WO2024045549A1 - 双电机混动变速箱及作业机械 - Google Patents

双电机混动变速箱及作业机械 Download PDF

Info

Publication number
WO2024045549A1
WO2024045549A1 PCT/CN2023/081215 CN2023081215W WO2024045549A1 WO 2024045549 A1 WO2024045549 A1 WO 2024045549A1 CN 2023081215 W CN2023081215 W CN 2023081215W WO 2024045549 A1 WO2024045549 A1 WO 2024045549A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear pair
gear
shifting mechanism
shaft
input shaft
Prior art date
Application number
PCT/CN2023/081215
Other languages
English (en)
French (fr)
Inventor
陈小江
李文祥
孙全斌
李永坚
刘金强
王明
Original Assignee
湖南行必达网联科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南行必达网联科技有限公司 filed Critical 湖南行必达网联科技有限公司
Publication of WO2024045549A1 publication Critical patent/WO2024045549A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/093Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears with two or more countershafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/023Mounting or installation of gears or shafts in the gearboxes, e.g. methods or means for assembly
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0056Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising seven forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2306/00Shifting
    • F16H2306/40Shifting activities
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present disclosure relates to the field of transmission technology, and in particular to a dual-motor hybrid gearbox and working machinery.
  • gasoline-electric hybrid technology With the development of gasoline-electric hybrid technology, the fields in which gasoline-electric hybrid technology can be applied are gradually increasing. Although the gasoline-electric hybrid technology applied to cars is relatively mature, the load of cars is light, and the gears used in the transmission system of cars are cannot be adapted to heavy-duty vehicles.
  • the hybrid transmission system used in commercial vehicles is mainly based on the P2 parallel hybrid architecture of a single motor.
  • the fuel-saving effect of the P2 hybrid system in urban conditions is significantly lower than that of a dual-motor hybrid system.
  • Motor power split and series-parallel hybrid system, and P2 hybrid has power interruption problem when shifting gears. Power interruption in heavy-duty vehicles will seriously affect the driving performance of the vehicle and the safety of hill climbing shifting. Therefore, in Under the background of gasoline-electric hybrid technology, developing a vehicle suitable for heavy-duty vehicles, and how to solve the power interruption during the shifting process and achieve a better fuel saving rate have become technical problems in this field.
  • the present disclosure provides a dual-motor hybrid gearbox and a working machine.
  • a dual-motor hybrid gearbox including: an engine, a first motor, a second motor, a first input shaft, a second input shaft, a third input shaft, first countershaft, second countershaft, gear assembly, first shift mechanism, second shift mechanism, third shift mechanism, fourth shift mechanism and output shaft;
  • the first input shaft is connected to the engine, the second input shaft is connected to the first motor, and the third input shaft is connected to the second motor;
  • the second input shaft, the third input shaft, the first intermediate shaft and the second intermediate shaft are respectively arranged parallel to the first input shaft;
  • Gear assemblies are provided on the first input shaft, the second input shaft, the third input shaft, the first intermediate shaft, the second intermediate shaft, and the output shaft;
  • the first input shaft is selectively linked to the first shifting mechanism and the second shifting mechanism respectively, and is selectively linked to the third shifting mechanism and the fourth shifting mechanism through the first intermediate shaft and the second intermediate shaft, respectively. ;
  • the second input shaft and the third input shaft are respectively selectively linked with the first shift mechanism, and are respectively connected with the second shift mechanism, the third shift mechanism and the fourth shift mechanism through the first intermediate shaft and the second intermediate shaft. Institutional optional linkages;
  • the output shaft is selectively connected to the first input shaft and/or the second input shaft and/or the third input shaft through the first shifting mechanism, the second shifting mechanism, the third shifting mechanism and the fourth shifting mechanism respectively.
  • first shifting mechanism and the second shifting mechanism are arranged on the first input shaft
  • the third shifting mechanism and the fourth shifting mechanism are arranged on the output shaft.
  • a clutch which is respectively connected to the power shaft and the first input shaft of the engine to achieve selectable linkage between the engine and the first input shaft.
  • At least two first intermediate shafts are evenly distributed around the circumference of the first input shaft; and/or at least two second intermediate shafts are evenly arranged around the circumference of the first input shaft.
  • the gear assembly includes: a first gear pair and a second gear pair; the first gear pair is connected to the first input shaft and the second input shaft respectively to achieve linkage of the first input shaft and the second input shaft. ;
  • the second gear pair is connected to the first input shaft and the third input shaft respectively, and It is arranged corresponding to the first gear shifting mechanism to realize switching between multiple gears.
  • the gear assembly further includes: a third gear pair, a fourth gear pair, a fifth gear pair and a sixth gear pair; the third gear pair is respectively connected to the first input shaft and the first intermediate shaft, and corresponds to the first
  • the shifting mechanism is configured to realize switching between multiple gears;
  • the fourth gear pair is connected to the first input shaft and the first intermediate shaft respectively, and is configured corresponding to the first shifting mechanism to realize switching between multiple gears.
  • the fifth gear pair is connected to the output shaft and the first intermediate shaft respectively, and is configured corresponding to the fourth gear shifting mechanism to realize switching between multiple gears;
  • the sixth gear pair is connected to the output shaft and the first intermediate shaft respectively, And corresponding to the fourth gear shifting mechanism, to realize switching between multiple gears.
  • the gear assembly further includes: a seventh gear pair, an eighth gear pair, a ninth gear pair and a tenth gear pair;
  • the seventh gear pair is connected to the first input shaft and the second countershaft respectively, and is disposed on the first between the first gear shift mechanism and the second gear shift mechanism to achieve switching between multiple gears;
  • the eighth gear pair is connected to the output shaft and the second intermediate shaft respectively, and is provided corresponding to the second gear shift mechanism to achieve multiple gear shifts.
  • the ninth gear pair is connected to the output shaft and the second intermediate shaft respectively, and is set corresponding to the third gear shifting mechanism to achieve switching between multiple gears;
  • the tenth gear pair is connected to the output shaft and the second intermediate shaft respectively
  • the second intermediate shaft is connected and arranged corresponding to the third gear shifting mechanism to realize switching between multiple gears.
  • the output shaft and the second countershaft switch multiple gears through the tenth gear pair and the third shifting mechanism, including at least reverse gear.
  • the gear assembly also includes: an eleventh gear pair, a twelfth gear pair, a thirteenth gear pair, a fourteenth gear pair and a fifteenth gear pair; the eleventh gear pair is connected to the first input shaft respectively.
  • the twelfth gear pair is connected to the first intermediate shaft and is corresponding to the first gear shift mechanism to realize switching between multiple gears; the twelfth gear pair is connected to the first input shaft and the first intermediate shaft respectively, and is corresponding to the first gear shift.
  • the mechanism is arranged to realize switching between multiple gears;
  • the thirteenth gear pair is respectively connected to the outside of the output shaft and the first intermediate shaft and corresponds to the third gear shifting mechanism to realize switching between multiple gears;
  • Fourteen gear pairs are connected to the output shaft and the first intermediate shaft respectively.
  • the fifteenth gear pair is connected to the output shaft and the first intermediate shaft respectively, and is configured corresponding to the fourth gear shift mechanism to realize multiple gear shifts. Switching between gears.
  • the gear assembly further includes: a sixteenth gear pair, a seventeenth gear pair and an eighteenth gear pair; the sixteenth gear pair is respectively connected to the first input shaft and the second intermediate shaft, and is disposed on the between the first shifting mechanism and the second shifting mechanism to achieve switching between multiple gears; the seventeenth gear pair is connected to the output shaft and the second intermediate shaft respectively, and is configured corresponding to the second shifting mechanism to To realize switching between multiple gears; the eighteenth gear pair is connected to the output shaft and the second intermediate shaft respectively, and is provided corresponding to the third gear shifting mechanism to realize switching between multiple gears.
  • the gear assembly also includes: an eleventh gear pair, a twelfth gear pair, a thirteenth gear pair, a fourteenth gear pair and a fifteenth gear pair; the eleventh gear pair is connected to the first gear pair respectively.
  • the input shaft is connected to the first intermediate shaft and is configured corresponding to the first shifting mechanism to realize switching between multiple gears;
  • the twelfth gear pair is connected to the first input shaft and the first intermediate shaft respectively, and is corresponding to The first gear shift mechanism is provided to realize switching between multiple gears;
  • the thirteenth gear pair is respectively connected to the outside of the output shaft and the first intermediate shaft and corresponds to the second gear shift mechanism to realize switching between multiple gears.
  • the fourteenth gear pair is connected to the output shaft and the first intermediate shaft respectively, and is set corresponding to the third gear shifting mechanism to realize switching between multiple gears; the fifteenth gear pair is connected to the output shaft and the first intermediate shaft respectively.
  • the shaft is connected with the third gear shifting mechanism to realize switching between multiple gears.
  • the gear assembly further includes: a sixteenth gear pair, a seventeenth gear pair and an eighteenth gear pair; the sixteenth gear pair is respectively connected to the first input shaft and the second intermediate shaft, and is disposed on between the first shift mechanism and the second shift mechanism to achieve switching between multiple gears; the seventeenth gear pair is connected to the output shaft and the second intermediate shaft respectively, and is provided corresponding to the fourth shift mechanism to Realize switching between multiple gears; the eighteenth gear pair is connected to the output shaft and the second intermediate shaft respectively, and is configured corresponding to the fourth gear shifting mechanism to realize switching between multiple gears. Change.
  • a working machine having the above-mentioned dual-motor hybrid gearbox.
  • Figure 1 is one of the schematic layout diagrams of a dual-motor hybrid gearbox according to an embodiment of the present disclosure
  • Figure 2 is a second schematic layout diagram of a dual-motor hybrid gearbox according to an embodiment of the present disclosure
  • Figure 3 is the third schematic layout diagram of a dual-motor hybrid gearbox according to an embodiment of the present disclosure.
  • Figure 4 is the fourth schematic layout diagram of a dual-motor hybrid gearbox according to an embodiment of the present disclosure.
  • Figure 5 is a fifth schematic layout diagram of a dual-motor hybrid gearbox according to an embodiment of the present disclosure.
  • Figure 6 is a sixth schematic layout diagram of a dual-motor hybrid gearbox according to an embodiment of the present disclosure.
  • K1 the first shifting mechanism; K2, the second shifting mechanism; K3, the third shifting mechanism; K4, the fourth shifting mechanism.
  • this solution provides a dual-motor hybrid gearbox, including: an engine 1, a first motor 2, a second motor 3, and a first input shaft 10.
  • the second input shaft 20 the third input shaft 30, the first intermediate shaft 40, the second intermediate shaft 50, the gear assembly, the first shifting mechanism K1, the second shifting mechanism K2, the third shifting mechanism K3, The fourth shifting mechanism K4 and the output shaft 60;
  • the first input shaft 10 is connected to the engine 1, the second input shaft 20 is connected to the first motor 2, and the third input shaft 30 is connected to the second motor 3;
  • the second input shaft 20, the third input shaft 30, the first intermediate shaft 40 and the second intermediate shaft 50 are respectively arranged parallel to the first input shaft 10;
  • Gear assemblies are provided on the first input shaft 10, the second input shaft 20, the third input shaft 30, the first intermediate shaft 40, the second intermediate shaft 50, and the output shaft 60;
  • the first input shaft 10 is selectively linked with the first shift mechanism K1 and the second shift mechanism K2 respectively, and is connected with the third shift mechanism K3 and the fourth shift mechanism through the first intermediate shaft 40 and the second intermediate shaft 50 respectively. Selectable linkage of blocking mechanism K4;
  • the second input shaft 20 and the third input shaft 30 are selectively linked with the first shift mechanism K1 respectively, and are connected with the second shift mechanism K2 and the third shift mechanism through the first intermediate shaft 40 and the second intermediate shaft 50 respectively.
  • the output shaft 60 is connected to the first input shaft 10 and/or the second input shaft 20 and /or the third input shaft 30 can be selectively linked to achieve switching between multiple gears;
  • the first shifting mechanism K1 and the second shifting mechanism K2 are provided on the first input shaft 10;
  • the third shifting mechanism K3 and the fourth shifting mechanism K4 are provided on the output shaft 60 .
  • the power transmission system of the present disclosure by arranging the first intermediate shaft 40 and the second intermediate shaft 50 , can realize a variety of hybrid working conditions of three power sources.
