WO2017096676A1 - 一种高性能烧结钕铁硼磁体 - Google Patents
一种高性能烧结钕铁硼磁体 Download PDFInfo
- Publication number
- WO2017096676A1 WO2017096676A1 PCT/CN2016/000376 CN2016000376W WO2017096676A1 WO 2017096676 A1 WO2017096676 A1 WO 2017096676A1 CN 2016000376 W CN2016000376 W CN 2016000376W WO 2017096676 A1 WO2017096676 A1 WO 2017096676A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sintered ndfeb
- ndfeb magnet
- magnet
- performance
- heavy rare
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
Definitions
- the present invention relates to a sintered neodymium iron boron magnet, and more particularly to a high performance sintered neodymium iron boron magnet.
- sintered NdFeB magnets Since the invention of sintered NdFeB magnets, it has been widely used due to its excellent comprehensive magnetic properties and relatively low price. In recent years, with the accelerated development of science and technology, the speed and application range of sintered NdFeB magnets in high-end fields such as new energy vehicles, inverter compressors and wind power generation have expanded rapidly. These fields require sintered NdFeB magnets to have high overall magnetic properties, namely high remanence and high coercivity.
- the existing high performance sintered NdFeB magnets mainly have two structures.
- heavy rare earth elements at least one of Dy and Tb
- the structure is such that the heavy rare earth element is magnetic after directly adding the heavy rare earth element in the smelting process.
- the uniform distribution in the body is achieved, so that the sintered NdFeB magnet for obtaining the structure needs to use more heavy rare earth elements, and the preparation cost is high.
- the heavy rare earth element partially replaces the Nd atom in the main phase alloy, the lattice constant of the main phase of the magnet in the z-axis direction becomes smaller, has a higher anisotropy field, and has higher coercive force, but its saturation magnetic polarization The strength is significantly reduced, and the remanence of the magnet is also reduced.
- the heavy rare earth element at least one of Dy and Tb
- the heavy rare earth element is mainly distributed in the vicinity of the grain boundary phase in the magnet, compared to the sintered NdFeB magnet of the first structure. Although the content of heavy rare earth elements is reduced, the reduction is not obvious.
- the structure of the sintered NdFeB magnet is realized by a double alloy process.
- the alloy is smelted according to the main phase proportional component, which is called the first alloy, and then the grain boundary composed of the yttrium-rich phase and the boron-rich phase.
- the composition of the phase melts the second alloy, and the first alloy and the second alloy are respectively smelted by a vacuum rapid setting process, and after melting, a certain proportion is mixed to prepare a sintered NdFeB magnet.
- the second alloy contains at least one of the heavy rare earth elements Dy and Tb, and after the high temperature sintering, the second alloy diffuses into the main phase of the first alloy to prepare Heavy rare earth elements still need to be used more in the process, and the production cost is still high.
- the technical problem to be solved by the present invention is to provide a low-cost high-performance sintered NdFeB magnet having a small amount of heavy rare earth elements and having high coercive force and high remanence.
- a high-performance sintered NdFeB magnet which is formed on a surface of a sintered NdFeB magnet by preparing a sintered NdFeB magnet body.
- a coating layer containing a heavy rare earth element is obtained by infiltrating a heavy rare earth element in a coating layer containing a heavy rare earth element into a sintered NdFeB magnet body by a heat treatment process, and the surface of the high performance sintered NdFeB magnet is mainly in a main phase
- the lattice constant in the z-axis direction is denoted by c 1
- the lattice constant of the z-axis direction of the main center of the internal phase of the high-performance sintered NdFeB magnet is denoted as c 0
- c 1 and c 0 satisfy the following relationship: 0.01% ⁇ (c 0 -c 1 ) / c 0 ⁇ 1.5%, where the
- the lattice constant of the main phase in the z-axis direction at a position within a depth of 400 ⁇ m from the surface of the high-performance sintered NdFeB magnet is referred to as c 2 , and c 1 and c 2 satisfy the following relationship: 0.01% ⁇ (c 2 -c 1 ) / c 2 ⁇ 1.2%, where the symbol "/" is the division symbol.
- the infiltration of heavy rare earth elements makes the main phase have a higher magnetocrystalline anisotropy field H A , which significantly increases the coercive force of the magnet.
- the change of the lattice constant caused by the infiltration of the heavy rare earth element is mainly concentrated in the range of 400 ⁇ m from the surface of the magnet, so that the amount of the heavy rare earth element can be remarkably reduced.
- the composition of the sintered NdFeB magnet base is Nd m N n X t Fe 100-mnkt B k , wherein Nd is a lanthanum element, and N is at least one of La, Ce, Pr, Dy, Tb, Ho, Gd elements.
- X is at least one of Co, Mn, Cu, Al, Ti, Ga, Zr, V, Hf, W and Nb elements
- Fe is iron element
- B is boron element
- m, n, t, k The following relationship is satisfied: 28.5 ⁇ m + n ⁇ 33, 0 ⁇ t ⁇ 5, 0.9 ⁇ k ⁇ 1.2, and m, n, k, and t all represent the mass percentage.
- the heavy rare earth element in the heavy rare earth element-containing coating layer is at least one of Tb, Dy, and Ho.
- the heavy rare earth elements Tb, Dy and Ho can increase the magnetocrystalline anisotropy field of the main phase of the magnet, which is beneficial to increase the coercive force of the magnet.
- the high-performance sintered NdFeB magnet has an average grain size of more than 4 ⁇ m.
- the invention has the advantages that a coating layer containing a heavy rare earth element is formed on the surface of the sintered NdFeB magnet base by preparing a sintered NdFeB magnet base body, and the heavy rare earth element-containing coating layer is used in a heat treatment process.
- the heavy rare earth element penetrates into the sintered NdFeB magnet matrix to obtain a high performance sintered NdFeB magnet.
- the heavy rare earth element infiltrates from the surface layer of the sintered NdFeB magnet base along the grain boundary, and takes the representative layer region grain boundary.
- the light rare earth element in the epitaxial region of the phase and the main phase enters the grain boundary phase and the main phase, and the heavy rare earth element diffuses into the main phase lattice to make the lattice constant of the main phase z-axis direction smaller, and the surface of the high-performance sintered NdFeB magnet
- the lattice constant c 1 of the position main phase in the z-axis direction and the lattice constant c 0 of the internal center position in the z-axis direction of the main phase satisfy the condition of 0.01% ⁇ (c 0 - c 1 ) / c 0 ⁇ 1.5%, and high-performance sintering
- the neodymium iron boron magnet obtains a structure in which the lattice constant of the main phase from the surface layer to the inner center position becomes smaller, and the high-performance sintered NdFeB magnet of the structure improves the coercive force of the magnet without remarkably reducing the residual magnetism.
- FIG. 2 is a partial XRD enlarged view of the surface position of the high-performance sintered NdFeB magnet and the center position of the magnet in the first embodiment
- Embodiment 1 A high-performance sintered NdFeB magnet, which is formed by forming a sintered NdFeB magnet base body and forming a heavy rare earth element-containing coating layer on the surface of the sintered NdFeB magnet base body.
- the heat treatment process infiltrates the heavy rare earth element in the coating layer containing the heavy rare earth element into the sintered NdFeB magnet matrix, and records the lattice constant of the main phase z-axis direction of the surface of the high-performance sintered NdFeB magnet as c 1 .
- the lattice constant of the z-axis direction of the main center of the internal center position of the high-performance sintered NdFeB magnet is denoted as c 0 , and c 1 and c 0 satisfy the following relationship: 0.01% ⁇ (c 0 - c 1 ) / c 0 ⁇ 1.5 %, where the symbol "/" is the division symbol.
- the sintered NdFeB magnet base body is obtained by mechanical processing from a sintered NdFeB magnet substrate, and its size (length ⁇ width ⁇ thickness) is 12 mm ⁇ 12 mm ⁇ 3.4 mm, and the sintered NdFeB magnet substrate is made of ⁇ .
- the conventional quick-setting slab, hydrogen crushing, jet milling, forming and sintering processes are prepared.
- the sintered NdFeB magnet matrix component is Nd 24 Pr 6 Dy 1 Co 0.5 Al 0.5 Ga 0.1 Cu 0.1 Nb 0.3 B 1 Fe 66.5 .
