WO2017096635A1 - 一种车用双轴并联电驱动系统及其换档控制方法 - Google Patents

一种车用双轴并联电驱动系统及其换档控制方法 Download PDF

Info

Publication number
WO2017096635A1
WO2017096635A1 PCT/CN2015/097496 CN2015097496W WO2017096635A1 WO 2017096635 A1 WO2017096635 A1 WO 2017096635A1 CN 2015097496 W CN2015097496 W CN 2015097496W WO 2017096635 A1 WO2017096635 A1 WO 2017096635A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
motor
transmission
drive motor
sleeve
Prior art date
Application number
PCT/CN2015/097496
Other languages
English (en)
French (fr)
Inventor
李占江
高超
李响
李艳会
Original Assignee
南京越博动力系统股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京越博动力系统股份有限公司 filed Critical 南京越博动力系统股份有限公司
Priority to EP15910109.6A priority Critical patent/EP3388274A4/en
Publication of WO2017096635A1 publication Critical patent/WO2017096635A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/06Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of change-speed gearing
    • B60K17/08Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of change-speed gearing of mechanical type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/12Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of electric gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the invention relates to the technical field of electric vehicle transmission, in particular to a two-axis parallel electric drive system for a vehicle and a shift control method thereof.
  • the pure electric drive systems currently used in the market are: multi-speed transmission and conventional drive system with clutch, multi-speed transmission and drive system without clutch, two independent drive motors and fixed gear with drive shaft Transmission, drive motor and primary reducer transmission; among them, multi-speed transmission and conventional drive system with clutch have better acceleration, but there is power interruption during shifting; multi-speed transmission and drive system without clutch
  • the transmission efficiency is high and there is no power interruption; the drive motor and the first-stage reducer transmission can realize stepless speed change, but the acceleration and climbing ability are poor, and the efficiency of the drive motor is not fully exerted.
  • the demand for power in the acceleration driving phase, the low-speed driving phase and the high-speed driving phase of the automobile is different. If a single motor driving is used, it is difficult for the motor to always work in the high-efficiency operation area, thereby easily causing waste of electric energy.
  • the present invention provides a two-axis parallel electric drive system for a vehicle.
  • the drive system has a drive motor and an electronically controlled mechanical automatic transmission, which has a simple structure, reasonable layout, high acceleration and climbing ability, smooth shifting, and can ensure uninterrupted power; At the same time, it can convert the kinetic energy generated by the vehicle into electric energy during braking, saving electric energy loss, thereby reducing battery cost and improving vehicle continuation. Driving mileage.
  • a two-axis parallel electric drive system for a vehicle comprising a drive motor I, a drive motor II and an electronically controlled mechanical automatic transmission, the electronically controlled mechanical automatic transmission comprising a gear pair formed by the meshing of the gear I and the gear III, and a gear A second gear pair consisting of V meshing with gear III, a third gear pair consisting of gear II meshed with gear IV, a fourth gear pair consisting of gear VI and gear IV meshing, sleeve I, sleeve II, transmission input The shaft I, the transmission input shaft II and the transmission output shaft III; wherein the gear I and the gear II are both sleeved on the transmission input shaft I, the gear III and the gear IV are fixedly connected with the transmission output shaft III, and the gear V and the gear VI are both sleeved On the transmission input shaft II, the output shaft of the drive motor I is connected to the transmission input shaft I, the output shaft of the drive motor II is connected to the transmission input shaft II, the sleeve I is sleeve
  • the invention provides a shift control method for a two-axis parallel electric drive system for a vehicle.
  • the power output shaft of the drive motor I and the drive motor II provides three gear positions, and the drive motor I, the drive motor II and the electronically controlled mechanical automatic Transmission coupling, drive motor I and drive motor II drive, and can achieve three gear shifts when the battery is fully charged.
  • the three gears are dual motor low speed, dual motor intermediate speed, dual motor high speed .
  • the steps include at least: the joint sleeve I is combined with the gear I, the gear I is fixedly connected with the transmission input shaft I, and the sleeve II and the gear are engaged V combines, the gear V is fixedly connected with the transmission input shaft II, and the driving speed and steering of the driving motor I and the driving motor II are the same; at this time, the transmission route of the power is: the power output by the driving motor I, driven by the motor I After output shaft, transmission input shaft I, clutch sleeve I, gear I, gear III, output from transmission output shaft III; and power output by drive motor II, output shaft of drive motor II, transmission input shaft II, sleeve II, gear V, gear III, output from the transmission output shaft III.
  • the technical solution is preferably: when the dual-shaft parallel electric drive system for the vehicle adopts the double-motor intermediate speed, the steps include at least: adjusting the rotational speed of the drive motor I, when the rotational speed of the drive motor I is the same as the rotational speed of the drive motor II, The sleeve I is combined with the gear II to make the gear II fixedly connected with the transmission input shaft I, and the sleeve I is separated from the gear I, and the gear I is idling; at this time, the power transmission route is: the power output by the driving motor I, the driven motor After the output shaft of I, the transmission input shaft I, the sleeve I, the gear II, and the gear IV, the output shaft III of the transmission is output; the sleeve II is coupled with the gear V, and the gear V is fixedly connected with the transmission input shaft II, and the sleeve is fixed.
  • the power transmission route is: the power output by the driving motor II, after the output shaft of the driving motor II, the transmission input shaft II, the joint sleeve II, the gear V, the gear III, Output from the transmission output shaft III.
  • the technical solution is preferably: when the dual-axis parallel electric drive system for the vehicle adopts the double-motor high-speed gear, the steps include at least: The combination I and the gear II are combined to make the gear II fixedly connected with the transmission input shaft I, the sleeve I is separated from the gear I, the gear I is idling, and the sleeve II is combined with the gear VI to fix the gear VI to the transmission input shaft II.
  • the joint sleeve II is separated from the gear V, and the gear V is idling; the rotation speed and the steering of the drive motor I and the drive motor II are the same; at this time, the power transmission route is: the power output by the drive motor I, and the output of the drive motor I.
  • the steps include at least:
  • Step 1 The two-axis parallel electric drive system for the vehicle transitions from the low-speed gear of the two-motor to the drive motor I. It works separately at the low-speed gear, the sleeve I is separated from the gear II, the gear II is idling, and the power transmission route of the drive motor I is: driven The power output by the motor I is outputted by the transmission output shaft III after the output shaft of the driving motor I, the transmission input shaft I, the clutch sleeve I, the gear I, and the gear III;
  • Step 2 Drive motor I works separately at low speed to drive motor I and drive motor II work at low speed at the same time: adjust the speed of drive motor II, when the speed is the same as the output speed of the transmission output shaft II, the sleeve II and the gear V combines to make the gear V transmission input shaft II fixedly connected;
  • the power transmission route of the drive motor I is: the power output by the drive motor I, the output shaft of the drive motor I, the transmission input shaft I, the joint sleeve I, Gear I, gear III, output from the transmission output shaft III;
  • the power transmission route of the drive motor II is: after the output shaft of the drive motor II, the transmission input shaft II, the sleeve II, the gear V, the gear III, the output shaft of the transmission III output;
  • Step 3 The driving motor I and the driving motor II work simultaneously at the low speed to the driving motor II to work separately at the low speed, the sleeve I is separated from the gear I, and the gear I is idling; at this time, the power transmission route of the driving motor II is: After output shaft of drive motor II, transmission input shaft II, joint sleeve II, gear V, gear III, output from transmission output shaft III;
  • Step 4 The drive motor II works separately at the low speed to the double motor intermediate speed, and adjusts the rotational speed of the drive motor I.
  • the rotational speed is the same as the rotational speed of the drive motor II, the sleeve I and the gear II are combined to make the gear II and
  • the transmission input shaft I is fixedly connected;
  • the power transmission route of the driving motor I is: after the output shaft of the driving motor I, the transmission input shaft I, the clutch sleeve I, the gear II, the gear IV, the transmission output shaft III is output;
  • the driving motor II The power transmission route is: after the output shaft of the driving motor II, the transmission input shaft II, the joint sleeve II, the gear V, the gear III, the output shaft III output is output;
  • Step 5 The driving motor I and the driving motor II are transferred from the intermediate speed of the dual motor to the driving motor I to work separately on the high speed, the sleeve II is separated from the gear V, and the gear V is idling.
  • the power transmission path of the driving motor I is : after output shaft of drive motor I, transmission input shaft I, joint sleeve I, gear II, gear IV, output from transmission output shaft III;
  • Step 6 From the drive motor I alone to the high-speed gear transition to the double-motor high-speed gear, adjust the rotational speed of the drive motor II.
  • the rotational speed is the same as the rotational speed of the drive motor I, the sleeve II and the gear VI are combined to make the gear VI and Transmission input shaft II Fixed connection; at this time, the power transmission route of the driving motor I is: after the output shaft of the driving motor I, the transmission input shaft I, the clutch sleeve I, the gear II, the gear IV, the transmission output shaft III is output; the driving motor II
  • the power transmission route is: after the output shaft of the driving motor II, the transmission input shaft II, the sleeve II, the gear VI, and the gear IV, the output shaft III of the transmission is output.
  • the technical solution is preferably: when the dual-axis parallel electric drive system for the vehicle is changed from the dual-motor high-speed gear to the dual-motor low-speed gear, the steps include at least:
  • Step 1 The two-axis parallel electric drive system for the vehicle transitions from the high-speed gear of the two-motor to the drive motor I. It works separately at the high-speed gear.
  • the joint sleeve II is separated from the gear VI, and the gear VI is idling.
  • the power transmission route of the drive motor I is : after output shaft of drive motor I, transmission input shaft I, joint sleeve I, gear II, gear IV, output from transmission output shaft III;
  • Step 2 The driving motor I works separately in the high speed gear to the double motor intermediate gear, the joint sleeve II is combined with the gear V, and the gear V is fixedly connected with the transmission input shaft II.
  • the power transmission route of the driving motor I is: driven
  • the output shaft of the motor I is outputted by the transmission output shaft III via the transmission input shaft I, the sleeve I, the gear II, and the gear IV;
  • the power transmission path of the drive motor II is: the output shaft of the drive motor II, input through the transmission After the shaft II, the sleeve II, the gear V, and the gear III, the output shaft III of the transmission is output;