  • the application of a transmission system with a simple structure improves the power transmission. The smoothness of the system reduces the cost of the power transmission system and reduces the frustration during driving.
  • a clutch 4 is also included.
  • the clutch 4 is respectively connected to the power shaft of the engine 1 and the first input shaft 10 to achieve selectable linkage between the engine 1 and the first input shaft 10 .
  • this embodiment provides an implementation of the clutch 4.
  • the clutch 4 By arranging the clutch 4, switching between the engine 1, the first motor 2 and the second motor 3 in various hybrid operating modes is realized.
  • the two sets of intermediate shaft mechanical gear mechanisms are selectively engaged or disconnected for independent driving, thereby establishing gear sharing driven by three power sources and achieving efficient driving across the entire vehicle speed range.
  • At least two first intermediate shafts 40 are evenly distributed around the circumference of the first input shaft 10;
  • At least two second intermediate shafts 50 are evenly distributed around the circumferential direction of the first input shaft 10 .
  • this embodiment provides an implementation of the first intermediate shaft 40 and the second intermediate shaft 50 by arranging a plurality of first intermediate shafts 40 and/or a plurality of second intermediate shafts 50 around a first intermediate shaft 40 and a second intermediate shaft 50 .
  • the input shaft 10 is evenly distributed in the circumference, which improves the carrying capacity of the driving load and meets the needs of larger load application scenarios, making gear shifting without power interruption, high reliability, high safety, and high cost performance.
  • a dual-countershaft architecture of two first countershafts 40 and two second countershafts 50 is used to realize application scenarios with higher driving loads.
  • the power transmission system provided by the present disclosure can realize a variety of hybrid working conditions of three power sources by arranging the first intermediate shaft 40 and the second intermediate shaft 50.
  • the power transmission system is constructed with Multiple power transmission paths. During the process of shifting the power transmission system, the switching between multiple power transmission paths is used to realize that the power of the power transmission system is not interrupted when shifting gears.
  • the application of a transmission system with a simple structure improves the power.
  • the smoothness of the transmission system reduces the cost of the power transmission system and reduces the frustration during driving.
  • the gear assembly includes: a first gear pair 70 and a second gear pair 71; the first gear pair 70 is connected to the first input shaft 10 and the second input shaft 20 respectively to achieve the first input The linkage between the shaft 10 and the second input shaft 20; the second gear pair 71 is connected to the first input shaft 10 and the third input shaft 30 respectively, and is provided corresponding to the first shifting mechanism K1 to achieve switching between multiple gears. .
  • this embodiment provides an implementation of the first gear pair 70 and the second gear pair 71.
  • the first gear pair 70 and the second gear pair 71 By arranging the first gear pair 70 and the second gear pair 71, the first input shaft 10 and the second input shaft 10 are The axes 20 can operate synchronously.
  • the gear assembly further includes: a third gear pair 72 , a fourth gear pair 73 , a fifth gear pair 74 and a sixth gear pair 75 ;
  • the third gear pair 72 is connected to the first input shaft 10 respectively. It is connected to the first intermediate shaft 40 and is arranged corresponding to the first shifting mechanism K1 to realize switching between multiple gears;
  • the fourth gear pair 73 is connected to the first input shaft 10 and the first intermediate shaft 40 respectively, and is corresponding to The first shifting mechanism K1 is provided to realize switching between multiple gears;
  • the fifth gear pair 74 is connected to the output shaft 60 and the first intermediate shaft 40 respectively, and corresponds to the third gear pair.
  • the fourth gear shift mechanism K4 is set up to realize switching between multiple gears;
  • the sixth gear pair 75 is connected to the output shaft 60 and the first intermediate shaft 40 respectively, and is set up corresponding to the fourth gear shift mechanism K4 to realize multiple gears. Switching between bits.
  • this embodiment provides an implementation of the third gear pair 72 , the fourth gear pair 73 , the fifth gear pair 74 and the sixth gear pair 75 .
  • the third gear pair 72 and the fourth gear pair 73 realize the switching of the output shaft 60 between multiple gears.
  • the gear assembly further includes: a seventh gear pair 76 , an eighth gear pair 77 , a ninth gear pair 78 and a tenth gear pair 79 ;
  • the seventh gear pair 76 is connected to the first input shaft 10 respectively. It is connected to the second intermediate shaft 50 and is arranged between the first shifting mechanism K1 and the second shifting mechanism K2 to realize switching between multiple gears;
  • the eighth gear pair 77 is respectively connected with the output shaft 60 and the second shifting mechanism K2.
  • the intermediate shaft 50 is connected and is configured corresponding to the second shifting mechanism K2 to realize switching between multiple gears;
  • the ninth gear pair 78 is connected to the output shaft 60 and the second intermediate shaft 50 respectively, and is corresponding to the third shifting mechanism K3 is set to realize switching between multiple gears;
  • the tenth gear pair 79 is connected to the output shaft 60 and the second intermediate shaft 50 respectively, and is set corresponding to the third shifting mechanism K3 to realize switching between multiple gears. .
  • this embodiment provides an implementation of the seventh gear pair 76 , the eighth gear pair 77 , the ninth gear pair 78 and the tenth gear pair 79 .
  • the ninth gear pair 78 and the tenth gear pair 79 realize the switching of the output shaft 60 between multiple gears.
  • the output shaft 60 and the second intermediate shaft 50 perform multiple gear switching through the tenth gear pair 79 and the third shifting mechanism K3, including at least reverse gear.
  • this embodiment provides an implementation in which the output shaft 60 and the second intermediate shaft 50 realize reverse gear through the tenth gear pair 79 and the third shifting mechanism K3.
  • the output shaft 60 and the second intermediate shaft 50 realize reverse gear through the tenth gear pair 79 and the third shifting mechanism K3.
  • Blocking the idler wheel realizes the structure switching to reverse gear.
  • the tenth gear pair 79 includes three gears, which are respectively arranged on the The two intermediate shafts 50 and the output shaft 60 are engaged through the reverse idler gear, thereby realizing reverse gear.
  • the engine 17th gear and reverse gear transmission path among which, in the seventh gear, engine 1 can be directly driven with high efficiency, and the transmission path is the simplest; engine 1 and first motor 2
  • the second motor 3 can be disengaged and stopped, thereby realizing the efficient direct drive function of the engine 1 under cruising conditions, as follows:
  • the transmission path of the first gear G1 of the engine 1 is: engine 1 ⁇ clutch 4 ⁇ first input shaft 10 ⁇ seventh gear pair 76 ⁇ second intermediate shaft 50 ⁇ ninth gear pair 78 ⁇ third shifting mechanism K3 ⁇ Output shaft 60.
  • the transmission path of the second gear G2 of the engine 1 is: engine 1 ⁇ clutch 4 ⁇ first input shaft 10 ⁇ first shifting mechanism K1 ⁇ third gear pair 72 ⁇ first intermediate shaft 40 ⁇ sixth gear pair 75 ⁇ The fourth shifting mechanism K4 ⁇ output shaft 60.
  • the transmission path of the third gear G3 of the engine 1 is: engine 1 ⁇ clutch 4 ⁇ first input shaft 10 ⁇ first shifting mechanism K1 ⁇ fourth gear pair 73 ⁇ first intermediate shaft 40 ⁇ sixth gear pair 75 ⁇ The fourth shifting mechanism K4 ⁇ output shaft 60.
  • the transmission path of the fourth gear G4 of the engine 1 is: engine 1 ⁇ clutch 4 ⁇ first input shaft 10 ⁇ seventh gear pair 76 ⁇ second intermediate shaft 50 ⁇ eighth gear pair 77 ⁇ second shifting mechanism K2 ⁇ Output shaft 60.
  • the transmission path of the fifth gear G5 of the engine 1 is: engine 1 ⁇ clutch 4 ⁇ first input shaft 10 ⁇ first shifting mechanism K1 ⁇ third gear pair 72 ⁇ first intermediate shaft 40 ⁇ fifth gear pair 74 ⁇ The fourth shifting mechanism K4 ⁇ output shaft 60.
  • the transmission path of the sixth gear G6 of the engine 1 is: engine 1 ⁇ clutch 4 ⁇ first input shaft 10 ⁇ first shifting mechanism K1 ⁇ fourth gear pair 73 ⁇ first intermediate shaft 40 ⁇ fifth Gear pair 74 ⁇ fourth shifting mechanism K4 ⁇ output shaft 60.
  • the transmission path of the seventh gear G7 of the engine 1 is: engine 1 ⁇ clutch 4 ⁇ first input shaft 10 ⁇ second shifting mechanism K2 ⁇ output shaft 60.
  • the transmission path of the reverse gear GR of the engine 1 engine 1 ⁇ clutch 4 ⁇ first input shaft 10 ⁇ seventh gear pair 76 ⁇ second intermediate shaft 50 ⁇ tenth gear pair 79 ⁇ third shifting mechanism K3 ⁇ output shaft 60 .
  • the first motor 2 shares 7 gears and a reverse gear transmission path, in which the clutch 4 is closed, and the first motor 2 and the engine 1 share 7 forward gears and 1 engine 1 reverse gear is linked in parallel; the clutch 4 is opened, the first motor 2 can be driven purely electrically in 7 gears and the second motor 3 in 6 gears, which can be driven purely electrically forward and reverse.
  • the details are as follows:
  • the transmission path of the first gear G1 of the first motor 2 is: first motor 2 ⁇ first gear pair 70 ⁇ seventh gear pair 76 ⁇ second intermediate shaft 50 ⁇ ninth gear pair 78 ⁇ third shifting mechanism K3 ⁇ Output shaft 60.
  • the transmission path of the second gear G2 of the first motor 2 is: first motor 2 ⁇ second input shaft 20 ⁇ first gear pair 70 ⁇ first input shaft 10 ⁇ first shifting mechanism K1 ⁇ third gear pair 72 ⁇ First intermediate shaft 40 ⁇ Sixth gear pair 75 ⁇ Fourth shifting mechanism K4 ⁇ Output shaft 60.
  • the transmission path of the third gear G3 of the first motor 2 is: first motor 2 ⁇ second input shaft 20 ⁇ first gear pair 70 ⁇ first input shaft 10 ⁇ first shifting mechanism K1 ⁇ fourth gear pair 73 ⁇ First intermediate shaft 40 ⁇ Sixth gear pair 75 ⁇ Fourth shifting mechanism K4 ⁇ Output shaft 60.
  • the transmission path of the fourth gear G4 of the first motor 2 is: first motor 2 ⁇ second input shaft 20 ⁇ first gear pair 70 ⁇ first input shaft 10 ⁇ seventh gear pair 76 ⁇ second intermediate shaft 50 ⁇ The eighth gear pair 77 ⁇ the second shifting mechanism K2 ⁇ the output shaft 60 .
  • the transmission path of the fifth gear G5 of the first motor 2 is: first motor 2 ⁇ second input shaft 20 ⁇ first gear pair 70 ⁇ first input shaft 10 ⁇ first shifting mechanism K1 ⁇ third gear pair 72 ⁇ First intermediate shaft 40 ⁇ Fifth gear pair 74 ⁇ Fourth shifting mechanism K4 ⁇ Output shaft 60.
  • the transmission path of the sixth gear G6 of the first motor 2 is: first motor 2 ⁇ second input shaft 20 ⁇ first gear pair 70 ⁇ first input shaft 10 ⁇ first shifting mechanism K1 ⁇ fourth gear pair 73 ⁇ First intermediate shaft 40 ⁇ Fifth gear pair 74 ⁇ Fourth shifting mechanism K4 ⁇ Output shaft 60.
  • the transmission path of the seventh gear G7 of the first motor 2 is: first motor 2 ⁇ second input shaft 20 ⁇ first gear pair 70 ⁇ first input shaft 10 ⁇ second shifting mechanism K2 ⁇ output shaft 60.
  • the transmission path of the reverse gear of the engine 1 (this gear is not used for the pure electric drive of the first motor 2) is: first motor 2 ⁇ second input shaft 20 ⁇ first gear pair 70 ⁇ first input shaft 10 ⁇ seventh gear Pair 76 ⁇ second intermediate shaft 50 ⁇ tenth gear pair 79 ⁇ third shifting mechanism K3 ⁇ output shaft 60.
  • the second motor 3 provides 6 gear transmission paths, in which the second motor 3 can be in the first gear G1 with the engine 1 and/or the first motor 2 , the second gear G2, the fourth gear G4, the fifth gear G5, the seventh gear G7 and the engine 1 reverse gear GR are jointly driven.
  • the engine 1 and the first motor 2 are in the third gear G3 and the sixth gear.
  • Gear G6 and ninth gear G9 can be driven independently of the second motor 3, thereby providing power-interrupted shifting for the shifting of the second motor 3, as follows:
  • the transmission path of the first gear G1 of the second motor 3 is: second motor 3 ⁇ third input shaft 30 ⁇ second gear pair 71 ⁇ first shifting mechanism K1 ⁇ seventh gear pair 76 ⁇ second intermediate shaft 50 ⁇ Tenth gear pair 79 ⁇ Third shifting mechanism K3 ⁇ Output shaft 60.
  • the transmission path of the second gear G2 of the second motor 3 is: second motor 3 ⁇ third input shaft 30 ⁇ second gear pair 71 ⁇ third gear pair 72 ⁇ first intermediate shaft 40 ⁇ sixth gear pair 75 ⁇
  • the transmission path of the fourth gear G4 of the second motor 3 is: second motor 3 ⁇ third input shaft 30 ⁇ second gear pair 71 ⁇ first shifting mechanism K1 ⁇ seventh gear pair 76 ⁇ second intermediate shaft 50 ⁇ Eighth gear pair 77 ⁇ Second shifting mechanism K2 ⁇ Output shaft 60.
  • the transmission path of the fifth gear G5 of the second motor 3 is: second motor 3 ⁇ third input shaft 30 ⁇ second gear pair 71 ⁇ third gear pair 72 ⁇ first intermediate shaft 40 ⁇ fifth gear pair 74 ⁇ Fourth shifting mechanism K4 ⁇ Output shaft 60.
  • the transmission path of the seventh gear G7 of the second motor 3 is: second motor 3 ⁇ third input shaft 30 ⁇ second gear pair 71 ⁇ first shifting mechanism K1 ⁇ first input shaft 10 ⁇ second shifting mechanism K2 ⁇ Output shaft 60.
  • the transmission path of the reverse gear of the engine 1 (the pure electric drive of the first motor 2 does not use this gear) is: the second motor 3 ⁇ the third input shaft 30 ⁇ the second gear pair 71 ⁇ the first shifting mechanism K1 ⁇ the seventh Gear pair 76 ⁇ second intermediate shaft 50 ⁇ tenth gear pair 79 ⁇ third shifting mechanism K3 ⁇ output shaft 60.
  • the pure electric drive function the clutch 4 is open, the engine 1 is stopped, the first motor 2 can be in 9 gears and the second motor 3 can be in the first gear G1, the third gear G3, the fourth gear
  • the six gears G4, sixth gear G6, seventh gear G7 and ninth gear G9 are all driven by pure electric power; since there is no engine 1 reverse gear setting, the reverse gear function has a second motor 3 or dual motors.
  • the first motor 2 can be independently driven purely electrically in the third gear G3, the sixth gear G6 and the ninth gear G9.
  • the second motor 3 can be driven in the first gear G1, the fourth gear G4 or the seventh gear. G7.
