WO2017094956A1 - 방사선 보호용 또는 완화용 약학 조성물 - Google Patents
방사선 보호용 또는 완화용 약학 조성물 Download PDFInfo
- Publication number
- WO2017094956A1 WO2017094956A1 PCT/KR2015/014204 KR2015014204W WO2017094956A1 WO 2017094956 A1 WO2017094956 A1 WO 2017094956A1 KR 2015014204 W KR2015014204 W KR 2015014204W WO 2017094956 A1 WO2017094956 A1 WO 2017094956A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radiation
- formula
- pharmaceutical composition
- methoxyestradiol
- damage
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
- A61K31/565—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/12—Carboxylic acids; Salts or anhydrides thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0053—Mouth and digestive tract, i.e. intraoral and peroral administration
Definitions
- the present invention relates to a pharmaceutical composition for radiation protection or alleviation, and more particularly to a pharmaceutical composition for protecting the living body from any damage that may be caused by radiation exposure, including pulmonary fibrosis.
- Agents for radiation exposure include radioprotectants applied before radiation exposure; Radiation mitigators applied during the course of radiation exposure or before a clear indication occurs within a short time after exposure; And therapeutic agents that are applied after clear signs are shown by radiation exposure.
- a representative example of a radioprotectant is Amifostine (Ethyol R), an aminothiols derivative.
- Aminothiol is a chemical analog of cysteine, a radioprotectant that acts as a free radical scavenger.
- Amifostine (WR-2721) known in 1969, was developed by The Walter Reed Army Institute of Research program, and more than 4,000 aminothiol derivative compounds have been developed and tested to date.
- Amifostine is used for tumor radiation treatment because normal tissue protects against radiation and solid tumors do not.
- Amifostine is the first FDA-approved drug to treat dry mouth, the most common side effect of radiation therapy in the treatment of head and neck cancer. It is currently used in many patients after chemotherapy, but its efficacy due to its antioxidant effect is weak, and side effects such as nausea, vomiting and hypotension have been used.
- Pulmonary fibrosis due to radiation exposure may be caused by accidental radiation exposure, but it is often caused as a chronic side effect of radiation treatment for cancer, which lowers the post-treatment rate of radiation treatment.
- the survival rate of cancer patients undergoing radiation therapy is increasing with the development of radiation therapy technology.
- pulmonary fibrosis caused as a side effect of radiation has been raised as a major problem of lowering the quality of life of cancer patients.
- radiotherapy techniques are being developed that can effectively control only cancer lesions while protecting normal tissues with one to several radiation therapy. However, it is still limitedly used depending on the cancer progression stage and the cancer generation site.
- Non-Patent Document 1 Pulmonary fibrosis progressed in this way is still maintained even after a period of about 2 years is accompanied by a decrease in lung function, pain and discomfort of the patient. Therefore, it is urgent to discover and develop drugs that inhibit pulmonary fibrosis.
- Non-Patent Documents 2 and 3 TGF-b (SMAD), a-SMA, endothelin-1, and the like have been reported to predict pulmonary vascular fibrosis.
- immunosuppressive drugs are mainly used, and steroids and cytotoxic drugs can be used, but steroids are used first.
- steroids are used as a therapeutic agent for pulmonary fibrosis due to radiation exposure.
- a combination therapy of steroids and azathioprine or cyclophosphamide is currently used (Non-Patent Document 4).
- Non-Patent Document 4 Non-Patent Document 4
- Another object of the present invention is to provide a method of radiation protection or alleviation comprising administering the drug.
- compositions for radiation protection or alleviation comprising a compound of formula 1, a pharmaceutically acceptable salt or solvate thereof:
- R 1 is hydrogen or C 1-3 alkyl.
- Another aspect of the invention provides a method of radiation protection or alleviation comprising administering to a non-human animal a therapeutically effective amount of a compound of Formula 1, a pharmaceutically acceptable salt or solvate thereof:
- R 1 is hydrogen or C 1-3 alkyl.
- the compound of formula 1 according to the present invention induces radiation including vascular damage, skin damage, tissue inflammation, and tissue fibrosis, etc., which appear upon radiation exposure by radiation protection and alleviating action. It has been shown that any damage can be prevented or mitigated. Accordingly, it is expected that the pharmaceutical compositions according to one aspect of the present invention can be effectively used to prevent or alleviate any radiation-induced damage, including vascular damage, skin damage, tissue inflammation, tissue fibrosis, and the like, which appear upon radiation exposure.
- the compound of formula 1 according to the present invention a pharmaceutically acceptable salt or solvate thereof, can be effectively used for preventing or treating pulmonary fibrosis due to radiation exposure as part of the radiation protection or alleviating action. Therefore, it is expected that the pharmaceutical composition according to one aspect of the present invention can be effectively used for the prevention or treatment of pulmonary fibrosis caused by radiation exposure.
- pulmonary fibrosis which may be a side effect of radiation treatment for cancers such as lung cancer, breast cancer, or Hodgkin's lymphoma, it is preferable because it can overcome the obstacle of radiation treatment for cancer.
- FIG. 2 is a photograph showing changes in blood vessels in the inner region of skin after pretreatment, posttreatment, or untreatment with 2-methoxyestradiol along with irradiation to the chest in a mouse animal model.
- Figure 3 is a photograph showing the degree of infiltration of inflammatory cells in the inner part of the skin after pre-treatment, post-treatment, or untreatment with 2-methoxyestradiol with irradiation to the chest in a mouse animal model.
- FIG. 4 is a photograph of pulmonary endothelial cell shape and pulmonary fibrosis-related protein fluorescence staining after irradiation with pretreated or untreated 2-methoxyestradiol to human pulmonary vascular endothelial cells under confocal microscopy.
- Figure 5a is a photograph of the results obtained by irradiating the lung area after pre- or untreated 2-methoxy estradiol in the mouse animal model, the collagen of the vascular endothelial region of the lung by trichrome staining method.
- Figure 5b is a graph showing the expression level of collagen, a lung fibrosis-related molecule by trichrome staining method in Figure 4a.
- FIG. 6 shows Western blotting of expression changes of p-SMAD, Smad 2/3 and ⁇ smooth muscle actin ( ⁇ SMA), which are fibrosis-related proteins of pulmonary vascular endothelial cell line after irradiation after 2-methoxyestradiol pretreatment or untreatment. This picture was taken with the result confirmed.
- p-SMAD Smad 2/3
- ⁇ SMA ⁇ smooth muscle actin
- Figure 7 is a mouse lung cancer model treated with or without 2-methoxy estradiol in the lungs after irradiating the radiation to the lung area, the pulmonary vascular endothelial region by performing a trichrome staining to take a picture of the expression of collagen and pulmonary vessels H & E staining is performed on the endothelial region, and the morphology of the tissue of the vascular endothelial region is photographed.
- compounds of Formula 1 represented by 2-methoxyestradiol, significantly reduce tissue damage, vascular damage, and skin damage caused by radiation exposure when administered before or after radiation exposure. It became.
- the compounds of formula (1) not only reduce the increase in collagen and the amount of protein associated with pulmonary fibroblasts, which are deposited on the alveolar walls during pulmonary fibrosis induced by radiation, but also decrease in pulmonary fibrosis, normal pulmonary vessels It has been shown to increase VE-cadherin, an endothelial cell specific expression protein. Accordingly, it has been found that the compound of formula 1 can protect biological tissues from any of a variety of injuries, including lung fibrosis, tissue damage, blood vessel damage, and skin damage caused by radiation.
- compositions for radiation protection or alleviation of radiation-induced damage including a compound of formula (1), or a pharmaceutically acceptable salt or solvate thereof:
- R 1 is hydrogen or C 1-3 alkyl.
- the compound of Formula 1 is 2-methoxyestradiol, wherein R 1 is methyl.
- the compound of Formula 1 may be used by purchasing a compound prepared or commercially available using conventional knowledge known in the field of organic chemistry, for example, Xin M et al., An efficient, practical synthesis of 2-methoxyestradiol. Steroids. 2010 Jan; 75 (1): 53-6 .; Or Hou Y et al., A Short, Economical Synthesis of 2-Methoxyestradiol, an Anticancer Agent in Clinical. J Org Chem. 2009 Aug 21; 74 (16): 6362-4).
- solvates of the compounds of Formula 1, or solvates thereof may be appropriately prepared or selected by those skilled in the art of organic chemistry using knowledge known in the art.
- the solvate is a hydrate.
- the pharmaceutically acceptable salt may be present as an acid addition salt in which the compound of Formula 1 forms a salt with the free acid.
- the compound of Formula 1 may form a pharmaceutically acceptable acid addition salt according to conventional methods known in the art.
- the free acid may be an organic acid or an inorganic acid, and the inorganic acid may be hydrochloric acid, bromic acid, sulfuric acid, or phosphoric acid, and the organic acid may be citric acid, acetic acid, lactic acid, tartaric acid, or tartariac acid.
- GI acetic acid, valeric acid, maleic acid, fumaric acid, formic acid, propionic acid, oxalic acid, trifluoroacetic acid, benzoic acid, gluconic acid, methanesulfonic acid, glycolic acid, succinic acid, 4-toluenesulfonic acid, gallic acid Luteuronic acid, embonic acid, glutamic acid or aspartic acid, and the like can be used.
- radioprotection is meant herein to apply to a living body prior to radiation exposure to inhibit or mitigate any radiation induced damage caused by radiation exposure.
- Radiation mitigation means application or application to a living body within a short period of time after radiation exposure before a clear indication of radiation exposure occurs to inhibit or mitigate any radiation induced damage caused by radiation exposure.
- the short term duration refers to a period of time during which obvious signs of damage by radiation exposure can be applied to suppress or reduce any radiation induced damage. In one embodiment, the short period of time is within 36 hours, or within 24 hours, or within 12 hours after irradiation, but is not limited thereto.
- radiation-induced damage any biological damage caused by radiation exposure, including but not limited to vascular damage, skin damage, tissue inflammation, or tissue fibrosis by radiation exposure.
- the radiation induced damage includes pulmonary fibrosis by radiation exposure.
- the pulmonary fibrosis may be any pulmonary fibrosis caused by various causes, and in one embodiment of the present invention, the pulmonary fibrosis is caused by radiation exposure.
- the pulmonary fibrosis is a radiation treatment side effect caused by exposure to normal tissues during radiation treatment for cancer.
- Radiation therapy for cancer which may cause pulmonary fibrosis, includes, but is not limited to, radiation therapy for lung cancer, breast cancer, or Hodgkin's lymphoma.