  • Step 3 The driving motor I and the driving motor II are transferred from the intermediate stage of the dual motor to the driving motor II to work separately at the low speed, the sleeve I is separated from the gear II, the gear II is idling; the power transmission route of the driving motor II is: by the driving motor The output shaft of II is outputted by the transmission output shaft III after the transmission input shaft II, the sleeve II, the gear V, and the gear III;
  • Step 4 The drive motor II works separately at the low speed to the drive motor I and the drive motor II simultaneously works at the low speed: the sleeve I is combined with the gear I, and the gear I is fixedly connected with the transmission input shaft I; at this time, the drive motor I
  • the power transmission route is: the output shaft of the drive motor I, after the transmission input shaft I, the joint sleeve I, the gear I, the gear III, is output by the transmission output shaft III; the power transmission route of the drive motor II is: by the drive motor
  • the output shaft of II is output from the transmission output shaft III via the transmission input shaft II, the clutch sleeve II, the gear V, and the gear III.
  • the shift control method further includes a reverse shift control method, the step of which at least includes: when the reverse gear is engaged, the drive motor I operates separately, and the drive motor I rotates in the reverse direction, the engagement sleeve I is coupled with the gear I, and the gear I
  • the transmission input shaft I is fixedly connected, the joint sleeve I is separated from the gear II, the gear II is idling, and at the same time, the joint sleeve II is separated from the gear V and the gear VI respectively; the power transmission route of the drive motor I is: driven by the motor I
  • the output shaft is output from the transmission output shaft III via the transmission input shaft I, the clutch sleeve I, the gear I, and the gear III.
  • the technical solution is preferably that when the shift control method of the two-axis parallel electric drive system for the vehicle is respectively operated by the dual motor low speed gear, the double motor intermediate speed gear, and the double motor high speed gear, the steps are as follows:
  • the brake is braked by the brake pedal.
  • the power transmission route is: the power input by the brake pedal passes through the transmission output shaft III and the gear III, and then passes through the gear I.
  • Joint sleeve I change The speed input shaft I drag drives the motor I to generate electricity, and the other passes through the gear V, the joint sleeve II, the transmission input shaft II, and then drives the motor II to generate electricity; when the battery is full, it switches to mechanical brake;
  • the brake When the vehicle is driven in the mode of the two-motor mid-speed gear, the brake is braked by the brake pedal.
  • the power transmission route is: after the brake pedal input power passes through the transmission output shaft III, all the way through the gear IV, the gear II, The joint sleeve I, the transmission input shaft I drag drive motor I to generate electricity, the other path through the gear III, the gear V, the joint sleeve II, the transmission input shaft II drag drive motor II to generate electricity; when the battery is full, switch to mechanical brake;
  • the brake When the vehicle is driven in the mode of the two-motor high-speed gear, the brake is braked by the brake pedal.
  • the power transmission route is: the power input by the brake pedal passes through the transmission output shaft III and the gear IV, and then passes through the gear II.
  • the two-axis parallel electric drive system for vehicles can effectively utilize the high-efficiency operation area of the drive motor, without power interruption during shifting, excellent climbing performance, simple structure and low cost;
  • the vehicle can be operated in the high-efficiency operation area by the single-motor drive and the dual-motor drive mode regardless of the acceleration condition, low-speed working condition and high-speed working condition, so as to avoid waste of electric energy;
  • the driving motor I can rotate in the forward direction and the reverse direction.
  • the reverse driving is performed by the driving motor I to realize the reverse driving.
  • the driving motor II may not operate.
  • the output end of the energy recovery is the driving motor; the input end is the braking of the vehicle wheel, and the driving motor changes from the driving state to the generating state, and the energy is from the wheel to the driving motor.
  • Brake energy recovery reduce the energy loss of the battery, while reducing the cost of the battery and increasing the driving range of the drive motor.
  • FIG. 1 is a schematic structural view of a two-axis parallel electric drive system for a vehicle according to the present invention
  • 3 is a power transmission route diagram of the dual-shaft parallel electric drive system for the vehicle in the middle speed of the double motor;
  • FIG. 4 is a power transmission route diagram of the dual-axis parallel electric drive system for the vehicle in the high-speed gear of the double motor of FIG. 1;
  • 5a is a power transmission route diagram of the driving motor I in the two-axis parallel electric drive system for the vehicle of FIG. 1 when the motor 1 is operated at a low speed separately;
  • FIG. 5b is a power transmission route diagram of the driving motor II in the two-axis parallel electric drive system for the vehicle of FIG. 1 when the motor is separately operated at a low speed;
  • 5c is a power transmission route diagram of the driving motor I in the two-axis parallel electric drive system for the vehicle of FIG. 1 when the motor 1 is separately operated at a high speed;
  • FIG. 6 is a power transmission route diagram of the two-axis parallel electric drive system for a vehicle of FIG. 1 in reverse gear;
  • FIG. 7 is a power transmission route diagram of the dual-axis parallel electric drive system for the vehicle of FIG. 1 in a low-speed gear of the dual motor;
  • FIG. 9 is a power transmission route diagram of the dual-shaft parallel electric drive system for the vehicle of FIG. 1 in the high-speed gear of the dual motor.
  • 1-drive motor I 2-drive motor I output shaft, 3-gear I, 4-joint sleeve I, 5-gear II, 6-transmission input shaft I, 7-gear III, 8-gear IV, 9- Transmission output shaft III, 10 - gear VI, 11 - transmission input shaft II, 12 - engagement sleeve II, 13 - gear V, 14 - output shaft of drive motor II, 15-drive motor II.
  • a two-axis parallel electric drive system for a vehicle includes two drive motors and a power output end, and the drive motor is a drive motor I1 and a drive motor II15, and the power output end is an electric control machine.
  • the electronically controlled mechanical automatic transmission of the present invention comprises a first gear pair composed of a gear I3 and a gear III7, a second gear pair composed of a gear V13 and a gear III7, and a third gear composed of a gear II5 and a gear IV8.
  • the fourth gear pair consisting of the gear VI10 and the gear IV8 meshing, the joint sleeve I4, the joint sleeve II12, the transmission input shaft I6, the transmission input shaft II11 and the transmission output shaft III9; wherein the gear I3 and the gear II5 are all idle
  • the transmission input shaft I6, the gear III7 and the gear IV8 are fixedly connected with the transmission output shaft III9, the gear V13 and the gear VI10 are all sleeved on the transmission input shaft II11, and the output shaft 2 of the driving motor I is connected with the transmission input shaft I6 to drive the motor II
  • the output shaft 14 is connected to the transmission input shaft II11, the joint sleeve I4 is sleeved on the transmission input shaft I6, and is disposed between the gear I3 and the gear II5, and the joint sleeve I4 can be combined or separated from the gear I3 and the gear II5, and the sleeve II12 sleeve is sleeved.
  • the invention provides a shift control method for a two-axis parallel electric drive system for a vehicle, which adopts a two-axis parallel electric drive system for a vehicle, and a power output shaft of a drive motor I1 and a drive motor II15 provides three gear positions through a drive motor.
  • I1 the drive motor II15 is coupled with the electronically controlled mechanical automatic transmission, and the drive motor I1 and the drive motor II15 are driven together, and the battery is electrically
  • the three gear positions are double motor low speed gear, double motor middle speed gear and double motor high speed gear; at the same time, the drive motor I1 and the drive motor II15 can work separately, in accordance with The actual working requirements of the drive motor.
  • the two-axis parallel electric drive system for vehicle of the invention adopts the control method of the double motor low speed gear, the double motor middle speed gear and the double motor high speed gear respectively:
  • the steps of the control method include: the joint sleeve I4 is combined with the gear I3, the gear I3 is fixedly connected with the transmission input shaft I6, and the joint sleeve is The combination of II12 and gear V13 makes the gear V13 fixedly connected with the transmission input shaft II11, and the driving speed and steering of the driving motor I1 and the driving motor II15 are the same; at this time, the power transmission route is: the power output by the driving motor I1 is driven.
  • the output shaft 2 of the motor I, the transmission input shaft I6, the sleeve I4, the gear I3, and the gear III7 are output by the transmission output shaft III9; and the power output by the drive motor II15 is output through the output shaft 14 of the drive motor II and the transmission. After the shaft II11, the sleeve II12, the gear V13, and the gear III7, the output shaft III9 is output.
  • the steps of the control method include: adjusting the rotational speed of the drive motor I1 when the rotational speed of the drive motor I1 is opposite to the rotational speed of the drive motor II15.
  • the joint sleeve I4 is combined with the gear II5, the gear II5 is fixedly connected with the transmission input shaft I6, and the joint sleeve I4 is separated from the gear I3, and the gear I3 is idling; at this time, the power transmission route is: the power output by the drive motor I1, After the output shaft 2 of the drive motor I, the transmission input shaft I6, the sleeve I4, the gear II5, and the gear IV8, the transmission output shaft III9 is output; the engagement sleeve II12 is combined with the gear V13 to fix the gear V13 to the transmission input shaft II11.
  • the power transmission route is: the power output by the driving motor II15, the output shaft 14 of the driving motor II, the transmission input shaft II11, the sleeve II12, the gear V13 After gear III7, it is output by the transmission output shaft III9.
  • the steps of the control method include: the joint sleeve I4 is combined with the gear II5, and the gear II5 is fixedly connected with the transmission input shaft I6, and the sleeve I4 is fixed. Separated from the gear I3, the gear I3 is idling; and the joint sleeve II12 is combined with the gear VI10, the gear VI10 is fixedly connected with the transmission input shaft II11, the joint sleeve II12 is separated from the gear V13, the gear V13 is idling; the speed of the drive motor I1 and the drive motor II15 is rotated.
  • the power transmission route is: the power output by the driving motor I1, after the output shaft 2 of the driving motor I, the transmission input shaft I6, the joint sleeve I4, the gear II5, the gear IV8, and output by the transmission The shaft III9 output; and the power outputted by the drive motor II15 are output from the transmission output shaft III9 via the output shaft 14 of the drive motor II, the transmission input shaft II11, the clutch sleeve II12, the gear VI10, and the gear IV8.
  • the two-axis parallel electric drive system for vehicle of the invention adopts the double motor low speed gear, the double motor intermediate speed gear and the double motor high speed gear respectively, and the shift control method is as follows:
  • the two-axis parallel electric drive system for the vehicle changes from the low-speed gear of the two-motor to the shift control method of the high-speed gear of the two-motor.
  • the two-axis parallel electric drive system for the vehicle experiences the drive motor I1 working alone in the low-speed gear during the shifting process.