  • the clutch 4 is closed, the engine 1 and the first motor 2 are driven in parallel in the above 9 gears, and the second motor 3 can be in the first gear G1, the third gear G3, The fourth gear G4, the sixth gear G6, the seventh gear G7 and the ninth gear G9 are driven in parallel in the six gears; the engine 1 and the first motor 2 are driven in the third gear G3 and the sixth gear
  • the second motor 3 can be disengaged and stopped to improve transmission efficiency, or it can be independently driven in the first gear G1, the fourth gear G4 or the seventh gear G7 for the engine 1 and The first motor 2 provides power compensation during shifting.
  • the series hybrid function has a high fuel saving rate under low-load urban conditions, when the vehicle starts and stops frequently, and when the on-board power battery is insufficient.
  • the clutch 4 is closed, the engine 1 and the first motor 2 are out of gear and linked.
  • the first motor 2 works in the speed mode to provide negative torque and convert the mechanical input power of the engine 1.
  • it can be used to generate electricity in series to charge the power battery, or part of the electric energy can be directly provided to the controller of the second motor 3 to directly drive the wheels.
  • the second motor 3 can be independently driven purely electrically in the first gear G1, the fourth gear G4 or the seventh gear G7.
  • the engine 1 shifts smoothly.
  • the engine 1 needs to shift gears.
  • the engine 1 and the first motor 2 keep driving, and the second motor 3 keeps or shifts into its independent driving gear: 1 gear, 4th gear or 7th gear, at the same time engine 1 and first motor 2 begin to unload, and second motor 3 loads the drive.
  • clutch 4 is opened, and at the same time first motor 2 is unloaded, and the corresponding shift mechanism is controlled to enter neutral; Then the clutch 4 is controlled to close smoothly, the first motor 2 enters the speed mode, the first motor 2 controls the engine 1 to near the synchronous speed of the next gear, the clutch 4 is opened, the first motor 2 is unloaded, and the corresponding shift mechanism is controlled to The first motor 2 first enters the set gear, and then controls the clutch 4 to smoothly switch to the engine 1. After the engine 1 enters the gear, it loads the drive, thus completing the smooth control process of gear shifting.
  • the mechanical reliability of the shifting mechanism is improved, the difficulty of shifting control of the shifting sleeve is greatly reduced, and the shifting quality far exceeds the P2 hybrid architecture.
  • the P23 hybrid can greatly improve the problem of shifting gears slipping and improve the safety of the entire vehicle.
  • AMT is an electronically controlled mechanical automatic transmission, spelled out as Automated Mechanical Transmission.
  • Engine 1 reverse function in most cases, dual electric
  • the reverse gear control of the vehicle can be realized by driving with a motor or a single motor.
  • the power battery is insufficient or the vehicle continues to reverse, the mechanical reverse gear function of engine 1 becomes necessary.
  • the P23 architecture specifically matches the mechanical reverse gear of engine 1, and the engine 1 and the first motor 2 Parallel connection, engine 1 or direct drive reverse gear control, P2 and P3 motors can be connected in parallel to provide reverse gear assistance, improving the reverse gear's climbability and the ability to overcome obstacles and reverse gear in pothole areas.
  • the gear assembly further includes: an eleventh gear pair 80 , a twelfth gear pair 81 , a thirteenth gear pair 82 , and a fourteenth gear pair 83 and the fifteenth gear pair 84;
  • the eleventh gear pair 80 is connected to the first input shaft 10 and the first intermediate shaft 40 respectively, and is provided corresponding to the first shifting mechanism K1 to realize switching between multiple gears;
  • the twelve gear pairs 81 are respectively connected to the first input shaft 10 and the first intermediate shaft 40 and are arranged corresponding to the first shifting mechanism K1 to realize switching between multiple gears;
  • the thirteenth gear pair 82 is respectively connected to the output shaft 60 and the outside of the first intermediate shaft 40, and is provided corresponding to the third shifting mechanism K3 to realize switching between multiple gears;
  • the fourteenth gear pair 83 is connected to the output shaft 60 and the first intermediate shaft 40 respectively, and
  • the fifteenth gear pair 84 is respectively connected to the output shaft 60 and the first intermediate shaft 40 and is arranged corresponding
  • this embodiment provides an implementation of the eleventh gear pair 80 , the twelfth gear pair 81 , the thirteenth gear pair 82 , the fourteenth gear pair 83 and the fifteenth gear pair 84 , by An eleventh gear pair 80 , a twelfth gear pair 81 , a thirteenth gear pair 82 , a fourteenth gear pair 83 and a fifteenth gear pair 84 are provided to realize switching of the output shaft 60 between multiple gears.
  • the gear assembly further includes: a sixteenth gear pair 85, a seventeenth gear pair 86 and an eighteenth gear pair 87; the sixteenth gear pair 85 is connected to the first input shaft 10 and the first input shaft 10 respectively.
  • the two intermediate shafts 50 are connected and arranged between the first shifting mechanism K1 and the second shifting mechanism K2 to realize switching between multiple gears; the seventeenth gear pair 86 is connected to the output shaft 60 and the second intermediate shaft respectively.
  • the shaft 50 is connected and arranged corresponding to the second shifting mechanism K2 to realize switching between multiple gears; the eighteenth gear pair 87 is respectively connected with the output shaft 60 and the second intermediate shaft 50 connected, and set corresponding to the third shifting mechanism K3 to realize switching between multiple gears.
  • this embodiment provides an implementation of the sixteenth gear pair 85 , the seventeenth gear pair 86 and the eighteenth gear pair 87 , by providing the sixteenth gear pair 85 and the seventeenth gear pair 86 and the eighteenth gear pair 87 to realize switching between the first input shaft 10 and the second intermediate shaft 50 and the output shaft 60 and the second intermediate shaft 50 between multiple gears.
  • the engine has a 19-gear transmission path, in which engine 1 participates in driving, clutch 4 is closed, and four shift mechanisms realize 9-gear shift control.
  • the ninth gear the engine 1 can be directly driven with high efficiency and the transmission path is the simplest; when the engine 1 and the first motor 2 are driven in parallel in the third gear G3, the sixth gear G6 and the ninth gear G9, the second motor 3 can be disengaged and stopped. , thereby realizing the efficient direct drive function of engine 1 under cruising conditions, as follows:
  • the transmission path of the first gear G1 of the engine 1 is: engine 1 ⁇ clutch 4 ⁇ first input shaft 10 ⁇ first shifting mechanism K1 ⁇ eleventh gear pair 80 ⁇ first intermediate shaft 40 ⁇ fifteenth gear pair 84 ⁇ Fourth shifting mechanism K4 ⁇ Output shaft 60.
  • the transmission path of the second gear G2 of the engine 1 is: engine 1 ⁇ clutch 4 ⁇ first input shaft 10 ⁇ first shifting mechanism K1 ⁇ twelfth gear pair 81 ⁇ first intermediate shaft 40 ⁇ fifteenth gear pair 84 ⁇ Fourth shifting mechanism K4 ⁇ Output shaft 60.
  • the transmission path of the third gear G3 of engine 1 is: engine 1 ⁇ clutch 4 ⁇ first input shaft 10 ⁇ sixteenth gear pair 85 ⁇ second intermediate shaft 50 ⁇ eighteenth gear pair 87 ⁇ third shifting mechanism K3 ⁇ Output shaft 60.
  • the transmission path of the fourth gear G4 of the engine 1 is: engine 1 ⁇ clutch 4 ⁇ first input shaft 10 ⁇ first shifting mechanism K1 ⁇ eleventh gear pair 80 ⁇ first intermediate shaft 40 ⁇ fourteenth gear pair 83 ⁇ Fourth shifting mechanism K4 ⁇ Output shaft 60.
  • the transmission path of the fifth gear G5 of the engine 1 is: engine 1 ⁇ clutch 4 ⁇ first input shaft 10 ⁇ first shifting mechanism K1 ⁇ twelfth gear pair 81 ⁇ first intermediate shaft 40 ⁇ fourteenth gear pair 83 ⁇ Fourth shifting mechanism K4 ⁇ Output shaft 60.
  • the transmission path of the sixth gear G6 of engine 1 is: engine 1 ⁇ clutch 4 ⁇ first input shaft 10 ⁇ sixteenth gear pair 85 ⁇ second intermediate shaft 50 ⁇ seventeenth gear pair 86 ⁇ second shifting mechanism K2 ⁇ Output shaft 60.
  • the transmission path of the seventh gear G7 of engine 1 is: engine 1 ⁇ clutch 4 ⁇ first input shaft 10 ⁇ first shifting mechanism K1 ⁇ eleventh gear pair 80 ⁇ first intermediate shaft 40 ⁇ thirteenth gear pair 82 ⁇ Third shifting mechanism K3 ⁇ Output shaft 60.
  • the transmission path of the eighth gear G8 of engine 1 is: engine 1 ⁇ clutch 4 ⁇ first input shaft 10 ⁇ first shifting mechanism K1 ⁇ twelfth gear pair 81 ⁇ first intermediate shaft 40 ⁇ thirteenth gear pair 82 ⁇ Third shifting mechanism K3 ⁇ Output shaft 60.
  • the transmission path of the ninth gear G9 of the engine 1 is: engine 1 ⁇ clutch 4 ⁇ first input shaft 10 ⁇ second shifting mechanism K2 ⁇ output shaft 60.
  • the first motor 2 shares 9 gears to transmit road power, the clutch 4 is closed, the first motor 2 and the engine 1 share 9 gears in parallel linkage; clutch 4 is open , the first motor 2 can be driven purely electrically in 9 gears and the second motor 3 in 6 gears, as follows:
  • the transmission path of the first gear G1 of the first motor 2 is: first motor 2 ⁇ second input shaft 20 ⁇ first gear pair 70 ⁇ first input shaft 10 ⁇ first shifting mechanism K1 ⁇ eleventh gear pair 80 ⁇ first intermediate shaft 40 ⁇ fifteenth gear pair 84 ⁇ fourth shifting mechanism K4 ⁇ output shaft 60.
  • the transmission path of the second gear G2 of the first motor 2 is: first motor 2 ⁇ second input shaft 20 ⁇ first gear pair 70 ⁇ first input shaft 10 ⁇ first shifting mechanism K1 ⁇ twelfth gear pair 81 ⁇ first intermediate shaft 40 ⁇ fifteenth gear pair 84 ⁇ fourth shifting mechanism K4 ⁇ output shaft 60.
  • the transmission path of the third gear G3 of the first motor 2 is: first motor 2 ⁇ second input shaft 20 ⁇ first gear pair 70 ⁇ first input shaft 10 ⁇ sixteenth gear pair 85 ⁇ second intermediate shaft 50 ⁇ Eighteenth gear pair 87 ⁇ Third shifting mechanism K3 ⁇ Output shaft 60.
  • the transmission path of the fourth gear G4 of the first motor 2 is: first motor 2 ⁇ second input shaft 20 ⁇ first gear pair 70 ⁇ first input shaft 10 ⁇ first shifting mechanism K1 ⁇ eleventh gear pair 80 ⁇ first intermediate shaft 40 ⁇ fourteenth gear pair 83 ⁇ fourth shifting mechanism K4 ⁇ output shaft 60.
  • the transmission path of the fifth gear G5 of the first motor 2 is: first motor 2 ⁇ second input shaft 20 ⁇ first gear pair 70 ⁇ first input shaft 10 ⁇ first shifting mechanism K1 ⁇ twelfth gear pair 81 ⁇ first intermediate shaft 40 ⁇ fourteenth gear pair 83 ⁇ fourth shifting mechanism K4 ⁇ output shaft 60.
  • the transmission path of the sixth gear G6 of the first motor 2 is: first motor 2 ⁇ second input shaft 20 ⁇ first gear pair 70 ⁇ first input shaft 10 ⁇ sixteenth gear pair 85 ⁇ second intermediate shaft 50 ⁇ Seventeenth gear pair 86 ⁇ Second shifting mechanism K2 ⁇ Output shaft 60.
  • the transmission path of the seventh gear G7 of the first motor 2 is: first motor 2 ⁇ second input shaft 20 ⁇ first gear pair 70 ⁇ first input shaft 10 ⁇ first shifting mechanism K1 ⁇ eleventh gear pair 80 ⁇ first intermediate shaft 40 ⁇ thirteenth gear pair 82 ⁇ third shifting mechanism K3 ⁇ output shaft 60.
  • the transmission path of the eighth gear G8 of the first motor 2 is: first motor 2 ⁇ second input shaft 20 ⁇ first gear pair 70 ⁇ first input shaft 10 ⁇ first shifting mechanism K1 ⁇ twelfth gear pair 81 ⁇ first intermediate shaft 40 ⁇ thirteenth gear pair 82 ⁇ third shifting mechanism K3 ⁇ output shaft 60.
  • the transmission path of the ninth gear G9 of the first motor 2 is: first motor 2 ⁇ second input shaft 20 ⁇ first gear pair 70 ⁇ first input shaft 10 ⁇ second shifting mechanism K2 ⁇ output shaft 60.
  • the second motor 3 provides 6 gears of transmission power
  • the second motor 3 can be connected to the engine 1 and/or the first motor 2 in the first gear G1, G1,
  • the third gear G3, the fourth gear G4, the sixth gear G6, the seventh gear G7 and the ninth gear G9 are driven together.
  • the engine 1 and the first motor 2 are in the third gear G3 and the sixth gear.
  • G6 and the ninth gear G9 can be driven independently of the second motor 3, thereby providing no power interruption for the second motor 3 to shift gears. Shift, as follows:
  • the transmission path of the first gear G1 of the second motor 3 is: second motor 3 ⁇ third input shaft 30 ⁇ second gear pair 71 ⁇ first input shaft 10 ⁇ first shifting mechanism K1 ⁇ eleventh gear pair 80 ⁇ first intermediate shaft 40 ⁇ fifteenth gear pair 84 ⁇ fourth shifting mechanism K4 ⁇ output shaft 60.
  • the transmission path of the third gear G3 of the second motor 3 is: second motor 3 ⁇ third input shaft 30 ⁇ second gear pair 71 ⁇ first input shaft 10 ⁇ sixteenth gear pair 85 ⁇ second intermediate shaft 50 ⁇ Eighteenth gear pair 87 ⁇ Third shifting mechanism K3 ⁇ Output shaft 60.
  • the transmission path of the fourth gear G4 of the second motor 3 is: second motor 3 ⁇ third input shaft 30 ⁇ second gear pair 71 ⁇ first input shaft 10 ⁇ first shifting mechanism K1 ⁇ eleventh gear pair 80 ⁇ first intermediate shaft 40 ⁇ fourteenth gear pair 83 ⁇ fourth shifting mechanism K4 ⁇ output shaft 60.
  • the transmission path of the sixth gear G6 of the second motor 3 is: second motor 3 ⁇ third input shaft 30 ⁇ second gear pair 71 ⁇ first input shaft 10 ⁇ sixteenth gear pair 85 ⁇ second intermediate shaft 50 ⁇ Seventeenth gear pair 86 ⁇ Second shifting mechanism K2 ⁇ Output shaft 60.
  • the transmission path of the seventh gear G7 of the second motor 3 is: second motor 3 ⁇ third input shaft 30 ⁇ second gear pair 71 ⁇ first input shaft 10 ⁇ first shifting mechanism K1 ⁇ eleventh gear pair 80 ⁇ first intermediate shaft 40 ⁇ thirteenth gear pair 82 ⁇ third shifting mechanism K3 ⁇ output shaft 60.
  • the transmission path of the ninth gear G9 of the second motor 3 is: second motor 3 ⁇ third input shaft 30 ⁇ second gear pair 71 ⁇ first input shaft 10 ⁇ second shifting mechanism K2 ⁇ output shaft 60.
  • the clutch 4 is closed, the engine 1 and the first motor 2 are driven in parallel in the above 9 gears, and the second motor 3 can be in the first gear G1, the third gear G3, The fourth gear G4, the sixth gear G6, the seventh gear G7 and the ninth gear G9 are driven in parallel in the six gears; the engine 1 and the first motor 2 are driven in the third gear G3 and the sixth gear
  • the second motor 3 can be disengaged and stopped to improve the transmission speed. power efficiency, or independently provide power compensation for the engine 1 and the first motor 2 during gear shifting in the first gear G1, the fourth gear G4 or the seventh gear G7.
