachine of the present invention is characterized by including the seal structure described in (6).
  • the method for manufacturing a seal fin according to the present invention includes a gap between the first structure and the second structure that are opposed to each other in the radial direction with a gap therebetween and that rotate relative to each other about the axis.
  • the tip structure extends from the first structure toward the second structure, and the distal end surface in the extending direction and the second structure
  • a cutting step is provided in which cutting is performed in a cutting direction that intersects the thickness direction, thereby forming a protruding portion that is convex in the cutting direction on a surface that intersects the cutting direction.
  • the fluid flowing toward the clearance between the seal fin and the second structure is guided by the protrusion provided on the seal fin toward the upstream side. Since the fluid traveling direction at the point of separation) is directed toward the upstream side (the direction opposite to the direction in which the fluid passes through the seal fin), the contracted flow of the fluid is strengthened. Therefore, a high leak suppression effect can be obtained, and consequently the leakage loss of the turbomachine can be reduced.
  • the main dimensions of the protrusion that is, the length along the axis of the protrusion, the angle of the protrusion, and the inclination angle of the protrusion are set within appropriate ranges, a higher leakage suppression effect can be obtained. Can do.
  • the protrusion can be provided by using the generation of burrs associated with the cutting process, it is not necessary to remove the burrs, and the protrusions can be provided inexpensively and easily. An increase in manufacturing cost can be suppressed.
  • FIG. 1 is a schematic longitudinal sectional view showing the overall configuration of a steam turbine according to an embodiment of the present invention.
  • 2 is a cross-sectional view of a main part of the steam turbine according to the embodiment of the present invention, and is an enlarged cross-sectional view of a portion I in FIG.
  • FIG. 3 is a schematic cross-sectional view showing the configuration of the tip of the seal fin according to one embodiment of the present invention (the hatched lines indicating the cross-section of the seal fin are omitted).
  • 4A, 4B, and 4C are schematic cross-sectional views for explaining the operation of the seal fin according to the embodiment of the present invention, and FIG. 4A is a diagram related to the seal fin according to the embodiment of the present invention.
  • FIG. 4B is a diagram related to a conventional seal fin
  • FIG. 4C is a diagram related to an ideal conventional seal fin (in FIG. 4A, FIG. 4B and FIG. 4C, the oblique lines indicating the cross section of the seal fin are omitted).
  • FIG. 5 is a schematic diagram for explaining the setting range of the main dimensions of the seal fin according to the embodiment of the present invention, in which the leakage flow rate suppressing effect E and the length of the sharp protrusion 62 in the axial direction A are illustrated. It is a figure which shows the analysis result of the correlation with the dimension L1 and angle (theta) 1 of the sharp projection part 62.
  • FIG. 5 is a schematic diagram for explaining the setting range of the main dimensions of the seal fin according to the embodiment of the present invention, in which the leakage flow rate suppressing effect E and the length of the sharp protrusion 62 in the axial direction A are illustrated. It is a figure which shows the analysis result of the correlation with the dimension L1 and angle (theta)
  • FIG. 6A, 6B, and 6C are schematic cross-sectional views for explaining a method of manufacturing a seal fin according to an embodiment of the present invention, in which FIG. 6A shows a cutting step, and FIG. 6B shows a polishing step.
  • FIG. 6C is a diagram showing a completed product state after the polishing step (in FIG. 6A, FIG. 6B and FIG. 6C, the oblique lines showing the cross section of the seal fin are omitted). It is a typical sectional view showing the composition of the modification of the tip of the seal fin concerning one embodiment of the present invention (the hatching which shows the section of a seal fin is omitted).
  • 1 to 4 is the upstream side, and the right side is the downstream side. Further, the direction toward the axis CL of the steam turbine will be described as the inner peripheral side or the inner side, and the opposite side, the direction away from the axis CL will be described as the outer peripheral side or the outer side.
  • a steam turbine (turbo machine) 1 is provided with a casing (first structure) 10 and a machine such as a generator (not shown) that is rotatably provided inside the casing 10 and does not show power.
  • a rotating shaft 30 that transmits the rotating shaft 30, a stationary blade 40 provided on the casing 10, a moving blade 50 provided on the rotating shaft 30, and a bearing portion 70 that rotatably supports the rotating shaft 30 about the axis CL. It is prepared for.
  • the stationary blade 40 and the moving blade 50 are blades extending in the radial direction R of the rotating shaft 30. While the casing 10 is stationary, the rotor blade 50 rotates about the axis CL. That is, the casing 10 and the moving blade 50 (including a shroud 51 described later) rotate relative to each other.
  • Steam (fluid) S is introduced from a main inlet 21 formed in the casing 10 via a steam supply pipe 20 connected to a steam supply source (not shown), and is connected to a downstream side of the steam turbine 1. 22 is discharged.
  • the internal space of the casing 10 is hermetically sealed and is a flow path for the steam S.
  • a ring-shaped partition plate outer ring 11 through which the rotation shaft 30 is inserted is firmly fixed to the inner wall surface of the casing 10.
  • the bearing unit 70 includes a journal bearing device 71 and a thrust bearing device 72, and supports the rotary shaft 30 in a freely rotatable manner.
  • the stationary blades 40 extend from the casing 10 toward the inner peripheral side and constitute a group of annular stationary blades arranged radially so as to surround the rotary shaft 30, and are respectively held by the partition plate outer ring 11 described above. ing.
  • a plurality of annular vanes 40 composed of a plurality of vanes 40 are formed at intervals in the axial direction (hereinafter simply referred to as the axial direction) A of the rotary shaft 30, and the pressure energy of the steam S is used as velocity energy.
  • the steam S having the increased velocity energy is converted into the moving blade 50 adjacent to the downstream side.
  • the moving blades 50 are firmly attached to the outer peripheral portion of the rotating shaft main body 31 of the rotating shaft 30, and a large number of the moving blades 50 are radially arranged on the downstream side of each annular stationary blade group to constitute an annular moving blade group.
  • These annular stator blade groups and annular rotor blade groups are grouped into one stage.
  • the tip portions of the moving blades 50 adjacent in the circumferential direction of the rotating shaft 30 (hereinafter simply referred to as the circumferential direction) are connected by a ring-shaped shroud (second structure) 51.
  • the shroud 51 may be used to connect not only the final stage blade group, but also other blade groups, and even the stationary blade group.
  • seal structure As shown in FIG. 2, on the downstream side in the axial direction of the partition plate outer ring 11, an annular groove whose diameter is enlarged from the partition plate outer ring 11 and whose inner peripheral surface of the casing 10 is a bottom surface (hereinafter also referred to as a casing bottom surface) 13. (Hereinafter referred to as an annular groove) 12 is formed. A shroud 51 is accommodated in the annular groove 12, and the casing bottom surface 13 is opposed to the shroud 51 in the radial direction R via the gap Gd.
  • leak steam a part of the steam S (for example, about several percent) steam (hereinafter referred to as leak steam) SL does not flow into the rotor blade 50 but leaks into the annular groove 12. Since the energy of the leak steam SL is not converted into rotational energy, the leak steam SL causes a leak loss that reduces the efficiency of the steam turbine 1.
  • the shroud 51 includes a step portion 3 formed in a step shape with a central portion in the axial direction A protruding.
  • the surface on the outer peripheral side in the radial direction R of the shroud 51 has a base surface 4 and a step portion 3 formed with a step surface 5 that protrudes outward in the radial direction R from the base surface 4. is doing.
  • the casing bottom face 13 is provided with three seal fins 6A, 6B, 6C extending toward the inner side in the radial direction R toward the shroud 51 (not shown in FIG. 1).
  • seal fins 6A, 6B, and 6C are referred to as seal fins 6.
  • the seal fin 6 has an annular shape centering on the axis CL (see FIG. 1), and has a transverse cross-sectional shape (cross-sectional shape perpendicular to the circumferential direction) shown in FIG. 2 throughout the circumference.
  • the upstream seal fin 6A protrudes toward the base surface 4 upstream of the step portion 3, the intermediate seal fin 6B protrudes toward the step surface 5 of the step portion 3, and the downstream seal fin 6C Projecting toward the base surface 4 on the downstream side of the step portion 3.
  • the intermediate seal fin 6B is formed so that the length in the radial direction R is shorter than the upstream seal fin 6A and the downstream seal fin 6C.
  • These seal fins 6 form a minute gap (hereinafter also referred to as a clearance) m in the radial direction R with the shroud 51.
  • Each dimension of these minute gaps m is set within a range in which the seal fin 6 and the moving blade 50 do not contact each other in consideration of the thermal elongation amount of the casing 10 and the moving blade 50, the centrifugal extension amount of the moving blade 50, and the like.
  • An upstream cavity 25 and a downstream cavity 26 are formed in the gap Gd by the annular groove 12, the shroud 51, and the seal fin 6. The position of the seal fin 6 in the axial direction is appropriately set according to the behavior of the leaked steam SL leaked into the cavities 25 and 26.
  • the seal fin 6 has a great feature in the structure of the tip facing the base surface 4 and the step surface 5 of the shroud 51.
  • the structure of the tip will be described with reference to FIGS. 3 and 4A to 4C.
  • the seal fin 6 is integrated with a fin body 61 that extends straight inward in the radial direction R from the casing bottom surface 13 (see FIG. 2), and an inner peripheral end of the fin body 61. And a protrusion 62 provided.
  • the protruding portion 62 is a protruding portion that protrudes toward the upstream side and is formed on the inner peripheral end portion (tip portion) 61 b of the front surface (surface facing the upstream side) 61 a of the fin body 61.
  • the inner peripheral end portion 61b refers to a virtual fixed region adjacent to the inner peripheral end surface (tip surface, surface facing the shroud 51) 61c of the fin body 61 in the front surface 61a.
  • the fin body 61 is formed with a protruding portion 62 that protrudes upstream from the front surface 61a and the inner peripheral end surface 61c.
  • the protrusion tip 62c of the protrusion 62 (where the inner peripheral end surface 62a and the back surface (the surface opposite to the inner peripheral end surface 62a) 62b intersect) is rounded as it is (unprocessed). Since the “roundness” has a roundness of a certain radius of curvature or more that can affect the flow of fluid, sharpening is performed. Therefore, hereinafter, the protrusion 62 is also referred to as a sharp protrusion 62.
  • the sharp protrusion 62 refers to a protrusion having a sharpened protrusion tip 62c that is relatively sharpened by sharpening compared to an unprocessed case.
  • the inner peripheral end face 62 a of the protrusion tip 62 c is an end face facing the shroud 51.
  • the sharp protrusion 62 has an inner peripheral end surface 62 a that is flush with the inner peripheral end surface 61 c of the fin body 61.
  • the protruding portion 62 that is sharper than the front surface 61a is formed so as to extend the inner peripheral end surface 61c to the upstream side.
  • the inner peripheral end surface 61c and the inner peripheral end surface 62a are parallel to the axis CL (including substantially parallel) and are perpendicular to the back surface 61d of the fin body 61 (including substantially right angle). .
