JP6043261B2 - スパークプラグ - Google Patents

スパークプラグ Download PDF

Info

Publication number
JP6043261B2
JP6043261B2 JP2013197552A JP2013197552A JP6043261B2 JP 6043261 B2 JP6043261 B2 JP 6043261B2 JP 2013197552 A JP2013197552 A JP 2013197552A JP 2013197552 A JP2013197552 A JP 2013197552A JP 6043261 B2 JP6043261 B2 JP 6043261B2
Authority
JP
Japan
Prior art keywords
rear end
spark plug
resistor
insulator
end side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013197552A
Other languages
English (en)
Other versions
JP2015064987A (ja
Inventor
智士 矢野
智士 矢野
治樹 吉田
治樹 吉田
淳平 北
淳平 北
貴光 水野
貴光 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2013197552A priority Critical patent/JP6043261B2/ja
Publication of JP2015064987A publication Critical patent/JP2015064987A/ja
Application granted granted Critical
Publication of JP6043261B2 publication Critical patent/JP6043261B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spark Plugs (AREA)

Description

本発明は、スパークプラグに関するものである。
従来から、内燃機関に、スパークプラグが用いられている。スパークプラグとしては、軸線方向に延びる中心電極と、軸線方向に延びる軸孔を有し軸孔の先端側に中心電極が挿設される絶縁体と、軸孔内に配置された抵抗体と、軸孔内の抵抗体と中心電極との間に設けられた導電性シール層と、を有するスパークプラグが知られている。ここで、導電性シール層と抵抗体との接合面の面積を広くするために、中心電極側に向かって突出する曲面状に接合面を形成する技術が提案されている。
特開2009−245716号公報 特開昭58−102481号公報
軸孔内部の部材(例えば、シール層)には、放電時に電流が流れる。この電流に起因して、部材の導電性能が低下し得る。例えば、電流によって生じる熱が、部材の導電性能の低下を進行し得る(例えば、抵抗値が増大する)。また、電流が部材の一部の領域に集中すると、局所的に部材の導電性能が低下し得る。このような部材の導電性能の低下は、スパークプラグの耐久性を制限する要因の1つであった。
本発明の主な利点は、スパークプラグの耐久性を向上することである。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の
態様または適用例として実現することが可能である。
[態様]
軸線の方向に延びる中心電極と、
前記軸線の方向に延びる軸孔を有し、前記軸孔の先端側に前記中心電極が配置される絶縁体と、
前記軸孔内の前記中心電極より後端側に配置される抵抗体と、
前記軸孔内の前記抵抗体と前記中心電極との間の少なくとも一部に配置されるシール部と、
を備えたスパークプラグであって、
前記抵抗体の先端側を向く面のうちの前記絶縁体の内周面から離れた部分の後端を第2後端とし、前記軸線と前記第2後端とを含む断面上における前記シール部のうちの前記絶縁体の前記内周面と接する部分の後端を第1後端としたときに、
前記第2後端は前記第1後端よりも後端側に配置され、前記第2後端と前記絶縁体の前記内周面との間の径方向の最短距離は、0.5mm以上であり、
前記抵抗体の先端側の端部は、先端側に向かって突出する円筒状の壁部と、前記壁部に囲まれ前記壁部の先端面から後端側に向かって凹んだ底部と、を有し、
前記抵抗体の前記第2後端は、前記抵抗体の前記底部の表面に形成され、
前記中心電極の後端側の端部は、前記抵抗体の前記底部と前記壁部とに囲まれた領域内に配置されている、
スパークプラグ。
[適用例1]
軸線の方向に延びる中心電極と、
前記軸線の方向に延びる軸孔を有し、前記軸孔の先端側に前記中心電極が配置される絶縁体と、
前記軸孔内の前記中心電極より後端側に配置される抵抗体と、
前記軸孔内の前記抵抗体と前記中心電極との間の少なくとも一部に配置されるシール部と、
を備えたスパークプラグであって、
前記抵抗体の先端側を向く面のうちの前記絶縁体の内周面から離れた部分の後端を第2後端とし、前記軸線と前記第2後端とを含む断面上における前記シール部のうちの前記絶縁体の前記内周面と接する部分の後端を第1後端としたときに、
前記第2後端は前記第1後端よりも後端側に配置され、前記第2後端と前記絶縁体の前記内周面との間の径方向の最短距離は、0.5mm以上である、
スパークプラグ。
この構成によれば、抵抗体の先端面のうちの第2後端の近傍が、放電時の電流経路として利用され易いので、電流が一部の領域に集中することを抑制できる。従って、耐久性を向上できる。
[適用例2]
適用例1に記載のスパークプラグであって、
前記第1後端と前記第2後端との間の前記軸線の方向の距離が、0.5mm以上である、スパークプラグ。
この構成によれば、シール部の第1後端の近傍と、抵抗体の第2後端の近傍とが、放電時の電流経路として利用され易いので、電流が一部の領域に集中することを、さらに抑制できる。従って、耐久性を、さらに向上できる。
[適用例3]
適用例1または2に記載のスパークプラグであって、
前記第2後端からの前記軸線の方向の距離が0.2mmの位置における前記軸線の方向と垂直な断面において、前記抵抗体に囲まれる部分の重心を通る直線に沿った長さの最小値は、1mm以上である、スパークプラグ。
この構成によれば、上記の長さの最小値が1mm未満である場合と比べて、抵抗体の先端面のうちの第2後端を含む広い部分が、放電時の電流経路として利用され易いので、電流が一部の領域に集中することを抑制できる。従って、耐久性を向上できる。
[適用例4]
適用例1から3のいずれか1項に記載のスパークプラグであって、
前記絶縁体の前記シール部を収容する部分の径方向の厚みが、1.1mm以上である、スパークプラグ。
この構成によれば、厚みが1.1mm未満である場合と比べて、シール部の近傍が冷めにくいので、シール部の温度が高くなりやすい。このような条件下においても、電流が一部の領域に集中することが抑制されているので、耐久性を向上できる。
[適用例5]
適用例1から4のいずれか1項に記載のスパークプラグであって、
前記シール部の最大径は、3.0mm以下である、スパークプラグ。
この構成によれば、シール部の最大径が3.0mmを超える場合と比べて、放電時に電流が分散しにくいので、シール部の耐久性が低下しやすい。このような条件下においても、電流が一部の領域に集中することが抑制されているので、耐久性を向上できる。
[適用例6]
適用例1から5のいずれか1項に記載のスパークプラグであって、
前記中心電極の後端が前記シール部で覆われている、スパークプラグ。
この構成によれば、中心電極とシール部との密着性を向上できるので、振動に対する耐久性を向上できる。
なお、本発明は、種々の態様で実現することが可能であり、例えば、スパークプラグや、そのスパークプラグを搭載する内燃機関、等の態様で実現することができる。
第1実施形態のスパークプラグ100の断面図である。 絶縁体10と抵抗体70と第1シール部60と中心電極20とを示す部分断面図である。 参考例のスパークプラグ100Rの部分断面図と、実施形態のスパークプラグ100の部分断面図である。 別の参考例のスパークプラグ100xの説明図である。 第2実施形態のスパークプラグ100zの説明図である。
A.第1実施形態:
A1.スパークプラグの構成:
図1は、第1実施形態のスパークプラグ100の断面図である。図示されたラインCLは、スパークプラグ100の中心軸を示している。図示された断面は、中心軸CLを含む断面である。以下、中心軸CLのことを「軸線CL」とも呼び、中心軸CLと平行な方向を「軸線の方向」あるいは、単に「軸線方向」とも呼ぶ。中心軸CLを中心とする円の径方向を、単に「径方向」とも呼び、中心軸CLを中心とする円の円周方向を「周方向」とも呼ぶ。図1における下方向を先端方向D1と呼び、上方向を後端方向D2とも呼ぶ。図1における先端方向D1側をスパークプラグ100の先端側と呼び、図1における後端方向D2側をスパークプラグ100の後端側と呼ぶ。これらの方向D1、D2は、いずれも、中心軸CLと平行である。また、先端方向D1は、後述する端子金具40から電極20、30に向かう方向である。
スパークプラグ100は、絶縁体10(「絶縁碍子10」とも呼ぶ)と、中心電極20と、接地電極30と、端子金具40と、主体金具50と、導電性の第1シール部60と、抵抗体70と、導電性の第2シール部80と、先端側パッキン8と、タルク9と、第1後端側パッキン6と、第2後端側パッキン7と、を備えている。
絶縁体10は、中心軸CLに沿って延びて絶縁体10を貫通する貫通孔12(「軸孔12」とも呼ぶ)を有する略円筒状の部材である。絶縁体10は、アルミナを焼成して形成されている(他の絶縁材料も採用可能である)。絶縁体10は、先端側から後端側に向かって順番に並ぶ、脚部13と、第1縮外径部15と、先端側胴部17と、鍔部19と、第2縮外径部11と、後端側胴部18と、を有している。
