WO2017094807A1 - 積層チューブ - Google Patents
積層チューブ Download PDFInfo
- Publication number
- WO2017094807A1 WO2017094807A1 PCT/JP2016/085647 JP2016085647W WO2017094807A1 WO 2017094807 A1 WO2017094807 A1 WO 2017094807A1 JP 2016085647 W JP2016085647 W JP 2016085647W WO 2017094807 A1 WO2017094807 A1 WO 2017094807A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tube
- layer
- intermediate layer
- outer layer
- fluorine
- Prior art date
Links
- 229920001971 elastomer Polymers 0.000 claims abstract description 60
- 239000000806 elastomer Substances 0.000 claims abstract description 58
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract description 31
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 31
- 239000011737 fluorine Substances 0.000 claims abstract description 31
- 229920002379 silicone rubber Polymers 0.000 claims abstract description 16
- 239000004945 silicone rubber Substances 0.000 claims abstract description 16
- 229920001973 fluoroelastomer Polymers 0.000 claims description 19
- 230000032798 delamination Effects 0.000 claims description 6
- 239000003960 organic solvent Substances 0.000 abstract description 14
- 239000010410 layer Substances 0.000 abstract 6
- 239000011229 interlayer Substances 0.000 abstract 1
- 239000007788 liquid Substances 0.000 description 21
- 239000000203 mixture Substances 0.000 description 16
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 15
- 238000004132 cross linking Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920006026 co-polymeric resin Polymers 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229920006124 polyolefin elastomer Polymers 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 239000004812 Fluorinated ethylene propylene Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 2
- 229920000295 expanded polytetrafluoroethylene Polymers 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 229920009441 perflouroethylene propylene Polymers 0.000 description 2
- -1 polytetrafluoroethylene Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- PEVRKKOYEFPFMN-UHFFFAOYSA-N 1,1,2,3,3,3-hexafluoroprop-1-ene;1,1,2,2-tetrafluoroethene Chemical group FC(F)=C(F)F.FC(F)=C(F)C(F)(F)F PEVRKKOYEFPFMN-UHFFFAOYSA-N 0.000 description 1
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- ZTAVLWPSZXBNGJ-UHFFFAOYSA-N C(CC(C(F)Cl)(F)F)Cl Chemical compound C(CC(C(F)Cl)(F)F)Cl ZTAVLWPSZXBNGJ-UHFFFAOYSA-N 0.000 description 1
- 229920001780 ECTFE Polymers 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- UUAGAQFQZIEFAH-UHFFFAOYSA-N chlorotrifluoroethylene Chemical group FC(F)=C(F)Cl UUAGAQFQZIEFAH-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 229920006285 olefinic elastomer Polymers 0.000 description 1
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 description 1
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B1/00—Layered products having a non-planar shape
- B32B1/08—Tubular products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B25/00—Layered products comprising a layer of natural or synthetic rubber
- B32B25/04—Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B25/08—Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B25/00—Layered products comprising a layer of natural or synthetic rubber
- B32B25/20—Layered products comprising a layer of natural or synthetic rubber comprising silicone rubber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L11/00—Hoses, i.e. flexible pipes
- F16L11/04—Hoses, i.e. flexible pipes made of rubber or flexible plastics
Definitions
- the present invention relates to a laminated tube having high flexibility, in particular, high resilience against radial crushing, high delamination strength and long life.
- Tubes for tube pumps must have high flexibility and high shape recovery after stress release.
- a typical material for a tube for a tube pump is silicone rubber. Silicone rubber has excellent shape restoring properties and high heat resistance, but does not have high mechanical strength and sufficient resistance to organic solvents. Accordingly, when an organic solvent such as benzene, toluene or acetone is fed through the tube for a tube pump made of silicone rubber, the tube is broken by repeated crushing, and its life is very short.
- Another representative material for tube pump tubes is an olefinic elastomer. Olefin-based elastomers have excellent shape recovery properties and high mechanical strength, but do not have sufficient heat resistance and resistance to organic solvents.
