WO2017098674A1 - スパークプラグ - Google Patents

スパークプラグ Download PDF

Info

Publication number
WO2017098674A1
WO2017098674A1 PCT/JP2016/003618 JP2016003618W WO2017098674A1 WO 2017098674 A1 WO2017098674 A1 WO 2017098674A1 JP 2016003618 W JP2016003618 W JP 2016003618W WO 2017098674 A1 WO2017098674 A1 WO 2017098674A1
Authority
WO
WIPO (PCT)
Prior art keywords
spark plug
insulator
axis
distance
center electrode
Prior art date
Application number
PCT/JP2016/003618
Other languages
English (en)
French (fr)
Inventor
啓治 尾関
小林 勉
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to KR1020187016111A priority Critical patent/KR20180084855A/ko
Priority to US16/060,784 priority patent/US10256610B2/en
Priority to CN201680074361.8A priority patent/CN108370133B/zh
Priority to EP16872576.0A priority patent/EP3389154B1/en
Publication of WO2017098674A1 publication Critical patent/WO2017098674A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/36Sparking plugs characterised by features of the electrodes or insulation characterised by the joint between insulation and body, e.g. using cement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T1/00Details of spark gaps
    • H01T1/20Means for starting arc or facilitating ignition of spark gap
    • H01T1/22Means for starting arc or facilitating ignition of spark gap by the shape or the composition of the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/34Sparking plugs characterised by features of the electrodes or insulation characterised by the mounting of electrodes in insulation, e.g. by embedding