- the compound of formula 1 was found to be effective in protecting and mitigating tissue damage, including blood vessel damage and skin damage, as a result of tissue damage inhibition test by radiation. More specifically, as a result of confirming changes in blood vessels inside the skin after irradiation to the chest of the mouse, the group administered with the compound of formula 1 before irradiation (IR + pretreatment) and the group administered the compound of formula 1 after irradiation All of the (IR + post-treatment) were observed to have significantly reduced inflammation and fibrosis of lung tissue compared to the untreated group (IR) (see Example 1).
- the group administered with the compound of formula 1 before irradiation (IR + pretreatment) and the group administered the compound of formula 1 after irradiation (after IR +) Treatment) all were observed to have significantly reduced skin vascular damage compared to the untreated group (IR) (see Example 2).
- the compound of Formula 1 was shown to be effective in protecting and mitigating tissue damage, including blood vessel damage and skin damage, as a result of tissue damage inhibition test by radiation.
- the group administered the compound of formula 1 before irradiation (IR + pretreatment) and the group administered the compound of formula 1 after irradiation ( IR + post-treatment) all observed a significant decrease in the number of inflammatory cells infiltrated into skin tissue compared to the untreated group (IR) (see Example 3). Therefore, it was confirmed that the compound of Formula 1 has a radioprotective and radiomitigative effect against tissue damage by radiation exposure, including tissue inflammation, tissue fibrosis, vascular damage, and skin damage.
- the compound of Formula 1 reduces the increase in collagen deposited on the alveolar wall during pulmonary fibrosis and the increase in the amount of protein paloidine, CA-9, p-SMAD2 / 3, a-SMA associated with pulmonary fibroblasts; It has been shown to increase VE-cadherin, a normal pulmonary vascular endothelial cell specific expression protein, which is reduced upon pulmonary fibrosis. In pulmonary fibrosis with radiation, pulmonary vascular endothelial cells lose their original properties by radiation and other types of cellular characterization, in particular the amount of protein associated with fibrotic cells, are observed. This can be easily distinguished by quantitative changes in endothelial cells and pulmonary fibrosis-related proteins.
- VE-cadherin a vascular endothelial cell specific expression protein
- HPAEC human pulmonary vascular endothelial cells
- pulmonary fibrosis symptoms such as collagen increase in the aortic wall of the aorta were irradiated to the lung area in a real experimental animal (mouse), and collagen increased in the 2-methoxyestradiol-administered group compared to the untreated group. It was confirmed that the degree was significantly reduced (Example 5).
- the present inventors confirmed that although the size of lung cancer decreases after radiation treatment in a mouse lung cancer model, pulmonary fibrosis symptoms such as collagen increase appear in the inner wall of the aorta, and in the 2-methoxyestradiol-administered group, collagen compared to the untreated group. It was confirmed that the degree of increase was significantly reduced (Example 7).
- these experimental results show that compounds of formula 1, including 2-methoxyestradiol, can significantly reduce the symptoms of pulmonary fibrosis during radiation exposure or radiation treatment for cancer.
- the pharmaceutical composition for radiation protection or alleviation according to the present invention may be formulated in conventional pharmaceutical formulations known in the art.
- the pharmaceutical formulation may be formulated and administered in any formulation including, but not limited to, oral administration, injection, suppository, transdermal administration, and non-administration, but preferably as oral administration or injection It may be formulated.
- the oral dosage form may be prepared, for example, as a liquid, suspension, powder, granule, tablet, capsule, pill, or extract.
- each of the above formulations it may be prepared by the addition of a pharmaceutically acceptable carrier or additive necessary for the preparation of each formulation.
- one or more of diluents, lubricants, binders, disintegrants, sweeteners, stabilizers, and preservatives may be used as the carrier, and as an additive, one or more of fragrances, vitamins, and antioxidants may be used. Can be selected and used.
- the carrier and the additive may be any pharmaceutically acceptable, and specifically, lactose, corn starch, soybean oil, microcrystalline cellulose, or mannitol as a diluent, magnesium stearate or talc as a lubricant, and polyvinylpyrrolidone as a binder. Or hydroxypropyl cellulose is preferred.
- disintegrants include calcium carboxymethyl cellulose, sodium starch glycolate, potassium polychlorinate, or crospovidone;
- Sweetening agents include sucrose, fructose, sorbitol, or aspartame;
- Stabilizers include sodium carboxymethylcellulose, beta-cyclodextrin, white lead, or xanthan gum;
- methyl paraoxybenzoate, propyl paraoxybenzoate or potassium sorbate is preferable.
- natural flavors such as plum flavor, lemon flavor, pineapple flavor, herbal flavor
- Natural juices Natural pigments such as chlorophyllin and flavonoids
- Sweetening ingredients such as fructose, honey, sugar alcohol, sugar
- an acidulant such as citric acid and sodium citrate may be mixed and used.
- the pharmaceutical composition according to the present invention When the pharmaceutical composition according to the present invention is formulated into an injection, it may be prepared according to a conventional injection preparation method known in the art. Injectables according to the present invention may be in a form dispersed in a sterile medium so that it can be used as it is when administered to a patient, or may be administered in a form in which distilled water for injection is added and dispersed in an appropriate concentration.
- the pharmaceutical composition according to the present invention may be administered in several divided doses so that the total daily dose based on an adult is about 0.1-100 mg / kg as the compound of Formula 1 in order to obtain a radiation protection or alleviating effect.
- the dosage may be appropriately increased or decreased depending on the intensity of radiation causing damage, the kind or degree of progression of radiation induced damage, route of administration, sex, age, weight, and the like.
- Another aspect of the present invention provides a method of protecting or alleviating radiation-induced damage against radiation-induced damage comprising administering to a animal a therapeutically effective amount of a compound of Formula 1, or a pharmaceutically acceptable salt or solvate thereof: do:
- R 1 is hydrogen or C 1-3 alkyl.
- the animal may be any mammal, including but not limited to humans, domestic animals, and pets.
- the animal is a mammal, except humans.
- mice Tissues of mice were fixed for 10 days with 10% neutral formalin and paraffin sections were made. In order to remove paraffin around the tissues, each reaction was carried out in xylene, 95, 90, and 70% ethanol solution in order for 5 minutes. It was. Then immerse in cytosol for 30 seconds to stain the cytoplasm, soak in 50, 70, 90, and 95% ethanol solution, xylene solution in order, drop a drop of mounting solution, and cover slide ) was observed under a microscope (Carl Zeiss Vision).
- Tissues of mice were fixed for 10 days with 10% neutral formalin and paraffin sections were made. Xylene and 100, 95, 90, 70% ethanol solution were soaked in order to remove paraffin around the tissue. For antigen activation, the tissues were soaked in 0.1 M citric acid (pH 6.0) solution for 30 minutes and boiled for 3 minutes with 3% hydrogen peroxide.
- CD31 (abcam) diluted 1: 100 in PBS (phosphate based saline buffer, containing 0.1% triton x-100) solution was reacted for 16 hours at 4 degrees Celsius. After washing with PBS, biotin-bound secondary antibody was diluted 1: 200 and reacted at room temperature for 30 minutes.
- HPAEC Human pulmonary vascular endothelial cells
- HPAEC HPAEC was placed on a 3.5, 6, and 10 cm incubation dish and incubated in a 37 ° C CO 2 incubator until it grew to about 70-80%.
- (Atomic Energy of Canada, Ltd., Canada) was investigated at a dose rate of 3.81 Gy / min. A total of 10 Gy was investigated.
- HPAEC was incubated on a cover slide, then selectively irradiated after 2-methoxyestradiol pretreatment depending on the test group, then fixed with 10% neutral formalin for one day and washed with PBS (Phosphate buffered saline) before staining. Blocking with 2% bovine serum albumin solution (dissolved in PBS) prior to primary antibody reaction, diluted VE-cadherin, HIF-1a (Hypoxia-inducible factor 1-alpha), SMAD, p- SMAD2 / 3 and ⁇ SMA antibodies were reacted at 4 ° C. for 16 hours.
- PBS Phosphate buffered saline
- the secondary antibody with a fluorescent substance was diluted in a 1: 500 ratio and reacted at 25 ° C for 1 hour.
- Nuclear staining was performed using DAPI (4 ', 6-diamidino-2-phenylindole) phosphor.
- DAPI 4- ', 6-diamidino-2-phenylindole
- samples were prepared by lysing the cells in a solution consisting of 150 mM sodium chloride, 40 mM Tris-Cl (pH 8.0), 0.1% NP-40 to observe the intracellular protein.
- the samples were subjected to polyacrylamide gel electrophoresis (PAGE) containing sodium dodecyl sulfate (SDS), followed by western blot. Electrophoretically separated proteins were transferred to nitrocellulose membranes, and then the expression levels of the proteins were analyzed by immunoblotting.
- PAGE polyacrylamide gel electrophoresis
- SDS sodium dodecyl sulfate
- mice Tissues of mice were fixed for one day with 10% neutral formalin and paraffin sections were made.
- the parasections were reacted in order with xylene, 95, 90, and 70% ethanol solution for 5 minutes each, and soaked for 1 minute in hematoxylin solution to stain nuclei. And washed with running water for 10 minutes. Then immerse in cytosol for 30 seconds to stain the cytoplasm, soak in 50, 70, 90, and 95% ethanol solution, xylene solution in order, drop a drop of mounting solution, and cover slide ) was observed under a microscope (Carl Zeiss Vision).
- Tissues of mice were fixed for 10 days with 10% neutral formalin and paraffin sections were made. To stain paraffin around the tissue for staining, it was soaked in xylene, 95, 90, 70% ethanol solution for 5 minutes in order. For antigen activation, the tissues were immersed in a 0.1 M citric acid (pH 6.0) solution and boiled for 20 minutes.
- Lung tissue of a mouse animal model irradiated with 90 Gy of 3 mm to the chest of the mouse was fixed with 10% formalin, and then paraffin sections were prepared for tissue inflammation and fibrosis using hematoxylin and eosin staining. Confirmed. When the tissue is observed with this staining method, the cell nucleus is blue and the cytoplasm is pink.
- the mouse animal model was intraperitoneally injected with 60 mg / kg of 2-methoxyestradiol one hour before irradiation, and two weeks after irradiation, hematoxylin and eosin staining confirmed the inflammatory response and fibrosis of the tissue injury site. It was.
- FIG. 2 is a photograph showing changes in blood vessels in the inner region of skin after pretreatment, posttreatment, or untreatment with 2-methoxyestradiol along with irradiation to the chest in a mouse animal model.
- FIG. 2 blood vessels of the skin of the irradiated group (IR) are observed to be invisible, and when 2-methoxyestradiol is pretreated (IR + pretreatment 2Me) or post-treatment (IR + posttreatment 2Me), untreated group Significant decreases in cutaneous blood vessel damage were observed compared to (IR). Therefore, according to the result of FIG. 2, after the irradiation to the mouse, the vascular damage of the skin tissue proceeds, and it was confirmed that the vascular damage caused by the irradiation was significantly inhibited by the pretreatment or the post-treatment of 2-methoxyestradiol. .