  • the driving motor I1 and the driving motor II15 work at the low speed at the same time, the driving motor II15 operates separately in the low speed, the double motor intermediate speed, the driving motor I1 works independently in the high speed, and completes the double motor low speed to the double motor high speed.
  • Conversion; specific steps include:
  • Step 1 The two-axis parallel electric drive system for the vehicle transitions from the low-speed gear of the two-motor to the drive motor I1 working alone in the low-speed gear, the joint sleeve I4 is separated from the gear II5, the gear II5 is idling, and the power transmission route of the drive motor I1 is: driven
  • the power output from the motor I1 is output from the transmission output shaft III9 via the output shaft 2 of the drive motor 1, the transmission input shaft I6, the clutch sleeve I4, the gear I3, and the gear III7, as shown in Fig. 5a.
  • Step 2 The drive motor I1 works separately at the low speed to the drive motor I1 and the drive motor II15 simultaneously works at the low speed: adjusts the speed of the drive motor II15, when the speed is the same as the transmission output shaft II speed, the sleeve II12 and the gear V13 is combined to make the gear V13 transmission input shaft II11 fixedly connected; at this time, the power transmission route of the driving motor I1 is: the power output by the driving motor I1, the output shaft 2 of the driving motor I, the transmission input shaft I6, the joint sleeve I4 The gear I3 and the gear III7 are outputted by the transmission output shaft III9; the power transmission route of the driving motor II15 is: after the output shaft 14 of the driving motor II, the transmission input shaft II11, the sleeve II12, the gear V13, the gear III7, the transmission Output shaft III9 output, as shown in Figure 2.
  • Step 3 The driving motor I1 and the driving motor II15 work simultaneously at the low speed to the driving motor II15 to work separately at the low speed, the joint sleeve I4 is separated from the gear I3, and the gear I3 is idling; at this time, the power transmission route of the driving motor II15 is: The output shaft 14 of the drive motor II, the transmission input shaft II11, the sleeve II12, the gear V13, and the gear III7 are output by the transmission output shaft III9, as shown in Fig. 5b.
  • Step 4 The drive motor II15 operates separately at the low speed to the double motor intermediate speed, and adjusts the rotational speed of the drive motor I1.
  • the joint sleeve I4 is combined with the gear II5, so that the gear II5 is
  • the transmission input shaft I6 is fixedly connected;
  • the power transmission path of the driving motor I1 is: after the output shaft 2 of the driving motor I, the transmission input shaft I6, the sleeve I4, the gear II5, the gear IV8, the transmission output shaft III9 is output;
  • the power transmission route of the II15 is: after the output shaft 14 of the drive motor II, the transmission input shaft II11, the sleeve II12, the gear V13, and the gear III7, the output shaft III9 is output, as shown in FIG.
  • Step 5 The driving motor I1 and the driving motor II15 are transferred from the double motor intermediate speed to the driving motor I1 to work separately in the high speed gear, the joint sleeve II12 is separated from the gear V13, and the gear V13 is idling.
  • the power transmission path of the driving motor I1 is After being output shaft 2 of the drive motor I, the transmission input shaft I6, the sleeve I4, the gear II5, and the gear IV8, the output shaft III9 is outputted by the transmission output shaft III9, as shown in Fig. 5c.
  • Step 6 The drive motor I1 is separately operated in the high-speed gear to the double-motor high-speed gear, and the rotational speed of the drive motor II15 is adjusted.
  • the rotational speed is the same as the rotational speed of the drive motor I1
  • the engagement sleeve II12 is combined with the gear VI10 to make the gear VI10 and Change
  • the speed input shaft II11 is fixedly connected; at this time, the power transmission route of the driving motor I1 is: after the output shaft 2 of the driving motor I, the transmission input shaft I6, the joint sleeve I4, the gear II5, the gear IV8, the transmission output shaft III9 Output;
  • the power transmission route of the driving motor II15 is: after the output shaft 14 of the driving motor II, the transmission input shaft II11, the sleeve II12, the gear VI10, the gear IV8, and output by the transmission output shaft III9, as shown in FIG.
  • the vehicle dual-axis parallel electric drive system changes from the dual-motor high-speed gear to the double-motor low-speed gear shift control method.
  • the two-axis parallel electric drive system for the vehicle experiences the drive motor I1 working alone in the high-speed gear during the shifting process.
  • the two-motor intermediate gear and the drive motor II15 work independently in the low-speed transition to complete the conversion of the dual-motor high-speed gear to the dual-motor low-speed gear; the specific steps include:
  • Step 1 The two-axis parallel electric drive system for the vehicle transitions from the high-speed gear of the two-motor to the drive motor I1 working alone in the high-speed gear, the joint sleeve II12 is separated from the gear VI10, and the gear VI10 is idling; at this time, the power transmission route of the drive motor I is After being output through the output shaft of the drive motor I, the transmission input shaft I6, the sleeve I4, the gear II5, and the gear IV8, it is output by the transmission output shaft III9, as shown in Fig. 5c.
  • Step 2 The driving motor I1 works separately in the high speed gear to the double motor intermediate gear, the joint sleeve II12 is combined with the gear V13, and the gear V13 is fixedly connected with the transmission input shaft II11.
  • the power transmission route of the driving motor I1 is: driven
  • the output shaft 2 of the motor I is outputted from the transmission output shaft III9 via the transmission input shaft I6, the joint sleeve I4, the gear II5, and the gear IV8;
  • the power transmission path of the drive motor II15 is: the output shaft 14 of the drive motor II,
  • the transmission output shaft III9 is output, as shown in FIG.
  • Step 3 The driving motor I1 and the driving motor II15 are transferred from the intermediate stage of the dual motor to the driving motor II15 to work separately at the low speed, the sleeve I4 is separated from the gear II5, the gear II5 is idling; the power transmission route of the driving motor II15 is: by the driving motor
  • the output shaft 14 of the II is output from the transmission output shaft III9 via the transmission input shaft II11, the clutch sleeve II12, the gear V13, and the gear III7, as shown in Fig. 5b.
  • Step 4 The drive motor II15 works separately at the low speed to the drive motor I1 and the drive motor II15 simultaneously works at the low speed: the joint sleeve I4 is combined with the gear I3, and the gear I3 is fixedly connected with the transmission input shaft I6; at this time, the drive motor I1
  • the power transmission route is: output shaft 2 of the drive motor I, after the transmission input shaft I6, the joint sleeve I4, the gear I3, the gear III7, and output by the transmission output shaft III9; the power transmission route of the drive motor II15 is: driven
  • the output shaft 14 of the motor II is output from the transmission output shaft III9 via the transmission input shaft II11, the clutch sleeve II12, the gear V13, and the gear III7, as shown in FIG.
  • the shift control method for the two-axis parallel electric drive system for a vehicle of the present invention further includes a reverse shift control method, wherein the reverse shift control step includes: when the reverse gear is engaged, the drive motor I1 operates alone, and the drive motor I1 rotates in the reverse direction.
  • the sleeve I4 is combined with the gear I3, the gear I3 is fixedly connected with the transmission input shaft I6, the joint sleeve I4 is separated from the gear II5, the gear II5 is idling, and at the same time, the joint sleeve II12 is separated from the gear V13 and the gear VI10 respectively;
  • the transmission route is: driven by The output shaft of the motor I is output from the transmission output shaft III9 via the transmission input shaft I6, the clutch sleeve I4, the gear I3, and the gear III7, as shown in FIG.
  • the shift control method for the two-axis parallel electric drive system for a vehicle of the present invention uses two-motor low-speed gear, two-motor intermediate speed gear, and dual-motor high-speed gear, respectively, and the steps are as follows:
  • the power transmission route is: the power input by the brake pedal is sequentially transmitted through the transmission output shaft III9 and the gear III7, and the gear I3 is The joint sleeve I4, the transmission input shaft I6 drag drive motor I1 to generate electricity, the other path through the gear V13, the joint sleeve II12, the transmission input shaft II11 and then drive the motor II15 to generate electricity; when the battery is full, switch to mechanical brake, as shown in the figure 7 is shown.
  • the brake When the vehicle is driven in the mode of the two-motor mid-speed gear, the brake is applied through the brake pedal.
  • the power transmission route is: after the brake pedal input power passes through the transmission output shaft III9, all the way through the gear IV8, the gear II5, The joint sleeve I4, the transmission input shaft I6 drag drive motor I1 to generate electricity, the other path through the gear III7, the gear V13, the joint sleeve II12, the transmission input shaft II11 drag drive motor II15 to generate electricity; when the battery is full, switch to mechanical brake, As shown in Figure 8.
  • the brake When the vehicle is driven in the mode of the two-motor high-speed gear, the brake is applied through the brake pedal. At this time, the power transmission route is: the power input by the brake pedal passes through the transmission output shaft III9 and the gear IV8, and then passes through the gear II5.
  • the three gears of the electronically controlled mechanical automatic transmission are optimized by the speed ratio, the operating efficiency of the motor is improved, and the power and economy of the whole vehicle are better than that of the single-speed electric vehicle.
  • the drive motor I1 and the drive motor II15 cooperate with each other to shift gears, which can realize no power interruption during the shifting process, improve the shift quality and improve the ride comfort of the vehicle.
  • the drive motor I1 realizes the forward and reverse rotation of the drive motor I1 by changing the direction of the input voltage; in particular, when the drive motor I1 is rotated in the reverse direction, the reverse running of the vehicle is achieved.
  • the dual-axis parallel electric drive system for a vehicle of the present invention can realize the power coupling of two drive motors with the structure of an electronically controlled mechanical automatic transmission with high transmission efficiency, and provides power output for the drive motor.
  • the three gear positions meet the actual working requirements of the drive motor; and through the conversion of various operating modes, the speed characteristics of the drive motor and the efficient operation area can be effectively improved.
  • the dual-axis parallel electric drive system for vehicle of the invention has simple structure and low cost, and can realize synchronous speed regulation and no power interruption control during shifting, thereby improving vehicle power and economy.
  • the dual-axis parallel electric drive system for vehicle has the drive motor and the electronically controlled mechanical automatic transmission, and has the advantages of simple structure, reasonable arrangement, high acceleration and climbing ability, smooth shifting, and uninterrupted power.
  • the shift control method the power required for driving is continued during the shifting process; at the same time, the kinetic energy generated by the vehicle can be converted into electric energy during braking, thereby saving electric energy loss, thereby reducing the battery cost and improving the continuation of the vehicle.
  • Driving mileage the power required for driving is continued during the shifting process; at the same time, the kinetic energy generated by the vehicle can be converted into electric energy during braking, thereby saving electric energy loss, thereby reducing the battery cost and improving the continuation of the vehicle.