Definitions

  • the present invention relates to a spark plug.
  • the present invention has been made to solve the above-described problems, and can be realized as the following forms. *
  • a cylindrical metal shell having a metal inner step projecting in the inner peripheral direction and having a cylindrical hole extending in the axial direction; and inserted into the metal shell, the axis
  • An insulator having a shaft hole extending in the direction and having an opposing portion facing the inner step portion of the metal fitting via an annular packing; and having a flange portion extending in the axial direction and projecting in the outer peripheral direction, and the shaft
  • a spark plug having a center electrode inserted into the hole; and a seal body disposed in the shaft hole and sealing the insulator and the center electrode.
  • the spark plug has a cross section including the axis and along the axis; along the axis from the rear end of the facing portion of the insulator to the rear end of the portion where the flange contacts the insulator.
  • the distance L satisfies: L ⁇ 1.1 (mm). According to the spark plug of this embodiment, by setting the distance L to 1.1 mm or less, the capacitance of the spark plug in the distance L region can be reduced, thereby suppressing the consumption of the spark plug electrode. Can do. *
  • an acute angle formed by a reference line orthogonal to the axis and a portion where the flange portion contacts the insulator is ⁇ A; And an acute angle formed by the straight line connecting the front end of the facing portion and the rear end of the portion where the flange contacts the insulator; ⁇ A + ⁇ B ⁇ 90 °; L ⁇ 0. 5 (mm) may be satisfied.
  • the electrostatic capacity can be reduced and the strength of the insulator can be ensured.
  • the nominal diameter M (mm) of the thread portion of the metallic shell may satisfy M ⁇ 12. According to the spark plug of this embodiment, the electrostatic capacity of the spark plug having a nominal diameter M of 12 or less can be reduced, and consumption of the electrode can be suppressed.
  • the present invention can be implemented in various forms other than the above-described form as a spark plug, such as a spark plug manufacturing method.
  • the fragmentary sectional view of the spark plug in one embodiment of the present invention The expanded sectional view which expands and shows a part of spark plug.
  • the figure which shows the relationship between the distance L and the change rate of gap increase amount.
  • FIG. 1 is a partial sectional view of a spark plug 100 in one embodiment of the present invention.
  • the spark plug 100 has an elongated shape along the axis O.
  • the right side of the axis O indicated by a dashed line shows an external front view
  • the left side of the axis O shows a cross-sectional view passing through the axis O.
  • the lower side in FIG. 1 is referred to as the front end side of the spark plug 100
  • the upper side in FIG. 1 is referred to as the rear end side.
  • the XYZ axes in FIG. 1 correspond to the XYZ axes in the other drawings.
  • the axis O and the Z axis are parallel, and the + Z direction is also the axis direction.
  • the front end side of the spark plug 100 is the + Z direction
  • the rear end side of the spark plug 100 is the ⁇ Z direction.
  • the simple “Z direction” refers to a direction parallel to the Z axis (a direction along the Z axis). The same applies to the X axis and the Y axis. *
  • the spark plug 100 includes an insulator 10, a center electrode 20, a ground electrode 30, and a metal shell 50.
  • the insulator 10 has at least a part of its outer periphery held by a cylindrical metal shell 50 and has a shaft hole 12 along the axis O.
  • a center electrode 20 is provided in the shaft hole 12.
  • the ground electrode 30 is fixed to the front end surface 57 of the metal shell 50 and forms a discharge gap G between the ground electrode 30 and the center electrode 20.
  • the insulator 10 is an insulator formed by firing a ceramic material such as alumina.
  • the insulator 10 is a cylindrical member in which a part of the center electrode 20 is accommodated at the front end side and the shaft hole 12 that accommodates a part of the terminal fitting 40 is formed at the rear end side.
  • a central body 19 having a larger outer diameter is formed at the center in the axial direction of the insulator 10.
  • a rear end side body portion 18 is formed on the rear end side of the central body portion 19.
  • a front end side body portion 17 having an outer diameter smaller than that of the rear end side body portion 18 is formed on the front end side of the central body portion 19, and the front end side body portion 17 is further ahead of the front end side body portion 17.
  • a leg length portion 13 having a small outer diameter and a smaller outer diameter toward the distal end side is formed.
  • a facing portion 15 is formed to face a metal fitting inner step portion 56 described later. *
  • the metal shell 50 is a cylindrical metal fitting that extends in the axial direction and includes a cylindrical hole that surrounds and holds a portion extending from a part of the rear end body portion 18 of the insulator 10 to the long leg portion 13.
  • the metal shell 50 is made of, for example, low carbon steel, and is subjected to a plating process such as nickel plating or zinc plating.
  • the metal shell 50 includes a tool engaging portion 51, a seal portion 54, and a mounting screw portion 52 in order from the rear end side.
  • the tool engaging portion 51 is fitted with a tool for attaching the spark plug 100 to the engine head.
  • the attachment screw portion 52 has a thread that is screwed into the attachment screw hole of the engine head. In the present embodiment, the diameter of the mounting screw portion 52 is 12 mm.
  • the diameter of the mounting screw portion 52 is also referred to as a nominal diameter M.
  • the seal portion 54 is formed in a hook shape at the base of the mounting screw portion 52.
  • An annular gasket 5 formed by bending a plate is fitted between the seal portion 54 and the engine head.
  • the front end surface 57 of the metal shell 50 has a hollow circular shape, and the leg long portion 13 of the insulator 10 and the center electrode 20 protrude from the center thereof. *
  • a thin caulking portion 53 is provided on the rear end side of the metal shell 50 from the tool engaging portion 51. Further, between the seal portion 54 and the tool engaging portion 51, a compression deformation portion 58 having a small thickness is provided in the same manner as the caulking portion 53. Between the inner peripheral surface of the metal shell 50 from the tool engaging portion 51 to the crimping portion 53 and the outer peripheral surface of the rear end side body portion 18 of the insulator 10, annular ring members 6 and 7 are interposed. Further, talc (talc) 9 powder is filled between the ring members 6 and 7.
  • the compression deformation portion 58 is compressed and deformed by pressing the crimping portion 53 inward so as to be bent inward, and the compression deformation of the compression deformation portion 58 causes the ring members 6, 7 and The insulator 10 is pressed toward the front end side in the metal shell 50 through the talc 9. By this pressing, the talc 9 is compressed in the + Z direction, and the airtightness in the metal shell 50 is enhanced.
  • the base end of the leg long portion 13 of the insulator 10 is formed at the position of the mounting screw portion 52, and the metal inner step portion 56 projecting in the inner peripheral direction via the annular plate packing 8.
  • the facing portion 15 located at is pressed.
  • the plate packing 8 is a member that maintains airtightness between the metal shell 50 and the insulator 10, and prevents the combustion gas from flowing out.
  • the center electrode 20 is a rod-like member in which a core material 22 having better thermal conductivity than the center electrode base material 21 is embedded in the center electrode base material 21.