- Figure 3 is a photograph showing the degree of infiltration of inflammatory cells in the inner part of the skin after pre-treatment, post-treatment, or untreatment with 2-methoxyestradiol with irradiation to the chest in a mouse animal model.
- inflammatory cells in the skin tissue of the irradiated group were observed to be significantly infiltrated, and when 2-methoxyestradiol was pretreated (IR + pretreatment 2Me) or post treatment (IR + posttreatment 2Me), A significant decrease in the number of inflammatory cells infiltrated into skin tissue was observed compared to the untreated group (IR). Therefore, according to the results of FIG. 3, after irradiation with the mouse, tissue damage due to infiltration of inflammatory cells in the skin proceeds, and damage to skin tissue by radiation by pretreatment or posttreatment of 2-methoxyestradiol and The inflammatory response was found to be significantly inhibited.
- FIG. 4 is a photograph of pulmonary vascular endothelial cells treated with or without 2-methoxyestradiol and irradiated with radiation, followed by fluorescence staining to change vascular endothelial cell shape and pulmonary fibrosis-related protein under confocal microscopy.
- VE-cadherin is a protein present in the cell membrane of the pulmonary vascular endothelial cell line, so it can be seen that the picture of the control group (No. IR), which is not irradiated, mainly shows white on the cell membrane. On the other hand, the irradiated group (IR) showed a significant decrease in white around the cell membrane.
- Paloidin and CA-9 are pulmonary fibrosis-related proteins, which were not stained in the control group, but were identified in the green and red proteins in the radiation group.
- the 2-methoxyestradiol-treated group IR + pretreatment 2Me was found to significantly increase the white area around the cell membrane compared to the radiation group, and significantly decreased paloidine and CA-9.
- Figure 5a is a photograph of the results obtained by irradiating the lung area after treatment with or without 2-methoxyestradiol in the mouse animal model, the collagen of the vascular endothelial region of the lung by trichrome staining method.
- FIG. 5B is a graph showing the expression level of collagen, a pulmonary fibrosis-related molecule in FIG. 5A, by trichromium staining.
- the 2-methoxyestradiol between the experimental group in which fibrosis increased due to irradiation and the increase in fibrosis decreased by treatment with 2-methoxyestradiol through a significant probability **: P ⁇ 0.01
- the effect of is shown to be statistically significant.
- FIG. 6 shows Western blotting of expression changes of p-SMAD, Smad 2/3 and alpha smooth muscle actin ( ⁇ SMA), which are fibrosis-related proteins of pulmonary vascular endothelial cell line after irradiation with or without 2-methoxyestradiol. This picture was taken with the result confirmed.
- p-SMAD Smad 2/3
- ⁇ SMA alpha smooth muscle actin
- Example 7 Confirmation of fibrosis and inhibition of vascular endothelial cells observed after irradiation
- Trp53 ⁇ tm1Brn> / J and B6.129S4-Kras ⁇ tm4Tyj> / J were purchased from the Jackson laboratory in the United States to obtain mice with alterations of the p53 gene and the ras gene, resulting in spontaneous non-small cell lung cancer animal models (M *, Dooley AL *, Jacks T. 2009. Conditional mouse lung tumor models using adenoviral or lentiviral delivery of Cre recombinase.Nature protocols, 4 (7): 1064-1072.PMCID: PMC2757265))
- the lung area of the obtained mouse lung cancer model was irradiated with 16 Gy intensity radiation.
- the extracted lung organs were stained according to the hematoxylin and erysin staining method (H & E staining) or the trichrome staining method, and then the shape of vascular endothelial cells was observed through a microscope.
- the tissue is observed with this staining method, the nucleus is blue and the cytoplasm is pink.
- the 2-methoxyestradiol alone group was administered intraperitoneally in an amount of 150 mg / kg.
- the 2-methoxyestradiol and radiation combination groups were administered intraperitoneally in an amount of 150 mg / kg 1 hour prior to irradiation.
- Figure 7 is a mouse lung cancer model treated with or without 2-methoxy estradiol in the lungs after irradiating the lungs, the pulmonary vascular endothelial region was subjected to trichrome staining to take a picture of the expression of collagen and pulmonary vessels H & E staining is performed on the endothelial region, and the morphology of the tissue of the vascular endothelial region is photographed.
- the black dotted line indicates the cancerous site of the lung organ, and the white square area indicates the pulmonary vascular site.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Epidemiology (AREA)
- Dermatology (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Pulmonology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Nutrition Science (AREA)
- Physiology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
본 발명은 화학식 1의 화합물, 또는 약제학적으로 허용 가능한 그의 염 또는 용매화물을 포함하는 방사선 유발 손상에 대한 방사선 보호 또는 완화용 약학 조성물을 제공한다.
Description
본 발명은 방사선 보호용 또는 완화용 약학 조성물에 관한 것으로, 보다 구체적으로는 폐섬유화를 포함한 방사선 피폭에 의해 유발될 수 있는 임의의 손상으로부터 생체를 보호하기 위한 약학 조성물에 관한 것이다.
방사선을 다루는 산업현장에서의 방사선 노출사고 및 방사선 치료 시 생기는 정상조직에 대한 부작용 등 방사선 피폭에 의한 생체의 손상의 사례는 다양하다. 특히, 2001년 미국의 9/11사태 및 2011년 일본 후쿠시마 원전 사고 이후로 대규모 방사선 사고의 대책안으로 국가주도형의 연구들이 집중적으로 실행되고 있다. 9/11사태 이후 미국방부 산하 AFRRI (Armed Forces Radiobiology Research Institute)에서는 방사선에 의한 생체 부작용 극복 및 생체방어 기전연구를 활발히 진행하고 있으며, 미국 국립 보건원의 NIAID (National Institute of Allergy and Infectious Diseases)에서는 CMCR(Centers for Countermeasures Against Radiation) 설립으로 방사선 및 핵에 대한 의학적 대책 프로그램에 집중투자를 하고 있다. 또한, 방사선 노출 시 손상 측정, 진단, 또는 치료를 위한 새로운 효율적인 의학적 기술을 개발하고, 방사선 치료 시 정상조직 손상보호를 통한 치료효율 증진기술에 이용하고자 연구를 진행하고 있다. 방사선 피폭에 대한 약제로는 방사선 피폭 전에 적용하는 방사선 보호제(radioprotectants); 방사선 피폭이 진행되는 동안 혹은 피폭 후 단기간 안에 분명한 징후가 나타나기 전 적용되는 방사선 완화제(mitigators); 및 방사선 피폭에 의해 분명한 징후가 나타난 후 적용되는 방사선 치료제(therapeutic agent)로 구분된다.
방사선 보호제의 대표적인 예로서 아미노티올(aminothiols) 유도체인 Amifostine (Ethyol R)이 있다. 아미노티올은 시스테인(cysteine)의 화학 유사체로서 자유라디칼 소거제(free radical scavenger) 역할을 하는 방사선 보호제이다. 그 중 1969년에 알려진 아미포스틴(amifostine)(WR-2721)은 The Walter Reed Army Institute of Research program에 의해 개발되었고, 현재까지 4,000개가 넘는 아미노티올 유도체 화합물들이 개발되고 테스트되고 있다.
아미포스틴은 정상조직은 방사선으로부터 보호하고, 고형암(solid tumors)은 보호하지 않기 때문에 종양 방사선 치료에 사용되고 있다. 또한, 두경부암 치료 시 가장 빈번하게 발생하는 방사선 치료 부작용인 구강건조증의 치료제로서 아미포스틴은 최초로 FDA 승인을 받은 약물이다. 현재 항암치료 후 많은 환자들에게 사용되고 있으나, 항산화 효과에 의한 효능이 약하고, 메스꺼움, 구토 및 저혈압증 등 부작용이 나타나 한정적으로 사용되고 있다.
방사선 피폭에 의한 폐섬유화는 사고에 의한 방사선 피폭에 의해 발생될 수도 있으나, 암에 대한 방사선 치료 시 만성 부작용으로서 발생되는 경우가 많으며, 이는 방사선 치료의 후완치율을 저하시키게 된다. 최근, 방사선 치료 기술의 발달에 따라 방사선 치료를 받은 암환자의 생존률이 높아지고 있으나, 방사선에 의한 부작용으로서 발생되는 폐섬유화는 암 환자의 삶의 질을 저하시키는 큰 문제로서 제기되고 있다. 최근 방사선치료 장비 및 소프트웨어의 발달, 그리고 방사선생물학적 개념의 진화에 힘입어 1 ~ 수회(5회 내외)의 방사선 치료로 정상조직을 보호하면서 암 병소만 효과적으로 제어할 수 있는 방사선치료 기법이 개발되고 있으나, 암 진행단계 및 암 생성부위 등에 따라 아직 제한적으로 이용되고 있다.
이러한 방사선 치료기술의 발달에도 불구하고, 방사선 치료 시 불가피하게 발생하는 폐섬유화 같은 폐부작용은 흉부방사선 치료환자에게 흔히 나타나는 부작용이다. 폐암, 유방암, 또는 호치킨림프종의 치료를 위해, 흉부에 방사선 치료를 받은 환자들의 10-15%에서 2-3 개월 후 방사선 폐렴이 발생하고 6 개월 후에는 만성 부작용인 섬유화 질환으로 발전하게 된다. 이와 같이 진행된 폐섬유화는 2년 정도의 기간이 경과 되어도 여전히 유지되어 폐 기능 저하 및 환자의 고통과 생활의 불편함을 수반하게 된다 (비특허문헌 1). 따라서, 이에 따른 폐섬유화를 억제하는 약물의 발굴과 개발이 시급하다.
폐 혈관 섬유화 예측마커로는 TGF-b(SMAD), a-SMA, endothelin-1 등이 증가된다고 보고되고 있다(비특허문헌 2 및 3). 폐섬유화증의 치료는 면역억제제가 주로 사용되는데 스테로이드나 세포독성약물 등을 사용할 수 있는데 스테로이드가 우선 사용된다. 방사선 피폭에 의한 폐섬유화의 치료제로는 현재 스테로이드와 아자티오프린 또는 사이클로포스파미드의 병합요법을 사용하고 있다(비특허문헌 4). 하지만, 이와 같은 치료법이 환자의 생존율이나 삶의 질을 향상시킨다는 명확한 근거는 없으며 지금까지 여러가지 섬유화 억제제가 동물 실험 및 소규모의 환자들에게 시도됐지만 뚜렷한 효과가 입증된 것은 없다.
따라서, 방사선에 의한 폐섬유화를 포함한 방사선에 의한 조직의 손상을 예방하거나 완화할 수 있는 방사선 보호제 또는 방사선 완화제용 조성물의 개발이 필요하다.