Abstract

一种车用双轴并联电驱动系统及其换档控制方法,驱动系统包括驱动电机Ⅰ(1)、驱动电机Ⅱ(15)及电控机械式自动变速器,电控机械式自动变速器包括一档齿轮对(3、7)、二档齿轮对(13、7)、三档齿轮对(5、8)、四档齿轮对(10、8)、接合套Ⅰ(4)、接合套Ⅱ(12)、变速器输入轴Ⅰ(6)、变速器输入轴Ⅱ(11)及变速器输出轴Ⅲ(9)。该驱动系统具有驱动电机和电控机械式自动变速器,其结构简单,布置合理,加速性和爬坡能力较高,且换档平顺,又能保证动力不中断;通过换档控制方法在换档过程中延续行驶所需动力的产生;同时,能够将车辆行驶产生的动能在制动时转化为电能,节省电能量损失,从而降低电池成本,提高车辆的续驶里程。

Description

一种车用双轴并联电驱动系统及其换档控制方法
本申请要求在2015年12月11日提交中国专利局、申请号为201510920670.X、发明名称为“一种车用双轴并联电驱动系统及其换档控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电动汽车传动技术领域,具体涉及一种车用双轴并联电驱动系统及其换档控制方法。
背景技术
环保与节能是二十一世纪全世界面对的重要问题,中国政府也提出了建设节约型社会的基本国策和鼓励发展小排量节能型汽车的产业发展政策,电动汽车是实现这一目标的重要手段之一。
目前市场应用较多的纯电动驱动系统有:多档传动装置和带离合器的传统驱动系统、多档传动装置和不带离合器的驱动系统、两个独立的驱动电机和带有驱动轴的固定档传动装置、驱动电机和一级减速器传动装置;其中,多档传动装置和带离合器的传统驱动系统加速性较好,但换档时有动力中断;多档传动装置和不带离合器的驱动系统传动效率较高、没有动力中断;驱动电机和一级减速器传动装置能实现无级变速,但是加速性、爬坡能力差,驱动电机的效率没有充分发挥。
另外,汽车在加速行驶阶段、低速行驶阶段和高速行驶阶段对功率的需求不同,如果采用单电机驱动,电机很难一直工作在高效运转区,从而容易造成电能的浪费。
发明内容
为了克服现有技术中的缺陷,本发明提供一种车用双轴并联电驱动系统。驱动系统具有驱动电机和电控机械式自动变速器,其结构简单,布置合理,加速性和爬坡能力较高,且换档平顺,又能保证动力不中断;在换档过程中延续行驶所需动力的产生;同时,能够将车辆行驶产生的动能在制动时转化为电能,节省电能量损失,从而降低电池成本,提高车辆的续 驶里程。
本发明是通过如下技术方案实现的:
一种车用双轴并联电驱动系统,包括驱动电机Ⅰ、驱动电机Ⅱ及电控机械式自动变速器,电控机械式自动变速器包括由齿轮Ⅰ与齿轮Ⅲ啮合组成的一档齿轮对、由齿轮Ⅴ与齿轮Ⅲ啮合组成的二档齿轮对、由齿轮Ⅱ与齿轮Ⅳ啮合组成的三档齿轮对、由齿轮Ⅵ与齿轮Ⅳ啮合组成的四档齿轮对、接合套Ⅰ、接合套Ⅱ、变速器输入轴Ⅰ、变速器输入轴Ⅱ及变速器输出轴Ⅲ;其中,齿轮Ⅰ与齿轮Ⅱ均空套于变速器输入轴Ⅰ,齿轮Ⅲ与齿轮Ⅳ与变速器输出轴Ⅲ固定连接,齿轮Ⅴ与齿轮Ⅵ均空套于变速器输入轴Ⅱ,驱动电机Ⅰ的输出轴与变速器输入轴Ⅰ连接,驱动电机Ⅱ的输出轴与变速器输入轴Ⅱ连接,接合套Ⅰ套设于变速器输入轴Ⅰ、且设置于齿轮Ⅰ和齿轮Ⅱ之间,接合套Ⅰ能与齿轮Ⅰ、齿轮Ⅱ结合或分离,接合套Ⅱ套设于变速器输入轴Ⅱ、且设置于齿轮Ⅴ与齿轮Ⅵ之间,接合套Ⅱ能与齿轮Ⅴ、齿轮Ⅵ结合或分离。
本发明提供一种车用双轴并联电驱动系统的换挡控制方法,驱动电机Ⅰ、驱动电机Ⅱ的动力输出轴提供三个档位,通过驱动电机Ⅰ、驱动电机Ⅱ与电控机械式自动变速器耦合,驱动电机Ⅰ和驱动电机Ⅱ驱动、且在电池电量充足的情况下能实现三个档位的转换,三个档位分别为双电机低速档、双电机中速档、双电机高速档。
技术方案优选为,车用双轴并联电驱动系统采用双电机低速档时,其步骤至少包括:接合套Ⅰ与齿轮Ⅰ结合,使齿轮Ⅰ与变速器输入轴Ⅰ固定连接,以及接合套Ⅱ与齿轮Ⅴ结合,使齿轮Ⅴ与变速器输入轴Ⅱ固定连接,驱动电机Ⅰ、驱动电机Ⅱ的转速及转向均相同;此时,动力的传输路线为:由驱动电机Ⅰ输出的动力,经驱动电机Ⅰ的输出轴、变速器输入轴Ⅰ、接合套Ⅰ、齿轮Ⅰ、齿轮Ⅲ后,由变速器输出轴Ⅲ输出;以及由驱动电机Ⅱ输出的动力,经驱动电机Ⅱ的输出轴、变速器输入轴Ⅱ、接合套Ⅱ、齿轮Ⅴ、齿轮Ⅲ后,由变速器输出轴Ⅲ输出。
技术方案优选为,车用双轴并联电驱动系统采用双电机中速档时,其步骤至少包括:通过调节驱动电机Ⅰ的转速,当驱动电机Ⅰ的转速与驱动电机Ⅱ的转速相同时,接合套Ⅰ与齿轮Ⅱ结合,使齿轮Ⅱ与变速器输入轴Ⅰ固定连接,且接合套Ⅰ与齿轮Ⅰ分离,齿轮Ⅰ空转;此时,动力传输路线为:由驱动电机Ⅰ输出的动力,经驱动电机Ⅰ的输出轴、变速器输入轴Ⅰ、接合套Ⅰ、齿轮Ⅱ、齿轮Ⅳ后,由变速器输出轴Ⅲ输出;接合套Ⅱ与齿轮Ⅴ结合,使齿轮Ⅴ与变速器输入轴Ⅱ固定连接,且接合套Ⅱ与齿轮Ⅵ分离,齿轮Ⅵ空转;此时,动力传输路线为:由驱动电机Ⅱ输出的动力,经驱动电机Ⅱ的输出轴、变速器输入轴Ⅱ、接合套Ⅱ、齿轮Ⅴ、齿轮Ⅲ后,由变速器输出轴Ⅲ输出。
技术方案优选为,车用双轴并联电驱动系统采用双电机高速档时,其步骤至少包括:接 合套Ⅰ与齿轮Ⅱ结合,使齿轮Ⅱ与变速器输入轴Ⅰ固定连接,接合套Ⅰ与齿轮Ⅰ分离,齿轮Ⅰ空转;以及接合套Ⅱ与齿轮Ⅵ结合,使齿轮Ⅵ与变速器输入轴Ⅱ固定连接,接合套Ⅱ与齿轮Ⅴ分离,齿轮Ⅴ空转;驱动电机Ⅰ、驱动电机Ⅱ的转速及转向均相同;此时,动力的传输路线为:由驱动电机Ⅰ输出的动力,经驱动电机Ⅰ的输出轴、变速器输入轴Ⅰ、接合套Ⅰ、齿轮Ⅱ、齿轮Ⅳ后,由变速器输出轴Ⅲ输出;以及由驱动电机Ⅱ输出的动力,经驱动电机Ⅱ的输出轴、变速器输入轴Ⅱ、接合套Ⅱ、齿轮Ⅵ、齿轮Ⅳ后,由变速器输出轴Ⅲ输出。
技术方案优选为,车用双轴并联电驱动系统从双电机低速档转变为双电机高速档时,其步骤至少包括:
步骤1:车用双轴并联电驱动系统从双电机低速档过渡至驱动电机Ⅰ单独工作于低速档,接合套Ⅰ与齿轮Ⅱ分离,齿轮Ⅱ空转,驱动电机Ⅰ的动力传输路线为:由驱动电机Ⅰ输出的动力,经驱动电机Ⅰ的输出轴、变速器输入轴Ⅰ、接合套Ⅰ、齿轮Ⅰ、齿轮Ⅲ后,由变速器输出轴Ⅲ输出;
步骤2:驱动电机Ⅰ单独工作于低速档过渡至驱动电机Ⅰ与驱动电机Ⅱ同时工作于低速档:调节驱动电机Ⅱ的转速,当其转速与变速器输出轴Ⅱ转速相同时,接合套Ⅱ与齿轮V结合,使齿轮V变速器输入轴Ⅱ固定连接;此时,驱动电机Ⅰ的动力传输路线为:由驱动电机Ⅰ输出的动力,经驱动电机Ⅰ的输出轴、变速器输入轴Ⅰ、接合套Ⅰ、齿轮Ⅰ、齿轮Ⅲ、由变速器输出轴Ⅲ输出;驱动电机Ⅱ的动力传输路线为:由驱动电机Ⅱ的输出轴、变速器输入轴Ⅱ、接合套Ⅱ、齿轮V、齿轮Ⅲ后,由变速器输出轴Ⅲ输出;
步骤3:驱动电机Ⅰ与驱动电机Ⅱ同时工作于低速档过渡至驱动电机Ⅱ单独工作于低速档,接合套Ⅰ与齿轮Ⅰ分离,齿轮Ⅰ空转;此时,驱动电机Ⅱ的动力传输路线为:由驱动电机Ⅱ的输出轴、变速器输入轴Ⅱ、接合套Ⅱ、齿轮V、齿轮Ⅲ后,由变速器输出轴Ⅲ输出;
步骤4:驱动电机Ⅱ单独工作于低速档过渡至双电机中速档,调节驱动电机Ⅰ的转速,当其转速与驱动电机Ⅱ的转速相同时,接合套Ⅰ与齿轮Ⅱ结合,使齿轮Ⅱ与变速器输入轴Ⅰ固定连接;驱动电机Ⅰ的动力传输路线为:经驱动电机Ⅰ的输出轴、变速器输入轴Ⅰ、接合套Ⅰ、齿轮Ⅱ、齿轮Ⅳ后,由变速器输出轴Ⅲ输出;驱动电机Ⅱ的动力传输路线为:经驱动电机Ⅱ的输出轴、变速器输入轴Ⅱ、接合套Ⅱ、齿轮V、齿轮Ⅲ后,由变速器输出轴Ⅲ输出;
步骤5:驱动电机Ⅰ与驱动电机Ⅱ由双电机中速档过渡至驱动电机Ⅰ单独工作于高速档,接合套Ⅱ与齿轮V分离,齿轮V空转,此时,驱动电机Ⅰ的动力传输路线为:经驱动电机Ⅰ的输出轴、变速器输入轴Ⅰ、接合套Ⅰ、齿轮Ⅱ、齿轮Ⅳ后,由变速器输出轴Ⅲ输出;
步骤6:从驱动电机Ⅰ单独工作于高速档过渡至双电机高速档,调节驱动电机Ⅱ的转速,当其转速与驱动电机Ⅰ的转速相同时,接合套Ⅱ与齿轮VI结合,使齿轮VI与变速器输入轴Ⅱ 固定连接;此时,驱动电机Ⅰ的动力传输路线为:经驱动电机Ⅰ的输出轴、变速器输入轴Ⅰ、接合套Ⅰ、齿轮Ⅱ、齿轮Ⅳ后,由变速器输出轴Ⅲ输出;驱动电机Ⅱ的动力传输路线为:经驱动电机Ⅱ的输出轴、经变速器输入轴Ⅱ、接合套Ⅱ、齿轮VI、齿轮Ⅳ后,由变速器输出轴Ⅲ输出。
技术方案优选为,车用双轴并联电驱动系统从双电机高速档转变为双电机低速档时,其步骤至少包括:
步骤1:车用双轴并联电驱动系统从双电机高速档过渡至驱动电机Ⅰ单独工作于高速档,接合套Ⅱ与齿轮VI分离,齿轮VI空转;此时,驱动电机I的动力传输路线为:经驱动电机I的输出轴、变速器输入轴Ⅰ、接合套Ⅰ、齿轮Ⅱ、齿轮Ⅳ后,由变速器输出轴Ⅲ输出;
步骤2:驱动电机Ⅰ单独工作于高速档过渡至双电机中间档,接合套Ⅱ与齿轮V结合,齿轮V与变速器输入轴Ⅱ固定连接,此时,驱动电机Ⅰ的动力传输路线为:由驱动电机Ⅰ的输出轴,经变速器输入轴Ⅰ、接合套Ⅰ、齿轮Ⅱ、齿轮Ⅳ后,由变速器输出轴Ⅲ输出;驱动电机Ⅱ的动力传输路线为:由驱动电机Ⅱ的输出轴,经变速器输入轴Ⅱ、接合套Ⅱ、齿轮V、齿轮Ⅲ后,由变速器输出轴Ⅲ输出;