  • the center electrode base material 21 is made of a nickel alloy containing nickel as a main component
  • the core member 22 is made of copper or an alloy containing copper as a main component.
  • a flange portion 23 having a shape protruding in the outer peripheral direction is formed.
  • the flange 23 contacts the shaft hole inner step 14 formed in the shaft hole 12 from the rear end side, and positions the center electrode 20 in the insulator 10.
  • the center electrode 20 is electrically connected to the terminal fitting 40 via the ceramic resistor 3 and the seal body 4.
  • the seal body 4 seals the insulator 10 and the center electrode 20.
  • the center electrode 20 is fixed in the shaft hole 12 by the seal body 4 as follows. First, the center electrode 20 is inserted from the rear end side of the shaft hole 12, and the material powder of the seal body 4 (for example, a powder in which copper powder and borosilicate glass powder are mixed 1: 1) is filled from above. Press with a push rod. Furthermore, material powder (ZrO 2 powder, alumina powder, carbon black, glass powder, powder mixed with PVA binder, etc.) of ceramic resistor 3 is filled from above and pressed with a push rod. Furthermore, after filling the material powder of the sealing body 4 again from above and pressing it with a push rod, the terminal fitting 40 is inserted into the rear end of the shaft hole 12.
  • the material powder of the seal body 4 for example, a powder in which copper powder and borosilicate glass powder are mixed 1: 1
  • material powder (ZrO 2 powder, alumina powder, carbon black, glass powder, powder mixed with PVA binder, etc.) of ceramic resistor 3 is filled from above and pressed with
  • the insulator 10 is heated while the terminal fitting 40 is pushed in, so that the material powder of the seal body 4 and the material powder of the ceramic resistor 3 in the shaft hole 12 are melted and then cooled. Then, the seal body 4 and the ceramic resistor 3 are solidified in the shaft hole 12, and the center electrode 20 is fixed in the shaft hole 12.
  • the process of fixing the center electrode 20 in the shaft hole 12 by the seal body 4 is also referred to as a “glass sealing process”.
  • the ground electrode 30 is made of a metal having high corrosion resistance.
  • a metal having high corrosion resistance for example, a nickel alloy mainly composed of nickel such as Inconel (trade name) 600 or Inconel 601 is used.
  • the proximal end of the ground electrode 30 is welded to the distal end surface 57 of the metal shell 50.
  • the ground electrode 30 is bent at an intermediate portion so that one side surface of the tip portion of the ground electrode 30 faces the center electrode 20.
  • the ground electrode 30 includes a discharge tip 80 that protrudes toward the center electrode 20 that is the other electrode and forms a discharge gap G at the tip 32. *
  • FIG. 2 is an enlarged cross-sectional view showing a part of the spark plug 100 in an enlarged manner.
  • the cross section shown in FIG. 2 includes the axis O and is a cross section along the axis O.
  • the facing portion 15 of the insulator 10 comes into contact with the metal inner step portion 56 of the metal shell 50 through the plate packing 8 from the rear end side.
  • the insulator 10 includes a shaft hole inner step portion 14 having a portion (contact portion 16) with which the flange portion 23 of the center electrode 20 is in contact with the inner periphery thereof.
  • the collar part 23 of the center electrode 20 contacts from the end side.
  • FIG. 2 shows a distance L (mm) along the axis O from the rear end P1 of the facing portion 15 to the rear end P2 of the contact portion 16.
  • the distance L satisfies the following formula (1). *
  • FIG. 2 shows the diameter Rs of the shaft hole 12 where the seal body 4 is disposed and the maximum diameter Rc of the center electrode 20 on the tip side of the flange 23.
  • the diameter Rs and the diameter Rc are parallel to the Y direction.
  • the diameter Rs preferably satisfies the following formula (2)
  • the diameter Rc preferably satisfies the following formula (3).
  • the XY plane including the rear end P1 of the facing portion 15 is a bottom surface
  • the XY plane including the rear end P2 of the contact portion 16 is an upper surface
  • FIG. 3 is a diagram showing the relationship between the distance L and the change rate of the gap increase amount.
  • samples 1 to 7 of the spark plug 100 having a diameter Rc of 2.3 mm, a diameter Rs of 3.9 mm and different distances L, a diameter Rc of 2.3 mm, and a diameter Rs of 3.0 mm.
  • Samples 8 to 14 having different distances L and samples 15 to 24 having a diameter Rc of 1.9 mm and a diameter Rs of 3.9 mm and different distances L were prepared.
  • the nominal diameter M of the spark plug 100 is 12 mm.
  • an experiment was performed under the following conditions.
  • the pressure was 2.6 Mpa in an air atmosphere, and ignition was performed 100 times per second (100 Hz) for 5 hours.
  • the gap increase (gap increase (mm)), which is the degree of wear of the ground electrode and the center electrode before and after the start of the experiment, was measured, and the change rate (%) of the gap increase was calculated.
  • the “gap increase amount change rate (%)” indicates the change rate of electrode wear relative to the conventional product, and is calculated by the following equation (4).
  • the gap increase amount and change rate of each sample shown in FIG. 3 are average values of results obtained by conducting experiments by preparing three samples having the same diameter Rc, diameter Rs, and distance L. *
  • FIG. 4 is a diagram illustrating the relationship between the distance L and the rate of change.
  • data with a diameter Rc of 2.3 mm and a diameter Rs of 3.9 mm is indicated by “ ⁇ ”
  • data with a diameter Rc of 2.3 mm and a diameter Rs of 3.0 mm is indicated by “ ⁇ ”
  • FIG. 5 is a diagram illustrating a relationship among the distance L, the rate of change, and the nominal diameter M.
  • a plurality of spark plugs having different distances L for each nominal diameter M were produced.
  • Each spark plug has a diameter Rc of 2.3 mm and a diameter Rs of 3.9 mm.
  • the experimental conditions are the same as the conditions used to obtain the relationship between the distance L and the change rate described with reference to FIGS. *
  • FIG. 6 is a schematic view in which the spark plug 100 is regarded as a coaxial cylindrical capacitor.
  • the region of the distance L described with reference to FIG. 2 can be regarded as a cylindrical condenser having the central electrode 20 in FIG. 6 as a central conductor and the metal shell 50 as an external conductor.
  • the capacitance C of the coaxial cylindrical capacitor is obtained by the following equation (5).
  • equation (5) “a” is the radius of the outer diameter of the central conductor, “b” is the radius of the inner diameter of the outer conductor, L is the coaxial length, and ⁇ 0 is the dielectric constant of the vacuum is there.
  • “a” corresponds to the radius (Rc / 2) of the outer diameter of the center electrode 20
  • distance “b” corresponds to the radius of the inner diameter of the metal shell 50, and L corresponds to the distance L.
  • the capacitance decreases as the coaxial length L decreases. That is, in the spark plug 100, the capacitance decreases as the distance L decreases. In the spark plug 100 of the present embodiment, since the distance L is within the range of the expression (1) and is relatively short, the capacitance in the region of the distance L can be reduced.
  • FIG. 7 is a diagram showing an equivalent circuit of the spark plug 100.
  • the spark plug 100 can be regarded as a capacitor, and the electric charge stored in the spark plug 100 flows between the gaps G during discharge. For this reason, by suppressing the electrostatic capacitance of the spark plug 100, the energy (capacity current) at the time of occurrence of discharge is lowered. As a result, it is considered that consumption of the center electrode 20 and the ground electrode 30 can be suppressed.