鍔部19は、絶縁体10における軸方向の略中央に位置する部分であり、絶縁体10の最大外径部分である。鍔部19の先端側には、先端側胴部17が設けられている。先端側胴部17の先端側には、第1縮外径部15が設けられている。第1縮外径部15の外径は、後端側から先端側に向かって、徐々に小さくなる。第1縮外径部15の先端側には、脚部13が設けられている。スパークプラグ100が内燃機関(図示せず)に取り付けられた状態では、脚部13は、燃焼室に曝される。また、絶縁体10の第1縮外径部15の近傍(図1の例では、先端側胴部17)には、後端側から先端側に向かって内径が徐々に小さくなる縮内径部16が形成されている。
鍔部19の後端側には、第2縮外径部11が設けられている。第2縮外径部11の外径は、先端側から後端側に向かって、徐々に小さくなる。第2縮外径部11の後端側には、後端側胴部18が設けられている。
絶縁体10の貫通孔12の先端側には、中心電極20が挿入されている。中心電極20は、中心軸CLに沿って延びる棒状の部材である。中心電極20は、電極母材21と、電極母材21の内部に埋設された芯材22と、を有している。電極母材21は、例えば、ニッケルを主成分として含む合金であるインコネル(「INCONEL」は、登録商標)を用いて形成されている。芯材22は、電極母材21よりも熱伝導率が高い材料(例えば、銅を含む合金)で形成されている。
また、中心電極20の外観形状に着目すると、中心電極20は、後端方向D2側の端を形成する頭部23と、頭部23の先端側に設けられた鍔部24と、鍔部24の先端側に設けられた脚部25と、を有している。頭部23の形状は、中心軸CLを中心とする略円柱形状である。鍔部24の外径は、頭部23の外径および脚部25の外径よりも、大きい。頭部23と鍔部24とは、貫通孔12内に配置され、鍔部24の先端方向D1側の面は、絶縁体10の縮内径部16によって、支持されている。脚部25の先端側の部分は、絶縁体10の先端側で、貫通孔12の外に露出している。
絶縁体10の貫通孔12の後端側には、端子金具40が挿入されている。端子金具40は、中心軸CLに沿って延びる棒状の部材である。端子金具40は、低炭素鋼を用いて形成されている(但し、他の導電材料(例えば、金属材料)も採用可能である)。端子金具40は、鍔部42と、鍔部42より後端側の部分を形成するキャップ装着部41と、鍔部42より先端側の部分を形成する脚部43と、を有している。キャップ装着部41は、絶縁体10の後端側で、貫通孔12の外に露出している。脚部43は、絶縁体10の貫通孔12に挿入されている。
絶縁体10の貫通孔12内において、端子金具40と中心電極20との間には、抵抗体70が配置されている。抵抗体70は、主成分であるガラス粒子と、ガラス以外のセラミック粒子と、導電性材料と、を含む組成物で形成されている。ガラス粒子の材料としては、例えば、B23−SiO2系、BaO−B23系、SiO2−B23−CaO−BaO系などの材料が採用され得る。セラミック粒子の材料としては、例えば、TiO、ZrOなどが採用され得る。導電性材料としては、例えば、炭素粒子(カーボンブラックなど)、TiC粒子、TiN粒子などの非金属導電性材料や、Al、Mg、Ti、Zr及びZnなどの金属が、採用され得る。なお、抵抗体70の抵抗値は、例えば、0.1kΩ以上30kΩ以下であることが好ましく、1kΩ以上20kΩ以下であることがさらに好ましい。
貫通孔12内において、抵抗体70と中心電極20との間の少なくとも一部には、第1シール部60が配置されている。抵抗体70と端子金具40との間の少なくとも一部には、第2シール部80が配置されている。この結果、中心電極20と端子金具40とは、抵抗体70とシール部60、80とを介して、電気的に接続される。シール部60、80は、例えば、上述の各種ガラス粒子と、金属粒子(Cu、Feなど)とを、1対1程度の比率で含んでいる。シール部60、80は、金属である中心電極20および端子金具40の材料特性と、ガラスを主成分とする抵抗体70の材料特性と、の間の材料特性を有する。この結果、シール部60、80を介在させることによって、積層される部材20、60、70、80、40間の接触抵抗が安定し、中心電極20と端子金具40との間の抵抗値を安定させることができる。なお、シール部60、80としては、抵抗体70と比べて、電気抵抗率(electrical resistivity(単位は「Ωm」))が小さい部材が採用される。
主体金具50は、中心軸CLに沿って延びて主体金具50を貫通する貫通孔59を有する略円筒状の部材である。主体金具50は、低炭素鋼材を用いて形成されている(他の導電材料(例えば、金属材料)も採用可能である)。主体金具50の貫通孔59には、絶縁体10が挿入され、主体金具50は、絶縁体10の外周に固定されている。絶縁体10の先端(すなわち、先端方向D1側の端)は、主体金具50の先端側で、貫通孔59の外に露出している。絶縁体10の後端(すなわち、後端方向D2側の端)は、主体金具50の後端側で、貫通孔59の外に露出している。
主体金具50は、先端側から後端側に向かって順番に並ぶ、胴部55と、座部54と、変形部58と、工具係合部51と、加締部53と、を有している。座部54は、鍔状の部分である。座部54の先端側には、胴部55が設けられている。胴部55の外径は、座部54の外径よりも、小さい。胴部55の外周面には、内燃機関の取付孔に螺合するためのネジ部52が形成されている。座部54とネジ部52との間には、金属板を折り曲げて形成された環状のガスケット5が嵌め込まれている。
主体金具50の胴部55は、縮内径部56を有している。縮内径部56は、絶縁体10の鍔部19よりも先端側に、配置されている。縮内径部56の内径は、後端側から先端側に向かって、徐々に小さくなる。主体金具50の縮内径部56と、絶縁体10の第1縮外径部15と、の間には、先端側パッキン8が挟まれている。先端側パッキン8は、鉄製のOリングである(他の材料(例えば、銅等の金属材料)も採用可能である。)。
座部54の後端側には、座部54よりも肉厚が薄い変形部58が設けられている。変形部58は、径方向の外側(中心軸CLから離れる方向)に向かって中央部が突出するように、変形している。変形部58の後端側には、工具係合部51が設けられている。工具係合部51の形状は、スパークプラグレンチが係合する形状(例えば、六角柱)である。工具係合部51の後端側には、工具係合部51よりも肉厚が薄い加締部53が設けられている。加締部53は、絶縁体10の第2縮外径部11よりも後端側に配置され、主体金具50の後端(すなわち、後端方向D2側の端)を形成する。加締部53は、径方向の内側に向かって屈曲されている。
主体金具50の加締部53を含む後端側の部分(本実施形態では、加締部53と工具係合部51)の内周面と、絶縁体10の第2縮外径部11と後端側胴部18との外周面と、の間には、環状の空間SPが形成されている。この空間SP内の後端側には、第1後端側パッキン6が配置され、この空間SP内の先端側には、第2後端側パッキン7が配置されている。本実施形態では、これらの後端側パッキン6、7は、鉄製のCリングである(他の材料も採用可能である)。空間SP内における2つの後端側パッキン6、7の間には、タルク(滑石)9の粉末が充填されている。
スパークプラグ100の製造時には、加締部53が内側に折り曲がるように加締められる。そして、加締部53が先端方向D1側に押圧される。これにより、変形部58が変形し、パッキン6、7とタルク9とを介して、絶縁体10が、主体金具50内で、先端側に向けて押圧される。先端側パッキン8は、第1縮外径部15と縮内径部56との間で押圧され、そして、主体金具50と絶縁体10との間をシールする。以上により、内燃機関の燃焼室内のガスが、主体金具50と絶縁体10との間を通って外に漏れることが、抑制される。
接地電極30は、主体金具50の先端(すなわち、先端方向D1側の端)に接合されている。本実施形態では、接地電極30は、棒状の電極である。接地電極30は、主体金具50から先端方向D1に向かって延び、中心軸CLに向かって曲がって、先端部31に至る。先端部31は、中心電極20の先端面20s1(先端方向D1側の表面20s1)との間でギャップgを形成する。また、接地電極30は、主体金具50に、電気的に導通するように、接合されている(例えば、レーザ溶接)。接地電極30は、接地電極30の表面を形成する母材35と、母材35内に埋設された芯部36と、を有している。母材35は、例えば、インコネルを用いて形成されている。芯部36は、母材35よりも熱伝導率が高い材料(例えば、純銅)を用いて形成されている。
A2.第1シール部60の近傍の構成:
図2は、絶縁体10と、絶縁体10の貫通孔12に収容された抵抗体70、72と第1シール部60、60と中心電極20と、を示す部分断面図である。図2(A)は、後述する距離Dcが比較的大きい場合を示し、図2(B)は、距離Dcが比較的小さい場合を示している。図中には、第1シール部60、62の近傍が示されている。図示された断面は、中心軸CLを含む断面である。図中では、中心電極20の断面が、電極母材21(図1)と芯材22とを区別せずに、示されている。
まず、図2(A)の構成について説明する。図示するように、抵抗体70の先端方向D1側の端部は、先端方向D1に向かって突出する略円筒状の壁部70wと、壁部70wに囲まれた底部70bと、を有している。壁部70wは、絶縁体10の内周面10iと全周に亘って接触している。底部70bは、壁部70wの先端面70ws1(すなわち、先端方向D1側の面70ws1)よりも、後端方向D2側に配置されている。底部70bの表面70bs1(先端方向D1側の面)の形状は、後端方向D2側に向かって凹んだ凹形状(略鉢形状)である。底部70bと壁部70wとに囲まれた領域内には、中心電極20の後端方向D2側の端部(ここでは、頭部23の一部分)が、配置されている。壁部70wは、中心電極20(ここでは、頭部23)の外周面と、絶縁体10の内周面10iと、の間に配置されている。抵抗体70の壁部70wの先端面70ws1は、中心電極20の鍔部24から後端方向D2に離れた位置に、位置している。