[선행기술문헌]
[비특허문헌]
1. Benjamin M et al., Chest.111(4):1061-1076. 1997
2. Xie H et.al., Exp Biol Med (Maywood):238(9):1062-8. 2013.
3. Andrew L et al., FASEB:816-827. 2004
4. Ochoa et al., Journal of Medical Case Reports , 6:413.2012
본 발명의 목적은 방사선 보호제 및 완화제로 사용될 수 있는 약물을 개발하는 것이다.
본 발명의 다른 목적은 상기 약물을 투여하는 것을 포함하는 방사선 보호 또는 완화 방법을 제공하는 것이다.
본 발명의 일 양상은
하기 화학식 1의 화합물, 약제학적으로 허용 가능한 그의 염 또는 용매화물을 포함하는 방사선 보호 또는 완화용 약학 조성물을 제공한다:
[화학식 1]
상기 화학식 1에서, R1은 수소 또는 C1-3 알킬이다.
본 발명의 다른 일 양상은 치료학적으로 유효한 양의 하기 화학식 1의 화합물, 약제학적으로 허용 가능한 그의 염 또는 용매화물을 인간을 제외한 동물에게 투여하는 것을 포함하는 방사선 보호 또는 완화 방법을 제공한다:
[화학식 1]
상기 화학식 1에서, R1은 수소 또는 C1-3 알킬이다.
본 발명에 따른 화학식 1의 화합물, 또는 약제학적으로 허용 가능한 그의 염 또는 용매화물은 방사선 보호 작용 및 완화 작용에 의해 방사선 피폭 시 나타나는 혈관 손상, 피부 손상, 조직 염증, 및 조직 섬유화 등을 포함한 방사선 유발 임의의 손상을 예방 또는 완화시킬 수 있는 것으로 나타났다. 따라서, 본 발명의 일 양상에 따른 약학 조성물은 방사선 피폭 시 나타나는 혈관 손상, 피부 손상, 조직 염증, 및 조직 섬유화 등을 포함한 방사선 유발 임의의 손상을 예방 또는 완화하는데 효과적으로 사용될 수 있을 것으로 기대된다.
또한, 본 발명에 따른 화학식 1의 화합물, 약제학적으로 허용 가능한 그의 염 또는 용매화물은 상기 방사선 보호 또는 완화 작용의 일환으로 방사선 피폭에 의한 폐섬유화를 예방 또는 치료에 효과적으로 사용될 수 있는 것으로 나타났다. 따라서, 본 발명의 일 양상에 따른 약학 조성물은 방사선 피폭에 의해 유발된 폐섬유화의 예방 또는 치료에 효과적으로 사용될 수 있을 것으로 기대된다. 뿐만 아니라, 폐암, 유방암, 또는 호치킨림프종과 같은 암에 대한 방사선 치료 시 부작용으로 나타날 수 있는 폐섬유화에도 효과적으로 사용될 수 있으므로, 암에 대한 방사선 치료의 장애를 극복할 수 있어 바람직하다.
<도면의 기호에 대한 설명>
No. IR : 대조군 (방사선 미조사군)
IR : 방사선 조사군
IR + 전처리 2Me : 방사선 조사 및 2-메톡시에스트라디올 전처리군
도 1은 마우스 동물모델에서 2-메톡시에스트라디올을 방사선 조사 1시간 전 60 mg/kg의 농도로 처리 또는 미처리 후 폐 부위에 90 Gy의 세기로 방사선을 조사한 다음, 조직 손상 부위의 염증 반응, 섬유화를 헤마톡실린 및 에오신 염색법으로 확인한 결과를 촬영한 사진이다.
도 2는 마우스 동물모델에서 흉부에 대한 방사선 조사와 함께 2-메톡시에스트라디올을 전처리, 후처리, 또는 미처리 후, 피부의 안쪽 부위의 혈관의 변화를 나타낸 사진이다.
도 3은 마우스 동물모델에서 흉부에 대한 방사선 조사와 함께 2-메톡시에스트라디올을 전처리, 후처리, 또는 미처리 후, 피부의 안쪽 부위의 염증 세포의 침윤 정도를 나타낸 사진이다.
도 4는 인간 폐혈관내피세포에 2-메톡시에스트라디올을 전처리 또는 미처리 후 방사선을 조사한 다음, 형광염색하여 혈관내피세포 모양 변화와 폐섬유화 관련 단백질의 증감을 공초점 현미경으로 관찰한 사진이다
도 5a는 마우스 동물모델에서 2-메톡시에스트라디올을 전처리 또는 미처리 후 폐 부위에 방사선을 조사한 다음, 폐의 혈관내피 부위의 콜라겐을 트라이크롬염색법으로 확인한 결과를 촬영한 사진이다.
도 5b는 도 4a에서 트라이크롬 염색법으로 폐 섬유화 관련 분자인 콜라겐의 발현 정도를 나타낸 그래프이다.
도 6은 2-메톡시에스트라디올 전처리 또는 미처리 후 방사선을 조사한 다음, 폐혈관내피세포주의 섬유화 관련 단백질인 p-SMAD, Smad 2/3 및 αSMA (alpha smooth muscle actin)의 발현 변화를 웨스턴블랏팅으로 확인한 결과를 촬영한 사진이다.
도 7은 마우스 폐암 모델에서 폐에 2-메톡시에스트라디올을 처리 또는 미처리 후 폐 부위에 방사선을 조사한 다음, 폐혈관내피 부위를 트라이크롬염색법을 수행하여 콜라겐의 발현정도를 촬영한 사진 및 폐혈관내피 부위를 H&E 염색법을 수행하여, 혈관내피 부위의 조직의 형태변화를 촬영한 사진이다.
이하, 본 발명을 보다 상세하게 설명한다.
본 발명에서 사용되는 모든 기술용어는, 달리 정의되지 않는 이상, 본 발명의 관련 분야에서 통상의 당업자가 일반적으로 이해하는 바와 같은 의미로 사용된다. 또한 본 명세서에는 바람직한 방법이나 시료가 기재되나, 이와 유사하거나 동등한 것들도 본 발명의 범주에 포함된다. 본 명세서에 참고문헌으로 기재되는 모든 간행물의 내용은 본 발명에 전체가 참고로 통합된다.
연구 결과, 2-메톡시에스트라디올로 대표되는 하기 화학식 1의 화합물은, 방사선 피폭 전에 투여하거나 피폭 후 투여할 경우 방사선 피폭에 의해 유발되는 조직 손상, 혈관 손상, 및 피부 손상을 현저히 감소시키는 것으로 확인되었다. 또한, 하기 화학식 1의 화합물은, 방사선에 의해 유발되는 폐섬유화 시 나타나는 폐포벽에 침착되는 콜라겐의 증가 및 폐섬유화 세포와 관련된 단백질 양의 증가를 감소시킬 뿐만 아니라, 폐섬유화 시 감소되는, 정상적인 폐혈관내피세포 특이적 발현 단백질인 VE-cadherin을 증가시키는 것으로 확인되었다. 따라서, 화학식 1의 화합물은 방사선에 의해 유발되는 폐섬유화, 조직 손상, 혈관 손상, 피부 손상을 포함한 임의의 각종 손상으로부터 생체 조직을 보호할 수 있는 것으로 확인되었다.
본 발명의 일 양상은
하기 화학식 1의 화합물, 또는 약제학적으로 허용 가능한 그의 염 또는 용매화물을 포함하는 방사선 유발 손상에 대한 방사선 보호 또는 완화용 약학 조성물을 제공한다:
[화학식 1]
상기 화학식 1에서, R1은 수소 또는 C1-3 알킬이다.
본 발명의 일 실시예에 따르면, 상기 화학식 1의 화합물은 상기 R1이 메틸인 2-메톡시에스트라디올이다.
상기 화학식 1의 화합물은 유기화학 분야에 공지되어 있는 통상의 지식을 이용하여 제조하거나 시판되는 화합물을 구입하여 사용할 수 있으며, 예를 들어 Xin M et al., An efficient, practical synthesis of 2-methoxyestradiol. Steroids. 2010 Jan;75(1):53-6.; 또는 Hou Y et al., A Short, Economical Synthesis of 2-Methoxyestradiol, an Anticancer Agent in Clinical. J Org Chem. 2009 Aug 21;74(16):6362-4)에 개시되어 있는 방법을 이용하여 제조할 수 있다.
상기 화학식 1의 화합물의 약제학적으로 허용 가능한 염, 또는 그 용매화물은 유기화학분야에서 통상의 지식을 가진 자가 당해 기술분야에 공지된 지식을 이용하여 적절히 제조하거나 선택할 수 있다. 일 구체예에서 상기 용매화물은 수화물이다.
상기 약제학적으로 허용 가능한 염은 상기 화학식 1의 화합물이 유리산과 함께 염을 형성하는 산부가염으로 존재할 수 있다. 상기 화학식 1의 화합물은 당해 기술분야에 공지된 통상의 방법에 따라 약제학적으로 허용되는 산부가염을 형성할 수 있다. 상기 유리산으로는 유기산 또는 무기산을 사용할 수 있고, 상기 무기산으로는 염산, 브롬산, 황산, 또는 인산 등을 사용할 수 있고, 상기 유기산으로는 구연산(citric acid), 초산, 젖산, 주석산(tartariac acid), 길초산, 발레르산, 말레인산, 푸마르산(fumaric acid), 포름산, 프로피온산(propionic acid), 옥살산, 트리플루오로아세트산, 벤조산, 글루콘산, 메탄술폰산, 글리콜산, 숙신산, 4-톨루엔술폰산, 갈룩투론산, 엠본산, 글루탐산 또는 아스파르트산 등을 사용할 수 있다.
본 명세서에서 방사선 보호(radioprotection)란 방사선 피폭 전에 생체에 적용하여 방사선 피폭에 의해 유발되는 임의의 방사선 유발 손상을 억제 또는 경감하는 것을 의미한다.
본 명세서에서 방사선 완화(radiomitigation)란 방사선 피폭 분명한 징후가 나타나기 전에 방사선 피폭 후 단기간 내에 생체에 적용하여 방사선 피폭에 의해 유발되는 임의의 방사선 유발 손상을 억제 또는 경감하는 것을 의미한다. 상기 단기간 내란 방사선 피폭에 의한 분명한 손상 징후가 나타나기 전에 적용하여 임의의 방사선 유발 손상을 억제 또는 경감할 수 있는 정도의 기간을 의미한다. 일 구체예에서, 상기 단기간 내는 방사선 조사 후 36 시간 이내, 또는 24 시간 이내, 또는 12시간 이내이며, 이에 한정되는 것은 아니다.