  • the capacitor C ⁇ b> 1 indicates the front end side of the boundary between the ceramic resistor 3 and the front end seal body 4, and the rear end side from the boundary between the ceramic resistor 3 and the front end seal body 4. Is indicated by capacitor C2.
  • the internal resistance of the ceramic resistor 3 is indicated as a resistance R
  • the gap between the center electrode 20 and the ground electrode 30 is indicated as a gap G. *
  • the current flowing from the capacitor C2 is greatly reduced by flowing through the resistor R.
  • the current flowing from the capacitor C1 does not pass through the resistor R and flows between the gaps G. For this reason, it is considered that the current flowing from the capacitor C1 largely contributes to the capacity current when the discharge between the gaps G occurs. From equation (5), the closer the value of “a” and the value of “b”, the higher the capacitance.
  • the distance between the inner peripheral surface of the metal shell 50 and the outer periphery of the center electrode 20 is shorter than the other regions of the spark plug 100. It is thought that current is likely to be affected. Therefore, consumption of the center electrode 20 and the ground electrode 30 can be suppressed by suppressing the capacitance of the capacitor C1.
  • the capacitance of the capacitor C1 can be reduced, and as a result, consumption of the electrodes can be suppressed. Moreover, even if the distance L is shortened, the consumption of the electrode is suppressed even though the ratio affecting the other performances of the spark plug 100 (for example, heat resistance, stain resistance, leak resistance) is small. it can. Furthermore, electrode consumption can be suppressed without changing the electrode material.
  • the spark plug according to the present embodiment has the capacitance in the region of the distance L even if the spark plug 100 is a comparatively small spark plug 100 having a nominal diameter M of 12 mm or less by setting the distance L in the range of the formula (1). By suppressing, consumption of the electrode can be suppressed.
  • FIG. 8 is an enlarged cross-sectional view showing a part of the spark plug 100a of the second embodiment.
  • the cross section shown in FIG. 8 includes the axis O and is a cross section along the axis O.
  • FIG. 8 shows the distance L, the angle ⁇ A, and the angle ⁇ B.
  • the angle ⁇ A is a reference line (perpendicular line drawn from the tip P3 of the shaft hole inner step 14 to the axis O) and a portion where the flange portion 23 of the center electrode 20 contacts the insulator 10 in the cross section. And an acute angle formed by the contact portion 16.
  • the angle ⁇ B includes a reference line orthogonal to the axis O (perpendicular line drawn from the tip P4 of the facing portion 15 of the insulator 10 to the axis O), the tip P4 of the facing portion 15, and the rear end P2 of the contact portion 16. And an acute angle formed by a straight line connecting the two.
  • the distance L in addition to satisfying the above-described expression (1), the distance L further satisfies the following expression (6). Further, the sum ( ⁇ A + ⁇ B) (°) of the angle ⁇ A and the angle ⁇ B satisfies the following expression (7).
  • the other structure of the spark plug 100a is the same as that of the spark plug 100 of 1st Embodiment, description is abbreviate
  • the spark plug 100a of the present embodiment described above has the same effect as the spark plug 100 of the first embodiment because the expression (1) is satisfied. Furthermore, since the spark plug 100a satisfies the formulas (6) and (7), the strength of the insulator 10a can be sufficiently ensured in the glass sealing step. *
  • the value of ⁇ A is preferably 20 ° or more, more preferably 25 ° or more, and more preferably 30 ° or more.
  • FIG. 9 is a diagram showing the relationship between the distance L, the value of ( ⁇ A + ⁇ B), and the strength of the insulator 10.
  • the insulator 10, the center electrode 20, and the metal shell 50 for preparing the spark plug 100a having different values of the distance L and ( ⁇ A + ⁇ B) were prepared. There are 10 samples in each specification. Then, using the insulator 10, the center electrode 20, and the metal shell 50, a glass sealing process for fixing the center electrode 20 in the shaft hole 12 with the seal body 4 was performed.
  • the insulator 10 is not damaged in the samples 40 to 42 in which the value of ( ⁇ A + ⁇ B) is 100 ° or more.
  • the insulator 10 is not damaged in the samples 24 to 28 and samples 31 to 35 in which the value of ( ⁇ A + ⁇ B) is 90 ° or more.
  • the distance L (mm) satisfies the formula (6), and ( ⁇ A + ⁇ B) satisfies the formula (7), thereby suppressing the consumption of the electrode of the spark plug 100, It was shown that the strength of the insulator 10 was ensured.
  • FIG. 10 is a diagram showing the force W acting on the insulator 10 in the glass sealing step.
  • the force W shown in FIG. 10 is a force W in the + Z direction generated in the vicinity of the step 14 in the shaft hole of the insulator 10 when the material powder of the seal body 4 is pressed.
  • the force W1 is a component force (Wcos ⁇ ) of the force W that acts perpendicularly to the contact portion 16 of the step portion 14 in the shaft hole.
  • the force W2 is a component force (Wsin ⁇ ) of W acting in a direction parallel to the contact portion 16.
  • the axial hole inner step portion 14 of the insulator 10 is pressed with the force W 1.
  • the distance L is shortened in order to reduce the capacitance, the thickness of the insulator 10 that is the distance from the tip P3 to the tip P4 shown in FIG. There is a risk.
  • FIG. 11 is another diagram showing the force W acting on the insulator 10 in the glass sealing step.
  • the angle ⁇ A shown in FIG. 11 is larger than the angle ⁇ A shown in FIG.
  • the force W1 (Wcos ⁇ ) acting perpendicularly to the contact portion 16 can be reduced as compared with the case where the angle ⁇ A is small. Therefore, when ( ⁇ A + ⁇ B) is not within the range of equation (6), that is, when ( ⁇ A + ⁇ B) is smaller than 90 °, the stress generated in the vicinity of the contact portion 16 of the step portion 14 in the shaft hole is reduced. .
  • the thickness of the insulator 10 becomes thinner as the nominal diameter M becomes smaller. For this reason, it is desirable to ensure a sufficient strength of the insulator 10 in a spark plug having a nominal diameter M of 12 mm or less.
  • the spark plug 100a of the present embodiment can sufficiently ensure the strength of the insulator 10 even if the nominal diameter M is 12 mm or less by setting ( ⁇ A + ⁇ B) in the range of the formula (6). *
  • the nominal diameter M is 12 mm or less, but the nominal diameter M may be larger than 12 mm.
  • the spark plugs 100 and 100a are provided with the discharge chips, the spark plugs 100 and 100a may not be provided with the discharge chips.
  • the present invention is not limited to the above-described embodiments and modifications, and can be realized with various configurations without departing from the spirit thereof.
  • the technical features in the embodiments and the modifications corresponding to the technical features in each embodiment described in the summary section of the invention are to solve some or all of the above-described problems, or In order to achieve part or all of the effects, replacement or combination can be performed as appropriate. Further, if the technical feature is not described as essential in the present specification, it can be deleted as appropriate.
  • flange portion 30 ... ground electrode 32 ... leading end portion 40 ... terminal fitting 50 ... main Metal fitting 51 ... Tool engagement part 52 ... Mounting screw part 53 ... Casting part 54 Sealing portion 56 ... fitting the stepped portion 57 ... front end surface 58 ... upset 80 ... discharge tip 100, 100a ... spark plug