中心電極20の外周面と、絶縁体10の内周面10iと、の間の空間における、壁部70wの先端面70ws1よりも先端方向D1側の部分には、第1シール部60の一部分である外シール部60aが配置されている。図中の第1後端E1は、図示された断面における、第1シール部60が絶縁体10の内周面10iと接する部分のうちの後端(最も後端方向D2側の端)を示している。図2(A)の実施形態では、この第1後端E1の位置は、図示された断面における、抵抗体70のうちの、絶縁体10の内周面10iと接する部分のうちの先端(最も先端方向D1側の端)の位置と、同じである。
中心電極20の後端方向D2側の端面23s2(ここでは、頭部23の後端方向D2側の表面23s2)上には、第1シール部60の一部である内シール部60bが配置されている。内シール部60bの形状は、端面23s2から後端方向D2側に突出する凸形状(略ドーム形状)である。すなわち、内シール部60bの略中央部は、内シール部60bの周縁部よりも、後端方向D2側に突出している。内シール部60bは、中心電極20の端面23s2と、抵抗体70の底部70bの表面70bs1(先端方向D1側の面)と、によって囲まれている。図中の第2後端E2は、抵抗体70の底部70bの表面70bs1のうちの後端(最も後端方向D2側の端)を示している。この第2後端E2の位置は、内シール部60bの後端(最も後端方向D2側の端)の位置と、同じである。本実施形態では、第2後端E2は、第1後端E1よりも後端方向D2側に、配置されている。なお、図2(A)の断面は、中心軸CLと第2後端E2とを含む断面である。図2の実施形態では、第2後端E2は、中心軸CLから離れた位置に、位置している。第2後端E2が、中心軸CL上に位置する場合、中心軸CLを含む複数の断面が、中心軸CLと第2後端E2とを含む断面の候補である。この場合、第1後端E1としては、後述する距離Dd(第1後端E1と第2後端E2との間の中心軸CLと平行な距離)が最も小さくなる断面上の第1後端E1を採用すればよい。
なお、抵抗体70の底部70bの表面70bs1と、壁部70wの内周面70wiおよび先端面70ws1とは、抵抗体70の先端方向D1側を向く面70s1を形成している(以下「先端面70s1」とも呼ぶ)。上記の第2後端E2は、抵抗体70の先端面70s1のうちの絶縁体10の内周面10iから離れた部分の後端(最も後端方向D2側の端)に対応する。ここで、抵抗体70の先端方向D1側を向く面70s1は、抵抗体70の表面のうちの、抵抗体70よりも先端方向D1側における中心軸CL上の位置から後端方向D2を向いて観察する場合に、観察され得る面を示している。本実施形態では、抵抗体70の表面は、絶縁体10の内周面10iと、全周に亘って接触している。従って、抵抗体70の先端方向D1側の部分の表面のうちの、絶縁体10の内周面10iから離れた部分の全体が、先端面70s1に対応する。換言すれば、抵抗体70の先端方向D1側の部分の表面から絶縁体10の内周面と接している部分を除いた残りの部分が、先端面70s1に対応する。なお、抵抗体70の先端方向D1側を向く面は、走査型電子顕微鏡(Scanning Electron Microscope)等によって観察され得るミクロな面(例えば、数十ナノメートル四方の面)の法線方向とは無関係に、特定される。他の部材の先端方向D1側を向く面、および、後端方向D2側を向く面についても、同様に、特定可能である。例えば、中心電極20の頭部23の端面23s2は、中心電極20の後端方向D2側を向く面の一部である。
また、図中には、以下に説明する5つのパラメータDc〜Dgが示されている。
1)距離Dcは、第2後端E2と絶縁体10の内周面10iとの間の最短距離である(以下「最短距離Dc」とも呼ぶ)。図2(A)の断面は、中心軸CLと第2後端E2とを含む断面であるので、この断面上の第2後端E2と内周面10iとの間の最短距離が、最短距離Dcに対応する。
2)距離Ddは、第1後端E1と第2後端E2との間の中心軸CLと平行な距離である(以下「端間距離Dd」とも呼ぶ)。
3)長さDeは、後述するオフセット部70oの重心を通る直線に沿った長さの最小値である(以下「最小長さDe」とも呼ぶ)。ここで、オフセット部70oは、抵抗体70の先端面70s1のうちの、第2後端E2からの中心軸CLと平行な距離がDwの位置における部分である。換言すれば、オフセット部70oは、第2後端E2からの中心軸CLと平行な距離がDwの位置における中心軸CLと垂直な断面において、抵抗体70に囲まれる部分(すなわち、領域)の輪郭を示している。以下、距離Dwとして、0.2mmを採用することとする。図2(A)の右側には、先端方向D1を向いて見たオフセット部70oの例が示されている。図示するように、オフセット部70oは、閉じたループを形成する。図2(A)に示すように、オフセット部70oの形状は、略円形状であり得る。図中の重心70ocは、オフセット部70oの重心、すなわち、オフセット部70oによって囲まれる領域の重心を示している。なお、領域の重心は、領域内に質量が均等に分布していると仮定した場合の重心の位置である。オフセット部70oの重心70ocは、中心軸CLから離れた位置に、配置され得る。最小長さDeは、重心70ocを通る直線に沿ったオフセット部70oの長さの最小値である。換言すれば、最小長さDeは、重心70ocを通る直線とオフセット部70oとの2つの交点間の距離の最小値である。なお、最小長さDeを規定する直線(すなわち、重心70ocを通る直線)は、中心軸CLと第2後端E2とを含む断面上の直線とは異なる場合がある。
4)厚さDfは、絶縁体10の第1シール部60を収容する部分の径方向の厚さである。
5)外径Dgは、第1シール部60の最大径である。本実施形態では、第1シール部60の外径Dgは、絶縁体10の貫通孔12の内径と、同じである。
これらのパラメータDc、Dd、De、Df、Dgは、例えば、以下のように測定可能である。まず、X線CTスキャナを用いて第1シール部60と抵抗体70との形状を特定し、そして、先端面70s1上の後端E2を特定する。次に、中心軸CLと、特定された後端E2と、を含む平面でスパークプラグ100を切断する。これにより得られる断面上から、第1後端E1を特定する。そして、この断面上で、最短距離Dcと、端間距離Ddと、厚さDfと、外径Dgと、を測定する。最小長さDeについては、X線CTスキャナを用いてオフセット部70oの形状を特定し、特定された形状に基づいて、算出可能である。この代わりに、スパークプラグ100を、さらに、オフセット部70oを含み中心軸CLと垂直な平面で切断してもよい。これにより得られる断面から、オフセット部70oの形状を特定し、特定された形状に基づいて、最小長さDeを算出可能である。
次に、図2(B)の構成について説明する。図2(B)の構成では、図2(A)の構成の抵抗体70が、形状が若干異なる抵抗体72に置換され、第1シール部60が、形状が若干異なる第1シール部62に置換されている。抵抗体72は、図2(A)の抵抗体70と同様に、壁部72wと底部72bとを有している。第1シール部62は、図2(A)の第1シール部60と同様に、外シール部62aと内シール部62bとを有している。図2(B)の他の構成は、図2(A)の構成と同じである。図2(B)では、図2(A)の要素と同じ要素に、同じ符号を付して、説明を省略する。
図2(B)に示す構成においても、図2(A)の構成と同様に、第1後端E1と第2後端E2とパラメータDc、Dd、De、Df、Dgと、を特定可能である。図2(B)では、図2(A)と比べて、第2後端E2は、絶縁体10の内周面10iに近い。これにより、内シール部62bの形状は、第2後端E2に向かって偏った凸形状であり、中心電極20の頭部23の外周面よりも外周側に、はみ出ている。抵抗体72の底部72bの形状は、内シール部62bの形状に合わせた形状である。
なお、壁部72wの形状は、図2(A)の壁部70wの形状と同じである。外シール部62aの形状は、図2(A)の外シール部60aの形状と同じである。底部72bの表面72bs1と、壁部72wの内周面72wiおよび先端面72ws1とは、抵抗体72の先端面72s1を形成する。
図2(B)の右側には、先端方向D1を向いて見たオフセット部72oの例が示されている。オフセット部72oの特定方法は、図2(A)の方法と同じである。図示するように、オフセット部72oの形状は、外に凸な部分と内に凸な部分とを有する形状であり得る。このような場合も、オフセット部72oの重心72ocを通る直線に沿ったオフセット部72oの長さの最小値が、最小長さDeとして算出される。
なお、図1、図2(A)、図2(B)に示す構成を有するスパークプラグ100の製造方法としては、任意の方法を採用可能である。例えば、以下の製造方法を採用可能である。まず、絶縁体10と、中心電極20と、端子金具40と、第1シール部60、62の材料粉末と、抵抗体70、72の材料粉末と、第2シール部80の材料粉末と、を準備する。次に、絶縁体10の貫通孔12の後端方向D2側の開口(以下、「後開口12o2」と呼ぶ)から、中心電極20を挿入する。図1で説明したように、中心電極20は、絶縁体10の縮内径部16によって支持される。この結果、中心電極20は、貫通孔12内の所定位置に配置される。
次に、第1シール部60、62の材料粉末を、貫通孔12の後開口12o2から、中心電極20に向かって、投入する。次に、第1シール部60、62の材料粉末に対して、予備圧縮を行う。予備圧縮は、第1棒を用いて、材料粉末を圧縮する工程である。図2(A)のように最短距離Dcが大きいスパークプラグを製造する場合、第1棒として、抵抗体70の先端面70s1の形状と略同じ形状の端部を有する棒が用いられ、予備圧縮によって、材料粉末は、第1シール部60の形状と略同じ形状に成形される。図2(B)のように最短距離Dcが小さいスパークプラグを製造する場合、第1棒として、抵抗体72の先端面72s1の形状に近い形状の端部を有する棒が用いられ、予備圧縮によって、材料粉末は、第1シール部62の形状に近い形状に成形される。