- the problem to be solved by the present invention is to provide a tube having a high shape restoring property and having a long life even when an organic solvent is fed.
- the inventor of the present invention as a result of earnest studies to solve the above problems, a laminated tube in which a specific inner layer made of a porous fluororesin and an outer layer made of an elastomer are laminated via a specific intermediate layer, The inventors have found that the above characteristics are obtained and have completed the present invention.
- the present invention comprises an inner layer made of a porous fluororesin impregnated with a fluorine-based elastomer, an intermediate layer made of the above-mentioned fluorine-based elastomer, and an outer layer made of an elastomer, and the delamination strength between the inner layer and the outer layer is 0.48 N / mm. It is the laminated tube which is the above.
- the present invention is a laminated tube in which the intermediate layer made of the fluorine-based elastomer has a thickness of 5 ⁇ m or more.
- the laminated tube of the present invention has a high shape restoring property for a long time even when an organic solvent is fed.
- FIG. 1 schematically shows a cross section of the laminated tube of the present invention.
- the laminated tube of the present invention has a structure in which an inner layer 1 and an outer layer 3 are laminated via an intermediate layer 2.
- the inner layer 1 is made of a porous fluororesin impregnated with a fluoroelastomer.
- a fluorine-based elastomer having high organic solvent resistance is impregnated in a porous fluororesin having high organic solvent resistance and high flexibility, and the inner layer 1 prevents the organic solvent from penetrating into the outer layer 3.
- the fibril structure of the porous fluororesin contributes to the improvement of the mechanical strength of the elastomer of the inner layer 1 and improves the durability.
- the intermediate layer 2 is made of the same fluorine-based elastomer as the fluorine-based elastomer constituting the inner layer 1.
- the intermediate layer 2 prevents the organic solvent from penetrating into the outer layer 3 and bonds the inner layer 1 and the outer layer 3 together.
- the outer layer 3 is made of an elastomer.
- the inner layer 1 is not suitable for uses such as a pump tube because the shape of the inner layer 1 is low.
- the outer layer 3 is suitable to be flexible and has a good shape restoring property.
- the outer layer 3 protects the inner layer 1 and the intermediate layer 2 and imparts the shape restoring property to the laminated tube of the present invention. Effective functions for tube pump applications.
- the peel strength between the inner layer 1 and the outer layer 3 is 0.48 N / mm or more.
- the fluororesin or fluoroelastomer of the inner layer 1 and the elastomer of the outer layer 3 are not bonded as they are.
- the sufficiently high peel strength of the inner layer 1 and the outer layer 3 contributes to the maintenance of the strength and shape restoration of the tube against repeated radial collapse when the laminated tube of the present invention is used as a tube for a tube pump. Contributes to longer tube life.
- the tube peel strength is 0.48 N / mm or more, so that the outer layer receives from the roller pump in the longitudinal direction.
- the manufacturing method of the laminated tube of the present invention is not limited to a specific manufacturing method. Specific examples of the production method are as follows. First, a porous fluororesin tube is impregnated with a liquid fluoroelastomer composition that is a precursor of a fluoroelastomer to form the inner layer 1. At the same time as or after impregnation with the liquid fluorine-based elastomer composition, a liquid fluorine-based elastomer composition layer serving as an intermediate layer is formed on the surface of the porous fluororesin tube. After forming the intermediate layer, it is allowed to stand for a certain time.
- the liquid fluorine-based elastomer composition of the intermediate layer is primarily crosslinked.
- the hardness of the fluoroelastomer surface of the intermediate layer is lower than the hardness before crosslinking of the elastomer used for the outer layer, but if it is too low, the shape is difficult to maintain and a problem arises in the tube forming accuracy.
- an elastomer layer to be an outer layer is formed on the outer side of the primary cross-linked fluorinated elastomer by extrusion molding.
- the obtained tube is heated, and the fluoroelastomer of the intermediate layer and the elastomer of the outer layer are secondarily crosslinked at the same time to obtain the laminated tube of the present invention.