  • the pure electric drive function the clutch 4 is open, the engine 1 is stopped, the first motor 2 can be in 9 gears and the second motor 3 can be in the first gear G1, the third gear G3, the fourth gear
  • the six gears G4, sixth gear G6, seventh gear G7 and ninth gear G9 are all driven by pure electric power; since there is no reverse gear setting for engine 1, the reverse gear function has a second motor 3 or dual Motor drive implementation.
  • the first motor 2 can be independently driven purely electrically in the third gear G3, the sixth gear G6 and the ninth gear G9.
  • the second motor 3 can be driven in the first gear G1, the fourth gear G4 or the seventh gear. G7.
  • the series hybrid function has a high fuel saving rate under low-load urban conditions, when the vehicle starts and stops frequently, and when the on-board power battery is insufficient.
  • the clutch 4 is closed, the engine 1 and the first motor 2 are out of gear and linked.
  • the first motor 2 works in the speed mode to provide negative torque, converting the mechanical input power of the engine 1 into electrical energy, which not only generates electricity in series, but also affects the power battery. Charging, or part of the electric energy is directly provided to the controller of the second motor 3 to directly drive the wheels.
  • the second motor 3 can be independently driven purely electrically in the first gear G1, the fourth gear G4 or the seventh gear G7.
  • the engine 1 shifts smoothly.
  • the engine 1 needs to shift gears.
  • the engine 1 and the first motor 2 keep driving, and the second motor 3 keeps or shifts into its independent driving gear: 1 gear, 4th gear or 7th gear, at the same time engine 1 and first motor 2 begin to unload, and second motor 3 loads the drive.
  • clutch 4 is opened, and at the same time first motor 2 is unloaded, and the corresponding shift mechanism is controlled to enter neutral; Then the clutch 4 is controlled to close smoothly, the first motor 2 enters the speed mode, the first motor 2 controls the engine 1 to near the synchronous speed of the next gear, the clutch 4 is opened, the first motor 2 is unloaded, and the corresponding shift mechanism is controlled to The first motor 2 first enters the set gear, and then controls the clutch 4 to smoothly switch to the engine 1. After the engine 1 enters the gear, it loads the drive, thus completing the smooth control process of gear shifting.
  • the mechanical reliability of the shifting mechanism is improved, the difficulty of shifting control of the shifting sleeve is greatly reduced, and the shifting quality far exceeds the P2 hybrid architecture.
  • the P23 hybrid can greatly improve the problem of shifting gears slipping and improve the safety of the entire vehicle.
  • AMT is an electronically controlled mechanical automatic transmission, spelled out as Automated Mechanical Transmission.
  • the gear assembly further includes: an eleventh gear pair 80 , a twelfth gear pair 81 , a thirteenth gear pair 82 , and a fourteenth gear pair 83 and the fifteenth gear pair 84;
  • the eleventh gear pair 80 is connected to the first input shaft 10 and the first intermediate shaft 40 respectively, and is provided corresponding to the first shifting mechanism K1 to realize switching between multiple gears;
  • the twelve gear pairs 81 are respectively connected to the first input shaft 10 and the first intermediate shaft 40 and are arranged corresponding to the first shifting mechanism K1 to realize switching between multiple gears;
  • the thirteenth gear pair 82 is respectively connected to the output shaft 60 and the outside of the first intermediate shaft 40, and is provided corresponding to the second shifting mechanism K2 to realize switching between multiple gears;
  • the fourteenth gear pair 83 is connected to the output shaft 60 and the first intermediate shaft 40 respectively, and
  • the fifteenth gear pair 84 is connected to the output shaft 60 and the first intermediate shaft 40 respectively, and is arranged
  • this embodiment provides an implementation of the eleventh gear pair 80 , the twelfth gear pair 81 , the thirteenth gear pair 82 , the fourteenth gear pair 83 and the fifteenth gear pair 84 , by An eleventh gear pair 80, a twelfth gear pair 81, a thirteenth gear pair 82, a tenth gear pair are provided.
  • the fourth gear pair 83 and the fifteenth gear pair 84 realize the switching of the output shaft 60 between multiple gears.
  • the gear assembly further includes: a sixteenth gear pair 85 , a seventeenth gear pair 86 and an eighteenth gear pair 87 ;
  • the sixteenth gear pair 85 They are connected to the first input shaft 10 and the second intermediate shaft 50 respectively, and are arranged between the first shifting mechanism K1 and the second shifting mechanism K2 to realize switching between multiple gears;
  • the seventeenth gear pair 86 They are connected to the output shaft 60 and the second intermediate shaft 50 respectively, and are arranged corresponding to the fourth shifting mechanism K4 to realize switching between multiple gears;
  • the eighteenth gear pair 87 is respectively connected to the output shaft 60 and the second intermediate shaft 50 connected, and set corresponding to the fourth gear shifting mechanism K4 to realize switching between multiple gears.
  • this embodiment provides an implementation of the sixteenth gear pair 85 , the seventeenth gear pair 86 and the eighteenth gear pair 87 , by providing the sixteenth gear pair 85 and the seventeenth gear pair 86 and the eighteenth gear pair 87 to realize switching between the first input shaft 10 and the second intermediate shaft 50 and the output shaft 60 and the second intermediate shaft 50 between multiple gears.
  • the engine has a 19-gear transmission path, in which engine 1 participates in driving, clutch 4 is closed, and four shift mechanisms realize 9-gear shift control.
  • the ninth gear the engine 1 can be directly driven with high efficiency and the transmission path is the simplest; when the engine 1 and the first motor 2 are driven in parallel in the third gear G3, the sixth gear G6 and the ninth gear G9, the second motor 3 can be disengaged and stopped. , thereby realizing the efficient direct drive function of engine 1 under cruising conditions, as follows:
  • the transmission path of the first gear G1 of the engine 1 is: engine 1 ⁇ clutch 4 ⁇ first input shaft 10 ⁇ first shifting mechanism K1 ⁇ eleventh gear pair 80 ⁇ first intermediate shaft 40 ⁇ fifteenth gear pair 84 ⁇ Third shifting mechanism K3 ⁇ Output shaft 60.
  • the transmission path of the second gear G2 of engine 1 is: engine 1 ⁇ clutch 4 ⁇ first Input shaft 10 ⁇ first shifting mechanism K1 ⁇ twelfth gear pair 81 ⁇ first intermediate shaft 40 ⁇ fifteenth gear pair 84 ⁇ third shifting mechanism K3 ⁇ output shaft 60.
  • the transmission path of the third gear G3 of engine 1 is: engine 1 ⁇ clutch 4 ⁇ first input shaft 10 ⁇ sixteenth gear pair 85 ⁇ second intermediate shaft 50 ⁇ eighteenth gear pair 87 ⁇ fourth shifting mechanism K4 ⁇ Output shaft 60.
  • the transmission path of the fourth gear G4 of the engine 1 is: engine 1 ⁇ clutch 4 ⁇ first input shaft 10 ⁇ first shifting mechanism K1 ⁇ eleventh gear pair 80 ⁇ first intermediate shaft 40 ⁇ thirteenth gear pair 82 ⁇ Second shifting mechanism K2 ⁇ Output shaft 60.
  • the transmission path of the fifth gear G5 of the engine 1 is: engine 1 ⁇ clutch 4 ⁇ first input shaft 10 ⁇ first shifting mechanism K1 ⁇ twelfth gear pair 81 ⁇ first intermediate shaft 40 ⁇ thirteenth gear pair 82 ⁇ Second shifting mechanism K2 ⁇ Output shaft 60.
  • the transmission path of the sixth gear G6 of engine 1 is: engine 1 ⁇ clutch 4 ⁇ first input shaft 10 ⁇ sixteenth gear pair 85 ⁇ second intermediate shaft 50 ⁇ seventeenth gear pair 86 ⁇ fourth shifting mechanism K4 ⁇ Output shaft 60.
  • the transmission path of the seventh gear G7 of the engine 1 is: engine 1 ⁇ clutch 4 ⁇ first input shaft 10 ⁇ first shifting mechanism K1 ⁇ eleventh gear pair 80 ⁇ first intermediate shaft 40 ⁇ fourteenth gear pair 83 ⁇ Third shifting mechanism K3 ⁇ Output shaft 60.
  • the transmission path of the eighth gear G8 of engine 1 is: engine 1 ⁇ clutch 4 ⁇ first input shaft 10 ⁇ first shifting mechanism K1 ⁇ twelfth gear pair 81 ⁇ first intermediate shaft 40 ⁇ fourteenth gear pair 83 ⁇ Third shifting mechanism K3 ⁇ Output shaft 60.
  • the transmission path of the ninth gear G9 of the engine 1 is: engine 1 ⁇ clutch 4 ⁇ first input shaft 10 ⁇ second shifting mechanism K2 ⁇ output shaft 60.
  • the first motor 2 shares 9 gears to transmit road power, the clutch 4 is closed, the first motor 2 and the engine 1 share 9 gears in parallel linkage; clutch 4 is open , the first motor 2 can be driven purely electrically in 9 gears and the second motor 3 in 6 gears, as follows:
  • the transmission path of the first gear G1 of the first motor 2 is: first motor 2 ⁇ second input shaft 20 ⁇ first gear pair 70 ⁇ first input shaft 10 ⁇ first shifting mechanism K1 ⁇ eleventh gear pair 80 ⁇ first intermediate shaft 40 ⁇ fifteenth gear pair 84 ⁇ third shifting mechanism K3 ⁇ output shaft 60.
  • the transmission path of the second gear G2 of the first motor 2 is: first motor 2 ⁇ second input shaft 20 ⁇ first gear pair 70 ⁇ first input shaft 10 ⁇ first shifting mechanism K1 ⁇ twelfth gear pair 81 ⁇ first intermediate shaft 40 ⁇ fifteenth gear pair 84 ⁇ third shifting mechanism K3 ⁇ output shaft 60.
  • the transmission path of the third gear G3 of the first motor 2 is: first motor 2 ⁇ second input shaft 20 ⁇ first gear pair 70 ⁇ first input shaft 10 ⁇ sixteenth gear pair 85 ⁇ second intermediate shaft 50 ⁇ Eighteenth gear pair 87 ⁇ Fourth shifting mechanism K4 ⁇ Output shaft 60.
  • the transmission path of the fourth gear G4 of the first motor 2 is: first motor 2 ⁇ second input shaft 20 ⁇ first gear pair 70 ⁇ first input shaft 10 ⁇ first shifting mechanism K1 ⁇ eleventh gear pair 80 ⁇ first intermediate shaft 40 ⁇ thirteenth gear pair 82 ⁇ second shifting mechanism K2 ⁇ output shaft 60.
  • the transmission path of the fifth gear G5 of the first motor 2 is: first motor 2 ⁇ second input shaft 20 ⁇ first gear pair 70 ⁇ first input shaft 10 ⁇ first shifting mechanism K1 ⁇ twelfth gear pair 81 ⁇ first intermediate shaft 40 ⁇ thirteenth gear pair 82 ⁇ second shifting mechanism K2 ⁇ output shaft 60.
  • the transmission path of the sixth gear G6 of the first motor 2 is: first motor 2 ⁇ second input shaft 20 ⁇ first gear pair 70 ⁇ first input shaft 10 ⁇ sixteenth gear pair 85 ⁇ second intermediate shaft 50 ⁇ Seventeenth gear pair 86 ⁇ Fourth shifting mechanism K4 ⁇ Output shaft 60 .
  • the transmission path of the seventh gear G7 of the first motor 2 is: first motor 2 ⁇ second input shaft 20 ⁇ first gear pair 70 ⁇ first input shaft 10 ⁇ first shifting mechanism K1 ⁇ eleventh gear pair 80 ⁇ first intermediate shaft 40 ⁇ fourteenth gear pair 83 ⁇ third shifting mechanism K3 ⁇ output shaft 60.
  • the transmission path of the eighth gear G8 of the first motor 2 is: first motor 2 ⁇ second input shaft 20 ⁇ first gear pair 70 ⁇ first input shaft 10 ⁇ first shifting mechanism K1 ⁇ twelfth gear pair 81 ⁇ first intermediate shaft 40 ⁇ fourteenth gear pair 83 ⁇ third shifting mechanism K3 ⁇ output shaft 60.
  • the transmission path of the ninth gear G9 of the first motor 2 is: first motor 2 ⁇ second input shaft 20 ⁇ first gear pair 70 ⁇ first input shaft 10 ⁇ second shifting mechanism K2 ⁇ output shaft 60.
  • the second motor 3 provides 6 gears of transmission power.
  • the second motor 3 can be connected to the engine 1 and/or the first motor 2 in the first gear G1, G1,
  • the third gear G3, the fourth gear G4, the sixth gear G6, the seventh gear G7 and the ninth gear G9 are driven together.
  • the engine 1 and the first motor 2 are in the third gear G3 and the sixth gear.
  • G6 and ninth gear G9 can be driven independently of the second motor 3, thereby providing power-interrupted shifting for the shifting of the second motor 3, as follows:
  • the transmission path of the first gear G1 of the second motor 3 is: second motor 3 ⁇ third input shaft 30 ⁇ second gear pair 71 ⁇ first input shaft 10 ⁇ first shifting mechanism K1 ⁇ eleventh gear pair 80 ⁇ first intermediate shaft 40 ⁇ fifteenth gear pair 84 ⁇ third shifting mechanism K3 ⁇ output shaft 60.
  • the transmission path of the third gear G3 of the second motor 3 is: second motor 3 ⁇ third input shaft 30 ⁇ second gear pair 71 ⁇ first input shaft 10 ⁇ sixteenth gear pair 85 ⁇ second intermediate shaft 50 ⁇ Eighteenth gear pair 87 ⁇ Fourth shifting mechanism K4 ⁇ Output shaft 60.
  • the transmission path of the fourth gear G4 of the second motor 3 is: second motor 3 ⁇ third input shaft 30 ⁇ second gear pair 71 ⁇ first input shaft 10 ⁇ first shifting mechanism K1 ⁇ eleventh gear pair 80 ⁇ first intermediate shaft 40 ⁇ thirteenth gear pair 82 ⁇ second shifting mechanism K2 ⁇ output shaft 60.
  • the transmission path of the sixth gear G6 of the second motor 3 is: second motor 3 ⁇ third input shaft 30 ⁇ second gear pair 71 ⁇ first input shaft 10 ⁇ sixteenth gear pair 85 ⁇ second intermediate shaft 50 ⁇ Seventeenth gear pair 86 ⁇ Fourth shifting mechanism K4 ⁇ Output shaft 60 .
  • the transmission path of the seventh gear G7 of the second motor 3 is: second motor 3 ⁇ third input shaft 30 ⁇ second gear pair 71 ⁇ first input shaft 10 ⁇ first shifting mechanism K1 ⁇ eleventh gear pair 80 ⁇ first intermediate shaft 40 ⁇ fourteenth gear pair 83 ⁇ third shifting mechanism K3 ⁇ output shaft 60.
  • the transmission path of the ninth gear G9 of the second motor 3 is: second motor 3 ⁇ third input shaft 30 ⁇ second gear pair 71 ⁇ first input shaft 10 ⁇ second shifting mechanism K2 ⁇ output shaft 60.
  • the clutch 4 is closed, the engine 1 and the first motor 2 are driven in parallel in the above 9 gears, and the second motor 3 can be in the first gear G1, the third gear G3, The fourth gear G4, the sixth gear G6, the seventh gear G7 and the ninth gear G9 are driven in parallel in the six gears; the engine 1 and the first motor 2 are driven in the third gear G3 and the sixth gear
  • the second motor 3 can be disengaged and stopped to improve transmission efficiency, or it can be independently driven in the first gear G1, the fourth gear G4 or the seventh gear G7 for the engine 1 and The first motor 2 provides power compensation during shifting.
  • this solution provides a working machine having the above-mentioned dual-motor hybrid gearbox.
  • the work machine is a vehicle.
  • the work machine is a heavy-duty vehicle.
  • the work machine is a medium-duty vehicle.
  • the work machine is a lightly loaded vehicle.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a detachable connection. Or integrated connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a detachable connection. Or integrated connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium.
  • specific meanings of the above terms in the embodiments of the present disclosure can be understood according to specific circumstances.