次に、抵抗体70、72の材料粉末を、貫通孔12の後開口12o2から、第1シール部60、62の材料粉末に向かって、投入する。次に、抵抗体70、72の材料粉末に対して、予備圧縮を行うことによって、抵抗体70、72の材料粉末を成形する。例えば、この予備圧縮では、先端方向D1側の端面が平らな第2棒が用いられ、抵抗体70、72の材料粉末の後端方向D2側の端は、中心軸CLと略垂直な平面に、成形される。
次に、第2シール部80の材料粉末を、貫通孔12の後開口12o2から、抵抗体70、72の材料粉末に向かって、投入する。次に、第2シール部80の材料粉末に対して、予備圧縮を行うことによって、第2シール部80の材料粉末を成形する。この予備圧縮は、抵抗体70、72の材料粉末の予備圧縮と、同様に、行われる。
次に、絶縁体10を、各材料粉末に含まれるガラス成分の軟化点よりも高い所定温度まで加熱し、所定温度に加熱した状態で、貫通孔12の後開口12o2から、端子金具40を貫通孔12に挿入する。この結果、各材料粉末が圧縮および焼結されて、第1シール部60、62と抵抗体70、72と第2シール部80とのそれぞれが形成される。この圧縮と焼結とでは、予備圧縮で成形された各材料粉末の形状が、変化し得る。例えば、予備圧縮によって中心軸CL上に第2後端E2が成形された場合であっても、図2(A)に示すように、焼結後の第2後端E2は、中心軸CLから離れ得る。また、圧縮と焼結とによって各材料粉末の形状が変化することによって、図2(B)の構成が実現され得る。
次に、絶縁体10の外周に主体金具50を組み付け、主体金具50に、接地電極30を固定する。次に、接地電極30を屈曲して、スパークプラグを完成させる。
A3.評価試験:
スパークプラグのサンプルを用いた評価試験について説明する。この評価試験は、スパークプラグの負荷寿命試験である。この評価試験では、実施形態のスパークプラグのサンプルに加えて、参考例のスパークプラグのサンプルも、評価されている。
図3(A)は、参考例のスパークプラグ100Rの部分断面図を示し、図3(B)は、実施形態のスパークプラグ100の図2(A)と同じ構成の部分断面図を示している。各部分断面図は、中心軸CLを含む断面図であり、絶縁体10の貫通孔12の内部の構成を示している。参考例と実施形態との間の差異は、参考例のスパークプラグ100Rでは、抵抗体70Rの先端方向D1側を向く面である先端面70Rs1の形状が、先端方向D1に向かって突出する凸形状(略ドーム形状)である点と、抵抗体70Rと中心電極20とが互いに離れている点と、抵抗体70Rと中心電極20との間の全体に第1シール部60Rが充填されている点と、だけである。参考例のスパークプラグ100Rの他の構成は、実施形態のスパークプラグ100と同じである。参考例のスパークプラグ100Rの要素のうち、実施形態のスパークプラグ100の要素と同じ要素には、同じ符号を付して、説明を省略する。
図3(A)には、放電時の推定電流経路EPrが太線で示されている。発明者らの実験によれば、参考例のスパークプラグ100Rでは、抵抗体70Rの先端面70Rs1上において、導電性能の低下が均等ではない。具体的には、絶縁体10の内周面10iと接触する環状の縁部分70Rrでは、先端面70Rs1の中央部分70Rcと比べて、導電性能が低下し易い(例えば、抵抗体70Rと第1シール部60Rとの接触抵抗が増大する)。導電性能の低下の原因の1つとして、放電時の電流によって生じる熱が挙げられる。従って、参考例のスパークプラグ100Rでは、放電時の電流は、縁部分70Rrに、集中すると推定される。図中の推定電流経路EPrは、端子金具40の脚部43から、抵抗体70Rを通って、縁部分70Rrに至る経路である。この推定電流経路EPrは、抵抗体70Rの端子金具40(脚部43)の近傍と縁部分70Rrとを最短距離で(すなわち、直線で)結ぶ経路である。
図3(B)には、放電時の推定電流経路EPが太線で示されている。実施形態のスパークプラグ100では、第2後端E2が、縁部分70r(第1後端E1)よりも、後端方向D2側に配置されている。従って、抵抗体70中の端子金具40の近傍と第1後端E1とを結ぶ経路(図示せず)よりも、抵抗体70中の端子金具40の近傍と第2後端E2の近傍とを結ぶ経路の方が、経路長が短い、すなわち、電気抵抗が小さい。この結果、実施形態のスパークプラグ100は、放電時の電流を、図中の推定電流経路EPのように、抵抗体70の先端面70s1のうちの、第2後端E2とその近傍を含む領域(例えば、図2(A)のオフセット部70oに囲まれた領域)に、分散できると推定される。そして、このように電流が分散されることによって、電流によって生じる熱が一部の領域に集中することを抑制できるので、抵抗体70および第1シール部60における導電性能の低下を抑制できる。以上の利点は、図2(B)に示す構成においても、同様に、実現され得る。
以下に示す表1は、各サンプルのそれぞれの構成と運転時間の評価結果とを示している。スパークプラグ100のサンプルとしては、最短距離Dcと、端間距離Ddと、最小長さDeと、厚さDfと、外径Dgと、の少なくとも1つが互いに異なる36個のサンプルが用いられた(サンプル番号1〜36)。また、表1の第1行には、参考例の1個のサンプルのデータが示されている。最短距離Dcと端間距離Ddと最小長さDeとのそれぞれの調整は、第1シール部60、62の上述した予備圧縮時の形状を調整することによって、行った。外径Dgの調整は、絶縁体10の先端側胴部17の内径を調整することによって、行い、厚さDfの調整は、絶縁体10の先端側胴部17の内径と外径との少なくとも一方を調整することによって、行った。他の構成(例えば、中心電極20の構成)は、37個のサンプルの間で、同じである。
Figure 0006043261
表中には、サンプル番号と、最短距離Dcと、端間距離Ddと、最小長さDeと、厚さDfと、外径Dgと、運転時間の評価結果Rと、が示されている(Dc、Dd、De、Df、Dgの単位は「ミリメートル」)。運転時間の評価結果Rは、負荷寿命試験の結果を示している。負荷寿命試験は、JIS B8031:2006(内燃機関−スパークプラグ)の7.14に規定された試験条件に基づいて行われた。ただし、JISの規定に基づく負荷寿命試験をそのまま行う場合、全てのサンプルについて、良好な評価結果(抵抗値の変化率が50%以下)が得られた。そこで、本評価試験では、温度と放電の周波数と印加電圧とを高めることによって、JISの規定よりも厳しい条件下で、一定周期で放電を繰り返す試験運転を行った。そして、抵抗値の変化率が50%を超えるまで試験運転を行い、抵抗値の変化率が50%を超えた時点での試験運転の運転時間を用いて、評価を行った。なお、抵抗値は、端子金具40と中心電極20との間の電気抵抗値であり、JIS B8031:2006の7.13の規定に従って、測定された。また、抵抗値の変化率は、試験前の抵抗値に対する、試験前後の抵抗値の差分の割合である。
運転時間の評価結果Rは、上記の運転時間を1から10までの10段階で表しており、運転時間が長いほど、すなわち、寿命が長いほど、大きくなるように設定されている。具体的には、以下の通りである。
評価結果R:運転時間の範囲
1 : 150時間未満
2 :150時間以上、200時間未満
3 :200時間以上、250時間未満
4 :250時間以上、300時間未満
5 :300時間以上、350時間未満
6 :350時間以上、400時間未満
7 :400時間以上、450時間未満
8 :450時間以上、500時間未満
9 :500時間以上、550時間未満
10 :550時間以上
A3−1.最短距離Dc:
1番〜7番のサンプルの間では、最短距離Dcが互いに異なっており、他のパラメータDd、De、Df、Dgは、それぞれ、同じである(Dd=0.50、De=1.00、Df=1.10、Dg=3.90)。これらのサンプルの評価結果Rが示すように、最短距離Dcが長いほど、評価結果Rが良かった。この理由は、最短距離Dcが長いほど、図3(B)で説明した第1経路EPaと第2経路EPbとを互いに遠ざけることができる、すなわち、電流を広い範囲に分散できるからだと推定される。また、1番〜7番のサンプルの評価結果Rは、いずれも、参考例のサンプルの評価結果よりも良かった。更に、最短距離Dcが0.50mm以上である2番〜7番のサンプルの評価結果R(8以上)は、最短距離Dcが0.25mmである1番のサンプルの評価結果R(2)と比べて、特に良かった。
このように、実施形態の構成は、参考例の構成と比べて、スパークプラグの耐久性を向上できる。特に、最短距離Dcを0.50mm以上に設定することによって、スパークプラグの耐久性を、大幅に向上できる。なお、参考例と比べて特に良好な評価結果R(8以上)が得られた2番〜7番の最短距離Dcは、0.50、0.85、1.00、1.25、1.45、1.95である(単位はmm)。これらの値のうちの任意の値を、最短距離Dcの好ましい範囲(下限以上、かつ、上限以下の範囲)の下限として採用可能である。なお、最短距離Dcの上限は、抵抗体70、72の外径(外径Dgと同じ)の半分である。
1番〜7番とは異なる他のサンプルが示すように、パラメータDd、De、Df、Dgの少なくとも1つを変更した場合にも、最短距離Dcを0.50mm以上に設定することによって、参考例と比べて良好な評価結果R(2以上の評価結果R)を得ることができた。従って、最短距離Dcの上述した好ましい範囲は、パラメータDd、De、Df、Dgに拘わらずに、適用可能と推定される。
A3−2.端間距離Dd:
2番、9番〜15番のサンプルの間では、端間距離Ddが互いに異なっており、他のパラメータDc、De、Df、Dgは、それぞれ、同じである(Dc=0.50、De=1.00、Df=1.10、Dg=3.90)。これらのサンプルの評価結果Rが示すように、端間距離Ddが長いほど、評価結果Rが良かった。この理由は、端間距離Ddが長いほど、図3(B)で説明した第1経路EPaと第2経路EPbとを互いに遠ざけることができる、すなわち、電流を広い範囲に分散できるからだと推定される。また端間距離Ddが0.50mm以上である2番、10番〜15番のサンプルの評価結果R(8以上)は、端間距離Ddが0.25mmである9番のサンプルの評価結果R(5)と比べて、特に良かった。
このように、端間距離Ddを0.50mm以上に設定することによって、スパークプラグの耐久性を、大幅に向上できる。なお、参考例と比べて特に良好な評価結果R(8以上)が得られた2番、10番〜15番の端間距離Ddは、0.50、0.75、1.00、1.50、1.75、2.00、2.30である(単位はmm)。これらの値のうちの任意の値を、端間距離Ddの好ましい範囲(下限以上、かつ、上限以下の範囲)の下限として採用可能である。また、これらの値のうちの下限以上の任意の値を、端間距離Ddの好ましい範囲の上限として採用可能である。なお、9番のサンプルが示すように、最短距離Dcが0.5mm以上である場合には、端間距離Ddが0.50mm未満(ここでは、0.25mm)であっても、参考例と比べて良好な評価結果R(ここでは、5)が得られている。従って、最短距離Dcが0.5mm以上である場合には、端間距離Ddの好ましい範囲の下限は、0.50mm未満であってもよく、例えば、0.25mmを採用してもよい。
なお、2番、9番〜15番とは異なる他のサンプルが示すように、パラメータDc、De、Df、Dgの少なくとも1つを変更した場合にも、端間距離Ddを0.50mm以上に設定することによって、参考例と比べて良好な評価結果R(2以上の評価結果R)を得ることができた(ただし、最短距離Dcは、0.50mm以上)。従って、端間距離Ddの上述した好ましい範囲は、最短距離Dcが0.50mm以上である場合には、パラメータDc、De、Df、Dgに拘わらずに、適用可能と推定される。
A3−3.最小長さDe:
2番、16番〜21番のサンプルの間では、最小長さDeが互いに異なっており、他のパラメータDc、Dd、Df、Dgは、それぞれ、同じである(Dc=0.50、Dd=0.50、Df=1.10、Dg=3.90)。これらのサンプルの評価結果Rが示すように、最小長さDeが長いほど、評価結果Rが良かった。この理由は、以下のように推定される。すなわち、最小長さDeが長いことは、抵抗体70、72(図2)の先端面70s1、72s1のうち、第2後端E2の近傍に位置する部分(具体的には、第2後端E2から距離Dwの範囲内の部分)が、大きいことを、示している。第2後端E2の近傍に位置する部分は、図3(B)の第2経路EPbを実現可能である。従って、最小長さDeが長いほど、先端面70s1、72s1のうちの第2経路EPbを実現可能な部分が大きいので、放電時の電流を広い範囲に分散可能である。この結果、抵抗体70、72および第1シール部60、62における導電性能の低下を抑制できる。
また、最小長さDeが1.00mm以上である2番、17番〜21番のサンプルの評価結果R(8以上)は、最小長さDeが0.75mmである16番のサンプルの評価結果R(6)と比べて、特に良かった。
このように、最小長さDeを1.00mm以上に設定することによって、スパークプラグの耐久性を大幅に向上できる。なお、参考例と比べて特に良好な評価結果R(8以上)が得られた2番、17番〜21番の最小長さDeは、1.00、1.27、1.61、1.83、2.40、3.00である(単位はmm)。これらの値のうちの任意の値を、最小長さDeの好ましい範囲(下限以上、かつ、上限以下の範囲)の下限として採用可能である。また、これらの値のうちの下限以上の任意の値を、最小長さDeの好ましい範囲の上限として採用可能である。なお、16番のサンプルが示すように、最短距離Dcが0.5mm以上である場合には、最小長さDeが1.00mm未満(ここでは、0.75mm)であっても、参考例と比べて良好な評価結果R(ここでは、6)が得られている。従って、最短距離Dcが0.5mm以上である場合には、最小長さDeの好ましい範囲の下限は、1.00mm未満であってもよく、例えば、0.75mmを採用してもよい。
なお、2番、16番〜21番とは異なる他のサンプルが示すように、パラメータDc、Dd、Df、Dgの少なくとも1つを変更した場合にも、最小長さDeを1.00mm以上に設定することによって、参考例と比べて良好な評価結果R(2以上の評価結果R)を得ることができた(ただし、最短距離Dcは、0.50mm以上)。従って、最小長さDeの上述した好ましい範囲は、最短距離Dcが0.50mm以上である場合には、パラメータDc、Dd、Df、Dgに拘わらずに、適用可能と推定される。
A3−4.厚さDf:
1番、23番、26番のサンプルの間では、厚さDfが互いに異なっており、他のパラメータDc、Dd、De、Dgは、それぞれ、同じである(Dc=0.25、Dd=0.50、De=1.00、Dg=3.90)。これらのサンプルの評価結果Rは、以下の通りである。
23番:Df=1.00、評価結果R=4
1番:Df=1.10、評価結果R=2
26番:Df=4.20、評価結果R=1
このように、厚さDfが薄いほど、評価結果Rが良かった。この理由は、以下のように、推定される。すなわち、絶縁体10の厚さDfが薄い場合には、厚さDfが厚い場合と比べて、貫通孔12内の部材(例えば、第1シール部60、62と抵抗体70、72)の熱が逃げ易い(冷めやすい)。従って、厚さDfが薄いほど、抵抗体70、72および第1シール部60、62における導電性能の低下を抑制できる、と推定される。
2番、24番、27番のサンプルの構成は、上記の1番、23番、26番のサンプルの最短距離Dcを0.25mmから0.50mmに増大させた構成である。これら6つのサンプルの評価結果Rは、以下の通りである。
23番:Dc=0.25、Df=1.00、評価結果R=4
24番:Dc=0.50、Df=1.00、評価結果R=8
1番:Dc=0.25、Df=1.10、評価結果R=2
2番:Dc=0.50、Df=1.10、評価結果R=8
26番:Dc=0.25、Df=4.20、評価結果R=1
27番:Dc=0.50、Df=4.20、評価結果R=6
このように、厚さDfに拘わらずに、最短距離Dcを0.25mmから0.50mmに増大させることによって、参考例と比べて良好な評価結果R(ここでは、6以上)を実現できた。特に、厚さDfが1.10mm以上である場合には、Dc=0.25mmであるサンプルの評価結果Rが2以下であったにも拘わらずに、最短距離Dcを0.50mmに増大させることによって、6以上の評価結果Rを実現できた。このように、厚さDfが1.10mm以上である場合には第1シール部60、62の温度が高くなりやすいにも拘わらずに、最短距離Dcを0.50mm以上に設定することによって、評価結果Rを適切に改善できた。
ここで、最短距離Dcを0.25mmから0.50mmに変化させることによる評価結果Rの改善量dR(すなわち、評価結果Rの差分)を、以下に示す。
Df=1.00:dR=4 (23番、24番)
Df=1.10:dR=6 (1番、2番)
Df=4.20:dR=5 (26番、27番)
このように、厚さDfが1.10mm以上である場合には、評価結果Rの改善量dRは、5以上である。一方、厚さDfが1.00mmである場合には、評価結果Rの改善量dRは、4である。このように、厚さDfが1.10mm以上である場合には、評価結果Rを大幅に改善することができた。
以上のように、厚さDfが1.10mm以上である場合には、第1シール部60、62の温度が高くなりやすいが、このような条件下においても、最短距離Dcを0.50mm以上に設定することによって、抵抗体70、72および第1シール部60、62における導電性能の低下を抑制できる。なお、参考例と比べて良好な評価結果R(4以上)が得られた2番、23番、24番、27番の厚さDfは、1.00、1.10、4.20である(単位はmm)。これらの値のうちの任意の値を、厚さDfの好ましい範囲(下限以上、かつ、上限以下の範囲)の下限として採用可能である。また、これらの値のうちの下限以上の任意の値を、厚さDfの好ましい範囲の上限として採用可能である。
A3−5.外径Dg:
1番、29番、31番、34番のサンプルの間では、外径Dgが互いに異なっており、他のパラメータDc、Dd、De、Dfは、それぞれ、同じである(Dc=0.25、Dd=0.50、De=1.00、Df=1.10)。これらのサンプルの評価結果Rは、以下の通りである。
34番:Dg=2.00、評価結果R=1
31番:Dg=3.00、評価結果R=1
29番:Dg=3.50、評価結果R=2
1番:Dg=3.90、評価結果R=2
このように、外径Dgが大きい方が、外径Dgが小さい場合と比べて、評価結果Rが若干良かった。この理由は、第1シール部60、62の外径Dgが大きいほど、第1シール部60、62が大きいので、放電時の電流が、第1シール部60、62上で、分散され易いからだと推定される。
2番、30番、32番、36番のサンプルは、上記の1番、29番、31番、34番のサンプルの最短距離Dcを0.25mmから0.50mmに増大させた構成を、それぞれ、有している。これら8つのサンプルの評価結果Rは、以下の通りである。
34番:Dc=0.25、Dg=2.00、評価結果R=1
35番:Dc=0.50、Dg=2.00、評価結果R=8
31番:Dc=0.25、Dg=3.00、評価結果R=1
32番:Dc=0.50、Dg=3.00、評価結果R=8
29番:Dc=0.25、Dg=3.50、評価結果R=2
30番:Dc=0.50、Dg=3.50、評価結果R=8
1番:Dc=0.25、Dg=3.90、評価結果R=2
2番:Dc=0.25、Dg=3.90、評価結果R=8
このように、外径Dgに拘わらずに、最短距離Dcを0.25mmから0.50mmに増大させることによって、参考例と比べて良好な評価結果R(ここでは、8以上)を実現できた。