- a method for forming a heavy rare earth element-containing coating layer on the surface of the sintered NdFeB magnet substrate is: dispersing the DyF 3 powder in anhydrous ethanol and uniformly obtaining a suspension, and then spraying the suspension to the sintering.
- the surface of the base of the neodymium iron boron magnet forms a DyF 3 coating layer having a thickness of 10 ⁇ m.
- the high-performance sintered NdFeB magnet has an average grain size of 8 ⁇ m.
- the heat treatment process is: the sintered NdFeB magnet having a DyF 3 coating layer on the surface is firstly subjected to diffusion treatment in a vacuum environment with a pressure of 1 ⁇ 10 ⁇ 4 Pa, and then subjected to aging treatment, and the diffusion treatment temperature is 880. °C, time is 6h; aging treatment temperature is 500 ° C, time is 4h.
- the surface position and the inner center position of the high-performance sintered NdFeB magnet of the present embodiment were subjected to XRD detection, and the test results are shown in FIGS. 1 and 2.
- the XRD spectrum peak at the surface position of the main phase of the high-performance sintered NdFeB magnet of the present embodiment is shifted in the high angle direction with respect to the XRD spectrum peak at the internal center position. From this, it can be seen that Dy enters the main phase lattice so that the high-performance sintered NdFeB magnet has a gradient structure in which the lattice constant becomes small.
- the lattice constant of the main phase z-axis direction of the surface of the high-performance sintered NdFeB magnet of the present embodiment can be calculated as a percentage change of the lattice constant of the main phase z-axis direction of the inner center position of the magnet:
- A is the percentage change of the lattice constant
- the lattice constant of the main phase in the z-axis direction of the magnet surface position is c 1
- the lattice constant of the main phase of the magnet in the z-axis direction of the main phase is c 0
- d 1 is the main phase of the magnet surface position z
- the interplanar spacing of the axial direction, d 0 is the interplanar spacing of the main phase in the z-axis direction of the inner center position of the magnet.
- the lattice constant of the main phase z-axis direction of the surface position of the high-performance sintered NdFeB magnet of the present embodiment is reduced by 0.0425% with respect to the lattice constant of the main phase z-axis direction of the inner center position of the magnet.
- Embodiment 2 A high-performance sintered NdFeB magnet, the high-performance sintered NdFeB magnet is formed by forming a sintered NdFeB magnet base body and forming a heavy rare earth element-containing coating layer on the surface of the sintered NdFeB magnet base body.
- the heat treatment process infiltrates the heavy rare earth element in the coating layer containing the heavy rare earth element into the sintered NdFeB magnet matrix, and records the lattice constant of the main phase z-axis direction of the surface of the high-performance sintered NdFeB magnet as c 1 .
- the lattice constant of the z-axis direction of the main center of the internal center position of the high-performance sintered NdFeB magnet is denoted as c 0 , and c 1 and c 0 satisfy the following relationship: 0.01% ⁇ (c 0 - c 1 ) / c 0 ⁇ 1.5 %, where the symbol "/" is the division symbol.
- the sintered NdFeB magnet base body is obtained by mechanical processing from a sintered NdFeB magnet substrate, and its size (length ⁇ width ⁇ thickness) is 12 mm ⁇ 12 mm ⁇ 3.4 mm, and the sintered NdFeB magnet substrate is made of ⁇ .
- the conventional quick-setting slab, hydrogen crushing, jet milling, forming and sintering processes are prepared.
- the sintered NdFeB magnet matrix component is Nd 24 Pr 6 Dy 1 Co 0.5 Al 0.5 Ga 0.1 Cu 0.1 Nb 0.3 B 1 Fe 66.5 .
- a method for forming a heavy rare earth element-containing coating layer on the surface of the sintered NdFeB magnet substrate is: dispersing the DyF 3 powder in anhydrous ethanol and uniformly obtaining a suspension, and then spraying the suspension to the sintering.
- a surface of the NdFeB magnet substrate was formed with a DyF 3 coating layer having a thickness of 150 ⁇ m.
- the high-performance sintered NdFeB magnet has an average grain size of 9 ⁇ m.
- the heat treatment process is: the sintered NdFeB magnet having a DyF 3 coating layer on the surface is first subjected to diffusion treatment in a vacuum environment with a pressure of 9 ⁇ 10 ⁇ 5 Pa, and then subjected to aging treatment, and the diffusion treatment temperature is 900. °C, time is 10h; aging treatment temperature is 500 ° C, time is 4h.
- the surface position and the inner center position of the high-performance sintered NdFeB magnet of the present embodiment were subjected to XRD detection, and the test results are shown in FIGS. 3 and 4.
- the XRD spectrum peak of the main phase of the high-performance sintered NdFeB magnet of the present embodiment is shifted in the high angle direction with respect to the XRD spectrum peak of the internal center position. It can be seen that Dy enters the main phase lattice so that the high-performance sintered NdFeB magnet has a gradient junction with a smaller lattice constant. Structure.
- Table 3 shows the surface position of the high-performance sintered NdFeB magnet of the present embodiment and the degree of the main phase (006) crystal plane 2 ⁇ of the inner center position of the magnet, and the data is derived from the XRD pattern.
- the lattice constant of the main phase z-axis direction of the surface of the high-performance sintered NdFeB magnet of the present embodiment can be calculated as a percentage change of the lattice constant of the main phase z-axis direction of the inner center position of the magnet:
- A is the percentage change of the lattice constant
- the lattice constant of the main phase in the z-axis direction of the magnet surface position is c 1
- the lattice constant of the main phase of the magnet in the z-axis direction of the main phase is c 0
- d 1 is the main phase of the magnet surface position z
- the interplanar spacing of the axial direction, d 0 is the interplanar spacing of the main phase in the z-axis direction of the inner center position of the magnet.
- the lattice constant of the main phase z-axis direction of the surface position of the high-performance sintered NdFeB magnet of the present embodiment is reduced by 0.4211% with respect to the lattice constant of the main phase z-axis direction of the inner center position of the magnet.
- Embodiment 3 A high-performance sintered NdFeB magnet, which is formed by forming a sintered NdFeB magnet base body and forming a heavy rare earth element-containing coating layer on the surface of the sintered NdFeB magnet base body.
- the heat treatment process infiltrates the heavy rare earth element in the coating layer containing the heavy rare earth element into the sintered NdFeB magnet matrix, and records the lattice constant of the main phase z-axis direction of the surface of the high-performance sintered NdFeB magnet as c 1 .
- the lattice constant of the z-axis direction of the main center of the internal center position of the high-performance sintered NdFeB magnet is denoted as c 0 , and c 1 and c 0 satisfy the following relationship: 0.01% ⁇ (c 0 - c 1 ) / c 0 ⁇ 1.5 %, where the symbol "/" is the division symbol.
- the lattice constant of the main phase in the z-axis direction at a depth of 400 ⁇ m from the surface of the high-performance sintered NdFeB magnet is denoted by c 2
- c 1 and c 2 satisfy the following relationship: 0.01% ⁇ (c 2 -c 1 ) / c 2 ⁇ 1.2%, where the symbol "/" is the division symbol.
- the sintered NdFeB magnet base body is obtained by mechanical processing from a sintered NdFeB magnet substrate, and its size (length ⁇ width ⁇ thickness) is 12 mm ⁇ 12 mm ⁇ 3.4 mm, and the sintered NdFeB magnet substrate is made of ⁇ .
- the conventional quick-setting slab, hydrogen crushing, jet milling, forming and sintering processes are prepared.
- the sintered NdFeB magnet matrix component is Nd 24 Pr 6 Dy 1 Co 0.5 Al 0.5 Ga 0.1 Cu 0.1 Nb 0.3 B 1 Fe 66.5 .
- a method for forming a heavy rare earth element-containing coating layer on the surface of the sintered NdFeB magnet substrate is: dispersing the DyF 3 powder in anhydrous ethanol and uniformly obtaining a suspension, and then spraying the suspension to the sintering.
- the surface of the base of the neodymium iron boron magnet forms a DyF 3 coating layer having a thickness of 200 ⁇ m.
- the high-performance sintered NdFeB magnet has an average grain size of 7 ⁇ m.