  • FIGS. 4A to 4C are schematic cross-sectional views for explaining the operation of the seal fin according to the embodiment of the present invention
  • FIG. 4A is a diagram related to the seal fin according to the embodiment of the present invention
  • FIG. 4B is a diagram related to a conventional seal fin
  • FIG. 4C is a diagram related to an ideal conventional seal fin (in FIG. 4A, FIG. 4B and FIG. 4C, the oblique lines indicating the cross section of the seal fin are omitted).
  • the clearance m between the seal fin 6 and the shroud 51 the clearance m between the conventional seal fin 6 'and the shroud 51, and the ideal conventional seal according to an embodiment of the present invention.
  • the clearances m between the fins 6 * and the shroud 51 are shown as the same height dimension (hereinafter also referred to as “geometric clearance”) h.
  • the leak steam SL flows as shown by the dashed line arrow in FIG. 4C.
  • the flow of the leak steam SL has an ideal shape with the tip 62c * having no roundness, and therefore the tip 62c * is peeled off from the seal fin 6 * (the peeling point Pe becomes the tip 62c *), and
  • the flow direction D * of the leaked steam SL at the peeling point Pe is a direction that goes straight to the shroud 51. Therefore, strong contraction is obtained.
  • the leaked steam SL after the contraction has a substantial clearance h1 * that is sufficiently narrow with respect to the geometrical clearance h, and a small contraction coefficient (h1 * / h) is obtained (a high contraction effect is obtained). can get).
  • the leak steam SL flows as shown by the dashed line arrow in FIG. 4B. That is, since the tip 62c 'is rounded, the leak steam SL flows along a part of the roundness, and peels off from the seal fin 6' on the fin base side (upper side in FIG. 4B) of the tip 62c '.
  • the flow direction D ′ of the leaked steam SL at the separation point Pe is directed to the downstream side (side passing through the seal fin 6 ′), the contracted flow is also weak.
  • the substantial clearance h1 ′ of the leaked steam SL after the contraction is wider than the substantial clearance h1 * of the ideal conventional seal fin 6 *, and the contraction coefficient (h1 ′ / h) is This is larger than the contraction coefficient (h1 * / h) of the ideal seal fin 6 * having the conventional structure (the contraction effect is reduced). Therefore, the flow rate of steam (hereinafter referred to as the leak flow rate) FL flowing downstream of the seal fin 6 'increases.
  • the leak steam SL flows as shown by the dashed line arrow in FIG. 4A. That is, since the projecting portion 62 facing the upstream side is formed at the tip of the seal fin 6, the flow direction D of the leak vapor SL at the peeling point Pe is the upstream side (the side opposite to the side passing through the seal fin 6). Therefore, the contraction flow stronger than that of the ideal conventional structure seal fin 6 * is obtained, and the substantial clearance h1 of the leaked steam SL after the contraction is substantially equal to that of the ideal conventional structure seal fin 6 *. It becomes narrower than the clearance h1 *.
  • the contraction coefficient (h1 / h) of the seal fin 6 is smaller than the ideal contraction coefficient (h1 * / h) of the seal fin 6 * having the conventional structure (a high contraction effect is obtained). ). Therefore, the leak flow rate FL is reduced.
  • FIG. 5 shows the correlation between the leakage flow suppression effect E, the length L1 of the sharp protrusion 62 in the axial direction A, and the angle (angle formed by the inner peripheral end face 62a and the rear face 62b) ⁇ 1 of the sharp protrusion 62. It shows the analysis result of the relationship.
  • the suppression effect E is obtained by the seal fin 6 when the angle ⁇ 1 is 45 degrees and the length dimension L1 is 0.25 times the length dimension L0 in the axial direction A of the fin body 61.
  • the leakage reduction amount is shown with the maximum leakage reduction amount being 100%.
  • the length dimension L1 of the sharp protrusion 62 is too short, the function as the protrusion of the sharp protrusion 62 is lost in the first place, and the suppression effect E is reduced. If the length dimension L1 is too long, the current is contracted by the action of the sharp protrusion 62. The leaked steam SL spreads on the downstream side while passing through the minute gap m (substantially increases the clearance h1) and reattaches to the bottom surface of the seal fin 6, so that the suppression effect E decreases. . For this reason, the relationship between the length dimension L1 and the leakage flow suppression effect E is as shown in FIG.
  • the length dimension L1 of the sharp protrusion 62 is preferably 1.5 times or less (L1 ⁇ 1.L) of the length dimension L0 of the fin body 61 because the suppression effect E of 50% or more is obtained. 5 ⁇ L0), and a suppression effect E of 80% or more is obtained. More preferably, the dimension L0 is 0.1 to 0.5 times (0.1 ⁇ L0 ⁇ L1 ⁇ 0.5 ⁇ ). L0). Further, as the angle ⁇ 1 of the sharp protrusion 62 is smaller (that is, the thinner the sharp protrusion 62 is), the flow direction D of the leaked steam SL at the separation point Pe (see FIG. 4A) can be directed upstream. The angle ⁇ 1 is preferably smaller.
  • the flow direction D can be close to a vertical direction (that is, a direction straight to the shroud 51), the flow direction D is preferably 75 degrees or less ( ⁇ 1 ⁇ 75). Since the flow direction D can be directed upstream, it is more preferably 45 degrees or less ( ⁇ 1 ⁇ 45).
  • ⁇ 2 is an inclination angle of the sharp protrusion 62, and is an intersection angle between the bisector B that bisects the angle ⁇ 1 of the sharp protrusion 62 and the parallel line P.
  • the parallel line P is a line that is positioned on the outer peripheral side in the radial direction R from the inner peripheral end surface 61c of the fin body 61 and is parallel to the inner peripheral end surface 61c.
  • the inclination angle ⁇ 2 of the sharp protrusion 62 is negative.
  • the inclination angle ⁇ 2 can make the flow direction D of the leaked steam SL at the separation point Pe close to a vertical direction (that is, a direction straight to the shroud 51), and therefore, ⁇ 60 degrees or more and 60 degrees. [degree] or less is preferred ( ⁇ 60 ⁇ ⁇ 2 ⁇ 60). If the inclination angle ⁇ 2 is too large, the position of the projection tip 62c and thus the separation point Pe will be separated from the shroud 51, and the shape clearance with the shroud 51 will be increased. Therefore, the range of the inclination angle ⁇ 2 is more preferable.
  • FIGS. 6A, 6B, and 6C A manufacturing method of a seal fin as an embodiment of the present invention will be described with reference to FIGS. 6A, 6B, and 6C.
  • a cutting step shown in FIG. 6A is performed in the manufacturing method of the seal fin.
  • a polishing step shown in FIG. 6B is performed to complete the seal fin 6 as shown in FIG. 6C.
  • a portion 101 to be cut (the portion indicated by a halftone dot in FIG. 6A) provided at the tip of the fin raw material 100 is cut using the cutting blade 200 of the cutting machine.
  • the part to be cut 101 is within a certain range (that is, a predetermined thickness ⁇ T from the tip surface 100a) with respect to the thickness direction T (direction coincident with the radial direction R when attached to the casing 10) from the tip surface 100a of the fin raw material 100. Is set. In other words, the dimensions of the fin raw material 100 are set in consideration of the thickness ⁇ T of the part to be cut 101 with respect to the finished product (seal fin 6).
  • the cutting blade 200 is propelled in a cutting direction C (direction along the axial direction A when attached to the casing 10) intersecting the thickness direction T to cut the part 101 to be cut.
  • a cutting direction C direction along the axial direction A when attached to the casing 10.
  • the remaining portion does not resist the propulsive force of the cutting blade 200 and bends in the cutting direction C side to become a protruding portion 101 ′ (that is, remains as a burr).
  • 100 becomes the intermediate product 100 '.
  • the cutting process may be performed by electric discharge machining.
  • a surface 103 (hereinafter referred to as an unprocessed surface) opposite to the cutting surface 102 of the protrusion 101 ′ is not processed and is polished by the polishing machine 201.
  • the protrusion 101 ′ is formed as a sharp protrusion 62 having a sharp tip, and the manufacture of the seal fin 6 is completed.
  • the angle ⁇ 1 (see FIG. 3) of the sharp protrusion 62 can be adjusted according to the polishing amount and the polishing angle.
  • the inclination angle ⁇ 2 (see FIG.
  • the sharp protrusion 62 is adjusted by the pressing force applied to the protrusion 101 ′ by the polishing machine 201 when the protrusion 101 ′ is polished by the polishing machine 201 to be the sharp protrusion 62. can do.
  • a processing step such as bending for adjusting the inclination angle ⁇ 2 of the sharp protrusion 62 may be provided.
  • a leak steam SL that flows toward a minute gap (clearance) m between the seal fin 6 and the shroud 51 is projected from the inner peripheral end portion 61 b of the seal fin 6 toward the upstream side.
  • the flow direction D of the leak steam SL at the separation point Pe is directed upstream (the direction opposite to the direction passing through the seal fin 6), so that the leak steam SL is contracted. Since it strengthens, a high leak suppression effect can be obtained.
  • the projection 62 is formed as a sharp projection with a sharp tip, the peeling point Pe of the leaked steam SL from the seal fin 6 is formed at the projection tip 62c. Therefore, it is possible to prevent “the leakage suppressing effect from diminishing due to the tip of the protrusion 62 being rounded”. That is, it is possible to suppress the peeling point Pe from moving to the base side (the casing 10 side, the upper side in FIG. 4A) from the protruding portion 62 c to substantially widen the minute gap m with the shroud 51. .
  • the protrusion 62 is provided by using the burr generated by the cutting process, it is not necessary to remove the burr, and the protrusion 62 can be provided easily and inexpensively.
  • the shape of the tip of the seal fin 6 is not limited to that of the above embodiment.
  • the gap between the back surface 61d of the fin body 61 (the surface facing the downstream side) and the inner peripheral end surface 61c is cut obliquely,
  • An inclined surface 61e that is positioned upstream (ie, toward the inner peripheral side (axis line CL side)) as it approaches the end surface 61c may be provided.
  • the casing 10 is the first structure of the present invention and the shroud 51 is the second structure of the present invention and the seal fin 6 is provided in the casing 10.
  • the first structure of the invention and the casing 10 may be the second structure of the present invention, and the seal fin 6 may be provided on the shroud 51.
  • the seal structure of the present invention is applied to the seal structure between the casing 10 and the moving blade 50, but is applied to the seal structure between the rotating shaft main body 31 and the stationary blade 40. You can also
  • the step type is used for the shroud 51, but the shroud 51 may be a direct type without a step.
  • the sharp projections 62 are provided for all of the seal fins 6A, 6B, 6C. However, the sharp projections 62 may be provided on at least one of the seal fins 6A, 6B, 6C.
  • the protrusion 62 of the seal fin 6 is polished by the polishing step to obtain a sharp protrusion with a sharp tip, but the polishing step may be omitted.
  • the intermediate product 100 ′ before polishing shown in FIG. 6B may be used in the seal structure or turbomachine of the present invention as a finished product of the seal fin having the protrusion 101 ′. Even if the protrusion 101 ′ is not a sharp protrusion, the leakage steam SL can be guided upstream by the protrusion 101 ′, so that the effect of suppressing leakage can be improved by offsetting the influence of roundness.
  • the present invention can also be applied to a seal of a turbo machine other than a steam turbine, such as a gas turbine or a turbo compressor, Furthermore, as long as the seal is between two relatively rotating structures, the seal can be applied to a seal other than a turbo machine (for example, a rotary joint).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
  • Turning (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