Abstract

本公开提供一种双电机混动变速箱,该系统包括:第一输入轴、第二输入轴、第三输入轴、第一中间轴、第二中间轴、第一换挡机构、第二换挡机构、第三换挡机构、第四换挡机构以及输出轴;第一输入轴分别与第一换挡机构和第二换挡机构可选择的联动,且通过第一中间轴和第二中间轴分别与第三换挡机构和第四换挡机构可选择的联动;第二输入轴和第三输入轴分别与第一换挡机构可选择的联动,且通过第一中间轴和第二中间轴分别与第二换挡机构、第三换挡机构和第四换挡机构可选择的联动;输出轴通过第一换挡机构、第二换挡机构、第三换挡机构和第四换挡机构分别与,第一输入轴和/或第二输入轴和/或第三输入轴可选择的联动,以实现在多个挡位间的切换。

Description

双电机混动变速箱及作业机械
相关申请的交叉引用
本公开要求于2022年9月2日在中国知识产权局提交的申请号为No.202211073932.X,标题为“双电机混动变速箱及作业机械”的中国专利申请的优先权,通过引用将该中国专利申请公开的全部内容并入本文。
技术领域
本公开涉及传动技术领域,尤其涉及一种双电机混动变速箱及作业机械。
背景技术
随着油电混动技术的发展,油电混动技术所能应用的领域逐渐增加,虽然应用于轿车的油电混动技术较为成熟,但轿车的载荷轻,应用于轿车的传动系统的挡位无法适应于重载车辆中,特别是,应用于商用车的混合动力传动系统以单电机的P2并联混动架构为主,P2混动系统在城市工况下的节油效果明显低于双电机功率分流及串并混联系统,并且在换挡时P2混动存在动力中断问题,在重载车辆中出现动力中断会严重影响车辆的行驶性能以及爬坡换挡的安全性,因此,在油电混动技术的大背景下,开发一种适用于重载车辆,同时如何解决换挡过程中动力中断及更优的节油率成为了本领域中的技术难题。
发明内容
本公开提供一种双电机混动变速箱以及作业机械。
根据本公开的第一方面,提供了一种双电机混动变速箱,包括:发动机、第一电机、第二电机、第一输入轴、第二输入轴、第三输入 轴、第一中间轴、第二中间轴、齿轮组件、第一换挡机构、第二换挡机构、第三换挡机构、第四换挡机构以及输出轴;
第一输入轴与发动机连接,第二输入轴与第一电机连接,第三输入轴与第二电机连接;
第二输入轴、第三输入轴、第一中间轴和第二中间轴分别与第一输入轴平行设置;
第一输入轴上、第二输入轴上、第三输入轴上、第一中间轴上、第二中间轴上,以及输出轴上均设置有齿轮组件;
第一输入轴分别与第一换挡机构和第二换挡机构可选择的联动,且通过第一中间轴和第二中间轴分别与第三换挡机构和第四换挡机构可选择的联动;
第二输入轴和第三输入轴分别与第一换挡机构可选择的联动,且通过第一中间轴和第二中间轴分别与第二换挡机构、第三换挡机构和第四换挡机构可选择的联动;
输出轴通过第一换挡机构、第二换挡机构、第三换挡机构和第四换挡机构分别与,第一输入轴和/或第二输入轴和/或第三输入轴可选择的联动,以实现在多个挡位间的切换;
其中,第一换挡机构和第二换挡机构设置于第一输入轴上;
第三换挡机构和第四换挡机构设置于输出轴上。
可选地,还包括:离合器,离合器分别与发动机的动力轴和第一输入轴连接,以实现发动机和第一输入轴之间可选择的联动。
可选地,至少两个第一中间轴绕第一输入轴的周向均布设置;和/或,至少两个第二中间轴绕第一输入轴的周向均布设置。
可选地,齿轮组件包括:第一齿轮副和第二齿轮副;第一齿轮副分别与所述第一输入轴和第二输入轴连接,以实现第一输入轴和第二输入轴的联动;第二齿轮副分别与第一输入轴和第三输入轴连接,且 对应第一换挡机构设置,以实现多个挡位间的切换。
可选地,齿轮组件还包括:第三齿轮副、第四齿轮副、第五齿轮副和第六齿轮副;第三齿轮副分别与第一输入轴和第一中间轴连接,且对应第一换挡机构设置,以实现多个挡位间的切换;第四齿轮副分别与第一输入轴和第一中间轴连接,且对应第一换挡机构设置,以实现多个挡位间的切换;第五齿轮副分别与输出轴和第一中间轴连接,且对应第四换挡机构设置,以实现多个挡位间的切换;第六齿轮副分别与输出轴和第一中间轴连接,且对应第四换挡机构设置,以实现多个挡位间的切换。
可选地,齿轮组件还包括:第七齿轮副、第八齿轮副、第九齿轮副和第十齿轮副;第七齿轮副分别与第一输入轴和第二中间轴连接,且设置于第一换挡机构和第二换挡机构之间,以实现多个挡位间的切换;第八齿轮副分别与输出轴和第二中间轴连接,且对应第二换挡机构设置,以实现多个挡位间的切换;第九齿轮副分别与输出轴和第二中间轴连接,且对应第三换挡机构设置,以实现多个挡位间的切换;第十齿轮副分别与输出轴和第二中间轴连接,且对应第三换挡机构设置,以实现多个挡位间的切换。
可选地,输出轴和第二中间轴通过第十齿轮副和第三换挡机构进行多个挡位切换中,至少包括倒挡。
可选地,齿轮组件还包括:第十一齿轮副、第十二齿轮副、第十三齿轮副、第十四齿轮副和第十五齿轮副;第十一齿轮副分别与第一输入轴和第一中间轴连接,且对应第一换挡机构设置,以实现多个挡位间的切换;第十二齿轮副分别与第一输入轴和第一中间轴连接,且对应第一换挡机构设置,以实现多个挡位间的切换;第十三齿轮副分别与输出轴和第一中间轴的外部,且对应第三换挡机构设置,以实现多个挡位间的切换;第十四齿轮副分别与输出轴和所述第一中间轴连 接,且对应第四换挡机构设置,以实现多个挡位间的切换;第十五齿轮副分别与输出轴和第一中间轴连接,且对应第四换挡机构设置,以实现多个挡位间的切换。
可选地,齿轮组件还包括:第十六齿轮副、第十七齿轮副和第十八齿轮副;第十六齿轮副分别与第一输入轴和第二中间轴连接,且设置于所述第一换挡机构和第二换挡机构之间,以实现多个挡位间的切换;第十七齿轮副分别与输出轴和第二中间轴连接,且对应第二换挡机构设置,以实现多个挡位间的切换;第十八齿轮副分别与输出轴和所述第二中间轴连接,且对应第三换挡机构设置,以实现多个挡位间的切换。
可选地,齿轮组件还包括:第十一齿轮副、第十二齿轮副、第十三齿轮副、第十四齿轮副和第十五齿轮副;所述第十一齿轮副分别与第一输入轴和第一中间轴连接,且对应所述第一换挡机构设置,以实现多个挡位间的切换;第十二齿轮副分别与第一输入轴和第一中间轴连接,且对应第一换挡机构设置,以实现多个挡位间的切换;第十三齿轮副分别与输出轴和第一中间轴的外部,且对应第二换挡机构设置,以实现多个挡位间的切换第十四齿轮副分别与输出轴和第一中间轴连接,且对应第三换挡机构设置,以实现多个挡位间的切换;第十五齿轮副分别与输出轴和第一中间轴连接,且对应第三换挡机构设置,以实现多个挡位间的切换。
可选地,齿轮组件还包括:第十六齿轮副、第十七齿轮副和第十八齿轮副;第十六齿轮副分别与所述第一输入轴和第二中间轴连接,且设置于第一换挡机构和第二换挡机构之间,以实现多个挡位间的切换;第十七齿轮副分别与输出轴和第二中间轴连接,且对应第四换挡机构设置,以实现多个挡位间的切换;第十八齿轮副分别与输出轴和第二中间轴连接,且对应第四换挡机构设置,以实现多个挡位间的切 换。
根据本公开的第二方面,提供了一种作业机械,具有上述的双电机混动变速箱。
附图说明
为了更清楚地说明本公开的技术方案,下面将对实施例描述中所需要使用的附图作以简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本公开实施例的双电机混动变速箱的布置示意图之一;
图2是根据本公开实施例的双电机混动变速箱的布置示意图之二;
图3是根据本公开实施例的双电机混动变速箱的布置示意图之三;
图4是根据本公开实施例的双电机混动变速箱的布置示意图之四;
图5是根据本公开实施例的双电机混动变速箱的布置示意图之五;
图6是根据本公开实施例的双电机混动变速箱的布置示意图之六。
附图标记:
1、发动机;2、第一电机;3、第二电机;4、离合器;
10、第一输入轴;20、第二输入轴;30、第三输入轴;40、第一中间轴;50、第二中间轴;60、输出轴;
70、第一齿轮副;71、第二齿轮副;72、第三齿轮副;73、第四齿轮副;74、第五齿轮副;75、第六齿轮副;76、第七齿轮副;77、第八齿轮副;78、第九齿轮副;79、第十齿轮副;80、第十一齿轮副;81、第十二齿轮副;82、第十三齿轮副;83、第十四齿轮副;84、第十五齿轮副;85、第十六齿轮副;86、第十七齿轮副;87、第十八齿轮副;
K1、第一换挡机构;K2、第二换挡机构;K3、第三换挡机构;K4、第四换挡机构。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
在本公开的一些具体实施方案中,如图1至图4所示,本方案提供一种双电机混动变速箱,包括:发动机1、第一电机2、第二电机3、第一输入轴10、第二输入轴20、第三输入轴30、第一中间轴40、第二中间轴50、齿轮组件、第一换挡机构K1、第二换挡机构K2、第三换挡机构K3、第四换挡机构K4以及输出轴60;
第一输入轴10与发动机1连接,第二输入轴20与第一电机2连接,第三输入轴30与第二电机3连接;
第二输入轴20、第三输入轴30、第一中间轴40和第二中间轴50分别与第一输入轴10平行设置;
第一输入轴10上、第二输入轴20上、第三输入轴30上、第一中间轴40上、第二中间轴50上,以及输出轴60上均设置有齿轮组件;
第一输入轴10分别与第一换挡机构K1和第二换挡机构K2可选择的联动,且通过第一中间轴40和第二中间轴50分别与第三换挡机构K3和第四换挡机构K4可选择的联动;
第二输入轴20和第三输入轴30分别与第一换挡机构K1可选择的联动,且通过第一中间轴40和第二中间轴50分别与第二换挡机构K2、第三换挡机构K3和第四换挡机构K4可选择的联动;
输出轴60通过第一换挡机构K1、第二换挡机构K2、第三换挡机构K3和第四换挡机构K4分别与,第一输入轴10和/或第二输入轴20和 /或第三输入轴30可选择的联动,以实现在多个挡位间的切换;
其中,第一换挡机构K1和第二换挡机构K2设置于第一输入轴10上;
第三换挡机构K3和第四换挡机构K4设置于输出轴60上。
需要说明的是,本公开的动力传动系统,通过设置第一中间轴40与第二中间轴50,可以实现三个动力源的混联混动多种不同工况,动力传动系统中构建有多个动力传动路径,在动力传动系统换挡的过程中,利用多个动力传动路径之间的切换,实现了动力传动系统在换挡时的动力不中断,应用结构简单的传动系统提高了动力传动系统的流畅性,降低了动力传动系统的成本,减少行车过程中的顿挫感。
在本公开一些替代实施例中,还包括:离合器4,离合器4分别与发动机1的动力轴和第一输入轴10连接,以实现发动机1和第一输入轴10之间可选择的联动。
具体来说,本实施例提供了一种离合器4的实施方式,通过设置离合器4,实现了发动机1、第一电机2和第二电机3之间的混动多种工况的切换,实现了选择性地将两套中间轴机械轴齿机构接合联动或断开独立驱动,从而建立三个动力源驱动的挡位共享,实现全车速范围的高效驱动。
需要说明的是,由于发动机1、第一电机2和第二电机3具备各自独立的驱动路径,换挡期间保持一个动力路径当前挡位驱动,另外一个卸载换挡,从而实现完全无动力中断的换挡控制,提升驾驶平顺性。
在本公开一些替代实施例中,至少两个第一中间轴40绕第一输入轴10的周向均布设置;
和/或,至少两个第二中间轴50绕第一输入轴10的周向均布设置。
具体来说,本实施例提供了一种第一中间轴40和第二中间轴50的实施方式,通过将多个第一中间轴40和/或多个第二中间轴50绕第 一输入轴10周向均布设置,提升了驱动载荷的承载力,满足了较大载荷应用场景的需求,使得换挡无动力中断,高可靠性、高安全性、高性价比。
在替代实施方式中,如图1和图3所示,采用了两个第一中间轴40和两个第二中间轴50的双中间轴架构,实现了驱动载荷较高的应用场景。
需要说明的是,本公开提供的动力传动系统,通过设置第一中间轴40与第二中间轴50,可以实现三个动力源的混联混动多种不同工况,动力传动系统中构建有多个动力传动路径,在动力传动系统换挡的过程中,利用多个动力传动路径之间的切换,实现了动力传动系统在换挡时的动力不中断,应用结构简单的传动系统提高了动力传动系统的流畅性,降低了动力传动系统的成本,减少行车过程中的顿挫感。
在本公开一些替代实施例中,齿轮组件包括:第一齿轮副70和第二齿轮副71;第一齿轮副70分别与第一输入轴10和第二输入轴20连接,以实现第一输入轴10和第二输入轴20的联动;第二齿轮副71分别与第一输入轴10和第三输入轴30连接,且对应第一换挡机构K1设置,以实现多个挡位间的切换。
具体来说,本实施例提供了一种第一齿轮副70和第二齿轮副71的实施方式,通过设置第一齿轮副70和第二齿轮副71,使得第一输入轴10和第二输入轴20之间能够进行同步动作。
在本公开一些替代实施例中,齿轮组件还包括:第三齿轮副72、第四齿轮副73、第五齿轮副74和第六齿轮副75;第三齿轮副72分别与第一输入轴10和第一中间轴40连接,且对应第一换挡机构K1设置,以实现多个挡位间的切换;第四齿轮副73分别与第一输入轴10和第一中间轴40连接,且对应第一换挡机构K1设置,以实现多个挡位间的切换;第五齿轮副74分别与输出轴60和第一中间轴40连接,且对应第 四换挡机构K4设置,以实现多个挡位间的切换;第六齿轮副75分别与输出轴60和第一中间轴40连接,且对应第四换挡机构K4设置,以实现多个挡位间的切换。
具体来说,本实施例提供了一种第三齿轮副72、第四齿轮副73、第五齿轮副74和第六齿轮副75的实施方式,通过设置第三齿轮副72、第四齿轮副73、第五齿轮副74和第六齿轮副75,实现了输出轴60在多个挡位之间的切换。
在本公开一些替代实施例中,齿轮组件还包括:第七齿轮副76、第八齿轮副77、第九齿轮副78和第十齿轮副79;第七齿轮副76分别与第一输入轴10和第二中间轴50连接,且设置于第一换挡机构K1和第二换挡机构K2之间,以实现多个挡位间的切换;第八齿轮副77分别与输出轴60和第二中间轴50连接,且对应第二换挡机构K2设置,以实现多个挡位间的切换;第九齿轮副78分别与输出轴60和第二中间轴50连接,且对应第三换挡机构K3设置,以实现多个挡位间的切换;第十齿轮副79分别与输出轴60和第二中间轴50连接,且对应第三换挡机构K3设置,以实现多个挡位间的切换。
具体来说,本实施例提供了一种第七齿轮副76、第八齿轮副77、第九齿轮副78和第十齿轮副79的实施方式,通过设置第七齿轮副76、第八齿轮副77、第九齿轮副78和第十齿轮副79,实现了输出轴60在多个挡位之间的切换。
在本公开一些替代实施例中,输出轴60和第二中间轴50通过第十齿轮副79和第三换挡机构K3进行多个挡位切换中,至少包括倒挡。
具体来说,本实施例提供了一种输出轴60和第二中间轴50通过第十齿轮副79和第三换挡机构K3实现倒挡的实施方式,通过在第十齿轮副79中设置倒挡惰轮,实现了架构进行倒挡的切换。