Landscapes

  • Spark Plugs (AREA)

Abstract

スパークプラグの電極の消耗を抑制する。内周方向に張り出した金具内段部を有するとともに、軸線方向に延びる筒穴を備える筒状の主体金具と、主体金具に挿入され、軸線方向に延びる軸孔を有するとともに、環状のパッキンを介して金具内段部と対向する対向部を備える絶縁体と、軸線方向に延び、外周方向に張り出した鍔部を有するとともに、軸孔に挿入される中心電極と、軸孔内に配置され絶縁体と中心電極とを封着するシール体と、を有するスパークプラグ。軸線を含み軸線に沿った断面において、絶縁体の対向部の後端から、絶縁体に鍔部が接触する部分の後端までの、軸線に沿った距離Lは、L≦1.1(mm)を満たす。

Description

スパークプラグ
本発明は、スパークプラグに関する。
近年、自動車エンジンにおいては、高出力化や燃費向上のため、燃焼時におけるエンジン内の圧力が高くなる傾向にある。この結果として、点火時に、エンジン内に設けられたスパークプラグの要求電圧が高まる傾向にある。点火時におけるスパークプラグの要求電圧が高まるほど、スパークプラグの電極は消耗しやすくなる。 
従来、スパークプラグの電極の消耗を抑制する技術として、中心電極の芯材の先端を、芯材よりも熱膨張係数が小さい材料によって被覆する技術がある(特許文献1参照)。
特開2015-82355号
しかし、このようなスパークプラグは、中心電極の芯材を被覆する材料を用いるため、スパークプラグの製造コストが増加する場合があった。そのため、電極の材料によらずに、電極の消耗を抑制可能な技術が求められていた。
本発明は、上述の課題を解決するためになされたものであり、以下の形態として実現することが可能である。 
(1)本発明の一形態によれば、内周方向に張り出した金具内段部を有するとともに、軸線方向に延びる筒穴を備える筒状の主体金具と;前記主体金具に挿入され、前記軸線方向に延びる軸孔を有するとともに、環状のパッキンを介して前記金具内段部と対向する対向部を備える絶縁体と;前記軸線方向に延び、外周方向に張り出した鍔部を有するとともに、前記軸孔に挿入される中心電極と;前記軸孔内に配置され前記絶縁体と前記中心電極とを封着するシール体と、を有するスパークプラグが提供される。このスパークプラグは、前記軸線を含み前記軸線に沿った断面において;前記絶縁体の前記対向部の後端から、前記絶縁体に前記鍔部が接触する部分の後端までの、前記軸線に沿った距離Lは;L≦1.1(mm)を満たす。この形態のスパークプラグによれば、距離Lを1.1mm以下とすることで、スパークプラグの距離Lの領域の静電容量を低下させることができるので、スパークプラグの電極の消耗を抑制することができる。 
(2)上記形態のスパークプラグにおいて、前記断面において、前記軸線に直交する基準線と、前記絶縁体に前記鍔部が接触する部分と、で形成される鋭角の角度をθAとし;前記基準線と、前記対向部の先端と前記絶縁体に前記鍔部が接触する部分の後端とを結ぶ直線と、で形成される鋭角の角度をθBとしたとき;θA+θB≧90°;L≧0.5(mm)を満たしてもよい。この形態のスパークプラグによれば、静電容量を低下させるとともに、絶縁体の強度を確保することができる。 
(3)上記形態のスパークプラグにおいて、前記主体金具のネジ部の呼び径M(mm)は;M≦12を満たしてもよい。この形態のスパークプラグによれば、呼び径Mが12以下のスパークプラグの静電容量を低下させて、電極の消耗を抑制することができる。 
本発明は、上述したスパークプラグとしての形態以外にも、例えば、スパークプラグの製造方法など、種々の形態で実現することが可能である。
本発明の一実施形態におけるスパークプラグの部分断面図。 スパークプラグの一部を拡大して示す拡大断面図。 距離Lとギャップ増加量の変化率との関係を示す図。 距離Lと変化率との関係を示す図。 距離Lと変化率と呼び径Mとの関係を示す図。 スパークプラグを同軸円筒コンデンサーとみなした模式図。 スパークプラグの等価回路を示す図。 第2実施形態のスパークプラグの一部を拡大して示す拡大断面図。 距離Lと、(θA+θB)の値と、絶縁体の強度と、の関係を示す図。 ガラスシール工程において絶縁体に作用する力Wを示す図。 ガラスシール工程において絶縁体に作用する力Wを示す別の図。
A.第1実施形態:A1.スパークプラグの構成: 図1は、本発明の一実施形態におけるスパークプラグ100の部分断面図である。スパークプラグ100は、軸線Oに沿った細長形状を有している。図1において、一点破線で示す軸線Oの右側は、外観正面図を示し、軸線Oの左側は、軸線Oを通る断面図を示している。以下の説明では、図1の下方側をスパークプラグ100の先端側と呼び、図1の上方側を後端側と呼ぶ。図1のXYZ軸は、他の図のXYZ軸と対応している。軸線OとZ軸とは平行であり、+Z方向は軸線方向でもある。図1において、スパークプラグ100の先端側が+Z方向であり、スパークプラグ100の後端側が-Z方向である。単に「Z方向」というときは、Z軸に平行な方向(Z軸に沿った方向)をいう。このことは、X軸及びY軸についても同様である。 
スパークプラグ100は、絶縁体10と、中心電極20と、接地電極30と、主体金具50とを備える。絶縁体10は、自身の外周の少なくとも一部が筒状の主体金具50によって保持され、軸線Oに沿った軸孔12を有する。この軸孔12には、中心電極20が設けられている。接地電極30は、主体金具50の先端面57に固定され、中心電極20との間に放電ギャップGを形成する。 
絶縁体10は、アルミナを始めとするセラミックス材料を焼成して形成された絶縁碍子である。絶縁体10は、先端側に中心電極20の一部を収容し、後端側に端子金具40の一部を収容する軸孔12が中心に形成された筒状の部材である。絶縁体10の軸方向中央には外径を大きくした中央胴部19が形成されている。中央胴部19よりも後端側には、後端側胴部18が形成されている。中央胴部19よりも先端側には、後端側胴部18よりも外径が小さい先端側胴部17が形成され、先端側胴部17のさらに先には、先端側胴部17よりも小さい外径であって先端側へ向かうほど外径が小さくなる脚長部13が形成されている。脚長部13の基端には、後述する金具内段部56に対向する対向部15が形成されている。 
主体金具50は、軸線方向に延び、絶縁体10の後端側胴部18の一部から脚長部13に亘る部位を包囲して保持する筒穴を備える円筒状の金具である。主体金具50は、例えば、低炭素鋼により形成され、全体にニッケルめっきや亜鉛めっき等のめっき処理が施されている。主体金具50は、後端側から順に、工具係合部51と、シール部54と、取付ネジ部52とを備える。工具係合部51は、スパークプラグ100をエンジンヘッドに取り付けるための工具が嵌合する。取付ネジ部52は、エンジンヘッドの取付ネジ孔に螺合するネジ山を有する。本実施形態では、取付ネジ部52の径は、12mmである。取付ネジ部52の径のことを、呼び径Mとも呼ぶ。シール部54は、取付ネジ部52の根元に鍔状に形成されている。シール部54とエンジンヘッドとの間には、板体を折り曲げて形成した環状のガスケット5が嵌挿される。主体金具50の先端面57は、中空の円状であり、その中央からは、絶縁体10の脚長部13と中心電極20とが突出する。 
主体金具50の工具係合部51より後端側には厚みの薄い加締部53が設けられている。また、シール部54と工具係合部51との間には、加締部53と同様に厚みの薄い圧縮変形部58が設けられている。工具係合部51から加締部53にかけての主体金具50の内周面と絶縁体10の後端側胴部18の外周面との間には、円環状のリング部材6,7が介在されており、さらに両リング部材6,7間にタルク(滑石)9の粉末が充填されている。スパークプラグ100の製造時には、加締部53を内側に折り曲げるようにして先端側に押圧することにより圧縮変形部58が圧縮変形し、この圧縮変形部58の圧縮変形により、リング部材6,7及びタルク9を介し、絶縁体10が主体金具50内で先端側に向け押圧される。この押圧により、タルク9が+Z方向に圧縮されて主体金具50内の気密性が高められる。 
主体金具50の内周においては、取付ネジ部52の位置に形成され、内周方向に張り出した金具内段部56に、環状の板パッキン8を介し、絶縁体10の脚長部13の基端に位置する対向部15が押圧されている。この板パッキン8は、主体金具50と絶縁体10との間の気密性を保持する部材であり、燃焼ガスの流出を防止する。 
中心電極20は、中心電極母材21の内部に、中心電極母材21よりも熱伝導性に優れる芯材22が埋設された棒状の部材である。中心電極母材21は、ニッケルを主成分とするニッケル合金からなり、芯材22は、銅又は銅を主成分とする合金からなる。 