- the liquid fluoroelastomer composition of the intermediate layer is cross-linked while entering the pores of the porous fluororesin tube. Since the liquid fluorine-based elastomer composition of the inner layer and the fluorine-based elastomer of the intermediate layer are the same, the liquid fluorine-based elastomer composition in the pores on the outer surface of the inner layer and the fluorine-based elastomer of the intermediate layer are integrated.
- the interface between the inner layer and the intermediate layer is firmly bonded by the anchor effect of the integrated fluorine-based elastomer.
- fluororesins and elastomers and elastomers of other materials are not bonded as they are, but are bonded by surface treatment, primer treatment, electron beam irradiation, etc.
- Such processing is not required. Since the inner layer fluoroelastomer and the outer layer elastomer are simultaneously cross-linked while forming a laminated structure of tubes, the interface between the intermediate layer fluoroelastomer and the outer layer elastomer is also chemically bonded by a cross-linking reaction. Inferred.
- the adhesive strength is not sufficient only by crosslinking at the same time, and before the intermediate layer and the outer layer are laminated, the hardness of the fluoroelastomer in the intermediate layer is slightly lower than the hardness of the outer layer elastomer before the cross-linking. It is important that In other words, the primary cross-linking reaction on the surface of the fluoroelastomer after forming the inner layer and the intermediate layer is stopped within an appropriate range, so that when the outer layer elastomer is coated, the fine irregularities of the outer layer elastomer are formed on the intermediate layer. The area where the fluoroelastomer enters and the two come into contact with each other increases, and the reaction between the two can proceed sufficiently.
- the inner layer porous fluororesin tube of the multilayer tube and the outer layer elastomer are firmly bonded via the intermediate layer fluorine-based elastomer.
- fluororesin and elastomer of other materials are bonded by pretreatment such as surface treatment and primer treatment, but the porous fluororesin constituting the inner layer and the elastomer constituting the outer layer of the laminated tube of the present invention are It can be bonded via a fluorine-based elastomer constituting the intermediate layer without being pretreated.
- the fluororesin that constitutes the porous fluororesin tube is not limited to a specific fluororesin.
- Specific examples of the fluororesin include tetrafluoroethylene resin (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer resin (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin (PFA), four Fluorinated ethylene-propylene hexafluoride-perfluoroalkyl vinyl ether copolymer resin (EPE), ethylene-tetrafluoroethylene copolymer resin (ETFE), trifluorochloroethylene resin (PCTFE), ethylene-trifluoroethylene chloride These are copolymer resin (ECTFE), vinylidene fluoride resin (PVdF), and vinyl fluoride resin (PVF).
- PTFE tetrafluoroethylene resin
- FEP tetrafluoroethylene-hexafluor
- the porous fluororesin tube is obtained by forming the fluororesin into a porous structure by a stretching method, a salt extraction method, a solvent extraction method, an emulsion method, a radiation irradiation method, a sintering method, or the like.
- the liquid fluorine-based elastomer composition is a liquid composition containing a fluorine-based elastomer precursor that is crosslinked by a curing reaction to form a fluorine-based elastomer and a curing catalyst.
- a commercially available liquid fluorine-based elastomer composition can be used.
- a specific example of a commercially available liquid fluorine-based elastomer composition is SIFEL2618 manufactured by Shin-Etsu Chemical Co., Ltd.
- the liquid fluorine-based elastomer composition is a liquid composition containing a fluorine-based elastomer precursor that is crosslinked by a curing reaction to form a fluorine-based elastomer and a curing catalyst, and preferably has a hardness of Shore A 25 to 70.
- a commercially available liquid fluorine-based elastomer composition can be used.
- a specific example of a commercially available liquid fluorine-based elastomer composition is SIFEL2618 manufactured by Shin-Etsu Chemical Co., Ltd.
- the wall thickness of the intermediate layer is preferably 5 ⁇ m or more.
- the inner layer and the outer layer of the laminated tube are made of materials having different physical properties, so that the amount of deformation is different.