상기 방사선 유발 손상은 방사선 피폭에 의해 유발되는 임의의 생체 손상을 의미하며, 예를 들면 방사선 피폭에 의한 혈관 손상, 피부 손상, 조직 염증, 또는 조직 섬유화를 포함하며, 이에 한정되는 것은 아니다.
상기 방사선 유발 손상은 방사선 피폭에 의한 폐섬유화를 포함한다. 상기 폐섬유화는 다양한 원인에 의해 발생되는 임의의 폐섬유화일 수 있으며, 본 발명의 일 구체예에서 상기 폐섬유화는 방사선 피폭에 의해 유발된 것이다. 또한, 본 발명의 일 구체예에서, 상기 폐섬유화는 암에 대한 방사선 치료 시, 정상조직까지 피폭되어 발생된 방사선 치료 부작용이다. 상기 폐섬유화를 유발할 수 있는, 암에 대한 방사선 치료는 폐암, 유방암, 또는 호치킨림프종 등에 대한 방사선 치료를 포함하지만, 이에 한정되는 것은 아니다.
상기 화학식 1의 화합물은 방사선에 의한 조직 손상 저해 시험 결과, 혈관 손상 및 피부손상을 포함한 조직 손상을 보호하고 완화하는데 효과적인 것으로 나타났다. 보다 구체적으로는, 마우스의 흉부에 방사선을 조사 후 피부 안쪽의 혈관의 변화를 확인한 결과, 방사선 조사 전에 화학식 1의 화합물을 투여한 군(IR+전처리) 및 방사선 조사 후에 화학식 1의 화합물을 투여한 군(IR+후처리) 모두가 미처리 군(IR)에 비해 폐조직의 염증 및 섬유화가 현저히 감소한 것으로 관찰되었다(실시예 1 참조). 또한, 마우스의 흉부에 방사선을 조사 후 피부 안쪽의 혈관의 변화를 확인한 결과, 방사선 조사 전에 화학식 1의 화합물을 투여한 군(IR+전처리) 및 방사선 조사 후에 화학식 1의 화합물을 투여한 군(IR+후처리) 모두가 미처리 군(IR)에 비해 피부 혈관손상이 현저히 감소한 것으로 관찰되었다(실시예 2 참조). 또한, 상기 화학식 1의 화합물은 방사선에 의한 조직 손상 저해 시험 결과, 혈관 손상 및 피부손상을 포함한 조직 손상을 보호하고 완화하는데 효과적인 것으로 나타났다. 또한, 마우스의 흉부에 방사선을 조사 후 피부 조직 내 염증 세포의 침윤 정도를 확인한 결과, 방사선 조사 전에 화학식 1의 화합물을 투여한 군(IR+전처리) 및 방사선 조사 후에 화학식 1의 화합물을 투여한 군(IR+후처리) 모두가 미처리 군(IR)에 비해 피부 조직 내 침윤된 염증 세포의 수가 현저히 감소한 것으로 관찰되었다(실시예 3 참조). 따라서, 상기 화학식 1의 화합물은 조직 염증, 조직 섬유화, 혈관 손상, 및 피부 손상을 포함한 방사선 피폭에 의한 조직 손상에 대한 방사선 보호 및 방사선 완화 효과를 갖는 것을 확인되었다.
또한, 상기 화학식 1의 화합물은 폐섬유화 시 나타나는 폐포벽에 침착되는 콜라겐의 증가 및 폐섬유화 세포와 관련된 단백질 팔로이딘, CA-9, p-SMAD2/3, a-SMA양의 증가를 감소시키고; 폐섬유화 시 감소되는, 정상적인 폐 혈관내피세포 특이적 발현 단백질인 VE-cadherin을 증가시키는 것으로 확인되었다. 방사선에 의한 폐섬유화 시, 폐혈관내피세포는 방사선에 의해 본래의 특성을 잃고 다른 형태의 세포 특성화, 특히 섬유화 세포와 관련되는 단백질의 양이 증가하는 현상이 관찰된다. 이것은 내피세포와 폐섬유화 관련 단백질의 양적 변화로 쉽게 구별이 가능하다. 본 발명자들은 실험 결과, 2-메톡시에스트라디올을 전 처리하였을 때, 인간 폐혈관내피세포(HPAEC)에서 방사선에 의해 감소하는 혈관내피세포 특이적 발현 단백질인 VE-cadherin의 발현이 미처리군에 비해 현저히 증가하고, 방사선에 의해 증가하는 폐섬유화 관련 단백질인 팔로이딘, CA-9, p-SMAD2/3, a-SMA의 활성화 및 양적인 증가가 미처리군에 비해 현저히 감소하는 것을 확인하였다(실시예 4 및 6). 또한, 본 발명자들은 실제 실험동물(마우스)을 대상으로 폐 부위에 방사선 조사 시 대동맥 내벽에 콜라겐 증가와 같은 폐섬유화 증상이 나타나는 것을 확인하였으며, 2-메톡시에스트라디올 투여군에서는 미처리군에 비해 콜라겐 증가 정도가 현저히 감소하는 것을 확인하였다(실시예 5). 또한, 본 발명자들은 마우스 폐암모델을 대상으로 방사선 치료 후 폐암의 크기가 감소하지만, 대동맥 내벽에 콜라겐 증가와 같은 폐섬유화 증상이 나타나는 것을 확인하였으며, 2-메톡시에스트라디올 투여군에서는 미처리군에 비해 콜라겐 증가 정도가 현저히 감소하는 것을 확인하였다 (실시예 7). 따라서, 이러한 실험 결과는 2-메톡시에스트라디올을 비롯한 화학식 1의 화합물이 방사선 피폭 또는 암에 대한 방사선 치료 시 나타나는 폐섬유화 증상을 현저히 감소시킬 수 있음을 보여준다.
상기 본 발명에 따른 방사선 보호 또는 완화용 약학 조성물은 당해 기술분야에 공지되어 있는 통상적인 약제학적 제형으로 제제화될 수 있다. 상기 약제학적 제형으로는 경구투여제제, 주사제, 좌제, 경피투여제제, 및 경비투여제제를 포함하지만, 이에 한정되지 않는 임의의 제형으로 제제화되어 투여될 수도 있으나, 바람직하게는 경구투여제 또는 주사제로 제제화될 수 있다. 상기 경구 투여용 제형은 예를 들어, 액제, 현탁제, 산제, 과립제, 정제, 캡슐제, 환제, 또는 엑스제로 제조할 수 있다.
상기 각각의 제형으로 제제화 시, 각각의 제형의 제조에 필요한 약제학적으로 허용 가능한 담체 또는 첨가제를 부가하여 제조할 수 있다.
경구투여제로 제제화 시 상기 담체로서 희석제, 활택제, 결합제, 붕해제, 감미제, 안정제, 및 방부제 중에서 1 종 이상을 선택하여 사용할 수 있으며, 첨가제로는 향료, 비타민류, 및 항산화제 중에서 1 종 이상을 선택하여 사용할 수 있다.
상기 담체 및 첨가제는 약제학적으로 허용 가능한 것은 모두 가능하며, 구체적으로 희석제로는 유당, 옥수수 전분, 대두유, 미정질 셀룰로오스, 또는 만니톨, 활택제로는 스테아린산 마그네슘 또는 탈크, 결합제로는 폴리비닐피롤리돈 또는 히드록시프로필셀룰로오스가 바람직하다. 또한, 붕해제로는 카르복시메틸셀룰로오스 칼슘, 전분글리콜산나트륨, 폴라크릴린칼륨, 또는 크로스포비돈; 감미제로는 백당, 과당, 솔비톨, 또는 아스파탐; 안정제로는 카르복시메틸셀룰로오스나트륨, 베타-사이클로덱스트린, 백납, 또는 잔탄검; 방부제로는 파라옥시안식향산메틸, 파라옥시안식향산프로필, 또는 솔빈산칼륨이 바람직하다.
또한, 상기 성분 이외에도 공지의 첨가제로서 미각을 돋구기 위하여, 매실향, 레몬향, 파인애플향, 허브향 등의 천연향료; 천연과즙; 클로로필린, 플라보노이드 등의 천연색소; 과당, 벌꿀, 당알코올, 설탕과 같은 감미성분; 또는 구연산, 구연산 나트륨과 같은 산미제를 혼합하여 사용할 수도 있다.
상기 본 발명에 따른 약학 조성물을 주사제로 제제화 시, 당해 기술분야에 공지되어 있는 통상의 주사제 제조방법에 따라 제조될 수 있다. 본 발명에 따른 주사제는 환자에게 투여 시 그대로 이용될 수 있도록 멸균 매질에 분산된 형태일 수도 있으며, 투여 시 주사용 증류수를 가해 적절한 농도로 분산시킨 다음 투여하는 형태일 수도 있다.
이러한 제제화에 필요한 기술 및 약제학적으로 적절한 담체, 첨가제 등에 관해서는 당해 제제학 분야에서 통상의 지식을 가진 자에게 널리 알려져 있으며, 이와 관련하여 the Handbook of Pharmaceutical Excipients, 4thedition, Rowe et al., Eds., American Pharmaceuticals Association (2003); Remington: the Science and Practice of Pharmacy, 20th edition, Gennaro, Ed., Lippincott Williams & Wilkins (2000); Remington's Pharmaceutical Sciences (19th ed., 1995) 등을 참조할 수 있다.
상기 본 발명에 따른 약학 조성물은 방사선 보호 또는 완화 효과를 획득하기 위해, 성인을 기준으로 1 일 총 투여량이 화학식 1의 화합물로서 약 0.1-100 mg/kg 이 되도록 임의로 수회 나누어서 투여할 수 있다. 상기 투여량은 손상을 유발하는 방사선의 세기, 방사선 유발 손상의 종류 또는 진행 정도, 투여 경로, 성별, 나이, 체중 등에 따라 적절히 적절히 증감될 수 있다.
본 발명의 다른 일 양상은 치료학적으로 유효한 양의 하기 화학식 1의 화합물, 또는 약제학적으로 허용 가능한 그의 염 또는 용매화물을 동물에게 투여하는 것을 포함하는 방사선 유발 손상에 대한 방사선 보호 또는 완화 방법을 제공한다:
[화학식 1]
상기 화학식 1에서, R1은 수소 또는 C1-3 알킬이다.
상기 방사선 유발 손상에 대한 방사선 보호 또는 완화 방법의 상세는 상기 본 발명의 일 양상에 따른 방사선 보호 또는 완화용 약학 조성물에 대한 설명이 그대로 적용될 수 있다.
상기 동물은 인간, 가축, 및 애완동물을 포함한 임의의 포유류일 수 있으나, 이에 한정되는 것은 아니다.
일 구체예에서, 상기 동물은 인간을 제외한 포유류이다.
이하, 본 발명을 하기 실시예에 의거하여 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위함인 것일 뿐 본 발명의 범위가 이에 한정되는 것은 아니다.