中心電極20の後端部近傍には、外周方向に張り出した形状の鍔部23が形成されている。鍔部23は、軸孔12に形成された軸孔内段部14に後端側から当接して、中心電極20を絶縁体10内で位置決めする。中心電極20は、セラミック抵抗体3及びシール体4を介して端子金具40に電気的に接続される。シール体4は、絶縁体10と中心電極20とを封着する。 
中心電極20は、シール体4によって、次のように軸孔12内に固着されている。まず、軸孔12の後端側から中心電極20を挿入し、その上から、シール体4の材料粉末(例えば、銅粉末とホウケイ酸ガラス粉末とを1:1に混合した粉末)を充填し、押し棒で押圧する。さらに、その上からセラミック抵抗体3の材料粉末(ZrO粉末、アルミナ粉末、カーボンブラック、ガラス粉末、PVAバインダー等を混合した粉末)を充填し、押し棒で押圧する。さらに、その上から再度、シール体4の材料粉末を充填し、押し棒で押圧した後、軸孔12の後端に端子金具40を差し込む。そして、端子金具40を押し込みながら絶縁体10を加熱して、軸孔12内のシール体4の材料粉末とセラミック抵抗体3の材料粉末とを溶融させ、その後冷却する。すると、軸孔12内でシール体4とセラミック抵抗体3とが凝固し、中心電極20が軸孔12内に固着される。中心電極20をシール体4によって軸孔12内に固着する工程を、「ガラスシール工程」とも呼ぶ。 
接地電極30は、耐腐食性の高い金属から構成される。耐腐食性の高い金属としては、例えば、インコネル(商標名)600やインコネル601等の、ニッケルを主成分とするニッケル合金が用いられる。接地電極30の基端は、主体金具50の先端面57に溶接されている。本実施形態では、接地電極30は、接地電極30の先端部分の一側面が中心電極20と対向するように、中間部分が屈曲されている。接地電極30は、その先端部32に、もう一方の電極である中心電極20に向けて突出し、放電ギャップGを形成する放電チップ80を備えている。 
図2は、スパークプラグ100の一部を拡大して示す拡大断面図である。図2に示す断面は、軸線Oを含み、軸線Oに沿った断面である。上述したように、主体金具50の金具内段部56には、板パッキン8を介在して、絶縁体10の対向部15が後端側から接触する。また、絶縁体10は、自身の内周に、中心電極20の鍔部23が接触する部分(接触部16)を有する軸孔内段部14を備えており、この接触部16には、後端側から中心電極20の鍔部23が接触する。 
図2には、対向部15の後端P1から、接触部16の後端P2までの、軸線Oに沿った距離L(mm)が示されている。本実施形態では、距離Lは、以下の式(1)を満たす。 
L≦1.1(mm)・・・式(1) 
また、図2には、シール体4が配置された部分の軸孔12の径Rsと、鍔部23よりも先端側の中心電極20の最大の径Rcとを示している。径Rsと径Rcとは、Y方向と平行である。本実施形態では、径Rsは以下の式(2)を満たし、径Rcは、以下の式(3)を満たすことが好ましい。 
Rs≦3.9(mm)・・・式(2
)  Rc≦2.3(mm)・・・式(3) 
以上で説明した本実施形態のスパークプラグ100は、式(1)を満たすため、対向部15の後端P1を含むXY平面を底面とし、接触部16の後端P2を含むXY平面を上面とした、底面から上面までの領域(距離Lの領域)の静電容量を低下させることができるので、スパークプラグ100の電極の消耗を抑制することができる。 
以下、式(1)を満たすようにスパークプラグ100を構成することの根拠について、実験結果に基づいて説明する。 
A2.実験内容及びその実験結果: 図3は、距離Lとギャップ増加量の変化率との関係を示す図である。本実験では、まず、径Rcが2.3mm、径Rsが3.9mmであり距離Lがそれぞれ異なるスパークプラグ100のサンプル1~7と、径Rcが2.3mm、径Rsが3.0mmであり距離Lがそれぞれ異なるサンプル8~14と、径Rcが1.9mm、径Rsが3.9mmであり距離Lがそれぞれ異なるサンプル15~24と、を作製した。スパークプラグ100の呼び径Mは、12mmである。次に、以下の条件において実験を行った。測定条件としては、大気雰囲気下で圧力を2.6Mpaとし、1秒間に100回(100Hz)の点火を5時間行った。そして、実験開始前と開始後の接地電極と中心電極の消耗度合いであるギャップの増加量(ギャップ増加量(mm))を測定し、ギャップ増加量の変化率(%)を算出した。「ギャップ増加量の変化率(%)」は、従来品に対する電極の消耗の変化率を示し、以下の式(4)により算出される。なお、図3に示した各サンプルのギャップ増加量と変化率は、同じ径Rcと径Rsと距離Lとを有するサンプルを3つ作製して実験を行った結果の平均値である。 
{(サンプルの電極間のギャップ増加量/従来品(L=1.8mm)の電極間のギャップ増加量)-1}×100・・・式(4) 
実験後のギャップ増加量が小さいほど、電極の消耗が抑制されていると言え、変化率(%)が小さいほど、従来品に対して電極の消耗が少ないと言える。また、「判定」の欄は、以下の基準により、「○」または「×」を付した。なお、「判定」の欄が「-」のスパークプラグは、従来品であり、比較対象であることを示す。 
変化率が-5%以上の場合:× 変化率が-5%未満の場合:○ 
図3の結果から、上記式(1)を満たすことにより、変化率が減少しており、電極の消耗が抑制されていることがわかる。具体的には、図3の結果から、上記式(1)を満たすスパークプラグであるサンプル3~7、10~14、17~21は、変化率が-5%未満であったことがわかる。 
図4は、距離Lと変化率との関係を示す図である。図4において、径Rcが2.3mm、径Rsが3.9mmのデータを「◆」で示し、径Rcが2.3mm、径Rsが3.0mmのデータを「▲」で示し、径Rcが1.9mm、径Rsが3.9mmのデータを「■」で示す。 
図4の結果から、径Rcと径Rsとの値の組合せにより多少の差はあるが、距離Lが短くなるほど変化率が減少しており、電極の消耗が抑制されていることがわかる。以上の結果より、距離L(mm)は式(1)を満たすことが好ましいことが示された。 
図5は、距離Lと変化率と呼び径Mとの関係を示す図である。本実験では、さらに、呼び径Mによる、距離Lと変化率との関係を調査するため、呼び径Mごとに、距離Lが異なる複数のスパークプラグを作製した。なお、いずれのスパークプラグも、径Rcは2.3mm、径Rsは3.9mmである。実験条件は、図3及び図4で説明した距離Lと変化率の関係を求めるために用いた条件と同じである。 
図5には、呼び径Mが12mmのデータを「◆」で示し、呼び径Mが10mmのデータを「■」で示す。図5の結果から、呼び径Mが12mm以下のスパークプラグでは、距離Lが短くなるほど変化率が減少していることがわかる。さらに、呼び径Mが小さいスパークプラグほど、距離Lが短くなるにつれ、変化率が減少しており、電極の消耗がより抑制されていることがわかる。以上の結果より、呼び径Mが12mm以下の場合において、距離L(mm)は式(1)を満たすことが好ましいことが示された。 
A3.推定メカニズム: 距離Lを式(1)の範囲とすることにより、変化率が向上する推定メカニズムを、以下に説明する。 
図6は、スパークプラグ100を同軸円筒コンデンサーとみなした模式図である。図2で説明した距離Lの領域は、図6における中心電極20を中心導体とし、主体金具50を外部導体とする、同軸円筒コンデンサー(cylindrical condenser)とみなすことができる。同軸円筒コンデンサーの静電容量Cは、以下の式(5)によって求められる。式(5)において、「a」は中心導体の外径の半径であり、「b」は外部導体の内径の半径であり、Lは同軸の長さであり、ε0は真空の誘電率である。スパークプラグ100に置きかえると、「a」は中心電極20の外径の半径(Rc/2)に相当し、距離「b」は主体金具50の内径の半径に相当し、Lは距離Lに相当する。 
Figure JPOXMLDOC01-appb-M000001
式(5)から明らかなように、同軸円筒コンデンサーでは、同軸の長さLが短くなるほど静電容量が低くなる。すなわち、スパークプラグ100では、距離Lが短くなるほど静電容量が低くなる。本実施形態のスパークプラグ100では、距離Lが式(1)の範囲であり比較的短いため、距離Lの領域の静電容量を低下させることができる。 
図7は、スパークプラグ100の等価回路を示す図である。スパークプラグ100は、コンデンサーとみなすことができ、スパークプラグ100に溜められた電荷は、放電時にギャップG間を流れる。このため、スパークプラグ100の静電容量を抑えることにより、放電発生時のエネルギー(容量電流)が下がる。この結果として、中心電極20および接地電極30の消耗を抑制することができると考えられる。図7においては、セラミック抵抗体3と先端側のシール体4と、の境界よりも先端側をコンデンサーC1で示し、セラミック抵抗体3と先端側のシール体4と、の境界よりも後端側をコンデンサーC2で示す。また、図7において、セラミック抵抗体3の内部抵抗を抵抗Rと示し、中心電極20と接地電極30とのギャップをギャップGと示す。 