- the heat treatment process is: the sintered NdFeB magnet having a DyF 3 coating layer on the surface is first subjected to diffusion treatment in a vacuum environment with a pressure of 1 ⁇ 10 ⁇ 3 Pa, and then subjected to aging treatment, and the diffusion treatment temperature is 930. °C, time is 12h; aging treatment temperature is 520 ° C, time is 4h.
- the high-performance sintered NdFeB magnet has a small reduction in remanence relative to the sintered NdFeB magnet matrix, but the coercive force of the magnet is significantly improved.
- the constant is c 1
- the lattice constant of the main phase in the z-axis direction of the main center of the magnet is c 0
- d 1 is the interplanar spacing of the main phase z-axis direction of the magnet surface position
- d 0 is the main center z-axis direction of the magnet inner center position The interplanar spacing.
- Embodiment 4 A high-performance sintered NdFeB magnet, which is formed by forming a sintered NdFeB magnet base body and forming a heavy rare earth element-containing coating layer on the surface of the sintered NdFeB magnet base body.
- the heat treatment process infiltrates the heavy rare earth element in the coating layer containing the heavy rare earth element into the sintered NdFeB magnet matrix, and records the lattice constant of the main phase z-axis direction of the surface of the high-performance sintered NdFeB magnet as c 1 .
- the lattice constant of the z-axis direction of the main center of the internal center position of the high-performance sintered NdFeB magnet is denoted as c 0 , and c 1 and c 0 satisfy the following relationship: 0.01% ⁇ (c 0 - c 1 ) / c 0 ⁇ 1.5 %, where the symbol "/" is the division symbol.
- the sintered NdFeB magnet base body is obtained by mechanical processing from a sintered NdFeB magnet substrate, and its size (length ⁇ width ⁇ thickness) is 12 mm ⁇ 12 mm ⁇ 3.4 mm, and the sintered NdFeB magnet substrate is made of ⁇ .
- the conventional quick-setting slab, hydrogen crushing, jet milling, forming and sintering processes are prepared.
- the sintered NdFeB magnet matrix component is Nd 24 Pr 6 Dy 1 Co 0.5 Al 0.5 Ga 0.1 Cu 0.1 Nb 0.3 B 1 Fe 66.5 .
- a method for forming a heavy rare earth element-containing coating layer on the surface of the sintered NdFeB magnet substrate is: depositing a heavy rare earth element Dy on the surface of the sintered NdFeB magnet substrate by physical vapor deposition to form a Dy coating layer, the thickness thereof It is 85 ⁇ m.
- the high-performance sintered NdFeB magnet has an average grain size of 11 ⁇ m.
- the heat treatment process is as follows: a sintered NdFeB magnet having a Dy coating layer on the surface is first subjected to diffusion treatment in a vacuum environment having a pressure of 1 ⁇ 10 ⁇ 4 Pa, and then subjected to aging treatment, and the diffusion treatment temperature is 920° C. The time is 10h; the temperature of the aging treatment is 510 ° C, and the time is 5 h.
- the high-performance sintered NdFeB magnet has a small reduction in remanence relative to the sintered NdFeB magnet matrix, but the coercive force of the magnet is significantly improved.
- Embodiment 5 A high-performance sintered NdFeB magnet, the high-performance sintered NdFeB magnet is formed by forming a sintered NdFeB magnet base body and forming a heavy rare earth element-containing coating layer on the surface of the sintered NdFeB magnet base body.
- the NdFeB magnets with high performance sintered z-axis direction referred to as the lattice constant c 1
- the lattice constant of the main center of the high-performance sintered NdFeB magnet in the z-axis direction of the main phase is denoted by c 0
- c 1 and c 0 satisfy the following relationship: 0.01% ⁇ (c 0 - c 1 ) / c 0 ⁇ 1.5% , where the symbol "/" is the division symbol.
- the lattice constant of the main phase in the z-axis direction at a depth of 400 ⁇ m from the surface of the high-performance sintered NdFeB magnet is denoted by c 2
- c 1 and c 2 satisfy the following relationship: 0.01% ⁇ (c 2 -c 1 ) / c 2 ⁇ 1.2%, where the symbol "/" is the division symbol.
- the sintered NdFeB magnet base body is obtained by mechanical processing from a sintered NdFeB magnet substrate, and its size (length ⁇ width ⁇ thickness) is 12 mm ⁇ 12 mm ⁇ 3.4 mm, and the sintered NdFeB magnet substrate is made of ⁇ .
- the conventional quick-setting slab, hydrogen crushing, jet milling, forming and sintering processes are prepared.
- the sintered NdFeB magnet matrix component is Nd 24 Pr 6 Dy 1 Co 0.5 Al 0.5 Ga 0.1 Cu 0.1 Nb 0.3 B 1 Fe 66.5 .
- a method for forming a heavy rare earth element-containing coating layer on the surface of the sintered NdFeB magnet base body is: dispersing the TbF 3 powder in anhydrous ethanol and uniformly mixing to obtain a suspension, and then spraying the suspension to the sintering.
- the surface of the base of the neodymium iron boron magnet forms a TbF 3 coating layer having a thickness of 105 ⁇ m.
- the high-performance sintered NdFeB magnet has an average grain size of 10 ⁇ m.
- the heat treatment process is as follows: a sintered NdFeB magnet having a TbF 3 coating layer on the surface is first subjected to diffusion treatment in a vacuum environment having a pressure of 1 ⁇ 10 ⁇ 4 Pa, and then subjected to aging treatment, and the diffusion treatment temperature is 900. °C, time is 7h; aging treatment temperature is 510 ° C, time is 4.5h.
- the high-performance sintered NdFeB magnet has a small reduction in remanence relative to the sintered NdFeB magnet matrix, but the coercive force of the magnet is significantly improved.
- the lattice constant of the main phase in the z-axis direction of the magnet surface position is c 1
- the lattice constant of the main phase of the magnet in the z-axis direction is c 2
- d 1 is the surface of the magnet.
- the interplanar spacing in the z-axis direction of the main phase of the position, and d 2 is the interplanar spacing of the main phase in the z-axis direction at a depth of 400 ⁇ m from the surface of the magnet.
- Embodiment 6 A high performance sintered neodymium iron boron magnet, which is formed by forming a sintered NdFeB magnet base body and forming a heavy rare earth element-containing coating layer on the surface of the sintered NdFeB magnet base body. The heat treatment process infiltrates the heavy rare earth element in the coating layer containing the heavy rare earth element into the sintered NdFeB magnet matrix, and records the lattice constant of the main phase z-axis direction of the surface of the high-performance sintered NdFeB magnet as c 1 .
- the lattice constant of the z-axis direction of the main center of the internal center position of the high-performance sintered NdFeB magnet is denoted as c 0 , and c 1 and c 0 satisfy the following relationship: 0.01% ⁇ (c 0 - c 1 ) / c 0 ⁇ 1.5 %, where the symbol "/" is the division symbol.
- the sintered NdFeB magnet base body is obtained by mechanical processing from a sintered NdFeB magnet substrate, and its size (length ⁇ width ⁇ thickness) is 12 mm ⁇ 12 mm ⁇ 3.4 mm, and the sintered NdFeB magnet substrate is made of ⁇ .
- the conventional quick-setting slab, hydrogen crushing, jet milling, forming and sintering processes are prepared.
- the sintered NdFeB magnet matrix component is Nd 24 Pr 6 Dy 1 Co 0.5 Al 0.5 Ga 0.1 Cu 0.1 Nb 0.3 B 1 Fe 66.5 .
- a method for forming a heavy rare earth element-containing coating layer on the surface of the sintered NdFeB magnet substrate is: dispersing the TbH 3 powder in anhydrous ethanol and uniformly mixing to obtain a suspension, and then spraying the suspension to the sintering.
- the surface of the base of the neodymium iron boron magnet forms a TbH 3 coating layer having a thickness of 80 ⁇ m.
- the high-performance sintered NdFeB magnet has an average grain size of 12 ⁇ m.
- the heat treatment process is: the sintered NdFeB magnet having a TbH 3 coating layer on the surface is first subjected to diffusion treatment in a vacuum environment with a pressure of 1 ⁇ 10 ⁇ 4 Pa, and then subjected to aging treatment, and the diffusion treatment temperature is 900. °C, time is 8h; aging treatment temperature is 500 ° C, time is 4h.
- the high-performance sintered NdFeB magnet has a small reduction in remanence relative to the sintered NdFeB magnet matrix, but the coercive force of the magnet is significantly improved.