步骤3:驱动电机Ⅰ与驱动电机Ⅱ从双电机中间档过渡至驱动电机Ⅱ单独工作于低速档,接合套Ⅰ与齿轮Ⅱ分离,齿轮Ⅱ空转;驱动电机Ⅱ的动力传输路线为:由驱动电机Ⅱ的输出轴,经变速器输入轴Ⅱ、接合套Ⅱ、齿轮V、齿轮Ⅲ后,由变速器输出轴Ⅲ输出;
步骤4:驱动电机Ⅱ单独工作于低速档过渡至驱动电机Ⅰ与驱动电机Ⅱ同时工作于低速档:接合套Ⅰ与齿轮Ⅰ结合,齿轮Ⅰ与变速器输入轴Ⅰ固定连接;此时,驱动电机Ⅰ的动力传输路线为:由驱动电机Ⅰ的输出轴,经变速器输入轴Ⅰ、接合套Ⅰ、齿轮Ⅰ、齿轮Ⅲ后,由变速器输出轴Ⅲ输出;驱动电机Ⅱ的动力传输路线为:由驱动电机Ⅱ的输出轴,经变速器输入轴Ⅱ、接合套Ⅱ、齿轮V、齿轮Ⅲ后,由变速器输出轴Ⅲ输出。
技术方案优选为,换挡控制方法还包括倒档控制方法,其步骤至少包括:在倒档时,驱动电机Ⅰ单独工作,且驱动电机Ⅰ反向旋转,接合套Ⅰ与齿轮Ⅰ结合,齿轮Ⅰ与变速器输入轴Ⅰ固定连接,接合套Ⅰ与齿轮Ⅱ分离,齿轮Ⅱ空转,与此同时,接合套Ⅱ分别与齿轮V、齿轮VI分离;驱动电机I的动力传输路线为:由驱动电机I的输出轴,经变速器输入轴Ⅰ、接合套Ⅰ、齿轮Ⅰ、齿轮Ⅲ后,由变速器输出轴Ⅲ输出。
技术方案优选为,车用双轴并联电驱动系统的换挡控制方法分别采用双电机低速档、双电机中速档、双电机高速档工作时,其步骤为:
当车辆在双电机低速档的模式驱动行驶时,通过制动踏板进行制动,此时动力传输路线为:制动踏板输入的动力依次经变速器输出轴Ⅲ、齿轮Ⅲ后,一路经齿轮Ⅰ、接合套Ⅰ、变 速器输入轴Ⅰ拖动驱动电机Ⅰ发电,另一路经齿轮V、接合套Ⅱ、变速器输入轴Ⅱ后拖动驱动电机Ⅱ发电;当电池电量充满时切换为机械制动;
当车辆在双电机中速档的模式驱动行驶时,通过制动踏板进行制动,此时动力传输路线为:制动踏板输入的动力经变速器输出轴Ⅲ后,一路经齿轮Ⅳ、齿轮Ⅱ、接合套Ⅰ、变速器输入轴Ⅰ拖动驱动电机Ⅰ发电,另一路经齿轮Ⅲ、齿轮V、接合套Ⅱ、变速器输入轴Ⅱ拖动驱动电机Ⅱ发电;当电池电量充满时切换为机械制动;
当车辆在双电机高速档的模式驱动行驶时,通过制动踏板进行制动,此时动力传输路线为:制动踏板输入的动力依次经变速器输出轴Ⅲ、齿轮Ⅳ后,一路经齿轮Ⅱ、接合套Ⅰ、变速器输入轴Ⅰ拖动驱动电机Ⅰ发电,另一路经齿轮VI、接合套Ⅱ、变速器输入轴Ⅱ拖动驱动电机Ⅱ发电;当电池电量充满时切换为机械制动。
与现有技术相比,本发明的优越效果在于:
(1)车用双轴并联电驱动系统能有效利用驱动电机的高效运转区,换档时无动力中断,爬坡加速性能优良,结构简单,成本低;
(2)由于电控机械式自动变速器设置三个档位,提高车辆的加速性能和爬坡性能,合理调配动力输出,充分利用电动动力,从而达到节能环保和降低使用成本的目的;
(3)采用双电机驱动,使车辆无论处于加速工况、低速工况及高速工况,通过单电机驱动与双电机驱动的模式切换,使驱动电机一直工作在高效运转区,避免电能浪费;
(4)驱动电机Ⅰ能正向、反向转动,倒车时,通过驱动电机Ⅰ反向转动实现倒车行驶,此时,驱动电机Ⅱ可以不工作。
(5)制动时进行制动能量回收,能量回收的输出端为驱动电机;输入端为车辆车轮的制动行驶,且驱动电机由驱动状态变为发电状态,能量从车轮到驱动电机,实现制动能量回收;降低电池的能量损失,同时降低了电池成本,提高了驱动电机的续驶里程。
附图说明
图1为本发明的车用双轴并联电驱动系统的结构示意图;
图2为图1中车用双轴并联电驱动系统在双电机低速档时动力传输路线图;
图3为图1中车用双轴并联电驱动系统在双电机中速档时动力传输路线图;
图4为图1中车用双轴并联电驱动系统在双电机高速档时动力传输路线图;
图5a为图1的车用双轴并联电驱动系统中驱动电机Ⅰ单独工作于低速档时的动力传输路线图;
图5b为图1的车用双轴并联电驱动系统中驱动电机Ⅱ单独工作于低速档时的动力传输路线图;
图5c为图1的车用双轴并联电驱动系统中驱动电机Ⅰ单独工作于高速档时的动力传输路线图;
图6为图1的车用双轴并联电驱动系统在倒挡时动力传输路线图;
图7为图1的车用双轴并联电驱动系统在双电机低速档时动力传输路线图;
图8为图1的车用双轴并联电驱动系统在双电机中速档时动力传输路线图;
图9为图1的车用双轴并联电驱动系统在双电机高速档时动力传输路线图。
附图标记如下:
1-驱动电机Ⅰ、2-驱动电机Ⅰ的输出轴、3-齿轮Ⅰ、4-接合套Ⅰ、5-齿轮Ⅱ、6-变速器输入轴Ⅰ、7-齿轮Ⅲ、8-齿轮Ⅳ、9-变速器输出轴Ⅲ、10-齿轮Ⅵ、11-变速器输入轴Ⅱ、12-接合套Ⅱ、13-齿轮Ⅴ、14-驱动电机Ⅱ的输出轴、15-驱动电机Ⅱ。
具体实施方式
下面结合附图对本发明具体实施方式作进一步详细说明。
如附图1所示,本发明的一种车用双轴并联电驱动系统,包括两个驱动电机和一个动力输出端,驱动电机为驱动电机Ⅰ1、驱动电机Ⅱ15,动力输出端为电控机械式自动变速器。本发明的电控机械式自动变速器包括由齿轮Ⅰ3与齿轮Ⅲ7啮合组成的一档齿轮对、由齿轮Ⅴ13与齿轮Ⅲ7啮合组成的二档齿轮对、由齿轮Ⅱ5与齿轮Ⅳ8啮合组成的三档齿轮对、由齿轮Ⅵ10与齿轮Ⅳ8啮合组成的四档齿轮对、接合套Ⅰ4、接合套Ⅱ12、变速器输入轴Ⅰ6、变速器输入轴Ⅱ11及变速器输出轴Ⅲ9;其中,齿轮Ⅰ3与齿轮Ⅱ5均空套于变速器输入轴Ⅰ6,齿轮Ⅲ7与齿轮Ⅳ8与变速器输出轴Ⅲ9固定连接,齿轮Ⅴ13与齿轮Ⅵ10均空套于变速器输入轴Ⅱ11,驱动电机Ⅰ的输出轴2与变速器输入轴Ⅰ6连接,驱动电机Ⅱ的输出轴14与变速器输入轴Ⅱ11连接,接合套Ⅰ4套设于变速器输入轴Ⅰ6、且设置于齿轮Ⅰ3和齿轮Ⅱ5之间,接合套Ⅰ4能与齿轮Ⅰ3、齿轮Ⅱ5结合或分离,接合套Ⅱ12套设于变速器输入轴Ⅱ11、且设置于齿轮Ⅴ13与齿轮Ⅵ10之间,接合套Ⅱ12能与齿轮Ⅴ13、齿轮Ⅵ10结合或分离,从而实现对驱动电机Ⅰ1、驱动电机Ⅱ15的转速调节,以及实现电控机械式自动变速器的换挡。
本发明提供一种车用双轴并联电驱动系统的换挡控制方法,采用了车用双轴并联电驱动系统,驱动电机Ⅰ1、驱动电机Ⅱ15的动力输出轴提供三个档位,通过驱动电机Ⅰ1、驱动电机Ⅱ15与电控机械式自动变速器耦合,驱动电机Ⅰ1和驱动电机Ⅱ15共同驱动、且在电池电 量充足的情况下能实现三个档位的转换,三个档位分别为双电机低速档、双电机中速档、双电机高速档;同时驱动电机Ⅰ1、驱动电机Ⅱ15还能单独工作,符合驱动电机的实际工作需求。
本发明的车用双轴并联电驱动系统分别采用双电机低速档、双电机中速档、双电机高速档时的控制方法:
如图2所示,车用双轴并联电驱动系统采用双电机低速档时,其控制方法的步骤包括:接合套Ⅰ4与齿轮Ⅰ3结合,使齿轮Ⅰ3与变速器输入轴Ⅰ6固定连接,以及接合套Ⅱ12与齿轮Ⅴ13结合,使齿轮Ⅴ13与变速器输入轴Ⅱ11固定连接,驱动电机Ⅰ1、驱动电机Ⅱ15的转速及转向均相同;此时,动力的传输路线为:由驱动电机Ⅰ1输出的动力,经驱动电机Ⅰ的输出轴2、变速器输入轴Ⅰ6、接合套Ⅰ4、齿轮Ⅰ3、齿轮Ⅲ7后,由变速器输出轴Ⅲ9输出;以及由驱动电机Ⅱ15输出的动力,经驱动电机Ⅱ的输出轴14、变速器输入轴Ⅱ11、接合套Ⅱ12、齿轮Ⅴ13、齿轮Ⅲ7后,由变速器输出轴Ⅲ9输出。
如图3所示,车用双轴并联电驱动系统采用双电机中速档时,其控制方法的步骤包括:通过调节驱动电机Ⅰ1的转速,当驱动电机Ⅰ1的转速与驱动电机Ⅱ15的转速相同时,接合套Ⅰ4与齿轮Ⅱ5结合,使齿轮Ⅱ5与变速器输入轴Ⅰ6固定连接,且接合套Ⅰ4与齿轮Ⅰ3分离,齿轮Ⅰ3空转;此时,动力传输路线为:由驱动电机Ⅰ1输出的动力,经驱动电机Ⅰ的输出轴2、变速器输入轴Ⅰ6、接合套Ⅰ4、齿轮Ⅱ5、齿轮Ⅳ8后,由变速器输出轴Ⅲ9输出;接合套Ⅱ12与齿轮Ⅴ13结合,使齿轮Ⅴ13与变速器输入轴Ⅱ11固定连接,且接合套Ⅱ12与齿轮Ⅵ10分离,齿轮Ⅵ10空转;此时,动力传输路线为:由驱动电机Ⅱ15输出的动力,经驱动电机Ⅱ的输出轴14、变速器输入轴Ⅱ11、接合套Ⅱ12、齿轮Ⅴ13、齿轮Ⅲ7后,由变速器输出轴Ⅲ9输出。
如图4所示,车用双轴并联电驱动系统采用双电机高速档时,其控制方法的步骤包括:接合套Ⅰ4与齿轮Ⅱ5结合,使齿轮Ⅱ5与变速器输入轴Ⅰ6固定连接,接合套Ⅰ4与齿轮Ⅰ3分离,齿轮Ⅰ3空转;以及接合套Ⅱ12与齿轮Ⅵ10结合,使齿轮Ⅵ10与变速器输入轴Ⅱ11固定连接,接合套Ⅱ12与齿轮Ⅴ13分离,齿轮Ⅴ13空转;驱动电机Ⅰ1、驱动电机Ⅱ15的转速及转向均相同;此时,动力的传输路线为:由驱动电机Ⅰ1输出的动力,经驱动电机Ⅰ的输出轴2、变速器输入轴Ⅰ6、接合套Ⅰ4、齿轮Ⅱ5、齿轮Ⅳ8后,由变速器输出轴Ⅲ9输出;以及由驱动电机Ⅱ15输出的动力,经驱动电机Ⅱ的输出轴14、变速器输入轴Ⅱ11、接合套Ⅱ12、齿轮Ⅵ10、齿轮Ⅳ8后,由变速器输出轴Ⅲ9输出。