실험방법
(1) 생체조직에 대한 헤마톡실린(hematoxilin) 및 에오신(Eosin) 염색법 (H&E staining)
마우스의 조직은 10 % 의 중성포르말린(neutral formalin)으로 하루 동안 고정시키고 파라핀 섹션을 만들었다. 조직 주변의 파라핀을 제거하기 위해 자일렌(xylene), 95, 90, 70 % 에탄올 용액에 각각 5 분씩 순서대로 반응시켰으며, 헤마톡실린 용액에 1 분 담궈 핵을 염색하고 흐르는 물에 10분 세척하였다. 그 다음 에오진 용액에 30 초 담궈 세포질을 염색하고 50, 70, 90, 및 95 % 에탄올 용액, 자일렌 용액에 순서대로 담근 후 마운팅 용액(mounting solution)을 한 방울 떨어뜨린 후 커버 슬라이드(cover slide)를 덮고 현미경 (Carl Zeiss Vision)으로 관찰하였다.
(2) 면역조직화학 염색법 (Immunohistochemistry, IHC)
마우스의 조직은 10% 의 중성포르말린(neutral formalin)으로 하루 동안 고정시키고 파라핀섹션을 만들었다. 조직 주변의 파라핀 제거를 위해 자일렌(xylene) 및 100, 95, 90, 70% 에탄올 용액을 순서대로 담갔다. 조직의 항원활성화를 위해 0.1 M 농도의 시트르산 (pH 6.0) 용액에 조직을 담가 30 분 끓이고, 3% 과산화수소에 15 분 반응시켰다. PBS (phosphate based saline buffer, 0.1% triton x-100 포함) 용액에 1:100 비율로 희석한 CD31 (abcam)을 섭씨 4도에서 16 시간 반응시켰다. PBS로 세척 후, 비오틴이 결합된 이차 항체를 1:200 비율로 희석하여 실온에서 30 분 반응시켰다. ABC(Avidin biotin complex)에 30 분 동안 실온에서 반응시키고 3,3'-DAB (3,3'-diaminobenzidine)를 발색시킨 후, 헤마톡실린으로 대조염색하였다. 그 다음 50, 70, 90, 95, 100% 에탄올 용액, 자일렌 용액에 순서대로 담근 후 마운팅 용액(mounting solution)을 한 방울 떨어뜨려 커버 슬라이드(cover slide)를 덮고 현미경(Carl Zeiss Vision)으로 관찰하였다.
(3) 사용세포주의 배양
인간 폐혈관내피세포 (HPAEC)는 Promocell 회사에서 구입하였으며, 혈관내피세포에 필요한 다양한 성장인자들이 포함되어있는 배지를 이용하였으며, 섭씨 37도, 5 % CO2 조건의 배양기에서 배양하였다.
(4) HPAEC에 대한 방사선 조사
HPAEC를 3.5, 6, 10 cm 배양접시에 깔아서 37℃ CO2 배양기에서 70-80% 정도 자랄 때까지 배양한 뒤, 시험군에 따라 2-메톡시에스트라디올을 선택적으로 전처리 한 후, 감마선(137Cs) (Atomic Energy of Canada, Ltd., Canada)을 3.81 Gy/분의 선량률로 조사하였다. 총 10 Gy를 조사하였다.
(5) 세포 면역형광염색법
HPAEC를 커버 슬라이드 위에 배양한 다음, 시험군에 따라 선택적으로 2-메톡시에스트라디올 전처리 후 방사선을 조사한 다음, 10 % 의 중성포르말린으로 하루 동안 고정시키고 염색 전에 PBS (Phosphate buffered saline) 로 세척하였다. 일차항체 반응 전에 2 % 소 혈청의 알부민 용액 (PBS에 녹임)으로 블로킹처리를 하고, 1:100 비율로 희석한 VE-cadherin, HIF-1a(Hypoxia-inducible factor 1-alpha), SMAD, p-SMAD2/3, αSMA 항체를 섭씨 4℃ 에서 16 시간동안 반응시켰다. PBS로 세척 후, 형광물질이 붙은 이차항체를 1:500 비율로 희석하여 섭씨 25℃ 에서 1시간 반응시켰다. DAPI (4',6-diamidino-2-phenylindole) 형광물질을 이용하여 핵 염색을 하였다. PBS로 세척한 후, 글리세롤을 한 방울 떨어뜨려 슬라이드 유리에 염색된 세포를 부착한 후, 공초점현미경으로 관찰하였다.
(6) 전기영동과 면역반응을 이용한 단백질 분석
배양세포를 방사선 조사한 다음, 세포 내 단백질을 관찰하기 위해 150 mM sodium chloride, 40mM Tris-Cl (pH 8.0), 0.1% NP-40로 이루어진 용액에 세포를 용해시킨 시료를 만들었다. 이 시료들을 SDS (sodium dodecyl sulfate) 가 포함된 PAGE (polyacrylamide gel electrophoresis)를 수행한 후, 웨스턴블랏을 수행하였다. 전기영동으로 분리된 단백질들은 니트로셀룰로오스 멤브레인에 옮겨졌고, 그 후 면역 블롯팅 방법으로 해당 단백질들의 발현 양을 분석하였다.
(7) 생체조직에 대한 헤마톡실린(hematoxilin) 및 에오진(Eosin) 염색법 (H&E staining)
마우스의 조직은 10 % 의 중성포르말린 (neutral formalin)으로 하루 동안 고정시키고 파라핀섹션을 만들었다. 염색을 위해 조직 주변의 파라핀을 제거하기 위해 파라섹션을 자일렌(xylene), 95, 90, 및 70 % 에탄올 용액에 각각 5 분간 순서대로 반응시켰으며, 헤마톡실린 용액에 1 분 담궈 핵을 염색하고 흐르는 물에 10분 세척하였다. 그 다음 에오진 용액에 30 초 담궈 세포질을 염색하고 50, 70, 90, 및 95 % 에탄올 용액, 자일렌 용액에 순서대로 담근 후 마운팅 용액(mounting solution)을 한 방울 떨어뜨린 후 커버 슬라이드(cover slide)를 덮고 현미경 (Carl Zeiss Vision)으로 관찰하였다.
(8) 생체조직에 대한 트라이크롬(Trichrome) 염색법
마우스의 조직은 10 % 의 중성포르말린(neutral formalin)으로 하루 동안 고정시키고 파라핀 섹션을 만들었다. 염색을 위해 조직 주변의 파라핀을 제거하기 위해 자일렌(xylene), 95, 90, 70 % 에탄올 용액에 5 분씩 순서대로 담갔다. 조직의 항원활성화를 위하여 0.1 M 농도의 시트르산 (pH 6.0) 용액에 조직을 담가 20 분 동안 끓였다.
그런 다음, Bouin's solution에 1분, Weigert's hematoxylin 10분, Phosphotunstic/phosphomolydic acid에 10분, 아닐린 블루(aniline blue)에 5분, 1% 아세트산에 1 분 동안 순차적으로 반응시킨 다음, 탈수과정을 진행 후 커버글라스로 봉입하였다. 봉입 후, 공초점현미경으로 관찰하였다.
실시예 1: 2-메톡시에스트라디올의 방사선에 의한 조직 손상 저해 시험
마우스의 흉부에 3mm의 크기로 방사선 90Gy를 조사한 마우스 동물모델의 폐 조직을 10% 포르말린으로 고정 후 파라핀 섹션을 만들어서 헤마톡실린(hematoxylin) 및 에오신(eosin) 염색법을 이용하여 조직 염증반응 및 섬유화를 확인하였다. 이 염색법으로 조직을 관찰하면 세포핵은 파란색, 세포질은 분홍색으로 관찰된다. 마우스 동물모델에게 방사선을 조사 1 시간 전에, 2-메톡시에스트라디올 60 mg/kg을 복강주사 투여하였으며, 방사선 조사 후 2 주 후에 조직 손상 부위의 염증 반응, 섬유화를 헤마톡실린 및 에오신 염색법으로 확인하였다.
도 1은 마우스 동물모델에서 2-메톡시에스트라디올을 방사선 조사 1시간 전 60 mg/kg의 농도로 처리 또는 미처리 후 폐 부위에 90 Gy의 세기로 방사선을 조사한 다음, 조직 손상 부위의 염증 반응, 섬유화를 헤마톡실린 및 에오신 염색법으로 확인한 결과를 촬영한 사진이다.
도 1에 따르면, 헤마톡실린 및 에오신 염색을 통해 정상조직(No. IR)과 비교했을 때 90Gy 방사선 조사군(IR)의 조직에서는 염증 세포가 침윤되는 것을 확인 할 수 있다. 또한, 90Gy 방사선 조사군(IR)의 조직에서는 정상조직 대비 손상된 혈관 주위에 섬유화 기질이 나타나는 것을 알 수 있다. 이에 반해, 2-메톡시에스트라디올을 전처리한 마우스(IR+전처리2Me)의 조직에서는 염증 세포의 침윤과 혈관 주위 섬유화 기질이 미처리군(IR)에 비해 현저히 감소한 것으로 나타났다.
이러한 도 1의 결과로부터 2-메톡시에스트라디올의 처리는 방사선에 의한 조직손상을 현저히 감소시킨다는 것을 알 수 있다.
실시예 2: 2-메톡시에스트라디올의 방사선에 의한 in vivo 혈관 손상 저해 시험
방사선 치료 후 발생되는 조직 손상에서 피부의 혈관의 손상 현상이 나타나는지를 관찰하기 위하여, C57BL/6 마우스의 흉부에 흉부에 7mm의 크기로 20Gy 방사선을 조사하였다. 마우스로부터 피부를 적출한 다음 피부 안쪽 부분의 혈관의 변화를 확인하였다. 2-메톡시에스트라디올 전처리군(IR+전처리2Me)은 방사선 조사 1시간 전에 60 mg/kg의 양으로 복강 내 투여하였고, 후처리 군(IR+후처리2Me)은 방사선 조사 24 시간 후에 60 mg/kg의 양으로 복강 내 투여하였다. 방사선 조사 후 2 주 후의 결과를 도 2에 나타내었다.
도 2는 마우스 동물모델에서 흉부에 대한 방사선 조사와 함께 2-메톡시에스트라디올을 전처리, 후처리, 또는 미처리 후, 피부의 안쪽 부위의 혈관의 변화를 나타낸 사진이다.
도 2에 따르면, 방사선 조사군(IR)의 피부의 혈관은 뚜렷하게 보이지 않는 것으로 관찰되고, 2-메톡시에스트라디올을 전처리(IR+전처리2Me) 또는 후처리(IR+후처리2Me) 했을 때, 미처리 군(IR)에 비해 피부 혈관손상이 현저히 감소한 것으로 관찰되었다. 따라서, 도 2의 결과에 따르면, 마우스에 방사선 조사 후, 피부조직의 혈관 손상이 진행되며, 2-메톡시에스트라디올의 전처리 또는 후처리에 의해 방사선 조사에 의한 혈관 손상이 현저히 저해되는 것으로 확인되었다.