- Embodiment 7 A high-performance sintered NdFeB magnet, the high-performance sintered NdFeB magnet is formed by forming a sintered NdFeB magnet base body and forming a heavy rare earth element-containing coating layer on the surface of the sintered NdFeB magnet base body.
- the heat treatment process infiltrates the heavy rare earth element in the coating layer containing the heavy rare earth element into the sintered NdFeB magnet matrix, and records the lattice constant of the main phase z-axis direction of the surface of the high-performance sintered NdFeB magnet as c 1 .
- the lattice constant of the z-axis direction of the main center of the internal center position of the high-performance sintered NdFeB magnet is denoted as c 0 , and c 1 and c 0 satisfy the following relationship: 0.01% ⁇ (c 0 - c 1 ) / c 0 ⁇ 1.5 %, where the symbol "/" is the division symbol.
- the sintered NdFeB magnet base body is obtained by mechanical processing from a sintered NdFeB magnet substrate, and its size (length ⁇ width ⁇ thickness) is 12 mm ⁇ 12 mm ⁇ 3.4 mm, and the sintered NdFeB magnet substrate is made of ⁇ .
- the conventional quick-setting slab, hydrogen crushing, jet milling, forming and sintering processes are prepared.
- the sintered NdFeB magnet matrix component is Nd 24 Pr 6 Dy 1 Co 0.5 Al 0.5 Ga 0.1 Cu 0.1 Nb 0.3 B 1 Fe 66.5 .
- a method for forming a heavy rare earth element-containing coating layer on the surface of the sintered NdFeB magnet substrate is: dispersing the HoFeH x powder in anhydrous ethanol and uniformly obtaining a suspension, and then spraying the suspension to the sintering.
- the surface of the base of the neodymium iron boron magnet forms a HoFeH x coating layer having a thickness of 100 ⁇ m, wherein 2 ⁇ x ⁇ 3.
- the high-performance sintered NdFeB magnet has an average grain size of 6 ⁇ m.
- the heat treatment process is as follows: a sintered NdFeB magnet having a HoFeH x coating layer on the surface is first subjected to diffusion treatment in a vacuum environment having a pressure of 1 ⁇ 10 ⁇ 3 Pa, and then subjected to aging treatment, and the diffusion treatment temperature is 960. °C, time is 10h; aging treatment temperature is 500 ° C, time is 4h.
- the high-performance sintered NdFeB magnet has a small reduction in remanence relative to the sintered NdFeB magnet matrix, but the coercive force of the magnet is obviously improved.
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Hard Magnetic Materials (AREA)
- Powder Metallurgy (AREA)
Abstract
一种高性能烧结钕铁硼磁体,该高性能烧结钕铁硼磁体是通过制备烧结钕铁硼磁体基体,在烧结钕铁硼磁体基体表面形成含重稀土元素的覆盖层,采用热处理工艺将含重稀土元素覆盖层中的重稀土元素渗入烧结钕铁硼磁体基体内部得到,将高性能烧结钕铁硼磁体的表面位置主相z轴方向的晶格常数记为c1,将高性能烧结钕铁硼磁体的内部中心位置主相z轴方向的晶格常数记为c0,c1和c0满足以下关系:0.01%<(c0-c1)/c0<1.5%,其中符号"/"为除法运算符号;优点是在剩磁不明显降低的情况下,提高磁体矫顽力,同时具备高的矫顽力和高的剩磁,并且重稀土元素仅存在于磁体表层晶界相和主相外延区域中,在制备过程中可以显著减少重稀土元素的用量,降低磁体的成本。
Description
本发明涉及一种烧结钕铁硼磁体,尤其是涉及一种高性能烧结钕铁硼磁体。
烧结钕铁硼磁体自发明以来,以其优异的综合磁性能及相对低廉的价格而得到广泛应用。近年来,随着科技的加速发展,烧结钕铁硼磁体在新能源汽车、变频压缩机和风力发电等高端领域的推广速度和应用范围迅速扩大。这些领域均要求烧结钕铁硼磁体具有较高的综合磁性能,即具有高的剩磁及高的矫顽力。
现有的高性能烧结钕铁硼磁体主要有两种结构。一种结构的烧结钕铁硼磁体内,重稀土元素(Dy和Tb中的至少一种)在磁体内部均匀分布,其结构是通过在熔炼过程中直接加入重稀土元素后使重稀土元素在磁体内均匀分布而实现,因此为获得该结构的烧结钕铁硼磁体需要使用较多的重稀土元素,制备成本较高。在该磁体内重稀土元素部分取代主相合金中的Nd原子,磁体主相z轴方向的晶格常数变小,具有较高的各向异性场,矫顽力较高,但其饱和磁极化强度却明显降低,磁体的剩磁也随之降低。在另一种结构的烧结钕铁硼磁体内,重稀土元素(Dy和Tb中的至少一种)主要分布在磁体内的晶界相附近,相对于第一种结构的烧结钕铁硼磁体其重稀土元素含量虽有减少,但减少的并不明显。该烧结钕铁硼磁体的结构是通过双合金工艺实现的,在双合金工艺中,按主相正比成分熔炼合金,被称为第一合金,再按富钕相和富硼相组成的晶界相的成分熔炼第二合金,第一合金和第二合金分别用真空速凝工艺熔炼,熔炼后按一定比例混合后制备烧结钕铁硼磁体。为了保证该烧结钕铁硼磁体具有较高的矫顽力,第二合金中包含重稀土元素Dy和Tb中的至少一种,经过高温烧结,第二合金扩散到第一合金主相内,制备过程中重稀土元素仍需要使用较多,生产成本仍然较高。