本发明的车用双轴并联电驱动系统分别采用双电机低速档、双电机中速档、双电机高速档时,其换挡控制方法如下:
一、车用双轴并联电驱动系统从双电机低速档转变为双电机高速档的换档控制方法,车用双轴并联电驱动系统在换挡过程中经历驱动电机Ⅰ1单独工作于低速档、驱动电机Ⅰ1与驱动电机Ⅱ15同时工作于低速档、驱动电机Ⅱ15单独工作于低速档、双电机中速档、驱动电机Ⅰ1单独工作于高速档的过渡,完成双电机低速档至双电机高速档的转换;具体步骤包括:
步骤1:车用双轴并联电驱动系统从双电机低速档过渡至驱动电机Ⅰ1单独工作于低速档,接合套Ⅰ4与齿轮Ⅱ5分离,齿轮Ⅱ5空转,驱动电机Ⅰ1的动力传输路线为:由驱动电机Ⅰ1输出的动力,经驱动电机Ⅰ的输出轴2、变速器输入轴Ⅰ6、接合套Ⅰ4、齿轮Ⅰ3、齿轮Ⅲ7后,由变速器输出轴Ⅲ9输出,如图5a所示。
步骤2:驱动电机Ⅰ1单独工作于低速档过渡至驱动电机Ⅰ1与驱动电机Ⅱ15同时工作于低速档:调节驱动电机Ⅱ15的转速,当其转速与变速器输出轴Ⅱ转速相同时,接合套Ⅱ12与齿轮Ⅴ13结合,使齿轮Ⅴ13变速器输入轴Ⅱ11固定连接;此时,驱动电机Ⅰ1的动力传输路线为:由驱动电机Ⅰ1输出的动力,经驱动电机Ⅰ的输出轴2、变速器输入轴Ⅰ6、接合套Ⅰ4、齿轮Ⅰ3、齿轮Ⅲ7、由变速器输出轴Ⅲ9输出;驱动电机Ⅱ15的动力传输路线为:由驱动电机Ⅱ的输出轴14、变速器输入轴Ⅱ11、接合套Ⅱ12、齿轮Ⅴ13、齿轮Ⅲ7后,由变速器输出轴Ⅲ9输出,如附图2所示。
步骤3:驱动电机Ⅰ1与驱动电机Ⅱ15同时工作于低速档过渡至驱动电机Ⅱ15单独工作于低速档,接合套Ⅰ4与齿轮Ⅰ3分离,齿轮Ⅰ3空转;此时,驱动电机Ⅱ15的动力传输路线为:由驱动电机Ⅱ的输出轴14、变速器输入轴Ⅱ11、接合套Ⅱ12、齿轮Ⅴ13、齿轮Ⅲ7后,由变速器输出轴Ⅲ9输出,如图5b。
步骤4:驱动电机Ⅱ15单独工作于低速档过渡至双电机中速档,调节驱动电机Ⅰ1的转速,当其转速与驱动电机Ⅱ15的转速相同时,接合套Ⅰ4与齿轮Ⅱ5结合,使齿轮Ⅱ5与变速器输入轴Ⅰ6固定连接;驱动电机Ⅰ1的动力传输路线为:经驱动电机Ⅰ的输出轴2、变速器输入轴Ⅰ6、接合套Ⅰ4、齿轮Ⅱ5、齿轮Ⅳ8后,由变速器输出轴Ⅲ9输出;驱动电机Ⅱ15的动力传输路线为:经驱动电机Ⅱ的输出轴14、变速器输入轴Ⅱ11、接合套Ⅱ12、齿轮Ⅴ13、齿轮Ⅲ7后,由变速器输出轴Ⅲ9输出,如图3所示。
步骤5:驱动电机Ⅰ1与驱动电机Ⅱ15由双电机中速档过渡至驱动电机Ⅰ1单独工作于高速档,接合套Ⅱ12与齿轮Ⅴ13分离,齿轮Ⅴ13空转,此时,驱动电机Ⅰ1的动力传输路线为:经驱动电机Ⅰ的输出轴2、变速器输入轴Ⅰ6、接合套Ⅰ4、齿轮Ⅱ5、齿轮Ⅳ8后,由变速器输出轴Ⅲ9输出,如图5c所示。
步骤6:从驱动电机Ⅰ1单独工作于高速档过渡至双电机高速档,调节驱动电机Ⅱ15的转速,当其转速与驱动电机Ⅰ1的转速相同时,接合套Ⅱ12与齿轮Ⅵ10结合,使齿轮Ⅵ10与变 速器输入轴Ⅱ11固定连接;此时,驱动电机Ⅰ1的动力传输路线为:经驱动电机Ⅰ的输出轴2、变速器输入轴Ⅰ6、接合套Ⅰ4、齿轮Ⅱ5、齿轮Ⅳ8后,由变速器输出轴Ⅲ9输出;驱动电机Ⅱ15的动力传输路线为:经驱动电机Ⅱ的输出轴14、经变速器输入轴Ⅱ11、接合套Ⅱ12、齿轮Ⅵ10、齿轮Ⅳ8后,由变速器输出轴Ⅲ9输出,如图4所示。
二、车用双轴并联电驱动系统从双电机高速档转变为双电机低速档的换档控制方法,车用双轴并联电驱动系统在换挡过程中经历驱动电机Ⅰ1单独工作于高速档、双电机中间档、驱动电机Ⅱ15单独工作于低速档的过渡,完成双电机高速档转变为双电机低速档的转换;具体步骤包括:
步骤1:车用双轴并联电驱动系统从双电机高速档过渡至驱动电机Ⅰ1单独工作于高速档,接合套Ⅱ12与齿轮Ⅵ10分离,齿轮Ⅵ10空转;此时,驱动电机I的动力传输路线为:经驱动电机I的输出轴、变速器输入轴Ⅰ6、接合套Ⅰ4、齿轮Ⅱ5、齿轮Ⅳ8后,由变速器输出轴Ⅲ9输出,如图5c所示。
步骤2:驱动电机Ⅰ1单独工作于高速档过渡至双电机中间档,接合套Ⅱ12与齿轮Ⅴ13结合,齿轮Ⅴ13与变速器输入轴Ⅱ11固定连接,此时,驱动电机Ⅰ1的动力传输路线为:由驱动电机Ⅰ的输出轴2,经变速器输入轴Ⅰ6、接合套Ⅰ4、齿轮Ⅱ5、齿轮Ⅳ8后,由变速器输出轴Ⅲ9输出;驱动电机Ⅱ15的动力传输路线为:由驱动电机Ⅱ的输出轴14,经变速器输入轴Ⅱ11、接合套Ⅱ12、齿轮Ⅴ13、齿轮Ⅲ7后,由变速器输出轴Ⅲ9输出,如图3所示。
步骤3:驱动电机Ⅰ1与驱动电机Ⅱ15从双电机中间档过渡至驱动电机Ⅱ15单独工作于低速档,接合套Ⅰ4与齿轮Ⅱ5分离,齿轮Ⅱ5空转;驱动电机Ⅱ15的动力传输路线为:由驱动电机Ⅱ的输出轴14,经变速器输入轴Ⅱ11、接合套Ⅱ12、齿轮Ⅴ13、齿轮Ⅲ7后,由变速器输出轴Ⅲ9输出,如图5b所示。
步骤4:驱动电机Ⅱ15单独工作于低速档过渡至驱动电机Ⅰ1与驱动电机Ⅱ15同时工作于低速档:接合套Ⅰ4与齿轮Ⅰ3结合,齿轮Ⅰ3与变速器输入轴Ⅰ6固定连接;此时,驱动电机Ⅰ1的动力传输路线为:由驱动电机Ⅰ的输出轴2,经变速器输入轴Ⅰ6、接合套Ⅰ4、齿轮Ⅰ3、齿轮Ⅲ7后,由变速器输出轴Ⅲ9输出;驱动电机Ⅱ15的动力传输路线为:由驱动电机Ⅱ的输出轴14,经变速器输入轴Ⅱ11、接合套Ⅱ12、齿轮Ⅴ13、齿轮Ⅲ7后,由变速器输出轴Ⅲ9输出,如图2所示。
本发明的车用双轴并联电驱动系统的换挡控制方法,还包括倒档控制方法,倒档控制步骤包括:在倒档时,驱动电机Ⅰ1单独工作,且驱动电机Ⅰ1反向旋转,接合套Ⅰ4与齿轮Ⅰ3结合,齿轮Ⅰ3与变速器输入轴Ⅰ6固定连接,接合套Ⅰ4与齿轮Ⅱ5分离,齿轮Ⅱ5空转,与此同时,接合套Ⅱ12分别与齿轮Ⅴ13、齿轮Ⅵ10分离;驱动电机I的动力传输路线为:由驱动 电机I的输出轴,经变速器输入轴Ⅰ6、接合套Ⅰ4、齿轮Ⅰ3、齿轮Ⅲ7后,由变速器输出轴Ⅲ9输出,如图6所示。
本发明的车用双轴并联电驱动系统的换挡控制方法分别采用双电机低速档、双电机中速档、双电机高速档工作时,其步骤为:
当车辆在双电机低速档的模式驱动行驶时,通过制动踏板进行制动,此时动力传输路线为:制动踏板输入的动力依次经变速器输出轴Ⅲ9、齿轮Ⅲ7后,一路经齿轮Ⅰ3、接合套Ⅰ4、变速器输入轴Ⅰ6拖动驱动电机Ⅰ1发电,另一路经齿轮Ⅴ13、接合套Ⅱ12、变速器输入轴Ⅱ11后拖动驱动电机Ⅱ15发电;当电池电量充满时切换为机械制动,如图7所示。
当车辆在双电机中速档的模式驱动行驶时,通过制动踏板进行制动,此时动力传输路线为:制动踏板输入的动力经变速器输出轴Ⅲ9后,一路经齿轮Ⅳ8、齿轮Ⅱ5、接合套Ⅰ4、变速器输入轴Ⅰ6拖动驱动电机Ⅰ1发电,另一路经齿轮Ⅲ7、齿轮Ⅴ13、接合套Ⅱ12、变速器输入轴Ⅱ11拖动驱动电机Ⅱ15发电;当电池电量充满时切换为机械制动,如图8所示。
当车辆在双电机高速档的模式驱动行驶时,通过制动踏板进行制动,此时动力传输路线为:制动踏板输入的动力依次经变速器输出轴Ⅲ9、齿轮Ⅳ8后,一路经齿轮Ⅱ5、接合套Ⅰ4、变速器输入轴Ⅰ6拖动驱动电机Ⅰ1发电,另一路经齿轮Ⅵ10、接合套Ⅱ12、变速器输入轴Ⅱ11拖动驱动电机Ⅱ15发电;当电池电量充满时切换为机械制动,如图9所示。
由于电控机械式自动变速器的三个档位经过速比优化设计,提高了电动机的运行效率,使得整车动力性和经济性均优于单档电动车。当车辆在市区行驶时,对功率要求比较低,所以车用双轴并联电驱动系统能满足车辆在市区路面行驶的要求,包括实现车辆的起步、加速和爬坡;同时,由驱动电机Ⅰ1与驱动电机Ⅱ15相互配合进行换档,可实现换档过程中无动力中断,提高了换档品质,改善了车辆的行驶平顺性。驱动电机Ⅰ1通过改变输入电压的方向实现驱动电机Ⅰ1的正向、反向转动;特别是,驱动电机Ⅰ1反向转动时,实现车辆的倒驶。
通过本发明的车用双轴并联电驱动系统可以看出,本发明以传动效率较高的电控机械式自动变速器的结构,实现了两个驱动电机的动力耦合,为驱动电机的动力输出提供三个档位,符合驱动电机的实际工作需求;并且通过多种运行模式的转换,能有效提高驱动电机的速度特性和高效运转区。本发明车用双轴并联电驱动系统的结构简单、成本低,而且在换档时能实现同步调速和无动力中断控制,改善了车辆的动力性和经济性。
本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员可以想到的任何变形、改进、替换均落入本发明的保护范围。
工业实用性
本发明的车用双轴并联电驱动系统,具有驱动电机和电控机械式自动变速器,其结构简单,布置合理,加速性和爬坡能力较高,且换档平顺,又能保证动力不中断;通过换档控制方法在换档过程中延续行驶所需动力的产生;同时,能够将车辆行驶产生的动能在制动时转化为电能,节省电能量损失,从而降低电池成本,提高车辆的续驶里程。