コンデンサーC2から流れる電流は、抵抗Rを流れることにより、電流値が大きく下げられる。一方、コンデンサーC1から流れる電流は、抵抗Rを経由せず電流がギャップG間に流れる。このため、ギャップG間での放電発生時の容量電流に対しては、コンデンサーC1から流れる電流の寄与が大きいと考えられる。式(5)より、「a」の値と「b」の値とが近くなるほど、静電容量は高くなる。スパークプラグ100の距離Lの領域では、主体金具50の内周面と中心電極20の外周との距離が、スパークプラグ100の他の領域と比較して短いために、他の領域と比べて容量電流に影響を与えやすいと考えられる。そのため、コンデンサーC1の静電容量を抑えることにより、中心電極20および接地電極30の消耗を抑制することができる。 
本実施形態では、距離Lの値を短くすることにより、コンデンサーC1の静電容量を小さくすることができ、この結果として電極の消耗を抑制できると考えられる。また、距離Lの値を短くしても、スパークプラグ100の他の性能(例えば、耐熱性、耐汚損性、耐リーク性)に影響を与える割合が小さいにもかかわらず、電極の消耗を抑制できる。さらに、電極の材料を変更することなく、電極の消耗を抑制できる。 
なお、スパークプラグ100の呼び径Mが小さくなるほど、主体金具50の内周面と中心電極20の外周との距離が近くなるため、静電容量は高くなる。しかし、本実施形態のスパークプラグは、距離Lを式(1)の範囲とすることで、呼び径Mが12mm以下と比較的小さいスパークプラグ100であっても、距離Lの領域の静電容量を抑えることにより、電極の消耗を抑制することができる。 
B:第2実施形態:B1.スパークプラグの構成: 図8は、第2実施形態のスパークプラグ100aの一部を拡大して示す拡大断面図である。図8に示す断面は、軸線Oを含み、軸線Oに沿った断面である。図8には、距離Lと、角度θAと、角度θBと、が示されている。角度θAは、断面において、軸線Oに直交する基準線(軸孔内段部14の先端P3から前記軸線Oに引いた垂線)と、絶縁体10に中心電極20の鍔部23が接触する部分である接触部16と、で形成される鋭角の角度である。角度θBは、断面において、軸線Oに直交する基準線(絶縁体10の対向部15の先端P4から軸線Oに引いた垂線)と、対向部15の先端P4と接触部16の後端P2とを結ぶ直線と、で形成される鋭角の角度である。本実施形態のスパークプラグ100aは、上述の式(1)を満たすのに加えて、さらに、距離Lが以下の式(6)を満たす。また、角度θAと角度θBとの合計(θA+θB)(°)は、以下の式(7)を満たす。なお、スパークプラグ100aのその他の構成は、第1実施形態のスパークプラグ100と同様であるため、説明を省略する。 
θA+θB≧90°・・・(6) L≧0.5(mm)・・・(7) 
以上で説明した本実施形態のスパークプラグ100aは、式(1)を満たすため、第1実施形態のスパークプラグ100と同様の効果を奏する。さらに、スパークプラグ100aは、式(6)(7)を満たすため、ガラスシール工程において、絶縁体10aの強度を十分に確保することができる。 
なお、絶縁体10の強度を確保する観点から、θAの値は、20°以上であることが好ましく、25°以上であることがより好ましく、30°以上であることがより好ましい。 
以下、式(1)に加え、式(6)(7)を満たすようにスパークプラグ100aを構成することの根拠について、実験結果に基づいて説明する。 
B2.実験内容及びその実験結果: 図9は、距離Lと、(θA+θB)の値と、絶縁体10の強度と、の関係を示す図である。本実験では、距離Lの値と、(θA+θB)の値と、が異なるスパークプラグ100aを作製するための絶縁体10と中心電極20と主体金具50とを用意した。サンプルは、各仕様において10本ずつである。そして、それらの絶縁体10と中心電極20と主体金具50とを用いて、中心電極20をシール体4によって軸孔12内に固着させるガラスシール工程を行った。本実験のガラスシール工程では、軸孔内段部14とシール体4とが接触する部分(接触部16)付近において、シール体4が軸孔内段部14部分を突き抜けることによる絶縁体10の破損の有無を調べた。「判定」の欄は、以下の基準により「○」または「×」を付した。絶縁体10の破損が発生しない場合には、絶縁体10の強度は十分に確保されていると言える。 
サンプル10本中、1本以上破損:× サンプル10本中、破損なし:○ 
図9の結果に示すように、距離Lが0.4mmと短いサンプル36~42では、(θA+θB)の値が100°以上であるサンプル40~42において、絶縁体10の破損が発生していないことがわかる。距離Lが0.5mm以上のサンプル22~35では、(θA+θB)の値が90°以上のサンプル24~28、サンプル31~35において、絶縁体10の破損が発生していないことがわかる。以上の結果より、式(1)に加え、距離L(mm)は式(6)を満たし、(θA+θB)は式(7)を満たすことにより、スパーク
プラグ100の電極の消耗を抑制するとともに、絶縁体10の強度が確保されることが示された。 
B3.推定メカニズム: 距離L、(θA+θB)を特定の範囲とすることにより、絶縁体10の強度が確保される推定メカニズムを、以下に説明する。 
図10は、ガラスシール工程において絶縁体10に作用する力Wを示す図である。図10に示す力Wは、シール体4の材料粉末が押圧される場合に、絶縁体10の軸孔内段部14付近に発生する+Z方向の力Wである。力W1は、軸孔内段部14の接触部16に垂直に作用する、力Wの分力(Wcosθ)である。力W2は、接触部16と平行な方向に作用する、Wの分力(Wsinθ)である。ガラスシール工程において、力Wでシール体4の材料粉末を押圧すると、絶縁体10の軸孔内段部14、特に接触部16付近は、力W1で押圧される。このとき、静電容量を低減させるために距離Lを短くすると、図8に示した先端P3から先端P4までの距離である絶縁体10の肉厚が薄くなるため、絶縁体10の強度が低下するおそれがある。 
図11は、ガラスシール工程において絶縁体10に作用する力Wを示す別の図である。図11に示す角度θAは、図10に示した角度θAよりも大きい。このように角度θAを大きくすると、角度θAが小さい場合に比べて、接触部16に垂直に作用する力W1(Wcosθ)を小さくすることができる。したがって、(θA+θB)が式(6)の範囲内ではない場合、すなわち、(θA+θB)が90°よりも小さい場合に比べて、軸孔内段部14の接触部16近傍に生じる応力は小さくなる。このことから、静電容量を低減させるために距離Lを短くした場合であっても、角度θAをこのように変更させて、(θA+θB)を式(6)の範囲とすることで、絶縁体10の強度を十分に確保することができると考えられる。 
また、絶縁体10の肉厚は、呼び径Mが小さくなるほど薄くなる。そのため、呼び径Mが12mm以下と比較的小さいスパークプラグでは、絶縁体10の強度を十分に確保することが望ましい。本実施形態のスパークプラグ100aは、(θA+θB)を式(6)の範囲とすることで、呼び径Mが12mm以下であっても、絶縁体10の強度を十分に確保することができる。 
C.変形例: 上述の種々の実施形態では、呼び径Mは12mm以下であるが、呼び径Mは、12mmより大きくてもよい。スパークプラグ100、100aは、放電チップを備えているが、スパークプラグ100、100aは、放電チップを備えていなくともよい。 
本発明は、上述の実施形態や変形例に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態、変形例中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
C1、C2…コンデンサー  G…放電ギャップ  L…距離  O…軸線  P1…後端  P2…後端  P3…先端  P4…先端  R…抵抗  Rc…シール径  Rs…中軸径  W、W1、W2…力  3…セラミック抵抗体  4…シール体  5…ガスケット  6…リング部材  8…板パッキン  9…タルク  10、10a…絶縁体  12…軸孔  13…脚長部  14…軸孔内段部  15…対向部  16…接触部  17…先端側胴部  18…後端側胴部  19…中央胴部  20…中心電極  21…中心電極母材  22…芯材  23…鍔部  30…接地電極  32…先端部  40…端子金具  50…主体金具  51…工具係合部  52…取付ネジ部  53…加締部  54…シール部  56…金具内段部  57…先端面  58…圧縮変形部  80…放電チップ  100、100a…スパークプラグ