发明内容
本发明所要解决的技术问题是提供一种重稀土元素用量少,且具有高矫顽力和高剩磁的低成本高性能烧结钕铁硼磁体。
本发明解决上述技术问题所采用的技术方案为:一种高性能烧结钕铁硼磁体,该高性能烧结钕铁硼磁体是通过制备烧结钕铁硼磁体基体,在烧结钕铁硼磁体基体表面形成含重稀土元素的覆盖层,采用热处理工艺将含重稀土元素的覆盖层中的重稀土元素渗入烧结钕铁硼磁体基体内部得到,将所述的高性能烧结钕铁硼磁体的表面位置主相z轴方向的晶格常数记为c1,将所述的高性能烧结钕铁硼磁体的内部中心位置主相z轴方向的晶格常数记为c0,c1和c0满足以下关系:0.01%<(c0-c1)/c0<1.5%,其中符号“/”为除法运算符号。
将所述的高性能烧结钕铁硼磁体内部距其表面400μm深度范围内的位置处主相z轴方向的晶格常数记为c2,c1和c2满足以下关系:0.01%<(c2-c1)/c2<1.2%,其中符号“/”为除法运算符号。该高性能烧结钕铁硼磁体内部距表面400μm深度范围内,重稀土元素的渗入使得主相具有较高的磁晶各向异性场HA,显著地提高了磁体矫顽力。同时,重稀土元素的渗入引起晶格常数的变化主要集中在磁体内部距表面400μm的范围内,因此可显著地减少重稀土元素的用量。
所述的烧结钕铁硼磁体基体的成分为NdmNnXtFe100-m-n-k-tBk,其中Nd为钕元素,N为La、Ce、Pr、Dy、Tb、Ho、Gd元素中的至少一种,X为Co、Mn、Cu、Al、Ti、Ga、Zr、V、Hf、W和Nb元素中的至少一种,Fe为铁元素,B为硼元素;m、n、t、k满足以下关系:28.5≤m+n≤33,0≤t≤5,0.9≤k≤1.2,m、n、k、t均表示质量百分含量。
所述的含重稀土元素覆盖层中的重稀土元素为Tb、Dy、Ho中的至少一种。重稀土元素Tb、Dy、Ho可提高磁体主相的磁晶各向异性场,有利于提高磁体的矫顽力。
所述的高性能烧结钕铁硼磁体的平均晶粒尺寸大于4μm。
与现有技术相比,本发明的优点在于通过制备烧结钕铁硼磁体基体,在烧结钕铁硼磁体基体表面形成含重稀土元素的覆盖层,采用热处理工艺将含重稀土元素的覆盖层中的重稀土元素渗入烧结钕铁硼磁体基体内部得到一种高性能烧结钕铁硼磁体;在热处理过程中,重稀土元素从烧结钕铁硼磁体基体表层沿晶界处渗入,取代表层区域晶界相及主相外延区域的轻稀土元素进入晶界相及主相,重稀土元素扩散到主相晶格使主相z轴方向的晶格常数变小,该高性能烧结钕铁硼磁体的表面位置主相z轴方向的晶格常数c1和内部中心位置主相z轴方向的晶格常数c0满足条件0.01%<(c0-c1)/c0<1.5%,且高性能烧结钕铁硼磁体获得从表层到内部中心位置主相晶格常数梯度变小的结构,该结构的高性
能烧结钕铁硼磁体在剩磁不明显降低的情况下,提高磁体矫顽力,兼具高矫顽力和高剩磁特性,在该高性能烧结钕铁硼磁体中重稀土元素仅存在于磁体表层晶界相和主相外延区域中,在制备过程中可以显著减少重稀土元素用量,降低磁体的成本。
图1为实施例一中高性能烧结钕铁硼磁体表面位置及磁体内部中心位置的XRD图谱;
图2为实施例一中高性能烧结钕铁硼磁体表面位置及磁体内部中心位置的XRD局部放大图谱;
图3为实施例二中高性能烧结钕铁硼磁体表面位置及磁体内部中心位置的XRD图谱;
图4为实施例二中高性能烧结钕铁硼磁体表面位置及磁体内部中心位置的XRD局部放大图谱。
以下结合附图实施例对本发明作进一步详细描述。
实施例一:一种高性能烧结钕铁硼磁体,该高性能烧结钕铁硼磁体是通过制备烧结钕铁硼磁体基体,在烧结钕铁硼磁体基体表面形成含重稀土元素的覆盖层,采用热处理工艺将含重稀土元素的覆盖层中的重稀土元素渗入烧结钕铁硼磁体基体内部得到,将高性能烧结钕铁硼磁体的表面位置主相z轴方向的晶格常数记为c1,将高性能烧结钕铁硼磁体的内部中心位置主相z轴方向的晶格常数记为c0,c1和c0满足以下关系:0.01%<(c0-c1)/c0<1.5%,其中符号“/”为除法运算符号。
本实施例中,烧结钕铁硼磁体基体由烧结钕铁硼磁体基材通过机械加工获得,其大小(长度×宽度×厚度)为12mm×12mm×3.4mm,烧结钕铁硼磁体基材采用钕铁硼生产领域中常规的速凝铸片、氢碎、气流磨、成型和烧结等工艺制备所得,烧结钕铁硼磁体基体成分为Nd24Pr6Dy1Co0.5Al0.5Ga0.1Cu0.1Nb0.3B1Fe66.5。
本实施例中,在烧结钕铁硼磁体基体表面形成含重稀土元素覆盖层的方法为:将DyF3粉末分散于无水乙醇中混合均匀后得到悬浊液,然后将悬浊液喷涂到烧结钕铁硼磁体基体表面形成DyF3覆盖层,其厚度为10μm。
本实施例中,高性能烧结钕铁硼磁体的平均晶粒尺寸为8μm。
本实施例中,热处理工艺为:将表面具有DyF3覆盖层的烧结钕铁硼磁体在压力为1×10-4Pa的真空环境中先进行扩散处理后进行时效处理,扩散处理的温度为880℃,时间为6h;时效处理的温度为500℃,时间为4h。
对烧结钕铁硼磁体基体和本实施例的高性能烧结钕铁硼磁体进行性能测试,其测试结果如表1所示:
表1烧结钕铁硼磁体基体和实施例一中高性能烧结钕铁硼磁体的磁性能测试结果
从测试结果可知,高性能烧结钕铁硼磁体相对于烧结钕铁硼磁体基体剩磁降低幅度小,但磁体矫顽力却明显提高。
对本实施例的高性能烧结钕铁硼磁体表面位置及内部中心位置进行XRD检测,其测试结果如图1和图2所示。从图1及图2的XRD图谱可知,本实施例的高性能烧结钕铁硼磁体主相在表面位置的XRD谱峰相对内部中心位置的XRD谱峰向高角度方向偏移。由此可知,Dy进入主相晶格使高性能烧结钕铁硼磁体具有晶格常数变小的梯度结构。
根据下式可以计算出本实施例的高性能烧结钕铁硼磁体表面位置主相z轴方向的晶格常数相对磁体内部中心位置主相z轴方向的晶格常数变化百分比A为:
A=(c0-c1)/c0=(d0-d1)/d0×100%
A为晶格常数变化百分比,磁体表面位置主相z轴方向的晶格常数为c1,磁体内部中心位置主相z轴方向的晶格常数为c0,d1为磁体表面位置主相z轴方向的晶面间距,d0为磁体内部中心位置主相z轴方向的晶面间距。
由此可知,本实施例的高性能烧结钕铁硼磁体表面位置主相z轴方向的晶格常数相对磁体内部中心位置主相z轴方向的晶格常数减少0.0425%。
实施例二:一种高性能烧结钕铁硼磁体,该高性能烧结钕铁硼磁体是通过制备烧结钕铁硼磁体基体,在烧结钕铁硼磁体基体表面形成含重稀土元素的覆盖层,采用热处理
工艺将含重稀土元素的覆盖层中的重稀土元素渗入烧结钕铁硼磁体基体内部得到,将高性能烧结钕铁硼磁体的表面位置主相z轴方向的晶格常数记为c1,将高性能烧结钕铁硼磁体的内部中心位置主相z轴方向的晶格常数记为c0,c1和c0满足以下关系:0.01%<(c0-c1)/c0<1.5%,其中符号“/”为除法运算符号。
本实施例中,烧结钕铁硼磁体基体由烧结钕铁硼磁体基材通过机械加工获得,其大小(长度×宽度×厚度)为12mm×12mm×3.4mm,烧结钕铁硼磁体基材采用钕铁硼生产领域中常规的速凝铸片、氢碎、气流磨、成型和烧结等工艺制备所得,烧结钕铁硼磁体基体成分为Nd24Pr6Dy1Co0.5Al0.5Ga0.1Cu0.1Nb0.3B1Fe66.5。
本实施例中,在烧结钕铁硼磁体基体表面形成含重稀土元素覆盖层的方法为:将DyF3粉末分散于无水乙醇中混合均匀后得到悬浊液,然后将悬浊液喷涂到烧结钕铁硼磁体基体表面形成DyF3覆盖层,其厚度为150μm。
本实施例中,高性能烧结钕铁硼磁体的平均晶粒尺寸为9μm。
本实施例中,热处理工艺为:将表面具有DyF3覆盖层的烧结钕铁硼磁体在压力为9×10-5Pa的真空环境中先进行扩散处理后进行时效处理,扩散处理的温度为900℃,时间为10h;时效处理的温度为500℃,时间为4h。
对烧结钕铁硼磁体基体和本实施例的高性能烧结钕铁硼磁体进行性能测试,其测试结果如表2所示:
表2烧结钕铁硼磁体基体和实施例二中高性能烧结钕铁硼磁体的磁性能测试结果
从测试结果可知,高性能烧结钕铁硼磁体相对于烧结钕铁硼磁体基体剩磁降低幅度小,但磁体矫顽力却显著提高。