실시예 3: 2-메톡시에스트라디올의 방사선에 의한 in vivo 피부 손상 저해 시험
방사선 치료 후 발생되는 조직 손상에서 피부의 염증 반응 및 섬유화가 나타나는지를 관찰하기 위하여, C57BL/6 마우스의 흉부에 흉부에 7mm의 크기로 20Gy 방사선을 조사하였다. 마우스로부터 피부를 적출한 다음 피부 조직 내 염증 세포의 침윤 정도를 확인하였다. 2-메톡시에스트라디올 전처리군 (IR+전처리2Me)은 방사선 조사 1시간 전에 60 mg/kg의 양으로 복강 내 투여하였고, 후처리 군(IR+후처리2Me)은 방사선 조사 24시간 후에 60 mg/kg의 양으로 복강 내 투여하였다. 방사선 조사 2 주 후의 결과를 도 3에 나타내었다.
도 3은 마우스 동물모델에서 흉부에 대한 방사선 조사와 함께 2-메톡시에스트라디올을 전처리, 후처리, 또는 미처리 후, 피부의 안쪽 부위의 염증 세포의 침윤 정도를 나타낸 사진이다.
도 3에 따르면, 방사선 조사군(IR)의 피부 조직 내 염증 세포가 상당히 침윤된 것으로 관찰되고, 2-메톡시에스트라디올을 전처리(IR+전처리2Me) 또는 후처리(IR+후처리2Me) 했을 때, 미처리 군(IR)에 비해 피부 조직 내 침윤된 염증 세포의 수가 현저히 감소한 것으로 관찰되었다. 따라서, 도 3의 결과에 따르면, 마우스에 방사선 조사 후, 피부 내 염증 세포의 침윤으로 인한 조직 손상이 진행되며, 2-메톡시에스트라디올의 전처리 또는 후처리에 의해 방사선에 의한 피부 조직의 손상 및 염증반응이 현저하게 저해되는 것으로 확인되었다.
실시예 4: 면역형광염색법을 이용한 방사선에 의한 세포 수준에서의 폐섬유화 현상 억제 시험
방사선 10 Gy를 조사한 인간 폐혈관내피세포를 10% 포르말린으로 고정하였고 팔로이딘, CA-9, 및 VE-cadherin 항체를 반응시킨 후 형광물질이 연결된 2차 면역항체를 사용하였다. 현미경 관찰을 통해 CA9은 빨간색, 팔로이딘은 초록색, VE-cadherin은 흰색으로 보일 수 있게 하였다. 세포핵은 DAPI 형광물질을 이용하여 파란색으로 보이게 하였다. 2-메톡시에스트라디올 처리군은 인간 폐혈관내피세포주에 방사선 조사 전 10 ng/ml의 농도로 12 시간 전 처리 후 10 Gy의 세기로 방사선 조사하였다. 그 결과를 도 4에 나타내었다.
도 4는 인간 폐혈관내피세포에 2-메톡시에스트라디올을 처리 또는 미처리 후 방사선을 조사한 다음, 형광염색하여 혈관내피세포 모양 변화와 폐섬유화 관련 단백질의 증감을 공초점 현미경으로 관찰한 사진이다.
도 4에 따르면, VE-cadherin은 폐혈관내피세포주의 세포막에 존재하는 단백질이어서 방사선 미조사군인 대조군(No. IR)의 사진에서는 세포막에 주로 흰색이 보이는 것을 알 수 있다. 반면, 방사선 조사군(IR)에서는 세포막 주변의 흰색이 크게 감소한 것으로 나타났다. 팔로이딘 및 CA-9은 폐섬유화 관련 단백질로서, 대조군에서는 염색되지 않았지만, 방사선 조사군에서는 초록색과 빨간색으로 표시되는 각각의 단백질들을 확인할 수 있었다. 이에 반해, 2-메톡시에스트라디올 처리군(IR+전처리2Me)에서는 세포막 주변의 흰색이 방사선 조사군에 비해 현저히 증가하고, 팔로이딘 및 CA-9는 현저히 감소한 것으로 나타났다.
이러한 도 4의 결과로부터, 2-메톡시에스트라디올의 처리는 폐혈관내피세포주에 대한 방사선 조사에 의해 증가되는 폐섬유화 관련 증상을 현저히 감소시키고, 방사선 조사에 의한 세포막 손상을 현저히 저하시킨다는 것을 알 수 있다.
실시예 5: 실험동물모델에서의 폐섬유화 현상 억제 시험
방사선 치료 후 발생되는 폐섬유화 증상에서 혈관내피세포의 폐섬유화 현상이 나타나는지를 관찰하기 위하여, C57BL/6 마우스의 폐 부위에 16 Gy의 방사선을 조사하였다. 마우스로부터 폐를 적출한 다음 폐조직의 대동맥 단면에 대해, 폐 혈관내피세포의 섬유화 시 나타나는 단백질인 콜라겐을 트라이크롬 염색법으로 확인하였다. 2-메톡시에스트라디올 처리군은 방사선 조사 1 시간 전에 150 mg/kg의 양으로 복강내 투여하였다. 그 결과를 도 5에 나타내었다.
도 5a는 마우스 동물모델에서 2-메톡시에스트라디올을 처리 또는 미처리 후 폐 부위에 방사선을 조사한 다음, 폐의 혈관내피 부위의 콜라겐을 트라이크롬염색법으로 확인한 결과를 촬영한 사진이다.
도 5b는 도 5a에서 폐 섬유화 관련 분자인 콜라겐의 발현 정도를 트라이크롬 염색법을 실시하여 통계적으로 나타낸 그래프이다. 또한 유의확률(**: P<0.01)을 통하여 방사선 조사로 인하여 섬유화 현상이 증가된 실험군과 증가되었던 섬유화 현상이 2-메톡시에스트라디올을 처리함에 따라 감소된 실험군 사이의 2-메톡시에스트라디올의 효과가 통계적 유의성이 있음을 나타내었다.
도 5에 따르면, 방사선을 조사하지 않은 대조군(사진 미도시)의 대동맥 내벽에서는 콜라겐 염색부위인 파란색 부위가 거의 관찰되지 않았으나, 방사선조사군(IR)의 대동맥 내벽에는 파란색이 상대적으로 현저히 증가한 것으로 관찰되었다. 따라서, 마우스의 폐 부위에 방사선 조사 후, 폐섬유화가 진행된 것이 확인되었다. 이에 반해, 2-메톡시에스트라디올 처리군(IR+전처리2Me)에서는 폐섬유화 관련 단백질인 콜라겐의 파란색 부위가 방사선 조사군(IR)에 비해 현저히 감소되는 것으로 나타났다. 도 5a에서 파란색이 관찰되는 부위는 백색선의 사각형으로 표시하였다.
도 5의 결과로부터, 2-메톡시에스트라디올이 방사선에 의한 폐혈관내피세포의 섬유화 현상을 현저히 저해함을 알 수 있다.
실시예 6: 방사선에 의한 폐혈관내피세포주(HPAEC)의 폐섬유화 현상의 억제 시험
2-메톡시에스트라디올(0.5μM, 1μM)의 농도에 따른 인간 폐혈관내피세포주의 폐섬유화 관련 단백질들의 발현양의 변화를 살펴보기 위해, 배양된 인간 폐혈관내피세포주에 2-메톡시에스트라디올을 0.5μM 또는 1μM의 농도로 12시간 전 처리 후 10 Gy의 세기로 방사선을 조사하였다. 그런 다음, p-SMAD, Smad 2/3 및 αSMA (alpha smooth muscle actin)의 항체를 이용한 웨스턴 블랏팅을 실시하였다. 단백질의 동량정량 확인을 위해 β-actin 항체로 웨스턴블랏팅을 실시하였다. 그 결과를 도 6에 나타내었다.
도 6은 2-메톡시에스트라디올 처리 또는 미처리 후 방사선을 조사한 다음, 폐혈관내피세포주의 섬유화 관련 단백질인 p-SMAD, Smad 2/3 및 αSMA (alpha smooth muscle actin)의 발현 변화를 웨스턴블랏팅으로 확인한 결과를 촬영한 사진이다.
도 6에 따르면, 2-메톡시에스트라디올을 0.5 μM 또는 1 μM을 처리하였을 때, 미처리군에 비해 모든 농도에서 폐섬유화 현상관련 단백질인 p-SMAD, Smad 2/3 및 αSMA 가 상대적으로 감소하며, 1 μM 에 특히 감소하는 것을 알 수 있다.
실시예 7: 방사선 조사 후 관찰된 혈관 내피 세포의 섬유화 현상 및 억제 확인
미국의 Jackson laboratory에서 Trp53<tm1Brn>/J와 B6.129S4-Kras<tm4Tyj>/J를 구입하여 p53유전자와 ras 유전자의 변형을 갖는 마우스를 교배하여 얻고, 자발적 비소세포폐암 동물모델을 만들었다(M*, Dooley AL*, Jacks T. 2009. Conditional mouse lung tumor models using adenoviral or lentiviral delivery of Cre recombinase. Nature protocols, 4(7): 1064-1072. PMCID: PMC2757265))
획득한 마우스 폐암 모델의 폐 부위에 16 Gy 세기의 방사선을 조사하였다. 마우스로부터 폐를 적출한 다음, 적출된 폐 기관을 상기 헤마톡실린 및 에오진 염색법(H&E staining), 또는 상기 트라이크롬염색법에 따라 염색한 후 혈관내피세포의 모양을 현미경을 통하여 관찰하였다. 이 염색법으로 조직을 관찰하면 핵은 파란색, 세포질은 분홍색으로 관찰된다. 2-메톡시에스트라디올 단독 투여군은 150mg/kg의 양을 복강으로 투여하였다. 2-메톡시에스트라디올 및 방사선 복합처리군은 방사선 조사 1시간 전에 150mg/kg의 양으로 복강내 투여하였다.
그 결과를 도 7에 나타내었다.
도 7은 마우스 폐암 모델에서 폐에 2-메톡시에스트라디올을 처리 또는 미처리 후 폐 부위에 방사선을 조사한 다음, 폐혈관내피 부위를 트라이크롬염색법을 수행하여 콜라겐의 발현 정도를 촬영한 사진 및 폐혈관내피 부위를 H&E 염색법을 수행하여, 혈관내피 부위의 조직의 형태변화를 촬영한 사진이다. 도 7에서 검정색 점선 부위는 폐 기관의 암 발생 부위를 표시한 것이고, 백색 사각형 부위는 폐 혈관 부위를 나타낸 것이다.