ここで、最短距離Dcを0.25mmから0.50mmに変化させることによる評価結果Rの改善量dR(すなわち、評価結果Rの差分)を、以下に示す。
Dg=2.00:dR=7 (34番、35番)
Dg=3.00:dR=7 (31番、32番)
Dg=3.50:dR=6 (29番、30番)
Dg=3.90:dR=6 (1番、2番)
このように、外径Dgが3.00mm以下である場合には、評価結果Rの改善量dRは、「7」である。一方、外径Dgが3.00mmを超える場合には、評価結果Rの改善量dRは、「6」である。このように、外径Dgが3.00mm以下である場合には、外径Dgが3.00mmを超える場合と比べて、評価結果Rを大きく改善できた。従って、外径Dgが3.00mm以下であるような細いスパークプラグを用いる場合であっても、耐久性を向上できる。
以上のように、外径Dgが3.00mm以下である場合には、放電時に電流が分散されにくいが、このような条件下においても、最短距離Dcを0.50mm以上に設定することによって、抵抗体70、72および第1シール部60、62における導電性能の低下を抑制できる。なお、参考例と比べて良好な評価結果R(8以上)が得られた2番、30番、32番、35番の外径Dgは、2.00、3.00、3.50、3.90である(単位はmm)。これらの値のうちの任意の値を、外径Dgの好ましい範囲(下限以上、かつ、上限以下の範囲)の下限として採用可能である。また、これらの値のうちの下限以上の任意の値を、外径Dgの好ましい範囲の上限として採用可能である。
B.別の参考例
図4は、別の参考例のスパークプラグ100xの説明図である。図中には、図2と同様の部分断面図が示されている。図2に示す第1実施形態との差異は、抵抗体70xの先端方向D1を向く面である先端面70xs1の形状が、後端方向D2側に向かって凹んだ凹形状(略鉢形状)である点と、抵抗体70xが中心電極20と接触せずに中心電極20から離れている点と、抵抗体70xと中心電極20との間には連続な1つの第1シール部60xが配置されている点と、だけである。スパークプラグ100xの他の構成は、図1に示す第1実施形態のスパークプラグ100の構成と、同じである。参考例のスパークプラグ100xの要素のうち、第1実施形態のスパークプラグ100の要素と同じ要素には、同じ符号を付して、説明を省略する。
図中の第2後端E2xは、抵抗体70xの先端面70xs1のうちの絶縁体10の内周面10iから離れた部分の後端(最も後端方向D2側の端)を示している。本実施形態では、第2後端E2の位置は、第1シール部60xの後端(最も後端方向D2側の端)の位置と、同じである。図4の断面は、中心軸CLと第2後端E2xとを含む断面である。
図中の第1後端E1xは、図示された断面における、第1シール部60xが絶縁碍子10の内周面10iと接する部分のうちの後端(最も後端方向D2側の端)を示している。本実施形態では、この第1後端E1の位置は、図示された断面における、抵抗体70xのうちの、絶縁体10の内周面10iと接する部分のうちの先端(最も先端方向D1側の端)の位置と、同じである。本実施形態においても、第2後端E2xは、第1後端E1xよりも後端方向D2側に配置されている。
図4に示すように、参考例においても、図2の第1実施形態と同様に、パラメータDc、Dd、De、Df、Dgが規定される。参考例においては、抵抗体70xの先端面70xs1の形状は、第1実施形態の抵抗体70、72(図2)の先端面70s1、72s1の形状と同様に、後端方向D2側に向かって凹む凹形状である。従って、パラメータDc、Dd、De、Df、Dgのそれぞれとして、第1実施形態で説明した好ましい範囲の値を採用すれば、第1実施形態のスパークプラグ100と同様に、放電時の電流を先端面70xs1上で分散させることができる、と推定される。そして、スパークプラグ100xの耐久性を向上できると推定される。
また、参考例では、中心電極20の後端(後端方向D2側の端。ここでは、頭部23と鍔部24)が第1シール部60xによって覆われている。より具体的には、中心電極20の表面のうちの後端方向D2側を向く面20s2(「後端面20s2」とも呼ぶ)の全体が、第1シール部60xによって覆われている。従って、中心電極20と第1シール部60xとの密着性を向上できるので、振動に対する耐久性を向上できる。なお、図4の実施形態では、中心電極20の後端面20s2は、頭部23の後端面23s2と、頭部23の外周面23oと、鍔部24の後端方向D2側を向く面24s2と、で構成されている。
C.第2実施形態
図5は、第2実施形態のスパークプラグ100zの説明図である。図中には、図2(A)と同様の部分断面図が示されている。図2(A)に示す第1実施形態との差異は、内シール部60bが省略されている点だけである。スパークプラグ100zの他の構成は、図1に示す第1実施形態のスパークプラグ100の構成と、同じである。第2実施形態のスパークプラグ100zの要素のうち、第1実施形態のスパークプラグ100の要素と同じ要素には、同じ符号を付して、説明を省略する。
図示するように、抵抗体70zの底部70zbの表面70zbs1は、中心電極20の頭部23の後端面23s2と接触している。図中の太線で示された面70zs1は、抵抗体70zの先端方向D1側を向く面70zs1(「先端面70zs1」と呼ぶ)を示している。抵抗体70zの先端面70zs1は、抵抗体70zの底部70zbの表面70zbs1と、壁部70wの内周面70wiおよび先端面70ws1と、によって形成されている。本実施形態では、底部70zbの表面70zbs1上の任意の位置が、第2後端の候補である。この場合、適切な最短距離Dcを特定するために、表面70zbs1のうちの絶縁体10の内周面10iに最も近い位置E2zが、第2後端E2zとして採用される。
図5に示すように、第2実施形態においても、図2(A)の第1実施形態と同様に、オフセット部70zoと、パラメータDc、Dd、De、Df、Dgとが、特定される。第2実施形態においては、抵抗体70zの先端面70zs1の形状は、第1実施形態の抵抗体70、72(図2)の先端面70s1、72s1の形状と同様に、後端方向D2側に向かって凹む凹形状である。従って、パラメータDc、Dd、De、Df、Dgのそれぞれとして、第1実施形態で説明した好ましい範囲の値を採用することによって、第1実施形態のスパークプラグ100と同様に、放電時の電流を先端面70zs1上で分散させることができる、と推定される。そして、スパークプラグ100zの耐久性を向上できると推定される。
D.変形例:
(1)実施形態のスパークプラグの耐久性の向上は、主に、最短距離Dcによってもたらされていると考えられる。また、スパークプラグの耐久性の更なる向上は、主に、端間距離Ddと最小長さDeとによってもたらされていると考えられる。従って、これらのパラメータDc、Dd、De以外の構成は、種々に変更可能である。例えば、図2では、抵抗体70、72の壁部70w、72wの先端面70ws1、72ws1が、中心軸CLと垂直な平面で示されている。しかし、先端面70ws1、72ws1は、中心軸CLに対して傾斜し得、また、曲面であり得る。また、図4に示す実施形態では、第1後端E1xは、中心電極20の頭部23の後端面23s2よりも後端方向D2側に配置されている。この代わりに、第1後端E1xが、頭部23の後端面23s2よりも、先端方向D1側に配置されてもよい。
また、中心電極20のうちのギャップgを形成する部分に、貴金属チップを設けても良い。また、接地電極30のうちのギャップgを形成する部分に、貴金属チップを設けてもよい。貴金属チップの材料としては、イリジウムや白金等の貴金属を含む合金を採用可能である。また、中心電極20の頭部23の外径が、鍔部24の外径と同じであってもよい。
また、上記の各実施形態では、接地電極30の先端部31が、中心電極20の先端方向D1側を向く面である先端面20s1と対向して、ギャップgを形成している。この代わりに、接地電極30の先端部が、中心電極20の外周面と対向して、ギャップを形成してもよい。
以上、実施形態、変形例に基づき本発明について説明してきたが、上記した発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨並びに特許請求の範囲を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれる。
5...ガスケット、6...第1後端側パッキン、7...第2後端側パッキン、8...先端側パッキン、9...タルク、10...絶縁体(絶縁碍子)、10i...内周面、11...第2縮外径部、12...軸孔(貫通孔)、13...脚部、15...第1縮外径部、16...縮内径部、17...先端側胴部、18...後端側胴部、19...鍔部、20...中心電極、20s1...先端面、21...電極母材、22...芯材、23...頭部、23s2...後端面、24...鍔部、25...脚部、30...接地電極、31...先端部、35...母材、36...芯部、40...端子金具、41...キャップ装着部、42...鍔部、43...脚部、50...主体金具、51...工具係合部、52...ネジ部、53...加締部、54...座部、55...胴部、56...縮内径部、58...変形部、59...貫通孔、60、62、60R、60x...第1シール部、60a、62a...外シール部、60b、62b...内シール部、70ws1、72ws1...先端面、70、72、70R、70x...抵抗体、70s1、72s1、70Rs1、70xs1...先端面、70b、72b...底部、70o、72o...オフセット部、70r...縁部分、70w、72w...壁部、70Rr...縁部分、70oc、72oc...重心、80...第2シール部、100、100R、100x...スパークプラグ、g...ギャップ、CL...中心軸(軸線)