对本实施例的高性能烧结钕铁硼磁体表面位置及内部中心位置进行XRD检测,其测试结果如图3和图4所示。从图3及图4的XRD图谱可知,本实施例的高性能烧结钕铁硼磁体主相在表面位置的XRD谱峰相对内部中心位置的XRD谱峰向高角度方向偏移。由此可知,Dy进入主相晶格使高性能烧结钕铁硼磁体具有晶格常数变小的梯度结
构。
表3为本实施例的高性能烧结钕铁硼磁体表面位置及磁体内部中心位置主相(006)晶面2θ的度数,其数据来源于XRD图谱。
表3实施例二中高性能烧结钕铁硼磁体表面位置及内部中心位置(006)晶面的2θ角度:
位置 | (006)晶面的2θ角度 |
表面 | 44.636° |
内部中心 | 44.438° |
根据下式可以计算出本实施例的高性能烧结钕铁硼磁体表面位置主相z轴方向的晶格常数相对磁体内部中心位置主相z轴方向的晶格常数变化百分比A为:
A=(c0-c1)/c0=(d0-d1)/d0×100%
A为晶格常数变化百分比,磁体表面位置主相z轴方向的晶格常数为c1,磁体内部中心位置主相z轴方向的晶格常数为c0,d1为磁体表面位置主相z轴方向的晶面间距,d0为磁体内部中心位置主相z轴方向的晶面间距。
由此可知,本实施例的高性能烧结钕铁硼磁体表面位置主相z轴方向的晶格常数相对磁体内部中心位置主相z轴方向的晶格常数减少0.4211%。
实施例三:一种高性能烧结钕铁硼磁体,该高性能烧结钕铁硼磁体是通过制备烧结钕铁硼磁体基体,在烧结钕铁硼磁体基体表面形成含重稀土元素的覆盖层,采用热处理工艺将含重稀土元素的覆盖层中的重稀土元素渗入烧结钕铁硼磁体基体内部得到,将高性能烧结钕铁硼磁体的表面位置主相z轴方向的晶格常数记为c1,将高性能烧结钕铁硼磁体的内部中心位置主相z轴方向的晶格常数记为c0,c1和c0满足以下关系:0.01%<(c0-c1)/c0<1.5%,其中符号“/”为除法运算符号。
本实施例中,将高性能烧结钕铁硼磁体内部距其表面400μm深度处的主相z轴方向的晶格常数记为c2,c1和c2满足以下关系:0.01%<(c2-c1)/c2<1.2%,其中符号“/”为除法运算符号。
本实施例中,烧结钕铁硼磁体基体由烧结钕铁硼磁体基材通过机械加工获得,其大小(长度×宽度×厚度)为12mm×12mm×3.4mm,烧结钕铁硼磁体基材采用钕铁硼生产领域中常规的速凝铸片、氢碎、气流磨、成型和烧结等工艺制备所得,烧结钕铁硼磁体基体成分为Nd24Pr6Dy1Co0.5Al0.5Ga0.1Cu0.1Nb0.3B1Fe66.5。
本实施例中,在烧结钕铁硼磁体基体表面形成含重稀土元素覆盖层的方法为:将DyF3粉末分散于无水乙醇中混合均匀后得到悬浊液,然后将悬浊液喷涂到烧结钕铁硼磁体基体表面形成DyF3覆盖层,其厚度为200μm。
本实施例中,高性能烧结钕铁硼磁体的平均晶粒尺寸为7μm。
本实施例中,热处理工艺为:将表面具有DyF3覆盖层的烧结钕铁硼磁体在压力为1×10-3Pa的真空环境中先进行扩散处理后进行时效处理,扩散处理的温度为930℃,时间为12h;时效处理的温度为520℃,时间为4h。
对烧结钕铁硼磁体基体和本实施例的高性能烧结钕铁硼磁体进行性能测试,其测试结果如表4所示:
表4烧结钕铁硼磁体基体和实施例三中高性能烧结钕铁硼磁体的磁性能测试结果
从测试结果可知,高性能烧结钕铁硼磁体相对于烧结钕铁硼磁体基体剩磁降低幅度小,但磁体矫顽力却显著提高。对本实施例的高性能烧结钕铁硼磁体表面位置及内部中心位置进行XRD检测,根据检测结果及公式A=(c0-c1)/c0=(d0-d1)/d0×100%,可以计算出本实施例的高性能烧结钕铁硼磁体表面位置主相z轴方向的晶格常数相对磁体内部中心位置主相z轴方向的晶格常数变化了0.4501%,即磁体表面位置主相z轴方向的晶格常数相对磁体内部中心位置主相z轴方向的晶格常数减少了0.4501%;式中A为晶格常数变化百分比,磁体表面位置主相z轴方向的晶格常数为c1,磁体内部中心位置主相z轴方向的晶格常数为c0,d1为磁体表面位置主相z轴方向的晶面间距,d0为磁体内部中心位置主相z轴方向的晶面间距。
对该高性能烧结钕铁硼磁体的表面位置及距表面400μm深度位置进行XRD检测,根据检测结果及公式A=(c2-c1)/c2=(d2-d1)/d2×100%,可以计算出该高性能烧结钕铁硼磁体表面位置主相z轴方向的晶格常数相对磁体内部距表面400μm深度位置主相z轴方向的晶格常数减小了0.254%;式中A为晶格常数变化百分比,磁体表面位置主相z轴方向的晶格常数为c1,磁体内部距表面400μm深度位置主相z轴方向的晶格常数为c2,
d1为磁体表面位置主相z轴方向的晶面间距,d2为磁体内部距表面400μm深度位置主相z轴方向的晶面间距。
实施例四:一种高性能烧结钕铁硼磁体,该高性能烧结钕铁硼磁体是通过制备烧结钕铁硼磁体基体,在烧结钕铁硼磁体基体表面形成含重稀土元素的覆盖层,采用热处理工艺将含重稀土元素的覆盖层中的重稀土元素渗入烧结钕铁硼磁体基体内部得到,将高性能烧结钕铁硼磁体的表面位置主相z轴方向的晶格常数记为c1,将高性能烧结钕铁硼磁体的内部中心位置主相z轴方向的晶格常数记为c0,c1和c0满足以下关系:0.01%<(c0-c1)/c0<1.5%,其中符号“/”为除法运算符号。
本实施例中,烧结钕铁硼磁体基体由烧结钕铁硼磁体基材通过机械加工获得,其大小(长度×宽度×厚度)为12mm×12mm×3.4mm,烧结钕铁硼磁体基材采用钕铁硼生产领域中常规的速凝铸片、氢碎、气流磨、成型和烧结等工艺制备所得,烧结钕铁硼磁体基体成分为Nd24Pr6Dy1Co0.5Al0.5Ga0.1Cu0.1Nb0.3B1Fe66.5。
本实施例中,在烧结钕铁硼磁体基体表面形成含重稀土元素覆盖层的方法为:采用物理气相沉积法将重稀土元素Dy沉积在烧结钕铁硼磁体基体表面形成Dy覆盖层,其厚度为85μm。
本实施例中,高性能烧结钕铁硼磁体的平均晶粒尺寸为11μm。
本实施例中,热处理工艺为:将表面具有Dy覆盖层的烧结钕铁硼磁体在压力为1×10-4Pa的真空环境中先进行扩散处理后进行时效处理,扩散处理的温度为920℃,时间为10h;时效处理的温度为510℃,时间为5h。
对烧结钕铁硼磁体基体和本实施例的高性能烧结钕铁硼磁体进行性能测试,其测试结果如表5所示:
表5烧结钕铁硼磁体基体和实施例四中高性能烧结钕铁硼磁体的磁性能测试结果
从测试结果可知,高性能烧结钕铁硼磁体相对于烧结钕铁硼磁体基体剩磁降低幅度小,但磁体矫顽力却显著提高。对本实施例的高性能烧结钕铁硼磁体表面位置及内部中
心位置进行XRD检测,根据检测结果及公式A=(c0-c1)/c0=(d0-d1)/d0×100%,可以计算出本实施例的高性能烧结钕铁硼磁体表面位置主相z轴方向的晶格常数相对磁体内部中心位置主相z轴方向的晶格常数减少了1.1952%;式中A为晶格常数变化百分比,磁体表面位置主相z轴方向的晶格常数为c1,磁体内部中心位置主相z轴方向的晶格常数为c0,d1为磁体表面位置主相z轴方向的晶面间距,d0为磁体内部中心位置主相z轴方向的晶面间距。
实施例五:一种高性能烧结钕铁硼磁体,该高性能烧结钕铁硼磁体是通过制备烧结钕铁硼磁体基体,在烧结钕铁硼磁体基体表面形成含重稀土元素的覆盖层,采用热处理工艺将含重稀土元素覆盖层中的重稀土元素渗入烧结钕铁硼磁体基体内部得到,将高性能烧结钕铁硼磁体的表面位置主相z轴方向的晶格常数记为c1,将高性能烧结钕铁硼磁体的内部中心位置主相z轴方向的晶格常数记为c0,c1和c0满足以下关系:0.01%<(c0-c1)/c0<1.5%,其中符号“/”为除法运算符号。
本实施例中,将高性能烧结钕铁硼磁体内部距其表面400μm深度位置处主相z轴方向的晶格常数记为c2,c1和c2满足以下关系:0.01%<(c2-c1)/c2<1.2%,其中符号“/”为除法运算符号。
本实施例中,烧结钕铁硼磁体基体由烧结钕铁硼磁体基材通过机械加工获得,其大小(长度×宽度×厚度)为12mm×12mm×3.4mm,烧结钕铁硼磁体基材采用钕铁硼生产领域中常规的速凝铸片、氢碎、气流磨、成型和烧结等工艺制备所得,烧结钕铁硼磁体基体成分为Nd24Pr6Dy1Co0.5Al0.5Ga0.1Cu0.1Nb0.3B1Fe66.5。