需要说明的是,为了节约篇幅,本公开没有对第十齿轮副79的具 体结构进行描述,在实际应用中,第十齿轮副79可参考图1和图2,以及本领域相关设置,如图1所示,第十齿轮副79包括了三个齿轮,分别设置于第二中间轴50和输出轴60上,并通过倒挡惰轮实现啮合,进而实现倒挡。
在一个应用场景中,如图1和图2所示,发动机17挡及倒挡传输路径,其中,第七挡位,发动机1可高效直驱,传输路径最简;发动机1与第一电机2在第一挡位G1、第四挡位G4及第七挡位G7并联驱动时,第二电机3可脱挡停机,从而实现巡航工况下发动机1的高效直驱功能,具体如下:
发动机1的第一挡位G1的传递路径为:发动机1→离合器4→第一输入轴10→第七齿轮副76→第二中间轴50→第九齿轮副78→第三换挡机构K3→输出轴60。
发动机1的第二挡位G2的传递路径为:发动机1→离合器4→第一输入轴10→第一换挡机构K1→第三齿轮副72→第一中间轴40→第六齿轮副75→第四换挡机构K4→输出轴60。
发动机1的第三挡位G3的传递路径为:发动机1→离合器4→第一输入轴10→第一换挡机构K1→第四齿轮副73→第一中间轴40→第六齿轮副75→第四换挡机构K4→输出轴60。
发动机1的第四挡位G4的传递路径为:发动机1→离合器4→第一输入轴10→第七齿轮副76→第二中间轴50→第八齿轮副77→第二换挡机构K2→输出轴60。
发动机1的第五挡位G5的传递路径为:发动机1→离合器4→第一输入轴10→第一换挡机构K1→第三齿轮副72→第一中间轴40→第五齿轮副74→第四换挡机构K4→输出轴60。
发动机1的第六挡位G6的传递路径为:发动机1→离合器4→第一输入轴10→第一换挡机构K1→第四齿轮副73→第一中间轴40→第五 齿轮副74→第四换挡机构K4→输出轴60。
发动机1的第七挡位G7的传递路径为:发动机1→离合器4→第一输入轴10→第二换挡机构K2→输出轴60。
发动机1的倒挡GR的传递路径:发动机1→离合器4→第一输入轴10→第七齿轮副76→第二中间轴50→第十齿轮副79→第三换挡机构K3→输出轴60。
在一个应用场景中,如图1和图2所示,第一电机2共享7个挡位及倒挡传输路径,其中,离合器4闭合,第一电机2与发动机1共享7个前进挡位及1个发动机1倒挡挡位并联联动;离合器4打开,第一电机2可按照7个挡位与第二电机3在6个挡位共同纯电驱动,既可以纯电前进驱动,又可以倒挡纯电驱动,具体如下:
第一电机2的第一挡位G1的传递路径为:第一电机2→第一齿轮副70→第七齿轮副76→第二中间轴50→第九齿轮副78→第三换挡机构K3→输出轴60。
第一电机2的第二挡位G2的传递路径为:第一电机2→第二输入轴20→第一齿轮副70→第一输入轴10→第一换挡机构K1→第三齿轮副72→第一中间轴40→第六齿轮副75→第四换挡机构K4→输出轴60。
第一电机2的第三挡位G3的传递路径为:第一电机2→第二输入轴20→第一齿轮副70→第一输入轴10→第一换挡机构K1→第四齿轮副73→第一中间轴40→第六齿轮副75→第四换挡机构K4→输出轴60。
第一电机2的第四挡位G4的传递路径为:第一电机2→第二输入轴20→第一齿轮副70→第一输入轴10→第七齿轮副76→第二中间轴50→第八齿轮副77→第二换挡机构K2→输出轴60。
第一电机2的第五挡位G5的传递路径为:第一电机2→第二输入轴20→第一齿轮副70→第一输入轴10→第一换挡机构K1→第三齿轮副72→第一中间轴40→第五齿轮副74→第四换挡机构K4→输出轴60。
第一电机2的第六挡位G6的传递路径为:第一电机2→第二输入轴20→第一齿轮副70→第一输入轴10→第一换挡机构K1→第四齿轮副73→第一中间轴40→第五齿轮副74→第四换挡机构K4→输出轴60。
第一电机2的第七挡位G7的传递路径为:第一电机2→第二输入轴20→第一齿轮副70→第一输入轴10→第二换挡机构K2→输出轴60。
发动机1的倒挡(第一电机2的纯电驱动不用该挡位)的传递路径为:第一电机2→第二输入轴20→第一齿轮副70→第一输入轴10→第七齿轮副76→第二中间轴50→第十齿轮副79→第三换挡机构K3→输出轴60。
在一个应用场景中,如图1和图2所示,第二电机3提供6个挡位传输路,其中,第二电机3可与发动机1和/或第一电机2在第一挡位G1、第二挡位G2、第四挡位G4、第五挡位G5、第七挡位G7及发动机1倒档位GR共同驱动,发动机1与第一电机2在第三挡位G3、第六挡位G6及第九挡位G9可独立于第二电机3驱动,从而为第二电机3换挡提供无动力中断换挡,具体如下:
第二电机3的第一挡位G1的传递路径为:第二电机3→第三输入轴30→第二齿轮副71→第一换挡机构K1→第七齿轮副76→第二中间轴50→第十齿轮副79→第三换挡机构K3→输出轴60。
第二电机3的第二挡位G2的传递路径为:第二电机3→第三输入轴30→第二齿轮副71→第三齿轮副72→第一中间轴40→第六齿轮副75→第四换挡机构K4→输出轴60。
第二电机3的第四挡位G4的传递路径为:第二电机3→第三输入轴30→第二齿轮副71→第一换挡机构K1→第七齿轮副76→第二中间轴50→第八齿轮副77→第二换挡机构K2→输出轴60。
第二电机3的第五挡位G5的传递路径为:第二电机3→第三输入轴30→第二齿轮副71→第三齿轮副72→第一中间轴40→第五齿轮副 74→第四换挡机构K4→输出轴60。
第二电机3的第七挡位G7的传递路径为:第二电机3→第三输入轴30→第二齿轮副71→第一换挡机构K1→第一输入轴10→第二换挡机构K2→输出轴60。
发动机1的倒挡(第一电机2的纯电驱动不用该挡位)的传递路径为:第二电机3→第三输入轴30→第二齿轮副71→第一换挡机构K1→第七齿轮副76→第二中间轴50→第十齿轮副79→第三换挡机构K3→输出轴60。
在替代实施方式中,纯电驱动功能,离合器4打开,发动机1停机,第一电机2可在9个挡位与第二电机3可在第一挡位G1、第三挡位G3、第四挡位G4、第六挡位G6、第七挡位G7及第九挡位G9的6个挡位共同纯电驱动;由于没有发动机1倒挡设置,倒挡功能有第二电机3或双电机驱动实现。第一电机2可在第三挡位G3、第六挡位G6及第九挡位G9独立纯电驱动,第二电机3可在第一挡位G1、第四挡位G4或第七挡位G7。
在替代实施方式中,并联混动功能,离合器4闭合,发动机1与第一电机2在上述9个挡位下并联驱动,第二电机3可在第一挡位G1、第三挡位G3、第四挡位G4、第六挡位G6、第七挡位G7及第九挡位G9的6个挡位下共同并联驱动;发动机1与第一电机2在第三挡位G3、第六挡位G6及第九挡位G9并联驱动时,第二电机3可脱挡停机,提升传动效率,或独立地在第一挡位G1、第四挡位G4或第七挡位G7为发动机1及第一电机2提供换档时动力补偿。
在替代实施方式中,串联混动功能,在低载城市工况下,车辆启停频繁,当车载动力电池电量不足情况下,采用串联混动模式节油率高。串联混动模式下,离合器4闭合,发动机1与第一电机2脱挡联动,第一电机2工作在转速模式提供负扭矩,将发动机1机械输入动力转化 为电能,既串联发电,对动力电池充电,或部分电能直接提供给第二电机3的控制器直接驱动车轮。第二电机3可在第一挡位G1、第四挡位G4或第七挡位G7独立地纯电驱动。
在替代实施方式中,发动机1换挡平顺控制,驱动过程中,发动机1需要换挡,首先发动机1及第一电机2保持驱动,第二电机3保持或换挡进入其独立驱动挡位:1挡、4挡或7挡,同时发动机1及第一电机2开始卸载,第二电机3加载驱动,发动机1卸载后,离合器4打开,同时第一电机2卸载,控制相应换挡机构进入空挡;然后控制离合器4平顺闭合,第一电机2进入转速模式,第一电机2带着发动机1控制到下一挡位的同步转速附近,离合器4打开,第一电机2卸载,控制相应换挡机构使第一电机2首先进入设定挡位,然后控制离合器4平顺切入发动机1,发动机1进入档位后加载驱动,从而完成换挡的平顺控制过程。
进一步地,由于第一电机2的换挡同步控制,发动机1换挡时间短,此外由于第二电机3在换挡期间的动力补偿,换挡期间基本不需要离合器4的滑摩加载控制,这样可以大幅提升离合器4寿命,离合器4甚至可以终身免维护。在传统AMT、重型手动变速箱及基于P2的AMT混动变速箱,难以克服离合器4滑摩疲劳磨损问题,而P23混动系统可以大幅改善换挡的平顺性,提升变速箱总成的可靠性。由于双电机换挡的同步控制,换挡机构机械可靠性提升,换挡滑套的进挡控制难度大幅降低,换挡质量远远超过P2混动架构。尤其在爬坡过程的滑档,该P23混动由于第二电机3的换挡动力补偿,可以大幅改善换挡溜坡的问题,提高整车安全性。
需要说明的是,AMT为电控机械式自动变速器,全拼为Automated Mechanical Transmission。
在替代实施方式中,发动机1倒挡功能,在大多数情况下,双电 机或单电机驱动就可以实现车辆的倒挡控制。但在一些特殊工况下,动力电池电量不足或持续倒车,发动机1的机械倒挡功能就变得必须了,该P23架构专门匹配了发动机1的机械倒档位,发动机1与第一电机2并联连接,发动机1或直驱倒挡控制,P2及P3电机可并联提供倒挡助力,提升倒挡的爬坡度及坑洼地区的越障倒挡能力。
在本公开一些替代实施例中,如图3和图4所示,齿轮组件还包括:第十一齿轮副80、第十二齿轮副81、第十三齿轮副82、第十四齿轮副83和第十五齿轮副84;第十一齿轮副80分别与第一输入轴10和第一中间轴40连接,且对应第一换挡机构K1设置,以实现多个挡位间的切换;第十二齿轮副81分别与第一输入轴10和第一中间轴40连接,且对应第一换挡机构K1设置,以实现多个挡位间的切换;第十三齿轮副82分别与输出轴60和第一中间轴40的外部,且对应第三换挡机构K3设置,以实现多个挡位间的切换;第十四齿轮副83分别与输出轴60和第一中间轴40连接,且对应第四换挡机构K4设置,以实现多个挡位间的切换;第十五齿轮副84分别与输出轴60和第一中间轴40连接,且对应第四换挡机构K4设置,以实现多个挡位间的切换。
具体来说,本实施例提供了一种第十一齿轮副80、第十二齿轮副81、第十三齿轮副82、第十四齿轮副83和第十五齿轮副84的实施方式,通过设置第十一齿轮副80、第十二齿轮副81、第十三齿轮副82、第十四齿轮副83和第十五齿轮副84,实现了输出轴60在多个挡位间的切换。
在本公开一些替代实施例中,齿轮组件还包括:第十六齿轮副85、第十七齿轮副86和第十八齿轮副87;第十六齿轮副85分别与第一输入轴10和第二中间轴50连接,且设置于第一换挡机构K1和第二换挡机构K2之间,以实现多个挡位间的切换;第十七齿轮副86分别与输出轴60和第二中间轴50连接,且对应第二换挡机构K2设置,以实现多个挡位间的切换;第十八齿轮副87分别与输出轴60和第二中间轴50 连接,且对应第三换挡机构K3设置,以实现多个挡位间的切换。
具体来说,本实施例提供了一种第十六齿轮副85、第十七齿轮副86和第十八齿轮副87的实施方式,通过设置第十六齿轮副85、第十七齿轮副86和第十八齿轮副87,实现了第一输入轴10和第二中间轴50,以及输出轴60和第二中间轴50在多个挡位之间的切换。
在一个应用场景中,如图3和图4所示,发动机19挡传输路径,其中,发动机1参与驱动,离合器4闭合,四个换挡机构实现9个挡位换挡控制,第九挡位,发动机1可高效直驱,传输路径最简;发动机1与第一电机2在第三挡位G3、第六挡位G6及第九挡位G9并联驱动时,第二电机3可脱挡停机,从而实现巡航工况下发动机1的高效直驱功能,具体如下:
发动机1的第一挡位G1的传递路径为:发动机1→离合器4→第一输入轴10→第一换挡机构K1→第十一齿轮副80→第一中间轴40→第十五齿轮副84→第四换挡机构K4→输出轴60。
发动机1的第二挡位G2的传递路径为:发动机1→离合器4→第一输入轴10→第一换挡机构K1→第十二齿轮副81→第一中间轴40→第十五齿轮副84→第四换挡机构K4→输出轴60。
发动机1的第三挡位G3的传递路径为:发动机1→离合器4→第一输入轴10→第十六齿轮副85→第二中间轴50→第十八齿轮副87→第三换挡机构K3→输出轴60。
发动机1的第四挡位G4的传递路径为:发动机1→离合器4→第一输入轴10→第一换挡机构K1→第十一齿轮副80→第一中间轴40→第十四齿轮副83→第四换挡机构K4→输出轴60。
发动机1的第五挡位G5的传递路径为:发动机1→离合器4→第一输入轴10→第一换挡机构K1→第十二齿轮副81→第一中间轴40→第十四齿轮副83→第四换挡机构K4→输出轴60。
发动机1的第六挡位G6的传递路径为:发动机1→离合器4→第一输入轴10→第十六齿轮副85→第二中间轴50→第十七齿轮副86→第二换挡机构K2→输出轴60。
发动机1的第七挡位G7的传递路径为:发动机1→离合器4→第一输入轴10→第一换挡机构K1→第十一齿轮副80→第一中间轴40→第十三齿轮副82→第三换挡机构K3→输出轴60。
发动机1的第八挡位G8的传递路径为:发动机1→离合器4→第一输入轴10→第一换挡机构K1→第十二齿轮副81→第一中间轴40→第十三齿轮副82→第三换挡机构K3→输出轴60。
发动机1的第九挡位G9的传递路径为:发动机1→离合器4→第一输入轴10→第二换挡机构K2→输出轴60。
在一个应用场景中,如图3和图4所示,第一电机2共享9个挡位传输路劲,离合器4闭合,第一电机2与发动机1共享9个挡位并联联动;离合器4打开,第一电机2可按照9个挡位与第二电机3在6个挡位共同纯电驱动,具体如下:
第一电机2的第一挡位G1的传递路径为:第一电机2→第二输入轴20→第一齿轮副70→第一输入轴10→第一换挡机构K1→第十一齿轮副80→第一中间轴40→第十五齿轮副84→第四换挡机构K4→输出轴60。
第一电机2的第二挡位G2的传递路径为:第一电机2→第二输入轴20→第一齿轮副70→第一输入轴10→第一换挡机构K1→第十二齿轮副81→第一中间轴40→第十五齿轮副84→第四换挡机构K4→输出轴60。
第一电机2的第三挡位G3的传递路径为:第一电机2→第二输入轴20→第一齿轮副70→第一输入轴10→第十六齿轮副85→第二中间轴50→第十八齿轮副87→第三换挡机构K3→输出轴60。
第一电机2的第四挡位G4的传递路径为:第一电机2→第二输入轴20→第一齿轮副70→第一输入轴10→第一换挡机构K1→第十一齿轮副80→第一中间轴40→第十四齿轮副83→第四换挡机构K4→输出轴60。
第一电机2的第五挡位G5的传递路径为:第一电机2→第二输入轴20→第一齿轮副70→第一输入轴10→第一换挡机构K1→第十二齿轮副81→第一中间轴40→第十四齿轮副83→第四换挡机构K4→输出轴60。
第一电机2的第六挡位G6的传递路径为:第一电机2→第二输入轴20→第一齿轮副70→第一输入轴10→第十六齿轮副85→第二中间轴50→第十七齿轮副86→第二换挡机构K2→输出轴60。