製造コストの上昇を抑制しつつ、高いリーク抑制効果が得られ、ひいてはターボ機械のリーク損失を低減できる、シール構造,ターボ機械及びシールフィンの製造方法を提供する。 径方向(R)に対向し軸線回りに相対回転する第一構造体と第二構造体(51)との間の隙間から、流体がリークすることを抑制し、第二構造体(51)との間にクリアランスをあけて前記第一構造体に設けられるシールフィン(6)であって、径方向(R)に延在するフィン本体(61)と、フィン本体(61)の前面(61a)と先端面(61c)との間に形成され上流側に凸となる突起部(62)とを備えて構成され、突起部(62)の長さ寸法(L1)が、フィン本体(61)の長さ寸法(L0)の1.5倍以下であり、突起部(62)の角度(θ1)が75度以下であり、フィン本体(61)の傾斜角度(θ2)が、-60度以上、60度以下の範囲内に設定される。

Description

シールフィン,シール構造,ターボ機械及びシールフィンの製造方法
 本発明は、相対回転する二つ構造体の相互間からの流体のリークを抑制するシールフィン、それを使用したシール構造,ターボ機械及びシールフィンの製造方法に関する。
 蒸気タービン,ガスタービン及びターボ圧縮機などのターボ機械においては、静止側と回転側との間にできる隙間から蒸気などの作動流体がリークすると、このリークがターボ機械における効率の損失(リーク損失)を引き起こす。このため、ターボ機械では、作動流体のリークを防止するために、ラビリンスシールなどの非接触型のシール構造が用いられている。
 このようなターボ機械の非接触型のシール構造に関する技術として特許文献1及び特許文献2に開示された技術がある。以下、特許文献1及び特許文献2に開示された技術を説明する。その説明では、参考に、特許文献1及び特許文献2で使用されている符号を括弧付きで示す。
 特許文献1(フロント頁,段落[0021]及び図1,2など参照)には、「静止体(11)と回転体(12)との間をシールするシール装置において、静止体(11)から回転体(12)の表面(12a)に向けて突設され先端の尖ったフィン(13)と、回転体(12)の表面(12a)に形成された粗面部(17)とを備えたシール装置」が開示されている。特許文献1によれば、粗面部(17)によりフィン(13)の周辺の流れを乱すことで、流体(14)の圧力損失を増大させて、フィン(13)と回転体(12)との間から流体(14)がリークする量を低減できるとしている。
 特許文献2(フロント頁,段落[0039],[0045]及び図1,2など参照)には、「ターボ機械において静止要素である静止ケーシング(12)と可動要素であるブレードシュラウド(11)との相互間隙を封止するラビリンスシールにおいて、静止ケーシング(12)から径方向内側に設けられた封止フィン(26)の先端部を構成する末端要素(34)を、漏洩流(21)の流れ方向上流側に向かって傾斜させたラビリンスシール」が開示されている。特許文献2によれば、封止フィン(26)の形状により封止フィン(26)の上流側に漏洩流(21)の循環渦流(36)が形成され、この循環渦流(36)により、静止ケーシング(12)とブレードシュラウド(11)との相互間隙の有効領域が縮小して、相互間隙を通る漏洩流(21)を減少させることができるとしている。
特開2008-196522号公報 特開2013-019537号公報
 しかしながら、特許文献1に開示されたシール装置では、リーク抑制効果ひいてはターボ機械のリーク損失抑制効果が十分とはいえない。これは、フィン(13)が回転体(12)に向かって真っ直ぐに延在するストレート形状であり、回転体(12)との間から流体(14)の流れ(リーク)に規制をかけるのには十分な形状とはいえない。
 また、フィン(13)の先端には、丸み(ここで言う「丸み」とは、流体の流れに影響を与えうる一定曲率半径以上の丸みである)を帯びてしまうことを加工上の制約から避けられない。フィン(13)の先端部に丸みがあると、フィン(13)の先端部で流体(14)が剥離する点(以下、「剥離点」という)が、回転体(12)の表面(12a)とのクリアランスを実質的に拡大する方向に移動し、かつ流体(14)の剥離点での進行方向が下流側(フィン(13)を通過する側)に向き、縮流が弱くなる。このため、先端部に丸みの無い理想的な形状に較べて、シール装置のリーク抑制効果ひいてはターボ機械のリーク損失抑制効果が目減りしてしまう。
 特許文献2に開示されたラビリンスシールでも、封止フィン(26)の先端部に丸みが生じることは避けられず同様の課題が生じていた。特に、特許文献2に開示された封止フィン(26)のように先端部が傾斜した形状において先端部に丸みがあると、この先端部の丸みの扇角が90度[degree]以上になりやすく(つまり丸みを帯びた範囲が広くなりやすく)、このため、特許文献1に開示されたストレート形状のシールフィンよりも、先端部の丸みによる「リーク抑制効果の目減り」が大きかった。
 さらに、特許文献2に開示されたラビリンスシールでは、封止フィン(26)の末端要素(34)を傾斜した形状にするための加工が必要となる。封止フィン(26)には一定の加工精度が要求されるため、その形状加工には切削加工を用いることが好ましい。しかし、切削加工を行うとバリが生じるため、このバリを除去する作業が必要となって、封止フィン(26)の製造コストが高価になるという課題がある。
 本発明は、上記のような課題に鑑み創案されたもので、製造コストの上昇を抑制しつつ、高いリーク抑制効果が得られ、ひいてはターボ機械のリーク損失を低減することができる、シールフィン,シール構造,ターボ機械及びシールフィンの製造方法を提供することを目的とする。
 (1)上記の目的を達成するために、本発明のシールフィンは、互いに隙間を空けて径方向に対向し軸線回りに相対回転する第一構造体と第二構造体との間の前記隙間から、流体がリークすることを抑制し、前記第一構造体から、前記第二構造体に向かって延在して、その延在方向の先端面と前記第二構造体との間にクリアランスをあけて設けられるシールフィンであって、前記径方向に延在するフィン本体と、前記フィン本体の前記流体の流通方向で上流側に向く前面と前記フィン本体の前記第二構造体に対向する先端面との間に形成され前記上流側に凸となる突起部とを備えて構成され、前記突起部における前記軸線に沿った長さ寸法が、前記フィン本体における前記長さ寸法の1.5倍以下であり、前記突起部の角度が75度以下であり、前記フィン本体の前記先端面を基準とした前記突起部の傾斜角度が、-60度以上、60度以下の範囲内に設定されたことを特徴としている。
 (2)前記突起部が先端の尖った尖鋭突起部であることが好ましい。
 (3)前記フィン本体において、前記先端面と、前記流体の流通方向下流側に向く背面との間に、前記軸線側に向く傾斜面を備えることが好ましい。
 (4)前記尖鋭突起部における前記軸線に沿った長さ寸法が、前記フィン本体における前記長さ寸法の0.1倍以上且つ0.5倍以下であることが好ましい。
 (5)前記突起部は、前記第二構造体に対向する端面が、前記フィン本体の前記先端面と面一に形成されていることが好ましい。
 (6)上記の目的を達成するために、本発明のシール構造は、互いに隙間を空けて径方向に対向し軸線回りに相対回転する第一構造体と第二構造体との間の前記隙間から、流体がリークすることを抑制する、シール構造であって、前記第一構造体に、前記第二構造体に向かって延在して、その延在方向の先端面と前記第二構造体との間にクリアランスをあけて(1)~(5)の何れかに記載のシールフィンを備えたことを特徴としている
 (7)上記の目的を達成するために、本発明のターボ機械は、(6)に記載のシール構造を備えたことを特徴としている。
 (8)上記の目的を達成するために、本発明のシールフィンの製造方法は、互いに隙間を空けて径方向に対向し軸線回りに相対回転する第一構造体と第二構造体との間の前記隙間から、流体がリークすることを抑制する、シール構造において、前記第一構造体から、前記第二構造体に向かって延在して、その延在方向の先端面と前記第二構造体との間にクリアランスをあけて設けられるシールフィンの製造方法であって、フィン原材料に対し、厚さ方向に関して先端表面から一定の範囲を被切削部として設定し、前記被切削部を、前記厚さ方向と交差する切削方向に切削を行うことで、前記切削方向と交差する面に前記切削方向に凸となる突起部を形成する、切削ステップを備えたことを特徴としている。
 (9)前記突起部を研磨して先端の尖った尖鋭突起部に形成する、研磨ステップを備えることが好ましい。