本实施例中,在烧结钕铁硼磁体基体表面形成含重稀土元素覆盖层的方法为:将TbF3粉末分散于无水乙醇中混合均匀后得到悬浊液,然后将悬浊液喷涂到烧结钕铁硼磁体基体表面形成TbF3覆盖层,其厚度为105μm。
本实施例中,高性能烧结钕铁硼磁体的平均晶粒尺寸为10μm。
本实施例中,热处理工艺为:将表面具有TbF3覆盖层的烧结钕铁硼磁体在压力为1×10-4Pa的真空环境中先进行扩散处理后进行时效处理,扩散处理的温度为900℃,时间为7h;时效处理的温度为510℃,时间为4.5h。
对烧结钕铁硼磁体基体和本实施例的高性能烧结钕铁硼磁体进行性能测试,其测试结果如表6所示:
表6烧结钕铁硼磁体基体和实施例五中高性能烧结钕铁硼磁体的磁性能测试结果
从测试结果可知,高性能烧结钕铁硼磁体相对于烧结钕铁硼磁体基体剩磁降低幅度小,但磁体矫顽力却显著提高。对本实施例的高性能烧结钕铁硼磁体表面位置及内部中心位置进行XRD检测,根据检测结果及公式A=(c0-c1)/c0=(d0-d1)/d0×100%,可以计算出本实施例的高性能烧结钕铁硼磁体表面位置主相z轴方向的晶格常数相对磁体内部中心位置主相z轴方向的晶格常数减少了0.4021%;式中A为晶格常数变化百分比,磁体表面位置主相z轴方向的晶格常数为c1,磁体内部中心位置主相z轴方向的晶格常数为c0,d1为磁体表面位置主相z轴方向的晶面间距,d0为磁体内部中心位置主相z轴方向的晶面间距。
对该高性能烧结钕铁硼磁体的表面位置及距表面400μm深度位置进行XRD检测,根据检测结果及公式A=(c2-c1)/c2=(d2-d1)/d2×100%,可以计算出该高性能烧结钕铁硼磁体表面位置主相z轴方向的晶格常数相对磁体内部距表面400μm深度位置主相z轴方向的晶格常数变化减少了0.351%;式中A为晶格常数变化百分比,磁体表面位置主相z轴方向的晶格常数为c1,磁体内部距表面400μm深度位置主相z轴方向的晶格常数为c2,d1为磁体表面位置主相z轴方向的晶面间距,d2为磁体内部距表面400μm深度位置主相z轴方向的晶面间距。
实施例六:一种高性能烧结钕铁硼磁体,该高性能烧结钕铁硼磁体是通过制备烧结钕铁硼磁体基体,在烧结钕铁硼磁体基体表面形成含重稀土元素的覆盖层,采用热处理工艺将含重稀土元素的覆盖层中的重稀土元素渗入烧结钕铁硼磁体基体内部得到,将高性能烧结钕铁硼磁体的表面位置主相z轴方向的晶格常数记为c1,将高性能烧结钕铁硼磁体的内部中心位置主相z轴方向的晶格常数记为c0,c1和c0满足以下关系:0.01%<(c0-c1)/c0<1.5%,其中符号“/”为除法运算符号。
本实施例中,烧结钕铁硼磁体基体由烧结钕铁硼磁体基材通过机械加工获得,其大小(长度×宽度×厚度)为12mm×12mm×3.4mm,烧结钕铁硼磁体基材采用钕铁硼生产
领域中常规的速凝铸片、氢碎、气流磨、成型和烧结等工艺制备所得,烧结钕铁硼磁体基体成分为Nd24Pr6Dy1Co0.5Al0.5Ga0.1Cu0.1Nb0.3B1Fe66.5。
本实施例中,在烧结钕铁硼磁体基体表面形成含重稀土元素覆盖层的方法为:将TbH3粉末分散于无水乙醇中混合均匀后得到悬浊液,然后将悬浊液喷涂到烧结钕铁硼磁体基体表面形成TbH3覆盖层,其厚度为80μm。
本实施例中,高性能烧结钕铁硼磁体的平均晶粒尺寸为12μm。
本实施例中,热处理工艺为:将表面具有TbH3覆盖层的烧结钕铁硼磁体在压力为1×10-4Pa的真空环境中先进行扩散处理后进行时效处理,扩散处理的温度为900℃,时间为8h;时效处理的温度为500℃,时间为4h。
对烧结钕铁硼磁体基体和本实施例的高性能烧结钕铁硼磁体进行性能测试,其测试结果如表7所示:
表7烧结钕铁硼磁体基体和实施例六中高性能烧结钕铁硼磁体的磁性能测试结果
从测试结果可知,高性能烧结钕铁硼磁体相对于烧结钕铁硼磁体基体剩磁降低幅度小,但磁体矫顽力却显著提高。对本实施例的高性能烧结钕铁硼磁体表面位置及内部中心位置进行XRD检测,根据检测结果及公式A=(c0-c1)/c0=(d0-d1)/d0×100%,可以计算出本实施例的高性能烧结钕铁硼磁体表面位置主相z轴方向的晶格常数相对磁体内部中心位置主相z轴方向的晶格常数减少了0.3815%;式中A为晶格常数变化百分比,磁体表面位置主相z轴方向的晶格常数为c1,磁体内部中心位置主相z轴方向的晶格常数为c0,d1为磁体表面位置主相z轴方向的晶面间距,d0为磁体内部中心位置主相z轴方向的晶面间距。
实施例七:一种高性能烧结钕铁硼磁体,该高性能烧结钕铁硼磁体是通过制备烧结钕铁硼磁体基体,在烧结钕铁硼磁体基体表面形成含重稀土元素的覆盖层,采用热处理工艺将含重稀土元素的覆盖层中的重稀土元素渗入烧结钕铁硼磁体基体内部得到,将高性能烧结钕铁硼磁体的表面位置主相z轴方向的晶格常数记为c1,将高性能烧结钕铁硼
磁体的内部中心位置主相z轴方向的晶格常数记为c0,c1和c0满足以下关系:0.01%<(c0-c1)/c0<1.5%,其中符号“/”为除法运算符号。
本实施例中,烧结钕铁硼磁体基体由烧结钕铁硼磁体基材通过机械加工获得,其大小(长度×宽度×厚度)为12mm×12mm×3.4mm,烧结钕铁硼磁体基材采用钕铁硼生产领域中常规的速凝铸片、氢碎、气流磨、成型和烧结等工艺制备所得,烧结钕铁硼磁体基体成分为Nd24Pr6Dy1Co0.5Al0.5Ga0.1Cu0.1Nb0.3B1Fe66.5。
本实施例中,在烧结钕铁硼磁体基体表面形成含重稀土元素覆盖层的方法为:将HoFeHx粉末分散于无水乙醇中混合均匀后得到悬浊液,然后将悬浊液喷涂到烧结钕铁硼磁体基体表面形成HoFeHx覆盖层,其厚度为100μm,其中2≤x≤3。
本实施例中,高性能烧结钕铁硼磁体的平均晶粒尺寸为6μm。
本实施例中,热处理工艺为:将表面具有HoFeHx覆盖层的烧结钕铁硼磁体在压力为1×10-3Pa的真空环境中先进行扩散处理后进行时效处理,扩散处理的温度为960℃,时间为10h;时效处理的温度为500℃,时间为4h。
对烧结钕铁硼磁体基体和本实施例的高性能烧结钕铁硼磁体进行性能测试,其测试结果如表8所示:
表8烧结钕铁硼磁体基体和实施例七中高性能烧结钕铁硼磁体的磁性能测试结果
从测试结果可知,高性能烧结钕铁硼磁体相对于烧结钕铁硼磁体基体剩磁降低幅度小,但磁体矫顽力却明显提高。对本实施例的高性能烧结钕铁硼磁体表面位置及内部中心位置进行XRD检测,根据检测结果及公式A=(c0-c1)/c0=(d0-d1)/d0×100%,可以计算出本实施例的高性能烧结钕铁硼磁体表面位置主相z轴方向的晶格常数相对磁体内部中心位置主相z轴方向的晶格常数减少了0.542%;式中A为晶格常数变化百分比,磁体表面位置主相z轴方向的晶格常数为c1,磁体内部中心位置主相z轴方向的晶格常数为c0,d1为磁体表面位置主相z轴方向的晶面间距,d0为磁体内部中心位置主相z轴方向的晶面间距。
Claims (5)
- 一种高性能烧结钕铁硼磁体,其特征在于该高性能烧结钕铁硼磁体是通过制备烧结钕铁硼磁体基体,在烧结钕铁硼磁体基体表面形成含重稀土元素的覆盖层,采用热处理工艺将含重稀土元素覆盖层中的重稀土元素渗入烧结钕铁硼磁体基体内部得到,将所述的高性能烧结钕铁硼磁体的表面位置主相z轴方向的晶格常数记为c1,将所述的高性能烧结钕铁硼磁体的内部中心位置主相z轴方向的晶格常数记为c0,c1和c0满足以下关系:0.01%<(c0-c1)/c0<1.5%,其中符号“/”为除法运算符号。
- 根据权利要求1所述的一种高性能烧结钕铁硼磁体,其特征在于将所述的高性能烧结钕铁硼磁体内部距其表面400μm深度位置处主相z轴方向的晶格常数记为c2,c1和c2满足以下关系:0.01%<(c2-c1)/c2<1.2%,其中符号“/”为除法运算符号。
- 根据权利要求1所述的一种高性能烧结钕铁硼磁体,其特征在于所述的烧结钕铁硼磁体基体的成分为NdmNnXtFe100-m-n-k-tBk,其中Nd为钕元素,N为La、Ce、Pr、Dy、Tb、Ho、Gd元素中的至少一种,X为Co、Mn、Cu、Al、Ti、Ga、Zr、V、Hf、W和Nb元素中的至少一种,Fe为铁元素,B为硼元素;m、n、t、k满足以下关系:28.5≤m+n≤33,0≤t≤5,0.9≤k≤1.2,m、n、k、t均表示质量百分含量。