第一电机2的第七挡位G7的传递路径为:第一电机2→第二输入轴20→第一齿轮副70→第一输入轴10→第一换挡机构K1→第十一齿轮副80→第一中间轴40→第十三齿轮副82→第三换挡机构K3→输出轴60。
第一电机2的第八挡位G8的传递路径为:第一电机2→第二输入轴20→第一齿轮副70→第一输入轴10→第一换挡机构K1→第十二齿轮副81→第一中间轴40→第十三齿轮副82→第三换挡机构K3→输出轴60。
第一电机2的第九挡位G9的传递路径为:第一电机2→第二输入轴20→第一齿轮副70→第一输入轴10→第二换挡机构K2→输出轴60。
在一个应用场景中,如图3和图4所示,第二电机3提供6个挡位传输路劲,第二电机3可与发动机1和/或第一电机2在第一挡位G1、第三挡位G3、第四挡位G4、第六挡位G6、第七挡位G7及第九挡位G9共同驱动,发动机1与第一电机2在第三挡位G3、第六挡位G6及第九挡位G9可独立于第二电机3驱动,从而为第二电机3换挡提供无动力中断 换挡,具体如下:
第二电机3的第一挡位G1的传递路径为:第二电机3→第三输入轴30→第二齿轮副71→第一输入轴10→第一换挡机构K1→第十一齿轮副80→第一中间轴40→第十五齿轮副84→第四换挡机构K4→输出轴60。
第二电机3的第三挡位G3的传递路径为:第二电机3→第三输入轴30→第二齿轮副71→第一输入轴10→第十六齿轮副85→第二中间轴50→第十八齿轮副87→第三换挡机构K3→输出轴60。
第二电机3的第四挡位G4的传递路径为:第二电机3→第三输入轴30→第二齿轮副71→第一输入轴10→第一换挡机构K1→第十一齿轮副80→第一中间轴40→第十四齿轮副83→第四换挡机构K4→输出轴60。
第二电机3的第六挡位G6的传递路径为:第二电机3→第三输入轴30→第二齿轮副71→第一输入轴10→第十六齿轮副85→第二中间轴50→第十七齿轮副86→第二换挡机构K2→输出轴60。
第二电机3的第七挡位G7的传递路径为:第二电机3→第三输入轴30→第二齿轮副71→第一输入轴10→第一换挡机构K1→第十一齿轮副80→第一中间轴40→第十三齿轮副82→第三换挡机构K3→输出轴60。
第二电机3的第九挡位G9的传递路径为:第二电机3→第三输入轴30→第二齿轮副71→第一输入轴10→第二换挡机构K2→输出轴60。
在替代实施方式中,并联混动功能,离合器4闭合,发动机1与第一电机2在上述9个挡位下并联驱动,第二电机3可在第一挡位G1、第三挡位G3、第四挡位G4、第六挡位G6、第七挡位G7及第九挡位G9的6个挡位下共同并联驱动;发动机1与第一电机2在第三挡位G3、第六挡位G6及第九挡位G9并联驱动时,第二电机3可脱挡停机,提升传 动效率,或独立地在第一挡位G1、第四挡位G4或第七挡位G7为发动机1及第一电机2提供换档时动力补偿。
在替代实施方式中,纯电驱动功能,离合器4打开,发动机1停机,第一电机2可在9个挡位与第二电机3可在第一挡位G1、第三挡位G3、第四挡位G4、第六挡位G6、第七挡位G7及第九挡位G9的6个挡位共同纯电驱动;由于没有发动机1的倒挡设置,倒挡功能有第二电机3或双电机驱动实现。第一电机2可在第三挡位G3、第六挡位G6及第九挡位G9独立纯电驱动,第二电机3可在第一挡位G1、第四挡位G4或第七挡位G7。
在替代实施方式中,串联混动功能,在低载城市工况下,车辆启停频繁,当车载动力电池电量不足情况下,采用串联混动模式节油率高。串联混动模式下,离合器4闭合,发动机1与第一电机2脱挡联动,第一电机2工作在转速模式提供负扭矩,将发动机1机械输入动力转化为电能,既串联发电,对动力电池充电,或部分电能直接提供给第二电机3的控制器直接驱动车轮。第二电机3可在第一挡位G1、第四挡位G4或第七挡位G7独立地纯电驱动。
在替代实施方式中,发动机1换挡平顺控制,驱动过程中,发动机1需要换挡,首先发动机1及第一电机2保持驱动,第二电机3保持或换挡进入其独立驱动挡位:1挡、4挡或7挡,同时发动机1及第一电机2开始卸载,第二电机3加载驱动,发动机1卸载后,离合器4打开,同时第一电机2卸载,控制相应换挡机构进入空挡;然后控制离合器4平顺闭合,第一电机2进入转速模式,第一电机2带着发动机1控制到下一挡位的同步转速附近,离合器4打开,第一电机2卸载,控制相应换挡机构使第一电机2首先进入设定挡位,然后控制离合器4平顺切入发动机1,发动机1进入档位后加载驱动,从而完成换挡的平顺控制过程。
进一步地,由于第一电机2的换挡同步控制,发动机1换挡时间短,此外由于第二电机3在换挡期间的动力补偿,换挡期间基本不需要离合器4的滑摩加载控制,这样可以大幅提升离合器4寿命,离合器4甚至可以终身免维护。在传统AMT、重型手动变速箱及基于P2的AMT混动变速箱,难以克服离合器4滑摩疲劳磨损问题,而P23混动系统可以大幅改善换挡的平顺性,提升变速箱总成的可靠性。由于双电机换挡的同步控制,换挡机构机械可靠性提升,换挡滑套的进挡控制难度大幅降低,换挡质量远远超过P2混动架构。尤其在爬坡过程的滑档,该P23混动由于第二电机3的换挡动力补偿,可以大幅改善换挡溜坡的问题,提高整车安全性。
需要说明的是,AMT为电控机械式自动变速器,全拼为Automated Mechanical Transmission。
在本公开一些替代实施例中,如图5和图6所示,齿轮组件还包括:第十一齿轮副80、第十二齿轮副81、第十三齿轮副82、第十四齿轮副83和第十五齿轮副84;第十一齿轮副80分别与第一输入轴10和第一中间轴40连接,且对应第一换挡机构K1设置,以实现多个挡位间的切换;第十二齿轮副81分别与第一输入轴10和第一中间轴40连接,且对应第一换挡机构K1设置,以实现多个挡位间的切换;第十三齿轮副82分别与输出轴60和第一中间轴40的外部,且对应第二换挡机构K2设置,以实现多个挡位间的切换;第十四齿轮副83分别与输出轴60和第一中间轴40连接,且对应第三换挡机构K3设置,以实现多个挡位间的切换;第十五齿轮副84分别与输出轴60和第一中间轴40连接,且对应第三换挡机构K3设置,以实现多个挡位间的切换。
具体来说,本实施例提供了一种第十一齿轮副80、第十二齿轮副81、第十三齿轮副82、第十四齿轮副83和第十五齿轮副84的实施方式,通过设置第十一齿轮副80、第十二齿轮副81、第十三齿轮副82、第十 四齿轮副83和第十五齿轮副84,实现了输出轴60在多个挡位间的切换。
在本公开一些替代实施例中,如图5和图6所示,齿轮组件还包括:第十六齿轮副85、第十七齿轮副86和第十八齿轮副87;第十六齿轮副85分别与第一输入轴10和第二中间轴50连接,且设置于第一换挡机构K1和第二换挡机构K2之间,以实现多个挡位间的切换;第十七齿轮副86分别与输出轴60和第二中间轴50连接,且对应第四换挡机构K4设置,以实现多个挡位间的切换;第十八齿轮副87分别与输出轴60和第二中间轴50连接,且对应第四换挡机构K4设置,以实现多个挡位间的切换。
具体来说,本实施例提供了一种第十六齿轮副85、第十七齿轮副86和第十八齿轮副87的实施方式,通过设置第十六齿轮副85、第十七齿轮副86和第十八齿轮副87,实现了第一输入轴10和第二中间轴50,以及输出轴60和第二中间轴50在多个挡位之间的切换。
需要说明的是,图5和图6中,调整了第一中间轴40和第二中间轴50的输出齿轮位置,目的是减少第一中间轴40的长度,保证了构架运行的安全性和稳定性。
在一个应用场景中,如图5和图6所示,发动机19挡传输路径,其中,发动机1参与驱动,离合器4闭合,四个换挡机构实现9个挡位换挡控制,第九挡位,发动机1可高效直驱,传输路径最简;发动机1与第一电机2在第三挡位G3、第六挡位G6及第九挡位G9并联驱动时,第二电机3可脱挡停机,从而实现巡航工况下发动机1的高效直驱功能,具体如下:
发动机1的第一挡位G1的传递路径为:发动机1→离合器4→第一输入轴10→第一换挡机构K1→第十一齿轮副80→第一中间轴40→第十五齿轮副84→第三换挡机构K3→输出轴60。
发动机1的第二挡位G2的传递路径为:发动机1→离合器4→第一 输入轴10→第一换挡机构K1→第十二齿轮副81→第一中间轴40→第十五齿轮副84→第三换挡机构K3→输出轴60。
发动机1的第三挡位G3的传递路径为:发动机1→离合器4→第一输入轴10→第十六齿轮副85→第二中间轴50→第十八齿轮副87→第四换挡机构K4→输出轴60。
发动机1的第四挡位G4的传递路径为:发动机1→离合器4→第一输入轴10→第一换挡机构K1→第十一齿轮副80→第一中间轴40→第十三齿轮副82→第二换挡机构K2→输出轴60。
发动机1的第五挡位G5的传递路径为:发动机1→离合器4→第一输入轴10→第一换挡机构K1→第十二齿轮副81→第一中间轴40→第十三齿轮副82→第二换挡机构K2→输出轴60。
发动机1的第六挡位G6的传递路径为:发动机1→离合器4→第一输入轴10→第十六齿轮副85→第二中间轴50→第十七齿轮副86→第四换挡机构K4→输出轴60。
发动机1的第七挡位G7的传递路径为:发动机1→离合器4→第一输入轴10→第一换挡机构K1→第十一齿轮副80→第一中间轴40→第十四齿轮副83→第三换挡机构K3→输出轴60。
发动机1的第八挡位G8的传递路径为:发动机1→离合器4→第一输入轴10→第一换挡机构K1→第十二齿轮副81→第一中间轴40→第十四齿轮副83→第三换挡机构K3→输出轴60。
发动机1的第九挡位G9的传递路径为:发动机1→离合器4→第一输入轴10→第二换挡机构K2→输出轴60。
在一个应用场景中,如图5和图6所示,第一电机2共享9个挡位传输路劲,离合器4闭合,第一电机2与发动机1共享9个挡位并联联动;离合器4打开,第一电机2可按照9个挡位与第二电机3在6个挡位共同纯电驱动,具体如下:
第一电机2的第一挡位G1的传递路径为:第一电机2→第二输入轴20→第一齿轮副70→第一输入轴10→第一换挡机构K1→第十一齿轮副80→第一中间轴40→第十五齿轮副84→第三换挡机构K3→输出轴60。
第一电机2的第二挡位G2的传递路径为:第一电机2→第二输入轴20→第一齿轮副70→第一输入轴10→第一换挡机构K1→第十二齿轮副81→第一中间轴40→第十五齿轮副84→第三换挡机构K3→输出轴60。
第一电机2的第三挡位G3的传递路径为:第一电机2→第二输入轴20→第一齿轮副70→第一输入轴10→第十六齿轮副85→第二中间轴50→第十八齿轮副87→第四换挡机构K4→输出轴60。
第一电机2的第四挡位G4的传递路径为:第一电机2→第二输入轴20→第一齿轮副70→第一输入轴10→第一换挡机构K1→第十一齿轮副80→第一中间轴40→第十三齿轮副82→第二换挡机构K2→输出轴60。
第一电机2的第五挡位G5的传递路径为:第一电机2→第二输入轴20→第一齿轮副70→第一输入轴10→第一换挡机构K1→第十二齿轮副81→第一中间轴40→第十三齿轮副82→第二换挡机构K2→输出轴60。
第一电机2的第六挡位G6的传递路径为:第一电机2→第二输入轴20→第一齿轮副70→第一输入轴10→第十六齿轮副85→第二中间轴50→第十七齿轮副86→第四换挡机构K4→输出轴60。
第一电机2的第七挡位G7的传递路径为:第一电机2→第二输入轴20→第一齿轮副70→第一输入轴10→第一换挡机构K1→第十一齿轮副80→第一中间轴40→第十四齿轮副83→第三换挡机构K3→输出轴60。
第一电机2的第八挡位G8的传递路径为:第一电机2→第二输入轴20→第一齿轮副70→第一输入轴10→第一换挡机构K1→第十二齿轮副81→第一中间轴40→第十四齿轮副83→第三换挡机构K3→输出轴60。
第一电机2的第九挡位G9的传递路径为:第一电机2→第二输入轴20→第一齿轮副70→第一输入轴10→第二换挡机构K2→输出轴60。
在一个应用场景中,如图5和图6所示,第二电机3提供6个挡位传输路劲,第二电机3可与发动机1和/或第一电机2在第一挡位G1、第三挡位G3、第四挡位G4、第六挡位G6、第七挡位G7及第九挡位G9共同驱动,发动机1与第一电机2在第三挡位G3、第六挡位G6及第九挡位G9可独立于第二电机3驱动,从而为第二电机3换挡提供无动力中断换挡,具体如下:
第二电机3的第一挡位G1的传递路径为:第二电机3→第三输入轴30→第二齿轮副71→第一输入轴10→第一换挡机构K1→第十一齿轮副80→第一中间轴40→第十五齿轮副84→第三换挡机构K3→输出轴60。
第二电机3的第三挡位G3的传递路径为:第二电机3→第三输入轴30→第二齿轮副71→第一输入轴10→第十六齿轮副85→第二中间轴50→第十八齿轮副87→第四换挡机构K4→输出轴60。
第二电机3的第四挡位G4的传递路径为:第二电机3→第三输入轴30→第二齿轮副71→第一输入轴10→第一换挡机构K1→第十一齿轮副80→第一中间轴40→第十三齿轮副82→第二换挡机构K2→输出轴60。
第二电机3的第六挡位G6的传递路径为:第二电机3→第三输入轴30→第二齿轮副71→第一输入轴10→第十六齿轮副85→第二中间轴50→第十七齿轮副86→第四换挡机构K4→输出轴60。
第二电机3的第七挡位G7的传递路径为:第二电机3→第三输入轴30→第二齿轮副71→第一输入轴10→第一换挡机构K1→第十一齿轮副80→第一中间轴40→第十四齿轮副83→第三换挡机构K3→输出轴60。
第二电机3的第九挡位G9的传递路径为:第二电机3→第三输入轴30→第二齿轮副71→第一输入轴10→第二换挡机构K2→输出轴60。
在替代实施方式中,并联混动功能,离合器4闭合,发动机1与第一电机2在上述9个挡位下并联驱动,第二电机3可在第一挡位G1、第三挡位G3、第四挡位G4、第六挡位G6、第七挡位G7及第九挡位G9的6个挡位下共同并联驱动;发动机1与第一电机2在第三挡位G3、第六挡位G6及第九挡位G9并联驱动时,第二电机3可脱挡停机,提升传动效率,或独立地在第一挡位G1、第四挡位G4或第七挡位G7为发动机1及第一电机2提供换档时动力补偿。
在本公开的一些具体实施方案中,本方案提供一种作业机械,具有上述的双电机混动变速箱。
在替代实施方式中,作业机械为车辆。
在替代实施方式中,作业机械为重载车辆。
在替代实施方式中,作业机械为中载车辆。
在替代实施方式中,作业机械为轻载车辆。
在本公开实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开实施例中的具体含义。
最后应说明的是:以上实施方式仅用于说明本公开,而非对本公 开的限制。尽管参照实施例对本公开进行了详细说明,本领域的普通技术人员应当理解,对本公开的技术方案进行各种组合、修改或者等同替换,都不脱离本公开技术方案的精神和范围,均应涵盖在本公开的权利要求范围中。