도 7에 따르면, 방사선을 조사하지 않은 대조군의 암 크기가 방사선 조사군(IR)에서는 감소됨을 확인할 수 있다. 또한, 방사선 조사군(IR)에서는 암 크기의 감소와 함께 폐섬유화 현상을 나타내는 혈관내피부근의 푸른색의 콜라겐 부위가 증가하였다. 이에 반해, 2-메톡시에스트라디올 처리군(IR+전처리2Me)에서는 푸른색의 콜라겐 부위가 방사선 조사군(IR)에 비해 현저히 감소되는 것으로 나타났다.
도 4의 결과로부터, 2-메톡시에스트라디올이 폐암 치료를 위한 방사선 요법에서 부작용으로서 나타나는 폐혈관내피세포의 섬유화 현상을 현저히 저해함을 알 수 있다.
이제까지 본 발명에 대하여 그 바람직한 실시 예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로, 상기 개시된 실시 예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.
Claims (16)
- 제1항에 있어서, 상기 화학식 1의 화합물은 상기 R1이 수소인 2-메톡시에스트라디올인 약학 조성물.
- 제1항에 있어서, 상기 방사선 유발 손상은 방사선 피폭에 의한 혈관손상, 피부 손상, 조직 염증, 또는 조직 섬유화인 것인 약학 조성물.
- 제1항에 있어서, 상기 방사선 유발 손상은 방사선 피폭에 의한 폐섬유화의 예방 또는 치료인 것인 약학 조성물.
- 제1항에 있어서, 상기 방사선 피폭에 의한 폐섬유화는 방사선 치료에 의해 유발된 부작용인 것인 약학 조성물.
- 제5항에 있어서, 상기 방사선 치료는 폐암, 유방암, 또는 호치킨림프종에 대한 방사선 치료인 것인 약학 조성물.
- 제1항에 있어서, 방사선 피폭 전 또는 후에 투여되는 것인 약학 조성물.
- 제1항에 있어서, 상기 약학 조성물은 경구투여제 또는 주사제로 제제화된 약학 조성물.
- 제9항에 있어서, 상기 화학식 1의 화합물은 상기 R1이 수소인 2-메톡시에스트라디올인 방법.
- 제9항에 있어서, 상기 방사선 유발 손상은 방사선 피폭에 의한 혈관손상 또는 피부손상인 것인 방법.
- 제9항에 있어서, 상기 방사선 유발 손상는 방사선 피폭에 의한 폐섬유화인 것인 방법.
- 제1항에 있어서, 상기 방사선 피폭에 의한 폐섬유화는 방사선 치료에 의해 유발되는 부작용인 것인 방법.
- 제13항에 있어서, 상기 방사선 치료는 폐암, 유방암, 또는 호치킨림프종에 대한 방사선 치료인 것인 방법.
- 제9항에 있어서, 방사선 피폭 전 또는 후에 투여되는 것인 방법.
- 제9항에 있어서, 상기 화합물은 경구투여제 또는 주사제로 투여되는 것인 방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/780,051 US10722526B2 (en) | 2015-12-01 | 2015-12-23 | Pharmaceutical compositions for radioprotection or radiomitigation and methods for using them |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150170111A KR101667362B1 (ko) | 2015-12-01 | 2015-12-01 | 방사선 보호용 또는 완화용 약학 조성물 |
KR10-2015-0170111 | 2015-12-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017094956A1 true WO2017094956A1 (ko) | 2017-06-08 |
Family
ID=57244195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/014204 WO2017094956A1 (ko) | 2015-12-01 | 2015-12-23 | 방사선 보호용 또는 완화용 약학 조성물 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10722526B2 (ko) |
KR (1) | KR101667362B1 (ko) |
WO (1) | WO2017094956A1 (ko) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102030639B1 (ko) | 2017-12-20 | 2019-10-10 | 한국원자력의학원 | 방사선 손상 보호 또는 완화, 및 폐섬유화 예방 또는 치료를 위한 약제학적 조성물 |
KR102308891B1 (ko) | 2017-12-20 | 2021-10-05 | 한국원자력의학원 | 방사선 손상 보호 또는 완화, 및 폐섬유화 예방 또는 치료를 위한 약학 조성물 |
KR102213040B1 (ko) | 2017-12-20 | 2021-02-05 | 한국원자력의학원 | 방사선 손상 보호 또는 완화, 및 폐섬유화 예방 또는 치료 용도 |
KR102375161B1 (ko) * | 2020-03-24 | 2022-03-16 | 한국원자력의학원 | 섬유화 질환 치료용 복합 약학 조성물 |
WO2024208828A1 (en) | 2023-04-03 | 2024-10-10 | Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts | Radioprotection by inhibition of superoxide dismutase 1 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060012618A (ko) * | 2003-05-15 | 2006-02-08 | 셀진 코포레이션 | 암 및 기타 질환의 치료 및 관리를 위한 면역조절 화합물의사용 방법 및 이를 사용하는 조성물 |
KR20070001156A (ko) * | 2004-02-28 | 2007-01-03 | 왁스타프, 인크. | 직접 칠드 금속 주조 시스템 |
KR20120076223A (ko) * | 2010-12-29 | 2012-07-09 | 국립암센터 | 신규한 암 예방 및 치료용 약학적 조성물 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070011564A (ko) * | 2006-12-04 | 2007-01-24 | 셀진 코포레이션 | 암 및 그 밖의 질환의 치료 및 관리를 위해 선택적사이토킨 억제성 약물을 사용하는 방법 및 조성물 |
KR20160038637A (ko) | 2014-09-30 | 2016-04-07 | 한국원자력의학원 | 폐섬유화 예방 또는 치료용 약학 조성물 |
-
2015
- 2015-12-01 KR KR1020150170111A patent/KR101667362B1/ko active IP Right Grant
- 2015-12-23 WO PCT/KR2015/014204 patent/WO2017094956A1/ko active Application Filing
- 2015-12-23 US US15/780,051 patent/US10722526B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060012618A (ko) * | 2003-05-15 | 2006-02-08 | 셀진 코포레이션 | 암 및 기타 질환의 치료 및 관리를 위한 면역조절 화합물의사용 방법 및 이를 사용하는 조성물 |
KR20070001156A (ko) * | 2004-02-28 | 2007-01-03 | 왁스타프, 인크. | 직접 칠드 금속 주조 시스템 |
KR20120076223A (ko) * | 2010-12-29 | 2012-07-09 | 국립암센터 | 신규한 암 예방 및 치료용 약학적 조성물 |
Non-Patent Citations (2)
Title |
---|
CHO!, S. -H. ET AL.: "A Hypoxia-induced Vasojiar Endothelial-to-mesenchymal Transition in Development of Radiation-induced Pulmonary Fibrosis", CLINICAL CANCER RESEARCH, vol. 21, no. 16, August 2015 (2015-08-01), pages 3716 - 3726, XP055387967 * |
TOFOVIC, S. P. ET AL.: "2-methoxyestradiol Attenuates Bleomycin-induced Pulmonary Hypertension and Fibrosis in Estrogen-deficient Rats", VASCULAR PHARMACOLOGY, vol. 51, 2009, pages 190 - 197, XP027074951 * |
Also Published As
Publication number | Publication date |
---|---|
KR101667362B1 (ko) | 2016-10-18 |
US20180360847A1 (en) | 2018-12-20 |
US10722526B2 (en) | 2020-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017094956A1 (ko) | 방사선 보호용 또는 완화용 약학 조성물 | |
WO2018101708A1 (ko) | 미토콘드리아를 포함하는 약학 조성물 | |
KR102456294B1 (ko) | 코로나바이러스 감염 예방 및 치료용 약학 조성물 | |
JP2021507944A (ja) | 運動ニューロン疾患を含む神経障害のための組成物および治療方法 | |
WO2022055285A1 (ko) | 암의 기원 세포의 사멸용 약학적 조성물 | |
WO2017007099A1 (ko) | G단백질 결합형 수용체19 작용제를 유효성분으로 함유하는 알츠하이머 질환 또는 치매를 예방, 치료 또는 지연하기 위한 약학적 조성물 | |
CN107427517B (zh) | 用于痴呆症的预防及/或治疗的医药 | |
KR20160038637A (ko) | 폐섬유화 예방 또는 치료용 약학 조성물 | |
WO2019151744A1 (ko) | 성체줄기세포 유래의 나노베시클 및 이의 표적 치료용 용도 | |
US20210253511A1 (en) | Compounds and uses for the treatment and prevention of diseases and conditions associate with or aggrevated by impared mitophagy | |
WO2022114906A1 (ko) | 신규 퇴행성 신경질환 치료용 약학적 조성물 | |
KR102030639B1 (ko) | 방사선 손상 보호 또는 완화, 및 폐섬유화 예방 또는 치료를 위한 약제학적 조성물 | |
WO2022245138A1 (ko) | 기능강화 줄기세포를 포함하는 아토피 피부염 예방 또는 치료용 조성물 | |
WO2019117604A1 (ko) | 트리소듐 클로린 이식스 광민감제를 이용하여 고지방식으로 유도된 비만과 비알콜성 지방간염의 치료를 위한 약학적 조성물 | |
WO2022108306A1 (ko) | 인터류킨-33을 처리하여 면역원성이 향상된 cd103+ fcgr3+ 수지상세포의 제조방법 및 상기 수지상세포를 포함하는 면역항암치료용 약학적 조성물 | |
WO2018190511A1 (ko) | Dusp1 저해제를 함유하는 약제학적 조성물 | |
WO2021034094A1 (ko) | 켐페라이드를 유효성분으로 포함하는 단백질 형태이상 질환의 예방 또는 치료용 조성물 | |
KR20160113081A (ko) | 폐섬유화 예방 또는 치료용 약학 조성물 | |
WO2015111971A1 (ko) | Gpr119 리간드를 유효성분으로 포함하는 비알콜성 지방간 질환의 예방 또는 치료용 약학적 조성물 | |
WO2016190480A1 (ko) | 미토콘드리아 분열 조절제의 스크리닝 방법 | |
WO2023080628A1 (ko) | 세포예정괴사 관련 질병 치료제로서의 아포모르핀의 용도 | |
WO2023204329A1 (ko) | 신규 펩타이드 기반 면역항암제 | |
KR101677206B1 (ko) | 폐암 방사선 치료 증진용 약학 조성물 | |
WO2024191106A1 (ko) | 뇌전증 예방 또는 치료용 약학적 조성물 | |
WO2014042292A1 (ko) | 단백질 인산화효소 c 활성화제를 포함하는 줄기세포 부착 촉진용 조성물 및 줄기세포의 부착 촉진 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15909863 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15909863 Country of ref document: EP Kind code of ref document: A1 |