 本発明によれば、シールフィンと第二構造体とのクリアランスに向かって流れる流体が、シールフィンに上流側に向けて設けられた突起部により案内される結果、剥離点(シールフィンから流体が剥離する点)における流体の進行方向が、上流側(流体がシールフィンを通過する方向とは逆方向)に向かうようになるため、流体の縮流が強まる。
 したがって、高いリーク抑制効果が得られ、ひいてはターボ機械のリーク損失を低減することができる。
 しかも、突起部の主要寸法、すなわち、突起部における軸線に沿った長さ寸法,突起部の角度及び突起部の傾斜角度が適宜の範囲に設定されているので、より高いリーク抑制効果を得ることができる。
 また、切削加工に伴うバリの発生を利用して突起部を設けることができるので、バリの除去が不要になる上に、安価且つ容易に突起部を設けることができ、突起部を設けることによる製造コストの上昇を抑制することができる。
図1は、本発明の一実施形態に係る蒸気タービンの全体構成を示す模式的な縦断面図である。 図2は、本発明の一実施形態に係る蒸気タービンの要部断面図であり、図1のI部の拡大断面図である。 図3は、本発明の一実施形態に係るシールフィンの先端の構成を示す模式的断面図である(シールフィンの断面を示す斜線は省略している)。 図4A,図4B及び図4Cは、本発明の一実施形態に係るシールフィンの作用を説明するための模式的断面図であって、図4Aは本発明の一実施形態に係るシールフィンに関する図、図4Bは従来のシールフィンに関する図、図4Cは理想的な従来構造のシールフィンに関する図である(図4A,図4B及び図4C共にシールフィンの断面を示す斜線は省略している)。 図5は、本発明の一実施形態に係るシールフィンの主要寸法の設定範囲を説明するための模式図であって、リーク流量の抑制効果Eと、尖鋭突起部62の軸方向Aに関する長さ寸法L1と、尖鋭突起部62の角度θ1との相関関係の解析結果を示す図である。 図6A,図6B及び図6Cは、本発明の一実施形態に係るシールフィンの製造方法を説明するための模式的断面図であって、図6Aは切削ステップを示す図、図6Bは研磨ステップを示す図、図6Cは研磨ステップ後の製品完成状態を示す図である(図6A,図6B及び図6C共にシールフィンの断面を示す斜線は省略している)。 本発明の一実施形態に係るシールフィンの先端の変形例の構成を示す模式的断面図である(シールフィンの断面を示す斜線は省略している)。
 以下、図面を参照して、本発明の実施の形態について説明する。
 本実施形態では、本発明のシールフィン,シール構造,ターボ機械及びシールフィンの製造方法を蒸気タービンに適用した例を説明する。
 なお、以下に示す実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。以下の実施形態の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができると共に、必要に応じて取捨選択することができ、あるいは適宜組み合わせることが可能である。
 以下の説明では上流,下流と記載した場合は、特段の説明がない限り、蒸気タービン内の蒸気Sの流れに対して上流,下流を意味するものとする。すなわち、図1~図4における左側を上流側、右側を下流側とする。
 また、蒸気タービンの軸線CLに向く方向を内周側又は内側とし、その反対側、軸線CLから離れる方向を外周側又は外側として説明する。
[1.蒸気タービンの全体構成]
 図1に示すように、本実施形態の蒸気タービン(ターボ機械)1は、ケーシング(第一構造体)10と、ケーシング10の内部に回転自在に設けられ、動力を図示しない発電機等の機械に伝達する回転軸30と、ケーシング10に設けられた静翼40と、回転軸30に設けられた動翼50と、軸線CLを中心に回転軸30を回転可能に支持する軸受部70とを備えて構成されている。静翼40及び動翼50は回転軸30の径方向Rに延びるブレードである。
 ケーシング10は静止しているのに対し、動翼50は軸線CLを中心に回転する。つまり、ケーシング10と動翼50(後述のシュラウド51を含む)とは互いに相対回転する。
 蒸気(流体)Sは、図示しない蒸気供給源と接続された蒸気供給管20を介して、ケーシング10に形成された主流入口21から導入され、蒸気タービン1の下流側に接続された蒸気排出管22から排出される。
 ケーシング10の内部空間は、気密に封止されていると共に蒸気Sの流路とされている。このケーシング10の内壁面には、回転軸30が挿通されるリング状の仕切板外輪11が強固に固定されている。
 軸受部70は、ジャーナル軸受装置71及びスラスト軸受装置72を備えており、回転軸30を回転自在に支持している。
 静翼40は、ケーシング10から内周側に向かって伸び、回転軸30を囲繞するように放射状に多数配置される環状静翼群を構成しており、それぞれ上述した仕切板外輪11に保持されている。
 これら複数の静翼40からなる環状静翼群は、回転軸30の軸方向(以下、単に軸方向と呼ぶ)Aに間隔を空けて複数形成されており、蒸気Sの圧力エネルギーを速度エネルギーに変換して、速度エネルギーの増加した蒸気Sを下流側に隣接する動翼50に流入させる。
 動翼50は、回転軸30の回転軸本体31の外周部に強固に取り付けられ、各環状静翼群の下流側において、放射状に多数配置されて環状動翼群を構成している。
 これら環状静翼群と環状動翼群とは、一組一段とされている。このうち、最終段の動翼群では、回転軸30の周方向(以下、単に周方向と呼ぶ)に隣接する動翼50の先端部同士がリング状のシュラウド(第二構造体)51により連結されている。最終段の動翼群のみなならず他の動翼群、さらには静翼群についてもシュラウド51により連結するようにしても良い。
[2.シール構造]
 [2-1.シール構造の全体構造]
 図2に示すように、仕切板外輪11の軸方向下流側には、仕切板外輪11から拡径されケーシング10の内周面を底面(以下、ケーシング底面ともいう)13とする円環状の溝(以下、環状溝と呼ぶ)12が形成されている。環状溝12には、シュラウド51が収容され、ケーシング底面13は、シュラウド51と隙間Gdを介して径方向Rに対向している。
 蒸気Sのうち大部分の蒸気SMは、動翼50に流入し、そのエネルギーが回転エネルギーに変換され、この結果、回転軸30に回転が付与される。その一方、蒸気Sのうち一部(例えば、約数%)の蒸気(以下、リーク蒸気と呼ぶ)SLは、動翼50に流入せずに環状溝12にリークする。リーク蒸気SLのエネルギーは回転エネルギーに変換されないので、リーク蒸気SLは、蒸気タービン1の効率を低下させるリーク損失を招く。
 そこで、ケーシング10と動翼50との間の隙間Gdには、本発明の一実施形態としてのシール構造(ステップ型のラビリンスシール)2が設けられている。以下、シール構造2について説明する。
 シュラウド51は、軸方向Aにおける中央部分が突出してステップ状に形成されたステップ部3を備えている。具体的には、シュラウド51の径方向Rで外周側の面は、ベース面4と、ベース面4よりも径方向Rで外周側に突出するステップ面5が形成されたステップ部3とを有している。
 ケーシング底面13には、シュラウド51に向けて径方向Rで内周側にそれぞれ延在する三つのシールフィン6A,6B,6Cが設けられている(図1では省略)。以下、シールフィン6A,6B,6Cを区別しない場合には、シールフィン6と表記する。シールフィン6は、軸線CL(図1参照)を中心とした環状のものであり、図2に示す横断面形状(周方向に垂直な断面の形状)を全周に亘って一定に有する。
 上流のシールフィン6Aは、ステップ部3よりも上流側のベース面4に向けて突出し、中間のシールフィン6Bは、ステップ部3のステップ面5に向けて突出し、下流側のシールフィン6Cは、ステップ部3よりも下流側のベース面4に向けて突出している。中間のシールフィン6Bは、上流側のシールフィン6A及び下流側のシールフィン6Cよりも径方向Rの長さが短くなるように形成されている。
 これらシールフィン6は、シュラウド51との間に微小間隙(以下、クリアランスともいう)mを径方向Rに形成している。これら微小間隙mの各寸法は、ケーシング10や動翼50の熱伸び量や動翼50の遠心伸び量等を考慮して、シールフィン6と動翼50とが接触することがない範囲で設定されている。
 隙間Gdには、環状溝12,シュラウド51及びシールフィン6によって上流側キャビティ25と、下流側キャビティ26とが形成される。シールフィン6の軸線方向の位置は、これらキャビティ25,26内に漏洩したリーク蒸気SLの流れの挙動に応じて適宜設定される。
 [2-2.シールフィン]
 シールフィン6は、シュラウド51のベース面4やステップ面5と対向する先端の構造に大きな特徴がある。この先端の構造について図3及び図4A~図4Cを参照して説明する。