Claims (9)

  1. 一种车用双轴并联电驱动系统,其特征在于,包括驱动电机Ⅰ、驱动电机Ⅱ及电控机械式自动变速器,所述电控机械式自动变速器包括由齿轮Ⅰ与齿轮Ⅲ啮合组成的一档齿轮对、由齿轮Ⅴ与齿轮Ⅲ啮合组成的二档齿轮对、由齿轮Ⅱ与齿轮Ⅳ啮合组成的三档齿轮对、由齿轮Ⅵ与齿轮Ⅳ啮合组成的四档齿轮对、接合套Ⅰ、接合套Ⅱ、变速器输入轴Ⅰ、变速器输入轴Ⅱ及变速器输出轴Ⅲ;其中,所述齿轮Ⅰ与所述齿轮Ⅱ均空套于所述变速器输入轴Ⅰ,所述齿轮Ⅲ与所述齿轮Ⅳ与所述变速器输出轴Ⅲ固定连接,所述齿轮Ⅴ与所述齿轮Ⅵ均空套于所述变速器输入轴Ⅱ,所述驱动电机Ⅰ的输出轴与所述变速器输入轴Ⅰ连接,所述驱动电机Ⅱ的输出轴与所述变速器输入轴Ⅱ连接,所述接合套Ⅰ套设于所述变速器输入轴Ⅰ、且设置于所述齿轮Ⅰ和所述齿轮Ⅱ之间,所述接合套Ⅰ能与所述齿轮Ⅰ、所述齿轮Ⅱ结合或分离,所述接合套Ⅱ套设于所述变速器输入轴Ⅱ、且设置于所述齿轮Ⅴ与所述齿轮Ⅵ之间,所述接合套Ⅱ能与所述齿轮Ⅴ、所述齿轮Ⅵ结合或分离。
  2. 一种车用双轴并联电驱动系统的换挡控制方法,其特征在于,驱动电机Ⅰ、驱动电机Ⅱ的动力输出轴提供三个档位,通过驱动电机Ⅰ、驱动电机Ⅱ与电控机械式自动变速器耦合,驱动电机Ⅰ和驱动电机Ⅱ驱动、且在电池电量充足的情况下能实现三个档位的转换,三个档位分别为双电机低速档、双电机中速档、双电机高速档。
  3. 根据权利要求2所述的一种车用双轴并联电驱动系统的换挡控制方法,其特征在于,车用双轴并联电驱动系统采用双电机低速档时,其步骤至少包括:接合套Ⅰ与齿轮Ⅰ结合,使齿轮Ⅰ与变速器输入轴Ⅰ固定连接,以及接合套Ⅱ与齿轮Ⅴ结合,使齿轮Ⅴ与变速器输入轴Ⅱ固定连接,驱动电机Ⅰ、驱动电机Ⅱ的转速及转向均相同;此时,动力的传输路线为:由驱动电机Ⅰ输出的动力,经驱动电机Ⅰ的输出轴、变速器输入轴Ⅰ、接合套Ⅰ、齿轮Ⅰ、齿轮Ⅲ后,由变速器输出轴Ⅲ输出;以及由驱动电机Ⅱ输出的动力,经驱动电机Ⅱ的输出轴、变速器输入轴Ⅱ、接合套Ⅱ、齿轮Ⅴ、齿轮Ⅲ后,由变速器输出轴Ⅲ输出。
  4. 根据权利要求2所述的一种车用双轴并联电驱动系统的换挡控制方法,其特征在于,车用双轴并联电驱动系统采用双电机中速档时,其步骤至少包括:通过调节驱动电机Ⅰ的转速,当驱动电机Ⅰ的转速与驱动电机Ⅱ的转速相同时,接合套Ⅰ与齿轮Ⅱ结合,使齿轮Ⅱ与变速器输入轴Ⅰ固定连接,且接合套Ⅰ与齿轮Ⅰ分离,齿轮Ⅰ空转;此时,动力传输路线为:由驱动电机Ⅰ输出的动力,经驱动电机Ⅰ的输出轴、变速器输入轴Ⅰ、接合套Ⅰ、齿轮Ⅱ、 齿轮Ⅳ后,由变速器输出轴Ⅲ输出;接合套Ⅱ与齿轮Ⅴ结合,使齿轮Ⅴ与变速器输入轴Ⅱ固定连接,且接合套Ⅱ与齿轮Ⅵ分离,齿轮Ⅵ空转;此时,动力传输路线为:由驱动电机Ⅱ输出的动力,经驱动电机Ⅱ的输出轴、变速器输入轴Ⅱ、接合套Ⅱ、齿轮Ⅴ、齿轮Ⅲ后,由变速器输出轴Ⅲ输出。
  5. 根据权利要求2所述的一种车用双轴并联电驱动系统的换挡控制方法,其特征在于,车用双轴并联电驱动系统采用双电机高速档时,其步骤至少包括:接合套Ⅰ与齿轮Ⅱ结合,使齿轮Ⅱ与变速器输入轴Ⅰ固定连接,接合套Ⅰ与齿轮Ⅰ分离,齿轮Ⅰ空转;以及接合套Ⅱ与齿轮Ⅵ结合,使齿轮Ⅵ与变速器输入轴Ⅱ固定连接,接合套Ⅱ与齿轮Ⅴ分离,齿轮Ⅴ空转;驱动电机Ⅰ、驱动电机Ⅱ的转速及转向均相同;此时,动力的传输路线为:由驱动电机Ⅰ输出的动力,经驱动电机Ⅰ的输出轴、变速器输入轴Ⅰ、接合套Ⅰ、齿轮Ⅱ、齿轮Ⅳ后,由变速器输出轴Ⅲ输出;以及由驱动电机Ⅱ输出的动力,经驱动电机Ⅱ的输出轴、变速器输入轴Ⅱ、接合套Ⅱ、齿轮Ⅵ、齿轮Ⅳ后,由变速器输出轴Ⅲ输出。
  6. 根据权利要求2所述的一种车用双轴并联电驱动系统的换挡控制方法,其特征在于,车用双轴并联电驱动系统从双电机低速档转变为双电机高速档时,其步骤至少包括:
    步骤1:车用双轴并联电驱动系统从双电机低速档过渡至驱动电机Ⅰ单独工作于低速档,接合套Ⅰ与齿轮Ⅱ分离,齿轮Ⅱ空转,驱动电机Ⅰ的动力传输路线为:由驱动电机Ⅰ输出的动力,经驱动电机Ⅰ的输出轴、变速器输入轴Ⅰ、接合套Ⅰ、齿轮Ⅰ、齿轮Ⅲ后,由变速器输出轴Ⅲ输出;
    步骤2:驱动电机Ⅰ单独工作于低速档过渡至驱动电机Ⅰ与驱动电机Ⅱ同时工作于低速档:调节驱动电机Ⅱ的转速,当其转速与变速器输出轴Ⅱ转速相同时,接合套Ⅱ与齿轮V结合,使齿轮V变速器输入轴Ⅱ固定连接;此时,驱动电机Ⅰ的动力传输路线为:由驱动电机Ⅰ输出的动力,经驱动电机Ⅰ的输出轴、变速器输入轴Ⅰ、接合套Ⅰ、齿轮Ⅰ、齿轮Ⅲ、由变速器输出轴Ⅲ输出;驱动电机Ⅱ的动力传输路线为:由驱动电机Ⅱ的输出轴、变速器输入轴Ⅱ、接合套Ⅱ、齿轮V、齿轮Ⅲ后,由变速器输出轴Ⅲ输出;
    步骤3:驱动电机Ⅰ与驱动电机Ⅱ同时工作于低速档过渡至驱动电机Ⅱ单独工作于低速档,接合套Ⅰ与齿轮Ⅰ分离,齿轮Ⅰ空转;此时,驱动电机Ⅱ的动力传输路线为:由驱动电机Ⅱ的输出轴、变速器输入轴Ⅱ、接合套Ⅱ、齿轮V、齿轮Ⅲ后,由变速器输出轴Ⅲ输出;
    步骤4:驱动电机Ⅱ单独工作于低速档过渡至双电机中速档,调节驱动电机Ⅰ的转速,当其转速与驱动电机Ⅱ的转速相同时,接合套Ⅰ与齿轮Ⅱ结合,使齿轮Ⅱ与变速器输入轴Ⅰ 固定连接;驱动电机Ⅰ的动力传输路线为:经驱动电机Ⅰ的输出轴、变速器输入轴Ⅰ、接合套Ⅰ、齿轮Ⅱ、齿轮Ⅳ后,由变速器输出轴Ⅲ输出;驱动电机Ⅱ的动力传输路线为:经驱动电机Ⅱ的输出轴、变速器输入轴Ⅱ、接合套Ⅱ、齿轮V、齿轮Ⅲ后,由变速器输出轴Ⅲ输出;
    步骤5:驱动电机Ⅰ与驱动电机Ⅱ由双电机中速档过渡至驱动电机Ⅰ单独工作于高速档,接合套Ⅱ与齿轮V分离,齿轮V空转,此时,驱动电机Ⅰ的动力传输路线为:经驱动电机Ⅰ的输出轴、变速器输入轴Ⅰ、接合套Ⅰ、齿轮Ⅱ、齿轮Ⅳ后,由变速器输出轴Ⅲ输出;
    步骤6:从驱动电机Ⅰ单独工作于高速档过渡至双电机高速档,调节驱动电机Ⅱ的转速,当其转速与驱动电机Ⅰ的转速相同时,接合套Ⅱ与齿轮VI结合,使齿轮VI与变速器输入轴Ⅱ固定连接;此时,驱动电机Ⅰ的动力传输路线为:经驱动电机Ⅰ的输出轴、变速器输入轴Ⅰ、接合套Ⅰ、齿轮Ⅱ、齿轮Ⅳ后,由变速器输出轴Ⅲ输出;驱动电机Ⅱ的动力传输路线为:经驱动电机Ⅱ的输出轴、经变速器输入轴Ⅱ、接合套Ⅱ、齿轮VI、齿轮Ⅳ后,由变速器输出轴Ⅲ输出。
  7. 根据权利要求2所述的一种车用双轴并联电驱动系统的换挡控制方法,其特征在于,车用双轴并联电驱动系统从双电机高速档转变为双电机低速档时,其步骤至少包括:
    步骤1:车用双轴并联电驱动系统从双电机高速档过渡至驱动电机Ⅰ单独工作于高速档,接合套Ⅱ与齿轮VI分离,齿轮VI空转;此时,驱动电机I的动力传输路线为:经驱动电机I的输出轴、变速器输入轴Ⅰ、接合套Ⅰ、齿轮Ⅱ、齿轮Ⅳ后,由变速器输出轴Ⅲ输出;
    步骤2:驱动电机Ⅰ单独工作于高速档过渡至双电机中间档,接合套Ⅱ与齿轮V结合,齿轮V与变速器输入轴Ⅱ固定连接,此时,驱动电机Ⅰ的动力传输路线为:由驱动电机Ⅰ的输出轴,经变速器输入轴Ⅰ、接合套Ⅰ、齿轮Ⅱ、齿轮Ⅳ后,由变速器输出轴Ⅲ输出;驱动电机Ⅱ的动力传输路线为:由驱动电机Ⅱ的输出轴,经变速器输入轴Ⅱ、接合套Ⅱ、齿轮V、齿轮Ⅲ后,由变速器输出轴Ⅲ输出;
    步骤3:驱动电机Ⅰ与驱动电机Ⅱ从双电机中间档过渡至驱动电机Ⅱ单独工作于低速档,接合套Ⅰ与齿轮Ⅱ分离,齿轮Ⅱ空转;驱动电机Ⅱ的动力传输路线为:由驱动电机Ⅱ的输出轴,经变速器输入轴Ⅱ、接合套Ⅱ、齿轮V、齿轮Ⅲ后,由变速器输出轴Ⅲ输出;
    步骤4:驱动电机Ⅱ单独工作于低速档过渡至驱动电机Ⅰ与驱动电机Ⅱ同时工作于低速档:接合套Ⅰ与齿轮Ⅰ结合,齿轮Ⅰ与变速器输入轴Ⅰ固定连接;此时,驱动电机Ⅰ的动力传输路线为:由驱动电机Ⅰ的输出轴,经变速器输入轴Ⅰ、接合套Ⅰ、齿轮Ⅰ、齿轮Ⅲ后,由变速器输出轴Ⅲ输出;驱动电机Ⅱ的动力传输路线为:由驱动电机Ⅱ的输出轴,经变速器 输入轴Ⅱ、接合套Ⅱ、齿轮V、齿轮Ⅲ后,由变速器输出轴Ⅲ输出。
  8. 根据权利要求2所述的一种车用双轴并联电驱动系统的换挡控制方法,其特征在于,换挡控制方法还包括倒档控制方法,其步骤至少包括:在倒档时,驱动电机Ⅰ单独工作,且驱动电机Ⅰ反向旋转,接合套Ⅰ与齿轮Ⅰ结合,齿轮Ⅰ与变速器输入轴Ⅰ固定连接,接合套Ⅰ与齿轮Ⅱ分离,齿轮Ⅱ空转,与此同时,接合套Ⅱ分别与齿轮V、齿轮VI分离;驱动电机I的动力传输路线为:由驱动电机I的输出轴,经变速器输入轴Ⅰ、接合套Ⅰ、齿轮Ⅰ、齿轮Ⅲ后,由变速器输出轴Ⅲ输出。
  9. 根据权利要求2所述的一种车用双轴并联电驱动系统的换挡控制方法,其特征在于,车用双轴并联电驱动系统的换挡控制方法分别采用双电机低速档、双电机中速档、双电机高速档工作时,其步骤为:
    当车辆在双电机低速档的模式驱动行驶时,通过制动踏板进行制动,此时动力传输路线为:制动踏板输入的动力依次经变速器输出轴Ⅲ、齿轮Ⅲ后,一路经齿轮Ⅰ、接合套Ⅰ、变速器输入轴Ⅰ拖动驱动电机Ⅰ发电,另一路经齿轮V、接合套Ⅱ、变速器输入轴Ⅱ后拖动驱动电机Ⅱ发电;当电池电量充满时切换为机械制动;
    当车辆在双电机中速档的模式驱动行驶时,通过制动踏板进行制动,此时动力传输路线为:制动踏板输入的动力经变速器输出轴Ⅲ后,一路经齿轮Ⅳ、齿轮Ⅱ、接合套Ⅰ、变速器输入轴Ⅰ拖动驱动电机Ⅰ发电,另一路经齿轮Ⅲ、齿轮V、接合套Ⅱ、变速器输入轴Ⅱ拖动驱动电机Ⅱ发电;当电池电量充满时切换为机械制动;
    当车辆在双电机高速档的模式驱动行驶时,通过制动踏板进行制动,此时动力传输路线为:制动踏板输入的动力依次经变速器输出轴Ⅲ、齿轮Ⅳ后,一路经齿轮Ⅱ、接合套Ⅰ、变速器输入轴Ⅰ拖动驱动电机Ⅰ发电,另一路经齿轮VI、接合套Ⅱ、变速器输入轴Ⅱ拖动驱动电机Ⅱ发电;当电池电量充满时切换为机械制动。
PCT/CN2015/097496 2015-12-11 2015-12-15 一种车用双轴并联电驱动系统及其换档控制方法 WO2017096635A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15910109.6A EP3388274A4 (en) 2015-12-11 2015-12-15 BIAXIAL VEHICLE PARALLEL ELECTRIC DRIVE SYSTEM AND SPEED CHANGE CONTROL METHOD THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510920670.X 2015-12-11
CN201510920670.XA CN105416049B (zh) 2015-12-11 2015-12-11 一种车用双轴并联电驱动系统的换档控制方法

Publications (1)

Publication Number Publication Date
WO2017096635A1 true WO2017096635A1 (zh) 2017-06-15

Family

ID=55494758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097496 WO2017096635A1 (zh) 2015-12-11 2015-12-15 一种车用双轴并联电驱动系统及其换档控制方法

Country Status (4)