Claims (12)

  1. 一种双电机混动变速箱,包括:发动机(1)、第一电机(2)、第二电机(3)、第一输入轴(10)、第二输入轴(20)、第三输入轴(30)、第一中间轴(40)、第二中间轴(50)、齿轮组件、第一换挡机构(K1)、第二换挡机构(K2)、第三换挡机构(K3)、第四换挡机构(K4)以及输出轴(60);
    所述第一输入轴(10)与所述发动机(1)连接,所述第二输入轴(20)与所述第一电机(2)连接,所述第三输入轴(30)与所述第二电机(3)连接;
    所述第二输入轴(20)、所述第三输入轴(30)、所述第一中间轴(40)和所述第二中间轴(50)分别与所述第一输入轴(10)平行设置;
    所述第一输入轴(10)上、所述第二输入轴(20)上、所述第三输入轴(30)上、所述第一中间轴(40)上、所述第二中间轴(50)上,以及所述输出轴(60)上均设置有所述齿轮组件;
    所述第一输入轴(10)分别与所述第一换挡机构(K1)和所述第二换挡机构(K2)可选择的联动,且通过所述第一中间轴(40)和所述第二中间轴(50)分别与所述第三换挡机构(K3)和所述第四换挡机构(K4)可选择的联动;
    所述第二输入轴(20)和所述第三输入轴(30)分别与所述第一换挡机构(K1)可选择的联动,且通过所述第一中间轴(40)和所述第二中间轴(50)分别与所述第二换挡机构(K2)、所述第三换挡机构(K3)和所述第四换挡机构(K4)可选择的联动;
    所述输出轴(60)通过所述第一换挡机构(K1)、所述第二换挡机构(K2)、所述第三换挡机构(K3)和所述第四换挡机构(K4)分别与,所述第一输入轴(10)和/或所述第二输入轴(20)和/或所述 第三输入轴(30)可选择的联动,以实现在多个挡位间的切换;
    其中,所述第一换挡机构(K1)和所述第二换挡机构(K2)设置于所述第一输入轴(10)上;
    所述第三换挡机构(K3)和所述第四换挡机构(K4)设置于所述输出轴(60)上。
  2. 根据权利要求1所述的双电机混动变速箱,还包括:离合器(4),所述离合器(4)分别与所述发动机(1)的动力轴和所述第一输入轴(10)连接,以实现所述发动机(1)和所述第一输入轴(10)之间可选择的联动。
  3. 根据权利要求1所述的双电机混动变速箱,其中至少两个所述第一中间轴(40)绕所述第一输入轴(10)的周向均布设置;
    和/或,至少两个所述第二中间轴(50)绕所述第一输入轴(10)的周向均布设置。
  4. 根据权利要求1所述的双电机混动变速箱,其中所述齿轮组件包括:第一齿轮副(70)和第二齿轮副(71);
    所述第一齿轮副(70)分别与所述第一输入轴(10)和所述第二输入轴(20)连接,以实现所述第一输入轴(10)和所述第二输入轴(20)的联动;
    所述第二齿轮副(71)分别与所述第一输入轴(10)和所述第三输入轴(30)连接,且对应所述第一换挡机构(K1)设置,以实现多个挡位间的切换。
  5. 根据权利要求1至4任一所述的双电机混动变速箱,其中所述齿轮组件还包括:第三齿轮副(72)、第四齿轮副(73)、第五齿轮副(74)和第六齿轮副(75);
    所述第三齿轮副(72)分别与所述第一输入轴(10)和所述第一中间轴(40)连接,且对应所述第一换挡机构(K1)设置,以实现 多个挡位间的切换;
    所述第四齿轮副(73)分别与所述第一输入轴(10)和所述第一中间轴(40)连接,且对应所述第一换挡机构(K1)设置,以实现多个挡位间的切换;
    所述第五齿轮副(74)分别与所述输出轴(60)和所述第一中间轴(40)连接,且对应所述第四换挡机构(K4)设置,以实现多个挡位间的切换;
    所述第六齿轮副(75)分别与所述输出轴(60)和所述第一中间轴(40)连接,且对应所述第四换挡机构(K4)设置,以实现多个挡位间的切换。
  6. 根据权利要求5所述的双电机混动变速箱,其中所述齿轮组件还包括:第七齿轮副(76)、第八齿轮副(77)、第九齿轮副(78)和第十齿轮副(79);
    所述第七齿轮副(76)分别与所述第一输入轴(10)和所述第二中间轴(50)连接,且设置于所述第一换挡机构(K1)和所述第二换挡机构(K2)之间,以实现多个挡位间的切换;
    所述第八齿轮副(77)分别与所述输出轴(60)和所述第二中间轴(50)连接,且对应所述第二换挡机构(K2)设置,以实现多个挡位间的切换;
    所述第九齿轮副(78)分别与所述输出轴(60)和所述第二中间轴(50)连接,且对应所述第三换挡机构(K3)设置,以实现多个挡位间的切换;
    所述第十齿轮副(79)分别与所述输出轴(60)和所述第二中间轴(50)连接,且对应所述第三换挡机构(K3)设置,以实现多个挡位间的切换。
  7. 根据权利要求6所述的双电机混动变速箱,其中所述输出轴(60) 和所述第二中间轴(50)通过所述第十齿轮副(79)和所述第三换挡机构(K3)进行多个挡位切换中,至少包括倒挡。
  8. 根据权利要求1至4任一所述的双电机混动变速箱,其中所述齿轮组件还包括:第十一齿轮副(80)、第十二齿轮副(81)、第十三齿轮副(82)、第十四齿轮副(83)和第十五齿轮副(84);
    所述第十一齿轮副(80)分别与所述第一输入轴(10)和所述第一中间轴(40)连接,且对应所述第一换挡机构(K1)设置,以实现多个挡位间的切换;
    所述第十二齿轮副(81)分别与所述第一输入轴(10)和所述第一中间轴(40)连接,且对应所述第一换挡机构(K1)设置,以实现多个挡位间的切换;
    所述第十三齿轮副(82)分别与所述输出轴(60)和所述第一中间轴(40)的外部,且对应所述第三换挡机构(K3)设置,以实现多个挡位间的切换;
    所述第十四齿轮副(83)分别与所述输出轴(60)和所述第一中间轴(40)连接,且对应所述第四换挡机构(K4)设置,以实现多个挡位间的切换;
    所述第十五齿轮副(84)分别与所述输出轴(60)和所述第一中间轴(40)连接,且对应所述第四换挡机构(K4)设置,以实现多个挡位间的切换。
  9. 根据权利要求8所述的双电机混动变速箱,其中所述齿轮组件还包括:第十六齿轮副(85)、第十七齿轮副(86)和第十八齿轮副(87);
    所述第十六齿轮副(85)分别与所述第一输入轴(10)和所述第二中间轴(50)连接,且设置于所述第一换挡机构(K1)和所述第二换挡机构(K2)之间,以实现多个挡位间的切换;
    所述第十七齿轮副(86)分别与所述输出轴(60)和所述第二中间轴(50)连接,且对应所述第二换挡机构(K2)设置,以实现多个挡位间的切换;
    所述第十八齿轮副(87)分别与所述输出轴(60)和所述第二中间轴(50)连接,且对应所述第三换挡机构(K3)设置,以实现多个挡位间的切换。
  10. 根据权利要求1至4任一所述的双电机混动变速箱,其中所述齿轮组件还包括:第十一齿轮副(80)、第十二齿轮副(81)、第十三齿轮副(82)、第十四齿轮副(83)和第十五齿轮副(84);
    所述第十一齿轮副(80)分别与所述第一输入轴(10)和所述第一中间轴(40)连接,且对应所述第一换挡机构(K1)设置,以实现多个挡位间的切换;
    所述第十二齿轮副(81)分别与所述第一输入轴(10)和所述第一中间轴(40)连接,且对应所述第一换挡机构(K1)设置,以实现多个挡位间的切换;
    所述第十三齿轮副(82)分别与所述输出轴(60)和所述第一中间轴(40)的外部,且对应所述第二换挡机构(K2)设置,以实现多个挡位间的切换;
    所述第十四齿轮副(83)分别与所述输出轴(60)和所述第一中间轴(40)连接,且对应所述第三换挡机构(K3)设置,以实现多个挡位间的切换;
    所述第十五齿轮副(84)分别与所述输出轴(60)和所述第一中间轴(40)连接,且对应所述第三换挡机构(K3)设置,以实现多个挡位间的切换。
  11. 根据权利要求10所述的双电机混动变速箱,其中所述齿轮组件还包括:第十六齿轮副(85)、第十七齿轮副(86)和第十八齿轮 副(87);
    所述第十六齿轮副(85)分别与所述第一输入轴(10)和所述第二中间轴(50)连接,且设置于所述第一换挡机构(K1)和所述第二换挡机构(K2)之间,以实现多个挡位间的切换;
    所述第十七齿轮副(86)分别与所述输出轴(60)和所述第二中间轴(50)连接,且对应所述第四换挡机构(K4)设置,以实现多个挡位间的切换;
    所述第十八齿轮副(87)分别与所述输出轴(60)和所述第二中间轴(50)连接,且对应所述第四换挡机构(K4)设置,以实现多个挡位间的切换。
  12. 一种作业机械,包括上述权利要求1至11任一所述的双电机混动变速箱。
PCT/CN2023/081215 2022-07-28 2023-03-14 双电机混动变速箱及作业机械 WO2024045549A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202221971560 2022-07-28
CN202211073932.X 2022-09-02
CN202211073932.XA CN115419685A (zh) 2022-07-28 2022-09-02 双电机混动变速箱及作业机械

Publications (1)

Publication Number Publication Date
WO2024045549A1 true WO2024045549A1 (zh) 2024-03-07

Family

ID=84202029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081215 WO2024045549A1 (zh) 2022-07-28 2023-03-14 双电机混动变速箱及作业机械

Country Status (2)

Country Link
CN (1) CN115419685A (zh)
WO (1) WO2024045549A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115419685A (zh) * 2022-07-28 2022-12-02 湖南行必达网联科技有限公司 双电机混动变速箱及作业机械
CN115465083A (zh) * 2022-07-28 2022-12-13 湖南行必达网联科技有限公司 双电机混合动力传动系统及作业机械

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039010A (ja) * 2006-08-03 2008-02-21 Toyota Motor Corp 変速機
CN104972887A (zh) * 2015-07-07 2015-10-14 安徽纽恩卡自控科技有限公司 一种汽车混合动力驱动系统
CN113879104A (zh) * 2021-09-30 2022-01-04 如果科技有限公司 一种动力传动系统及具有其的车辆
CN113942382A (zh) * 2021-09-30 2022-01-18 如果科技有限公司 用于车辆的动力传动系统及车辆
CN217022174U (zh) * 2021-10-29 2022-07-22 如果科技有限公司 用于车辆的动力传动系统及车辆
CN115419685A (zh) * 2022-07-28 2022-12-02 湖南行必达网联科技有限公司 双电机混动变速箱及作业机械

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113978232A (zh) * 2021-09-30 2022-01-28 如果科技有限公司 一种动力传动系统及具有其的车辆
CN113879103A (zh) * 2021-09-30 2022-01-04 如果科技有限公司 一种动力传动系统及具有其的车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039010A (ja) * 2006-08-03 2008-02-21 Toyota Motor Corp 変速機
CN104972887A (zh) * 2015-07-07 2015-10-14 安徽纽恩卡自控科技有限公司 一种汽车混合动力驱动系统
CN113879104A (zh) * 2021-09-30 2022-01-04 如果科技有限公司 一种动力传动系统及具有其的车辆
CN113942382A (zh) * 2021-09-30 2022-01-18 如果科技有限公司 用于车辆的动力传动系统及车辆
CN217022174U (zh) * 2021-10-29 2022-07-22 如果科技有限公司 用于车辆的动力传动系统及车辆
CN115419685A (zh) * 2022-07-28 2022-12-02 湖南行必达网联科技有限公司 双电机混动变速箱及作业机械

Also Published As

Publication number Publication date
CN115419685A (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
WO2024045549A1 (zh) 双电机混动变速箱及作业机械
WO2022116787A2 (zh) 一种双电机混合动力驱动装置及具有其的车辆
CN111976463B (zh) 能实现单电机两档驱动的混合动力车辆驱动系统
WO2023051513A1 (zh) 动力传动系统及车辆
CN113879104B (zh) 一种动力传动系统及具有其的车辆
CN210174607U (zh) 混合动力汽车及其传动系统
CN114407637B (zh) 动力传动系统及车辆
CN113879103A (zh) 一种动力传动系统及具有其的车辆
CN113942382A (zh) 用于车辆的动力传动系统及车辆
CN108528185A (zh) 一种纵置多档位电驱动动力总成
CN216783253U (zh) 动力传动系统及车辆
CN113815399A (zh) 一种双两档位双电机混动系统
CN217022174U (zh) 用于车辆的动力传动系统及车辆
WO2024045547A1 (zh) 双电机混合动力传动系统及作业机械
CN108544911B (zh) 一种电动工业车辆驱动系统及其控制方法
CN113715605A (zh) 汽车及混合动力系统
CN114043866A (zh) 动力传动系统及具有其的车辆
CN106427511A (zh) 一种无动力中断amt电驱动结构
WO2024045548A1 (zh) 具有中转轴的双电机混动变速箱及作业机械
CN217415460U (zh) 一种混合动力汽车的变速传动系统
CN113147354B (zh) 混合动力系统
CN108859729B (zh) 一种单电机混合动力汽车多模耦合动力传动系统
CN112477571A (zh) 一种多电机驱动装置和电动车辆
CN115352267B (zh) 具有中转轴的混合动力传动系统及作业机械
CN216359902U (zh) 动力传动系统及具有其的车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858591

Country of ref document: EP

Kind code of ref document: A1