 図3に示すように、シールフィン6は、ケーシング底面13(図2参照)から径方向Rで内側に向かって真っ直ぐに延在するフィン本体61と、フィン本体61の内周端部に一体に設けられた突起部62とを備えて構成される。突起部62は、フィン本体61の前面(上流側に向く面)61aの内周端部分(先端部分)61bに形成された上流側に向かって凸となる突起部である。内周端部分61bとは、前面61aの内、フィン本体61の内周端面(先端面、シュラウド51に対向する面)61cに隣接する仮想的な一定の領域をいう。換言すれば、フィン本体61には、その前面61aと内周端面61cとの間に上流側に凸となる突起部62が形成されている。
 突起部62の突起先端62c(内周端面62aとその裏面(内周端面62aとは反対側の面)62bとが交わる箇所)には、そのまま(未加工のまま)では丸み(ここで言う「丸み」とは、流体の流れに影響を与えうる一定曲率半径以上の丸み)があるため、尖鋭加工が施されている。そこで、以下、突起部62を尖鋭突起部62ともいう。換言すれば、尖鋭突起部62とは、尖鋭加工により、未加工の場合に比べて相対的に突起先端62cが尖鋭化された突起部をいう。
 なお、突起先端62cの内周端面62aとは、シュラウド51に対向する端面をいう。
 ここでは、尖鋭突起部62は、その内周端面62aがフィン本体61の内周端面61cと面一に形成されている。換言すれば、内周端面61cを上流側に延長するようにして前面61aよりも尖鋭的に凸となる突起部62を形成している。また、内周端面61c及び内周端面62aは、本実施形態では、軸線CLと平行(略平行も含む)に、且つフィン本体61の背面61dと直角(ほぼ直角を含む)を成している。
 以下、図4A~図4Cを参照して、本発明の一実施形態であるシールフィン6の作用を説明する。
 図4A,図4B及び図4Cは、本発明の一実施形態に係るシールフィンの作用を説明するための模式的断面図であって、図4Aは本発明の一実施形態に係るシールフィンに関する図、図4Bは従来のシールフィンに関する図、図4Cは理想的な従来構造のシールフィンに関する図である(図4A,図4B及び図4C共にシールフィンの断面を示す斜線は省略している)。
 図4A,図4B及び図4Cでは、本発明の一実施形態に係るシールフィン6とシュラウド51とのクリアランスm,従来のシールフィン6′とシュラウド51とのクリアランスm及び理想的な従来構造のシールフィン6*とシュラウド51とのクリアランスmを、それぞれ同一の高さ寸法(以下、「形状的クリアランス」とも表記する)hとして示す。
 理想的な従来構造のシールフィン、すなわち、尖鋭突起部62が無く且つ先端62c*に丸みの無いシールフィン6*では、図4Cに一点鎖線の矢印で示すようにリーク蒸気SLが流れる。つまり、リーク蒸気SLの流れは、先端62c*が丸みのない理想的な形状をしているため、この先端62c*でシールフィン6*から剥離し(剥離点Peが先端62c*となり)、且つ、剥離点Peにおけるリーク蒸気SLの流れの方向D*は、真っ直ぐにシュラウド51へと向かう方向となる。したがって、強い縮流が得られる。
 このため、縮流後のリーク蒸気SLは、形状的クリアランスhに対して十分に狭い実質的クリアランスh1*が得られ、小さな縮流係数(h1*/h)が得られる(高い縮流効果が得られる)。
 これに対し、尖鋭突起部62のない従来のシールフィン6′では、図4Bに一点鎖線の矢印で示すようにリーク蒸気SLが流れる。つまり、先端62c′が丸みを帯びているため、リーク蒸気SLは、丸みの一部に沿って流れて、先端62c′のフィン根本側(図4Bにおける上側)でシールフィン6′から剥離するように流れ(剥離点Peが、先端62c′から根本側にΔh移動するようになり)、縮流前の実質的なクリアランスは、形状的クリアランスhよりも広いクリアランスh′となる(h′=h+Δh)。さらに、剥離点Peにおけるリーク蒸気SLの流れの方向D′が下流側(シールフィン6′を通過する側)に向くため縮流も弱い。
 このため、縮流後のリーク蒸気SLの実質的クリアランスh1′は、理想的な従来構造のシールフィン6*の実質的クリアランスh1*よりも広くなり、その縮流係数(h1′/h)は、理想的な従来構造のシールフィン6*の縮流係数(h1*/h)に比べて大きくなる(縮流効果が低くなる)。したがって、シールフィン6′下流側に流れる蒸気流量(以下、リーク流量という)FLが多くなる。
 これに対し、本発明の一実施形態であるシールフィン6では、図4Aに一点鎖線の矢印で示すようにリーク蒸気SLが流れる。つまり、シールフィン6の先端に上流側に向く突起部62が形成されているため、剥離点Peにおけるリーク蒸気SLの流れの方向Dが上流側(シールフィン6を通過する側とは逆側)に向くため、理想的な従来構造のシールフィン6*よりも強い縮流が得られ、縮流後のリーク蒸気SLの実質的クリアランスh1は、理想的な従来構造のシールフィン6*の実質的クリアランスh1*よりも狭くなる。
 これは、上流に凸となる尖鋭突起部62の存在により、リーク蒸気SLに対する流通抵抗が大きくなることに加え、リーク蒸気SLが、一旦、上流側に案内され、その後、Uターンしてシールフィン6とシュラウド51とのクリアランスmを通過する際には、Uターンした分だけ、リーク蒸気SLがシュラウド51に近接して流れる(つまり実質的クリアランスh1が狭くなる)ためである。
 さらに、突起部62が尖鋭化されているため、リーク蒸気SLの流れは、突起部62の先端62cで剥離するようになり、縮流前のリーク蒸気SLの実質的なクリアランスは、形状的クリアランスhと一致(略一致も含む)する。
 このため、シールフィン6の縮流係数(h1/h)は、理想的な従来構造のシールフィン6*の縮流係数(h1*/h)に比べて小さくなる(高い縮流効果が得られる)。したがって、リーク流量FLが低減する。
 ここで、尖鋭突起部62の主な寸法L1,θ1,θ2の好ましい範囲を、図3及び図5を参照して説明する。
 図5は、リーク流量の抑制効果Eと、尖鋭突起部62の軸方向Aに関する長さ寸法L1と、尖鋭突起部62の角度(内周端面62aと裏面62bとが成す角度)θ1との相関関係の解析結果を示すものである。抑制効果Eとは、角度θ1が45度[degree]で、長さ寸法L1が、フィン本体61の軸方向Aに関する長さ寸法L0に対して0.25倍のときにシールフィン6により得られる最大のリーク低減量を100%としてリーク低減量を示すものである。
 尖鋭突起部62の長さ寸法L1は、短すぎると、そもそも尖鋭突起部62の突起としての機能が失われて、抑制効果Eが低下し、長すぎると、尖鋭突起部62の作用により縮流したリーク蒸気SLが、微小隙間mを通過している最中に下流側で広がって(実質的クリアランスh1が広がって)シールフィン6の底面に再付着してしまうため、抑制効果Eが低下する。このため、長さ寸法L1とリーク流量の抑制効果Eとの関係は図5に示すようになる。
 図5より、尖鋭突起部62の長さ寸法L1は、50%以上の抑制効果Eが得られることから、好ましくは、フィン本体61の長さ寸法L0の1.5倍以下(L1≦1.5×L0)、80%以上の抑制効果Eが得られることから、より好ましくは、上記寸法L0の0.1倍以上且つ0.5倍以下(0.1×L0≦L1≦0.5×L0)である。
 また、尖鋭突起部62の角度θ1が小さいほど(つまり尖鋭突起部62が薄くなるほど)、剥離点Peにおけるリーク蒸気SLの流れの方向D〔図4A参照〕を上流側に向けることができるので、角度θ1は小さいほうが好ましい。具体的には、前記の流れの方向Dを、垂直方向(つまりシュラウド51に対して真っ直ぐな方向)に近くすることができることから、好ましくは75度[degree]以下(θ1≦75)、前記の流れの方向Dを上流側に向けられることから、より好ましくは45度[degree]以下(θ1≦45)である。
 図3におけるθ2は、尖鋭突起部62の傾斜角度であり、尖鋭突起部62の角度θ1を二等分する二等分線Bと、平行線Pとの交差角度である。平行線Pは、フィン本体61の内周端面61cよりも径方向Rで外周側に位置すると共に内周端面61cと平行な線である。
 ここで、二等分線Bと平行線Pとの交点よりも左側の交差角に着目した場合、平行線Pよりも二等分線Bが下方となるような交差角を負(マイナス)、平行線Pよりも二等分線Bが上方となるような交差角を正(プラス)とする。したがって、図3に示す例では尖鋭突起部62の傾斜角度θ2は負である。