Claims (7)

  1. 軸線の方向に延びる中心電極と、
    前記軸線の方向に延びる軸孔を有し、前記軸孔の先端側に前記中心電極が配置される絶縁体と、
    前記軸孔内の前記中心電極より後端側に配置される抵抗体と、
    前記軸孔内の前記抵抗体と前記中心電極との間の少なくとも一部に配置されるシール部と、
    を備えたスパークプラグであって、
    前記抵抗体の先端側を向く面のうちの前記絶縁体の内周面から離れた部分の後端を第2後端とし、前記軸線と前記第2後端とを含む断面上における前記シール部のうちの前記絶縁体の前記内周面と接する部分の後端を第1後端としたときに、
    前記第2後端は前記第1後端よりも後端側に配置され、前記第2後端と前記絶縁体の前記内周面との間の径方向の最短距離は、0.5mm以上であり、
    前記抵抗体の先端側の端部は、先端側に向かって突出する円筒状の壁部と、前記壁部に囲まれ前記壁部の先端面から後端側に向かって凹んだ底部と、を有し、
    前記抵抗体の前記第2後端は、前記抵抗体の前記底部の表面に形成され、
    前記中心電極の後端側の端部は、前記抵抗体の前記底部と前記壁部とに囲まれた領域内に配置されている、
    スパークプラグ。
  2. 請求項1に記載のスパークプラグであって、
    前記シール部は、前記中心電極の後端側の端面と前記抵抗体の前記底部の表面とによって囲まれている部分を含む、
    スパークプラグ。
  3. 請求項1または2に記載のスパークプラグであって、
    前記第1後端と前記第2後端との間の前記軸線の方向の距離が、0.5mm以上である、スパークプラグ。
  4. 請求項1から3のいずれか1項に記載のスパークプラグであって、
    前記第2後端からの前記軸線の方向の距離が0.2mmの位置における前記軸線の方向と垂直な断面において、前記抵抗体に囲まれる部分の重心を通る直線に沿った長さの最小値は、1mm以上である、スパークプラグ。
  5. 請求項1からのいずれか1項に記載のスパークプラグであって、
    前記絶縁体の前記シール部を収容する部分の径方向の厚みが、1.1mm以上である、
    スパークプラグ。
  6. 請求項1からのいずれか1項に記載のスパークプラグであって、
    前記シール部の最大径は、3.0mm以下である、スパークプラグ。
  7. 請求項1からのいずれか1項に記載のスパークプラグであって、
    前記中心電極の後端が前記シール部で覆われている、スパークプラグ。
JP2013197552A 2013-09-24 2013-09-24 スパークプラグ Active JP6043261B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013197552A JP6043261B2 (ja) 2013-09-24 2013-09-24 スパークプラグ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013197552A JP6043261B2 (ja) 2013-09-24 2013-09-24 スパークプラグ