Country Link
EP (1) EP3388274A4 (zh)
CN (1) CN105416049B (zh)
DE (1) DE202015009818U1 (zh)
WO (1) WO2017096635A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107351754A (zh) * 2017-07-24 2017-11-17 艾迪机器(杭州)有限公司 一种自行走干自吸的应急排涝消防发电一体装置
CN109501568A (zh) * 2018-12-28 2019-03-22 樊朝晖 一种电动汽车双电机驱动系统及其控制方法
CN113335056A (zh) * 2021-03-12 2021-09-03 联合汽车电子有限公司 混合动力汽车变速系统、方法及车辆
CN113477746A (zh) * 2021-07-20 2021-10-08 武汉乾冶众联科技有限公司 一种双电机并联驱动装置及实芯张力卷取机
SE2050926A1 (en) * 2020-07-29 2021-11-16 Man Truck & Bus Ag Transmission unit, transmission arrangement and vehicle powertrain
SE2050925A1 (en) * 2020-07-29 2021-11-16 Man Truck & Bus Ag Transmission unit, vehicle powertrain and vehicle
CN113738832A (zh) * 2021-08-25 2021-12-03 凯博易控车辆科技(苏州)股份有限公司 一种三电机三中间轴多挡变速系统

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105927714B (zh) * 2016-05-24 2017-06-30 南京越博动力系统股份有限公司 一种双电机双轴输入变速箱的驱动系统及其换档控制方法
CN106143133A (zh) * 2016-07-17 2016-11-23 南京阿福机器人有限公司 标准化动力系统
CN106438869B (zh) * 2016-11-21 2018-08-28 聊城大学 一种双输入单输出无动力间断耦合器的换挡方法
CN106394214A (zh) * 2016-11-23 2017-02-15 胡建 一种电动汽车的驱动系统
CN106382349A (zh) * 2016-12-07 2017-02-08 天津天海同步集团有限公司 一种无动力中断的双电机紧凑型变速箱
CN106763557A (zh) * 2016-12-30 2017-05-31 綦江齿轮传动有限公司 双动力输入纯电动变速器
CN106553510A (zh) * 2017-01-13 2017-04-05 苏州绿控传动科技有限公司 一种不同轴双电机的电驱驱动桥
CN106907433A (zh) * 2017-04-26 2017-06-30 南京越博动力系统股份有限公司 一种并联双输入轴变速器系统及其换挡控制方法
CN109774449B (zh) * 2017-11-14 2021-05-25 吉利汽车研究院(宁波)有限公司 一种连续变速分流式混合动力总成
CN109780181B (zh) * 2017-11-14 2020-11-03 吉利汽车研究院(宁波)有限公司 基于双输入轴变速器的换档控制方法及装置、存储介质和连续变速系统
CN109774462A (zh) * 2017-11-14 2019-05-21 吉利汽车研究院(宁波)有限公司 一种汽车前驱连续变速机构
CN109780144A (zh) * 2017-11-14 2019-05-21 吉利汽车研究院(宁波)有限公司 一种连续变速电动变速器
CN109780143A (zh) * 2017-11-14 2019-05-21 吉利汽车研究院(宁波)有限公司 一种汽车前驱多挡连续变速机构
CN108361327A (zh) * 2018-04-12 2018-08-03 宁功韬 双电机双轴输出变速器
CN110406371A (zh) * 2018-04-26 2019-11-05 王国斌 一种双动力混合系统设计方法及控制策略
FR3089886A1 (fr) * 2018-12-17 2020-06-19 Valeo Embrayages Système de propulsion pour véhicule électrique
CN109649147A (zh) * 2019-01-31 2019-04-19 郑州智驱科技有限公司 一种纯电动车双电机输入平行轴两档变速器传动方案
CN109630673A (zh) * 2019-01-31 2019-04-16 郑州智驱科技有限公司 一种纯电动车双电机输入双中间轴变速器传动方案
DE102019202964A1 (de) * 2019-03-05 2020-09-10 Zf Friedrichshafen Ag Antriebsstrang für ein Kraftfahrzeug sowie Verfahren zum Betreiben eines Antriebsstranges
WO2020197463A1 (en) * 2019-03-28 2020-10-01 Scania Cv Ab A powertrain for a vehicle, an all-electric vehicle, and a method of controlling a powertrain
CN111823855A (zh) * 2019-04-17 2020-10-27 王国斌 一种双动力多模式动力系统设计方法及控制策略
AT522931A1 (de) * 2019-11-12 2021-03-15 Avl Commercial Driveline & Tractor Eng Gmbh Elektrisch angetriebene achsanordnung für ein fahrzeug
CN110843492A (zh) * 2019-11-27 2020-02-28 洛阳智能农业装备研究院有限公司 一种基于双电机构型的拖拉机功率合流分流传动系统
DE102020101668A1 (de) * 2020-01-24 2021-07-29 Mahle International Gmbh Schaltstrategie für ein Getriebe
GB2578559B (en) * 2020-02-04 2021-01-27 Zeroshift Trans Limited Drive train
US20230406319A1 (en) * 2020-09-18 2023-12-21 Volvo Truck Corporation Controlling apparatus for a powertrain of an electric vehicle
CN112172506B (zh) * 2020-10-16 2022-07-08 北京未来智酷汽车科技有限公司 动力耦合装置、动力系统及其控制方法
CN112590542B (zh) * 2020-12-30 2022-07-19 潍柴动力股份有限公司 一种纯电动动力总成及其控制方法
CN114435126A (zh) * 2022-02-15 2022-05-06 浙江吉利控股集团有限公司 一种驱动装置及车辆

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19850549A1 (de) * 1998-11-03 2000-05-04 Bosch Gmbh Robert Getriebe für ein Kraftfahrzeug, insbesondere Doppelkupplungs-Schaltgetriebe, und Verfahren zum Betreiben des Getriebes
JP2000127774A (ja) * 1998-10-26 2000-05-09 Kyowa Gokin Kk 自動車用駆動装置
CN101503054A (zh) * 2008-12-15 2009-08-12 同济大学 一种双电机动力合成驱动装置
CN102795103A (zh) * 2012-09-05 2012-11-28 刘丽君 一种带有中间轴的双电机动力总成
CN202753745U (zh) * 2012-09-05 2013-02-27 刘丽君 一种带有中间轴的双电机动力总成
CN104015600A (zh) * 2014-06-12 2014-09-03 重庆大学 双电机纯电动汽车无离合器自动变速机构
CN104633020A (zh) * 2015-02-13 2015-05-20 吉林大学 一种电动车用双电机四档变速器及其换挡控制方法
CN205202728U (zh) * 2015-12-11 2016-05-04 南京越博动力系统股份有限公司 一种车用双轴并联电驱动系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10203064A1 (de) * 2002-01-28 2003-08-07 Bosch Gmbh Robert Verfahren zur Einstellung eines Betriebspunktes eines Hybridantriebes eines Fahrzeuges
CN104972890B (zh) * 2015-07-07 2017-06-20 安徽纽恩卡自控科技有限公司 一种双电机混合动力自动变速器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000127774A (ja) * 1998-10-26 2000-05-09 Kyowa Gokin Kk 自動車用駆動装置
DE19850549A1 (de) * 1998-11-03 2000-05-04 Bosch Gmbh Robert Getriebe für ein Kraftfahrzeug, insbesondere Doppelkupplungs-Schaltgetriebe, und Verfahren zum Betreiben des Getriebes
CN101503054A (zh) * 2008-12-15 2009-08-12 同济大学 一种双电机动力合成驱动装置
CN102795103A (zh) * 2012-09-05 2012-11-28 刘丽君 一种带有中间轴的双电机动力总成
CN202753745U (zh) * 2012-09-05 2013-02-27 刘丽君 一种带有中间轴的双电机动力总成
CN104015600A (zh) * 2014-06-12 2014-09-03 重庆大学 双电机纯电动汽车无离合器自动变速机构
CN104633020A (zh) * 2015-02-13 2015-05-20 吉林大学 一种电动车用双电机四档变速器及其换挡控制方法
CN205202728U (zh) * 2015-12-11 2016-05-04 南京越博动力系统股份有限公司 一种车用双轴并联电驱动系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3388274A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107351754A (zh) * 2017-07-24 2017-11-17 艾迪机器(杭州)有限公司 一种自行走干自吸的应急排涝消防发电一体装置
CN107351754B (zh) * 2017-07-24 2023-04-18 艾迪机器(杭州)有限公司 一种自行走干自吸的应急排涝消防发电一体装置
CN109501568A (zh) * 2018-12-28 2019-03-22 樊朝晖 一种电动汽车双电机驱动系统及其控制方法
CN109501568B (zh) * 2018-12-28 2023-08-11 智一新能源发展有限公司 一种电动汽车双电机驱动系统及其控制方法
SE544041C2 (en) * 2020-07-29 2021-11-16 Man Truck & Bus Ag Transmission unit, transmission arrangement and vehicle powertrain
SE2050925A1 (en) * 2020-07-29 2021-11-16 Man Truck & Bus Ag Transmission unit, vehicle powertrain and vehicle
SE2050926A1 (en) * 2020-07-29 2021-11-16 Man Truck & Bus Ag Transmission unit, transmission arrangement and vehicle powertrain
SE544040C2 (en) * 2020-07-29 2021-11-16 Man Truck & Bus Ag Transmission unit, vehicle powertrain and vehicle
CN113335056A (zh) * 2021-03-12 2021-09-03 联合汽车电子有限公司 混合动力汽车变速系统、方法及车辆
CN113335056B (zh) * 2021-03-12 2023-08-22 联合汽车电子有限公司 混合动力汽车变速系统、方法及车辆
CN113477746A (zh) * 2021-07-20 2021-10-08 武汉乾冶众联科技有限公司 一种双电机并联驱动装置及实芯张力卷取机
CN113738832A (zh) * 2021-08-25 2021-12-03 凯博易控车辆科技(苏州)股份有限公司 一种三电机三中间轴多挡变速系统
CN113738832B (zh) * 2021-08-25 2024-01-30 凯博易控车辆科技(苏州)股份有限公司 一种三电机三中间轴多挡变速系统

Also Published As

Publication number Publication date
DE202015009818U1 (de) 2020-06-16
EP3388274A4 (en) 2019-08-28
CN105416049A (zh) 2016-03-23
EP3388274A1 (en) 2018-10-17
CN105416049B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
WO2017096635A1 (zh) 一种车用双轴并联电驱动系统及其换档控制方法
WO2017202031A1 (zh) 一种双电机双轴输入变速箱的驱动系统及其换档控制方法
WO2019119961A1 (zh) 双行星排的混合动力耦合机构及机动车辆
CN107089130A (zh) 一种新型双电机多档混合动力系统
WO2009056042A1 (en) Hybrid power driving system and driving method thereof
WO2019119960A1 (zh) 新型混合动力耦合机构及机动车辆
CN104972890A (zh) 一种双电机混合动力自动变速器
CN204845514U (zh) 一种双电机混合动力自动变速器
WO2019128968A1 (zh) 混合动力驱动系统及车辆
CN210526287U (zh) 两档混合动力耦合系统及车辆
CN102198790A (zh) 双级式行星齿轮机构混合动力汽车传动系统
WO2019192292A1 (zh) 一种纵置双动力源车辆驱动总成
CN111071025A (zh) 一种双电机混合动力变速驱动系统
CN111071026A (zh) 一种双电机混合动力驱动系统
WO2024045549A1 (zh) 双电机混动变速箱及作业机械
CN211519235U (zh) 一种双电机混合动力变速驱动系统
CN211641822U (zh) 一种用于混合动力汽车的变速传动系统
CN111038247A (zh) 双离合混合动力耦合系统及车辆
WO2024051371A1 (zh) 一种多挡位混合动力汽车变速传动系统
CN203157690U (zh) 多模式混合动力系统
CN205877090U (zh) 一种双电机双轴输入变速箱的驱动系统
CN217969233U (zh) 一种多挡位混合动力汽车变速传动系统
CN114811036B (zh) 用于电动汽车的多模式双电机两挡变速箱
CN217415460U (zh) 一种混合动力汽车的变速传动系统
CN110682785A (zh) 带双电机驱动的混合动力汽车变速器及其工作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910109

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015910109

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015910109

Country of ref document: EP

Effective date: 20180711