Claims (3)

  1. 内周方向に張り出した金具内段部を有するとともに、軸線方向に延びる筒穴を備える筒状の主体金具と、



     前記主体金具に挿入され、前記軸線方向に延びる軸孔を有するとともに、環状のパッキンを介して前記金具内段部と対向する対向部を備える絶縁体と、



     前記軸線方向に延び、外周方向に張り出した鍔部を有するとともに、前記軸孔に挿入される中心電極と、



     前記軸孔内に配置され前記絶縁体と前記中心電極とを封着するシール体と、を有するスパークプラグであって、



     前記軸線を含み前記軸線に沿った断面において、



     前記絶縁体の前記対向部の後端から、前記絶縁体に前記鍔部が接触する部分の後端までの、前記軸線に沿った距離Lは、



     L≦1.1(mm)を満たすことを特徴とする、スパークプラグ。
  2. 請求項1に記載のスパークプラグであって、



     前記断面において、前記軸線に直交する基準線と、前記絶縁体に前記鍔部が接触する部分と、で形成される鋭角の角度をθAとし、



     前記基準線と、前記対向部の先端と前記絶縁体に前記鍔部が接触する部分の後端とを結ぶ直線と、で形成される鋭角の角度をθBとしたとき、



     θA+θB≧90° L≧0.5(mm) を満たすことを特徴とする、スパークプラグ。
  3. 請求項1または請求項2に記載のスパークプラグであって、



     前記主体金具のネジ部の呼び径Mは、



     M≦12(mm) を満たすことを特徴とする、スパークプラグ。
PCT/JP2016/003618 2015-12-11 2016-08-05 スパークプラグ WO2017098674A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187016111A KR20180084855A (ko) 2015-12-11 2016-08-05 스파크 플러그
US16/060,784 US10256610B2 (en) 2015-12-11 2016-08-05 Spark plug
CN201680074361.8A CN108370133B (zh) 2015-12-11 2016-08-05 火花塞
EP16872576.0A EP3389154B1 (en) 2015-12-11 2016-08-05 Spark plug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-241921 2015-12-11
JP2015241921A JP6158283B2 (ja) 2015-12-11 2015-12-11 スパークプラグ

Publications (1)

Publication Number Publication Date
WO2017098674A1 true WO2017098674A1 (ja) 2017-06-15

Family

ID=59013900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003618 WO2017098674A1 (ja) 2015-12-11 2016-08-05 スパークプラグ

Country Status (6)

Country Link
US (1) US10256610B2 (ja)
EP (1) EP3389154B1 (ja)
JP (1) JP6158283B2 (ja)
KR (1) KR20180084855A (ja)
CN (1) CN108370133B (ja)
WO (1) WO2017098674A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7022732B2 (ja) * 2019-11-14 2022-02-18 日本特殊陶業株式会社 スパークプラグ
JP7220167B2 (ja) * 2020-02-11 2023-02-09 日本特殊陶業株式会社 スパークプラグ
JP6986118B1 (ja) 2020-07-06 2021-12-22 日本特殊陶業株式会社 スパークプラグ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04229979A (ja) * 1990-07-24 1992-08-19 Philips Gloeilampenfab:Nv 改良スパークプラグ
JP2007522617A (ja) * 2004-02-03 2007-08-09 フェデラル−モーグル・イグニション・ユー・ケー・リミテッド 貴金属先端を有する点火プラグ構成
JP2012129042A (ja) * 2010-12-15 2012-07-05 Ngk Spark Plug Co Ltd プラズマジェット点火プラグ
JP2014075296A (ja) * 2012-10-05 2014-04-24 Ngk Spark Plug Co Ltd スパークプラグ
JP2015082355A (ja) 2013-10-21 2015-04-27 株式会社デンソー 内燃機関用スパークプラグ
JP2015185286A (ja) * 2014-03-22 2015-10-22 日本特殊陶業株式会社 スパークプラグ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000215963A (ja) * 1999-01-25 2000-08-04 Ngk Spark Plug Co Ltd スパ―クプラグの製造設備及びスパ―クプラグの製造方法
EP2175535B1 (en) * 2007-08-02 2019-03-13 NGK Spark Plug Co., Ltd. Spark plug for internal combustion engine
JP4999980B2 (ja) * 2010-03-31 2012-08-15 日本特殊陶業株式会社 プラズマジェット点火プラグ
JP5476360B2 (ja) * 2011-11-25 2014-04-23 日本特殊陶業株式会社 点火プラグ
US9306375B2 (en) * 2012-07-17 2016-04-05 Ngk Spark Plug Co., Ltd. Spark plug
JP6311476B2 (ja) 2014-06-19 2018-04-18 株式会社デンソー 点火プラグ
JP5963908B1 (ja) 2015-04-28 2016-08-03 日本特殊陶業株式会社 スパークプラグ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04229979A (ja) * 1990-07-24 1992-08-19 Philips Gloeilampenfab:Nv 改良スパークプラグ
JP2007522617A (ja) * 2004-02-03 2007-08-09 フェデラル−モーグル・イグニション・ユー・ケー・リミテッド 貴金属先端を有する点火プラグ構成
JP2012129042A (ja) * 2010-12-15 2012-07-05 Ngk Spark Plug Co Ltd プラズマジェット点火プラグ
JP2014075296A (ja) * 2012-10-05 2014-04-24 Ngk Spark Plug Co Ltd スパークプラグ
JP2015082355A (ja) 2013-10-21 2015-04-27 株式会社デンソー 内燃機関用スパークプラグ
JP2015185286A (ja) * 2014-03-22 2015-10-22 日本特殊陶業株式会社 スパークプラグ

Also Published As

Publication number Publication date
EP3389154A4 (en) 2019-07-03
EP3389154B1 (en) 2020-10-21
JP6158283B2 (ja) 2017-07-05
KR20180084855A (ko) 2018-07-25
US20180366917A1 (en) 2018-12-20
US10256610B2 (en) 2019-04-09
CN108370133B (zh) 2020-04-14
EP3389154A1 (en) 2018-10-17
CN108370133A (zh) 2018-08-03
JP2017107789A (ja) 2017-06-15

Similar Documents

Publication Publication Date Title
JP5414896B2 (ja) スパークプラグ
EP3291388B1 (en) Spark plug
KR101747567B1 (ko) 스파크 플러그
WO2017098674A1 (ja) スパークプラグ
US9912126B2 (en) Spark plug insulator containing mullite and spark plug including same
JP2009545856A (ja) 一体型のシェルの高位置にねじ部を有するスパークプラグ
JP6328093B2 (ja) スパークプラグ
WO2009084565A1 (ja) スパークプラグ
US9054501B2 (en) Spark plug
JP6043261B2 (ja) スパークプラグ
CN109256678B (zh) 火花塞
US10431961B2 (en) Spark plug
JP5683409B2 (ja) スパークプラグおよびスパークプラグの製造方法
WO2012042852A1 (ja) スパークプラグ
US9843167B2 (en) Spark plug
JP6018990B2 (ja) プラズマジェット点火プラグ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872576

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187016111

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187016111

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016872576

Country of ref document: EP