Publications (2)

Publication Number Publication Date
JP2015064987A JP2015064987A (ja) 2015-04-09
JP6043261B2 true JP6043261B2 (ja) 2016-12-14

Family

ID=52832731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013197552A Active JP6043261B2 (ja) 2013-09-24 2013-09-24 スパークプラグ

Country Status (1)

Country Link
JP (1) JP6043261B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6328093B2 (ja) * 2015-12-16 2018-05-23 日本特殊陶業株式会社 スパークプラグ
JP6309035B2 (ja) 2016-02-16 2018-04-11 日本特殊陶業株式会社 スパークプラグ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52125950A (en) * 1976-04-15 1977-10-22 Hitachi Ltd Noise preventing type spark plug
JPS56118288A (en) * 1980-02-25 1981-09-17 Nippon Denso Co Method of manufacturing ignition plug with resistor
JPS5717587A (en) * 1980-07-04 1982-01-29 Ngk Spark Plug Co Resistor filled ignition plug
JP4285366B2 (ja) * 2004-08-24 2009-06-24 株式会社デンソー 内燃機関用のスパークプラグ

Also Published As

Publication number Publication date
JP2015064987A (ja) 2015-04-09

Similar Documents

Publication Publication Date Title
JP5414896B2 (ja) スパークプラグ
EP3291388B1 (en) Spark plug
JP5608204B2 (ja) スパークプラグ
US11456578B2 (en) Spark plug
JP4901990B1 (ja) スパークプラグ
US9912126B2 (en) Spark plug insulator containing mullite and spark plug including same
JP6043261B2 (ja) スパークプラグ
JP6158283B2 (ja) スパークプラグ
JP6328093B2 (ja) スパークプラグ
US9054501B2 (en) Spark plug
US9401586B1 (en) Spark plug
US10431961B2 (en) Spark plug
EP3419124B1 (en) Spark plug
JP5683409B2 (ja) スパークプラグおよびスパークプラグの製造方法
JP6054928B2 (ja) スパークプラグ
JPWO2019069640A1 (ja) 点火プラグ
JP2018152310A (ja) スパークプラグ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161111

R150 Certificate of patent or registration of utility model

Ref document number: 6043261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250