- 根据权利要求1所述的一种高性能烧结钕铁硼磁体,其特征在于所述的含重稀土元素覆盖层中的重稀土元素为Tb、Dy、Ho中的至少一种。
- 根据权利要求1所述的一种高性能烧结钕铁硼磁体,其特征在于所述的高性能烧结钕铁硼磁体的平均晶粒尺寸大于4μm。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510894807.9 | 2015-12-08 | ||
CN201510894807.9A CN105374486A (zh) | 2015-12-08 | 2015-12-08 | 一种高性能烧结钕铁硼磁体 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017096676A1 true WO2017096676A1 (zh) | 2017-06-15 |
Family
ID=55376594
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/000376 WO2017096676A1 (zh) | 2015-12-08 | 2016-07-12 | 一种高性能烧结钕铁硼磁体 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105374486A (zh) |
WO (1) | WO2017096676A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105374486A (zh) * | 2015-12-08 | 2016-03-02 | 宁波韵升股份有限公司 | 一种高性能烧结钕铁硼磁体 |
CN111653404B (zh) * | 2020-05-27 | 2022-11-15 | 烟台正海磁性材料股份有限公司 | 一种钕铁硼磁体及其制备方法和应用 |
CN115798853A (zh) * | 2022-11-30 | 2023-03-14 | 天津三环乐喜新材料有限公司 | 一种烧结钕铁硼磁体及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013197558A (ja) * | 2012-03-23 | 2013-09-30 | Tdk Corp | 希土類焼結磁石の製造方法 |
CN104134528A (zh) * | 2014-07-04 | 2014-11-05 | 宁波韵升股份有限公司 | 一种提高烧结钕铁硼薄片磁体磁性能的方法 |
CN104599829A (zh) * | 2015-01-05 | 2015-05-06 | 宁波韵升股份有限公司 | 一种提高烧结钕铁硼磁体磁性能的方法 |
CN105374486A (zh) * | 2015-12-08 | 2016-03-02 | 宁波韵升股份有限公司 | 一种高性能烧结钕铁硼磁体 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63255902A (ja) * | 1987-04-13 | 1988-10-24 | Hitachi Metals Ltd | R−B−Fe系焼結磁石およびその製造方法 |
JP4747562B2 (ja) * | 2004-06-25 | 2011-08-17 | 株式会社日立製作所 | 希土類磁石及びその製造方法、並びに磁石モータ |
-
2015
- 2015-12-08 CN CN201510894807.9A patent/CN105374486A/zh active Pending
-
2016
- 2016-07-12 WO PCT/CN2016/000376 patent/WO2017096676A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013197558A (ja) * | 2012-03-23 | 2013-09-30 | Tdk Corp | 希土類焼結磁石の製造方法 |
CN104134528A (zh) * | 2014-07-04 | 2014-11-05 | 宁波韵升股份有限公司 | 一种提高烧结钕铁硼薄片磁体磁性能的方法 |
CN104599829A (zh) * | 2015-01-05 | 2015-05-06 | 宁波韵升股份有限公司 | 一种提高烧结钕铁硼磁体磁性能的方法 |
CN105374486A (zh) * | 2015-12-08 | 2016-03-02 | 宁波韵升股份有限公司 | 一种高性能烧结钕铁硼磁体 |
Also Published As
Publication number | Publication date |
---|---|
CN105374486A (zh) | 2016-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102496437B (zh) | 各向异性纳米晶复相致密化块体钕铁硼永磁材料的制备方法 | |
CN106128673B (zh) | 一种烧结钕铁硼磁体及其制备方法 | |
CN102956336B (zh) | 一种制备复合添加钆、钬和钇的烧结钕铁硼永磁材料的方法 | |
CN106205924B (zh) | 一种高性能钕铁硼磁体的制备方法 | |
CN103187133B (zh) | 一种稀土永磁合金及其磁性相复合制备方法 | |
CN108899149A (zh) | 一种重稀土Dy高效扩散制备高矫顽力钕铁硼磁体的方法 | |
CN103123843B (zh) | 一种细晶粒各向异性致密化钕铁硼永磁体的制备方法 | |
CN105990019A (zh) | 一种低重稀土烧结钕铁硼的制备方法 | |
CN103056370A (zh) | 一种提高烧结钕铁硼磁材料矫顽力的方法 | |
CN105957706B (zh) | 一种压力浸渗Dy3+/Tb3+制备高性能钕铁硼磁体的方法 | |
CN105321702A (zh) | 一种提高烧结NdFeB磁体矫顽力的方法 | |
CN103903823A (zh) | 一种稀土永磁材料及其制备方法 | |
CN107369512A (zh) | 一种r‑t‑b类烧结永磁体 | |
EP3975212A1 (en) | A method for preparation of a sintered type ndfeb permanent magnet with an adjusted grain boundary | |
CN106710765A (zh) | 一种高矫顽力烧结钕铁硼磁体及其制备方法 | |
CN104505247A (zh) | 一种改善钕铁硼磁体性能的固体扩散工艺 | |
CN104681268A (zh) | 一种提高烧结钕铁硼磁体矫顽力的处理方法 | |
CN109616310A (zh) | 一种高矫顽力烧结钕铁硼永磁材料及其制造方法 | |
CN105702403A (zh) | 一种烧结钕铁硼磁体及制备方法 | |
WO2017096676A1 (zh) | 一种高性能烧结钕铁硼磁体 | |
CN104464997B (zh) | 一种高矫顽力钕铁硼永磁材料的制备方法 | |
CN114210976B (zh) | 一种烧结钕铁硼双合金结合晶界扩散的方法 | |
CN109192424B (zh) | 一种超高矫顽力烧结钕铁硼磁体 | |
JP7244476B2 (ja) | 希土類異方性ボンド磁性粉の作製方法 | |
CN112017835A (zh) | 一种低重稀土高矫顽力烧结钕铁硼磁体及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16871887 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16871887 Country of ref document: EP Kind code of ref document: A1 |