 この傾斜角度θ2は、剥離点Peにおけるリーク蒸気SLの流れの方向Dを垂直方向(つまりシュラウド51に対して真っ直ぐな方向)に近くすることができることから、-60度[degree]以上、60度[degree]以下の範囲が好ましい(-60≦θ2≦60)。傾斜角度θ2が大きすぎると、突起部先端62cの位置ひいては剥離点Peがシュラウド51から離隔して、シュラウド51との間の形状クリアランスが拡大してしまうので、傾斜角度θ2の範囲は、より好ましくは、-60度[degree]以上、0度[degree]以下である(-60≦θ2≦0)。
 なお、図5に示す解析結果は、尖鋭突起部62の傾斜角度θ2が-10度[degree]の場合のものである。
[3.シールフィンの製造方法]
 本発明の一実施形態としてのシールフィンの製造方法を、図6A,図6B及び図6Cを参照して説明すると、本シールフィンの製造方法では、先ず、図6Aに示す切削ステップが行われ、次いで図6Bに示す研磨ステップが行われて、図6Cに示すようにシールフィン6が完成する。
 図6Aに示す切削ステップでは、フィン原材料100の先端部に設けられた被切削部101(図6A中、網点で示す部分)を、切削機の切削刃200を使用して切削する。被切削部101は、フィン原材料100の先端表面100aから、厚さ方向T(ケーシング10への取り付け時に径方向Rと一致する方向)に関して一定の範囲(つまり先端表面100aから所定厚み分ΔT)に設定されている。異なる言い方をすれば、フィン原材料100は、完成品(シールフィン6)に対して、被切削部101の厚みΔT分を見込んで寸法が設定されている。
 そして、切削刃200を、厚さ方向Tと交差する切削方向C(ケーシング10への取り付け時における軸方向Aに沿った方向)に推進し、被切削部101を切削する。切削が進んで被切削部101の残部が僅かになると、この残部が、切削刃200の推進力に抗しきれずに切削方向C側に折れ曲がり突起部101′となり(つまりバリとして残り)、フィン原材料100が中間製品100′となる。なお、切削加工は放電加工により行うようにしても良い。
 図6Bに示す研磨ステップでは、突起部101′の切削面102とは反対側の面(以下、未加工面という)103は加工が施されていないので、研磨機201により研磨される。これにより、図6Cに示すように、突起部101′が先端の尖った尖鋭突起部62として形成されて、シールフィン6の製造が完了する。
 尖鋭突起部62の角度θ1(図3参照)は、研磨量や研磨角度に応じて調節することができる。尖鋭突起部62の傾斜角度θ2(図3参照)は、研磨機201により突起部101′を研磨して尖鋭突起部62とする際に、研磨機201により突起部101′に掛ける押圧力により調整することができる。研磨ステップとは別に、尖鋭突起部62の傾斜角度θ2を調節する曲げ加工などの加工ステップを設けても良い。
 また、フィン本体61の前面61aと尖鋭突起部62の裏面62bとの間を、Rを付けるなどして滑らかに繋ぐように研磨することが、リーク蒸気SLをスムーズに案内できるので好ましい。
[4.効果]
 本発明の一実施形態によれば以下の利点がある。
 図4Aに示すように、シールフィン6とシュラウド51との微小間隙(クリアランス)mに向かって流れるリーク蒸気SLが、シールフィン6の内周端部分61bに上流側に向けて突設された突起部62により案内される結果、剥離点Peでのリーク蒸気SLの流れの方向Dが上流側(シールフィン6を通過する方向とは逆方向)に向かうようになるためリーク蒸気SLの縮流が強まるので、高いリーク抑制効果が得られる。
 さらに、突起部62が、先端の尖った尖鋭突起部として形成されているので、シールフィン6からのリーク蒸気SLの剥離点Peが、突起部先端62cに形成されるようになる。したがって、「突起部62の先端が丸みを帯びることによってリーク抑制効果が目減りすること」を防止できる。すなわち、剥離点Peが突起部先端62cよりも根本側(ケーシング10側、図4A中で上側)に移動してシュラウド51との微小間隙mを実質的に広げてしまうことを抑制することができる。
 さらに、尖鋭突起部62の主要寸法である長さ寸法L1,角度θ1及び傾斜角度θ2を適宜の範囲に設定することで、より高いリーク抑制効果を得ることができる。
 また、このようなリーク抑制効果の高いシールフィン6を使用することで、蒸気タービン1のリーク損失を抑制して高いタービン効率を得ることができる。
 また、切削加工に伴い生じたバリを利用して突起部62を設けるので、バリの除去が不要となり、容易且つ安価に突起部62を設けることができる。
[5.その他]
 (1)シールフィン6の先端の形状は上記実施形態のものに限定されない。例えば、図3に示す上記実施形態の構成に対し、図7に示すように、フィン本体61の背面(下流側に向く面)61dと内周端面61cとの間を斜めに切り落として、内周端面61cに近づくにつれて上流側に位置する(すなわち、内周側(軸線CL側)に向く)傾斜面61eを設けても良い。シールフィン6の全体の軸方向Aに関する長さ寸法(=L1+L0)は、長いと、尖鋭突起部62の作用により縮流したリーク蒸気SLが下流側で広がってシールフィン6の底面に再付着してしまうため、短いほどシールフィン6のリーク抑制効果が向上する。したがって、図7に示すよう構成にすることでシールフィン6の軸方向Aに関する長さ寸法を短くしてリーク抑制効果が向上することができる。
 (2)上記実施形態では、ケーシング10を本発明の第一構造体とすると共にシュラウド51を本発明の第二構造体としてケーシング10にシールフィン6を設けたが、逆に、シュラウド51を本発明の第一構造体とすると共にケーシング10を本発明の第二構造体として、シールフィン6をシュラウド51に設けても良い。
 (3)上記各実施形態では、本発明のシール構造を、ケーシング10と動翼50との間のシール構造に適用したが、回転軸本体31と静翼40との間のシール構造に適用することもできる。
 (4)上記実施形態では、シュラウド51にステップ型を使用したが、シュラウド51を、ステップのない直通型としても良い。
 (5)上記実施形態では、シールフィン6A,6B,6Cの全てについて尖鋭突起部62を設けたが、シールフィン6A,6B,6Cの少なくとも1つに尖鋭突起部62を設ければ良い。
 (6)上記実施形態では、シールフィン6の突起部62を研磨ステップにより研磨して先端の尖った尖鋭突起部としたが、研磨ステップを省くこともできる。換言すれば、図6Bに示す研磨前の中間製品100′を、突起部101′を有するシールフィンの完成品として、本発明のシール構造やターボ機械に使用しても良い。突起部101′を尖鋭突起部としなくとも、突起部101′によりリーク蒸気SLを上流に案内することができるので、丸みの影響を相殺してリーク抑制効果を向上することが可能となる。
 (7)上記実施形態では、蒸気タービンに本発明を適用した例を説明したが、本発明は、ガスタービンやターボ圧縮機など、蒸気タービン以外のターボ機械のシールにも適用することができ、さらには、相対的に回転する二つの構造体の間のシールであれば、ターボ機械以外のもの(例えばロータリージョイント)のシールにも適用できるものである。
 1 蒸気タービン(ターボ機械)
 2 シール構造
 3 ステップ部
 4 ベース面
 5 ステップ面 
 6,6A,6B,6C シールフィン
 10 ケーシング(第一構造体又は第二構造体)
 25,26 キャビティ
 30 回転軸
 31 回転軸本体
 40 静翼
 50 動翼
 51 シュラウド(第二構造体又は第一構造体)
 61 フィン本体
 61a フィン本体61の前面
 61b 前面61aの内周端部分(先端部分)
 61c フィン本体の内周端面(先端面)
 61d フィン本体61の背面
 61e フィン本体61の傾斜面
 62 尖鋭突起部
 62a 尖鋭突起部62の内周端面(先端面)
 62b 尖鋭突起部62の裏面
 62c 突起部先端
 100 フィン原材料
 100′ 中間製品
 100a フィン原材料100の先端表面
 101 被切削部
 101′ 突起部(バリ)
 102 突起部101′の切削面
 103 突起部101′の未加工面
 200 切削刃
 201 研磨機
 A 軸方向
 B 角度θ1の二等分線
 C 切削方向
 CL 軸線
 D,D′,D* リーク蒸気SLの流れの方向
 Gd 隙間
 h シールフィン6とシュラウド51との隙間寸法、形状的クリアランス
 h1,h1′,h1* リーク蒸気SLの実質的クリアランス
 L0 フィン本体61の軸方向Aに関する長さ寸法
 L1 尖鋭突起部62の軸方向Aに関する長さ寸法
 m 微小間隙(クリアランス)
 R 径方向
 S  蒸気(流体)
 SL リーク蒸気
 T 厚さ方向
 ΔT 被切削部101の厚み
 Δh 実質的クリアランスの移動量
 θ1 尖鋭突起部62の角度
 θ2 鋭突起部62の傾斜角度
 

Claims (9)

  1.  互いに隙間を空けて径方向に対向し軸線回りに相対回転する第一構造体と第二構造体との間の前記隙間から、流体がリークすることを抑制し、前記第一構造体から、前記第二構造体に向かって延在して、その延在方向の先端面と前記第二構造体との間にクリアランスをあけて設けられるシールフィンであって、
     前記径方向に延在するフィン本体と、前記フィン本体の前記流体の流通方向で上流側に向く前面と前記フィン本体の前記第二構造体に対向する先端面との間に形成され前記上流側に凸となる突起部とを備えて構成され、
     前記突起部における前記軸線に沿った長さ寸法が、前記フィン本体における前記長さ寸法の1.5倍以下であり、前記突起部の角度が75度以下であり、前記フィン本体の前記先端面を基準とした前記突起部の傾斜角度が、-60度以上、60度以下の範囲内に設定された
    ことを特徴とする、シールフィン。
  2.  前記突起部が先端の尖った尖鋭突起部である
    ことを特徴とする、請求項1記載のシールフィン。
  3.  前記フィン本体において、前記先端面と、前記流体の流通方向下流側に向く背面との間に、前記軸線側に向く傾斜面を備えた
    ことを特徴とする、請求項1又は2記載のシールフィン。
  4.  前記突起部における前記軸線に沿った長さ寸法が、前記フィン本体における前記長さ寸法の0.1倍以上且つ0.5倍以下である
    ことを特徴とする、請求項1~3の何れか一項に記載のシールフィン。
  5.  前記突起部は、前記第二構造体に対向する端面が、前記フィン本体の前記先端面と面一に形成されている
    ことを特徴とする、請求項1~4の何れか一項に記載のシールフィン。
  6.  互いに隙間を空けて径方向に対向し軸線回りに相対回転する第一構造体と第二構造体との間の前記隙間から、流体がリークすることを抑制する、シール構造であって、前記第一構造体に、前記第二構造体に向かって延在して、その延在方向の先端面と前記第二構造体との間にクリアランスをあけて請求項1~5の何れか一項に記載のシールフィンを備えた
    ことを特徴とする、シール構造。
  7.  請求項6に記載のシール構造を備えたことを特徴とする、ターボ機械。
  8.  互いに隙間を空けて径方向に対向し軸線回りに相対回転する第一構造体と第二構造体との間の前記隙間から、流体がリークすることを抑制する、シール構造において、前記第一構造体から、前記第二構造体に向かって延在して、その延在方向の先端面と前記第二構造体との間にクリアランスをあけて設けられるシールフィンの製造方法であって、
     フィン原材料に対し、厚さ方向に関して先端表面から一定の範囲を被切削部として設定し、前記被切削部を、前記厚さ方向と交差する切削方向に切削を行うことで、前記切削方向と交差する面に前記切削方向に凸となる突起部を形成する、切削ステップを備えた
    ことを特徴とする、シールフィンの製造方法。
  9.  前記突起部を研磨して先端の尖った尖鋭突起部に形成する、研磨ステップを備えた
    ことを特徴とする、請求項8記載のシールフィンの製造方法。
     
PCT/JP2016/085350 2015-12-09 2016-11-29 シールフィン,シール構造,ターボ機械及びシールフィンの製造方法 WO2017098959A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187015327A KR102056994B1 (ko) 2015-12-09 2016-11-29 시일 핀, 시일 구조, 터보 기계 및 시일 핀의 제조 방법
CN201680070948.1A CN108291451B (zh) 2015-12-09 2016-11-29 密封翅片、密封结构、透平机械及密封翅片的制造方法
DE112016005645.1T DE112016005645T5 (de) 2015-12-09 2016-11-29 Dichtungsrippe, Dichtungsstruktur, Turbomaschine und Verfahren zum Herstellen einer Dichtungsrippe
US15/778,730 US11105213B2 (en) 2015-12-09 2016-11-29 Seal fin, seal structure, turbo machine, and method for manufacturing seal fin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015240487A JP6209199B2 (ja) 2015-12-09 2015-12-09 シールフィン,シール構造,ターボ機械及びシールフィンの製造方法
JP2015-240487 2015-12-09

Publications (1)

Publication Number Publication Date
WO2017098959A1 true WO2017098959A1 (ja) 2017-06-15

Family

ID=59014152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085350 WO2017098959A1 (ja) 2015-12-09 2016-11-29 シールフィン,シール構造,ターボ機械及びシールフィンの製造方法

Country Status (6)

Country Link
US (1) US11105213B2 (ja)
JP (1) JP6209199B2 (ja)
KR (1) KR102056994B1 (ja)
CN (1) CN108291451B (ja)
DE (1) DE112016005645T5 (ja)
WO (1) WO2017098959A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6530918B2 (ja) * 2015-01-22 2019-06-12 三菱日立パワーシステムズ株式会社 タービン
JP6227572B2 (ja) * 2015-01-27 2017-11-08 三菱日立パワーシステムズ株式会社 タービン
DE102016211337A1 (de) * 2016-06-24 2017-12-28 MTU Aero Engines AG Verdickter radial äußerer Ringbereich eines Dichtfins
CN114937467B (zh) * 2022-06-06 2023-01-24 武汉理工大学 一种使用方便的数据回收舱

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62133902U (ja) * 1986-02-18 1987-08-24
JP2001200937A (ja) * 2000-01-17 2001-07-27 Mitsubishi Heavy Ind Ltd 回転機械のアクティブシール
JP2011237033A (ja) * 2010-05-11 2011-11-24 General Electric Co <Ge> 湾曲ラビリンス・シール
JP2013019537A (ja) * 2011-07-04 2013-01-31 Alstom Technology Ltd ラビリンスシール
JP2015108301A (ja) * 2013-12-03 2015-06-11 三菱重工業株式会社 シール構造、及び回転機械

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1505647A (en) * 1920-11-05 1924-08-19 Gen Electric Packing for elastic-fluid turbines and the like
US1708044A (en) * 1923-09-12 1929-04-09 Westinghouse Electric & Mfg Co Labyrinth-gland packing
US1689735A (en) * 1923-10-05 1928-10-30 Losel Franz Labyrinth gland construction
US1651855A (en) * 1924-06-24 1927-12-06 Gen Electric Elastic-fluid turbine
US1831224A (en) * 1927-11-07 1931-11-10 Westinghouse Electric & Mfg Co Labyrinth packing
US1756958A (en) * 1928-10-03 1930-05-06 Westinghouse Electric & Mfg Co Elastic-fluid turbine
US3940153A (en) * 1974-12-09 1976-02-24 General Motors Corporation Labyrinth seal
US4103899A (en) * 1975-10-01 1978-08-01 United Technologies Corporation Rotary seal with pressurized air directed at fluid approaching the seal
GB1560974A (en) * 1977-03-26 1980-02-13 Rolls Royce Sealing system for rotors
JPS59185898A (ja) * 1983-04-08 1984-10-22 Aisin Seiki Co Ltd フアンブレ−ド
US5639095A (en) * 1988-01-04 1997-06-17 Twentieth Technology Low-leakage and low-instability labyrinth seal
JP2858697B2 (ja) 1988-12-23 1999-02-17 富士電機株式会社 地熱蒸気タービン静翼の翼端部シールフィン構造
US5211535A (en) * 1991-12-30 1993-05-18 General Electric Company Labyrinth seals for gas turbine engine
US5218816A (en) * 1992-01-28 1993-06-15 General Electric Company Seal exit flow discourager
DE59709283D1 (de) * 1997-12-23 2003-03-13 Abb Turbo Systems Ag Baden Verfahren und Vorrichtung zum berührungsfreien Abdichten eines zwischen einem Rotor und einem Stator ausgebildeten Trennspalts
GB0008892D0 (en) * 2000-04-12 2000-05-31 Rolls Royce Plc Abradable seals
JP3422008B2 (ja) * 2001-02-19 2003-06-30 日本サーボ株式会社 軸流フアン
ATE359445T1 (de) * 2002-02-28 2007-05-15 Daikin Ind Ltd Lüfter
FR2841591B1 (fr) * 2002-06-27 2006-01-13 Snecma Moteurs Circuits de ventilation de la turbine d'une turbomachine
US6932350B1 (en) * 2003-09-26 2005-08-23 Ideal Electric Company Windback labyrinth seal that accommodates a pressure differential for rotating shafts
US7708520B2 (en) * 2006-11-29 2010-05-04 United Technologies Corporation Gas turbine engine with concave pocket with knife edge seal
JP2008196522A (ja) 2007-02-08 2008-08-28 Toshiba Corp シール装置
US8167547B2 (en) * 2007-03-05 2012-05-01 United Technologies Corporation Gas turbine engine with canted pocket and canted knife edge seal
US20080263863A1 (en) * 2007-04-27 2008-10-30 United Technologies Corporation Dimensional restoration of turbine blade knife edge seals
ATE467750T1 (de) * 2007-06-25 2010-05-15 Siemens Ag Turbinenanordnung und verfahren zur kühlung eines deckbands an der spitze einer turbinenschaufel
US20090033037A1 (en) * 2007-07-30 2009-02-05 Varanasi Kripa K Seal assembly
US8075256B2 (en) * 2008-09-25 2011-12-13 Siemens Energy, Inc. Ingestion resistant seal assembly
DE102008052552B4 (de) * 2008-10-21 2015-06-11 Benteler Automobiltechnik Gmbh Turbinengehäuse und Verfahren zu seiner Herstellung
US8206082B2 (en) 2009-04-29 2012-06-26 General Electric Company Packing seal rotor lands
US8333557B2 (en) * 2009-10-14 2012-12-18 General Electric Company Vortex chambers for clearance flow control
GB201013003D0 (en) * 2010-08-03 2010-09-15 Rolls Royce Plc A seal assembly
US8967957B2 (en) * 2011-11-03 2015-03-03 General Electric Company Rotating airfoil component of a turbomachine
US10215033B2 (en) 2012-04-18 2019-02-26 General Electric Company Stator seal for turbine rub avoidance
US10087768B2 (en) * 2015-12-07 2018-10-02 General Electric Company Steam turbine rotor seal key member, related assembly and steam turbine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62133902U (ja) * 1986-02-18 1987-08-24
JP2001200937A (ja) * 2000-01-17 2001-07-27 Mitsubishi Heavy Ind Ltd 回転機械のアクティブシール
JP2011237033A (ja) * 2010-05-11 2011-11-24 General Electric Co <Ge> 湾曲ラビリンス・シール
JP2013019537A (ja) * 2011-07-04 2013-01-31 Alstom Technology Ltd ラビリンスシール
JP2015108301A (ja) * 2013-12-03 2015-06-11 三菱重工業株式会社 シール構造、及び回転機械

Also Published As

Publication number Publication date
CN108291451A (zh) 2018-07-17
JP2017106375A (ja) 2017-06-15
JP6209199B2 (ja) 2017-10-04
US11105213B2 (en) 2021-08-31
KR102056994B1 (ko) 2019-12-17
US20180355743A1 (en) 2018-12-13
DE112016005645T5 (de) 2018-08-30
CN108291451B (zh) 2020-04-10
KR20180078284A (ko) 2018-07-09

Similar Documents

Publication Publication Date Title
JP6209200B2 (ja) ステップシール,シール構造,ターボ機械及びステップシールの製造方法
KR102031510B1 (ko) 시일 구조 및 터빈
WO2017098959A1 (ja) シールフィン,シール構造,ターボ機械及びシールフィンの製造方法
JP6131177B2 (ja) シール構造、及び回転機械
US11187097B2 (en) Rotary machine
US20170284412A1 (en) Radial compressor impeller and associated radial compressor
JP6167158B2 (ja) シール構造及びターボ機械
JP6066948B2 (ja) シュラウド、動翼体、及び回転機械
JP2014238066A (ja) 回転機械
JP2014152696A (ja) ラビリンスシール装置、およびそれを用いたターボ機械
WO2021039811A1 (ja) スワールブレーカ組立体及び回転機械
JP5852191B2 (ja) 端壁部材及びガスタービン
JP2019035347A (ja) タービン部品、タービン翼、軸流タービン及びその改造方法、タービン翼の製造方法
JP2019100211A (ja) インペラ、回転機械
JP5916826B2 (ja) 回転機械の翼体、及びガスタービン
JP6638938B2 (ja) 回転機械
JP5852190B2 (ja) 端壁部材及びガスタービン
JP2017025879A (ja) 動翼および回転機械
JP2013234672A (ja) 端壁部材及びガスタービン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872859

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187015327

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016005645

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16872859

Country of ref document: EP

Kind code of ref document: A1