- peeling between layers tends to occur.
- a flexible intermediate layer is disposed even after cross-linking, and the thickness thereof is set to 5 ⁇ m or more, so that the difference in deformation between the inner layer and the outer layer is mitigated with respect to the collapse in the radial direction of the tube, and the layers are separated. That can be suppressed.
- the outer layer elastomer is not specified as a specific elastomer but is suitable for its flexibility and shape recovery.
- silicone rubber and olefin-based elastomer can be used.
- silicone rubber is particularly preferable because it has heat resistance, low friction, and high shape recovery.
- Specific examples of the silicone rubber are silicone rubber formed from heat curable millable rubber and silicone rubber formed from heat curable liquid rubber, and the hardness thereof is preferably Shore A 40-70.
- a commercially available silicone rubber can be used.
- a specific example of a commercially available silicone rubber is KE561 manufactured by Shin-Etsu Chemical Co., Ltd.
- Example 1 A liquid fluoroelastomer composition (SIFEL2618 manufactured by Shin-Etsu Chemical Co., Ltd.) is impregnated into a porous polytetrafluoroethylene (ePTFE) tube having an outer diameter of 4.4 mm and an inner diameter of 3.2 mm, and has a thickness of about 50 ⁇ m. The elastomer layer was formed on the surface of the tube. After the elastomer layer has reached an appropriate hardness, a layer of 1.0 mm thick silicone rubber (KE561-U manufactured by Shin-Etsu Chemical Co., Ltd.) It was formed outside the elastomer layer.
- ePTFE porous polytetrafluoroethylene
- FIG. 2 is a micrograph of a part of the cross section of the tube.
- the ePTFE constituting the inner layer and the silicone rubber constituting the outer layer are bonded via a fluorine-based elastomer (SIFEL) as the intermediate layer.
- SIFEL fluorine-based elastomer
- Comparative Example 1 A laminated tube was obtained in the same manner as in Example 1 except that the liquid fluoroelastomer intermediate layer was not formed. The physical properties of the laminated tubes obtained in Example 1 and Comparative Example 1 were measured, and the results are shown in Table 1.
- Inner layer and outer layer delamination strength The delamination strength was measured by a T-type delamination test using an automatic tensile testing machine. The laminated tube cut out to a length of 50 mm was vertically divided into two parts, and 15 mm at one end of one of the two divided tubes was peeled off by hand. Thereafter, both ends of the peeled layer were fixed to a chuck of a tensile tester, a tensile test was performed at a speed of 1 m / min, and the stress when peeled was measured. The number of samples n was 5, and measurement was performed twice per sample. The measured stress was divided by the measured sample width length to calculate the stress per unit length.
- the peel strength of the inner layer and the outer layer of the laminated tube of Example 1 was high, and was 0.7 N / mm. Even when acetone was fed, the life of the laminated tube was 350 hours, and sufficient durability was confirmed. The peel strength of the inner layer and the outer layer of the laminated tube of Comparative Example 1 in which no intermediate layer was provided was low, and when acetone was fed, the laminated tube did not function as a pump tube in 1 hour.
- the pump tube life when a conventional olefin-based elastomer tube was used as a pump tube was 90 hours, which was considerably shorter than the pump tube life of the laminated tube of Example 1.
- Example 2 A laminated tube was obtained in the same manner as in Example 1 except that the thickness of the liquid fluoroelastomer intermediate layer was about 5 ⁇ m.
- Example 3 A laminated tube was obtained in the same manner as in Example 1 except that the thickness of the liquid fluoroelastomer intermediate layer was about 10 ⁇ m.
- Comparative Example 2 A laminated tube was obtained in the same manner as in Example 1 except that the thickness of the liquid fluoroelastomer intermediate layer was about 1 ⁇ m.
- the physical properties of the laminated tubes obtained in Examples 1 to 3 and Comparative Example 2 were measured, and the results are shown in Table 2.
- the intermediate layer has a sufficient thickness of 5 ⁇ m or more, even when acetone is fed, the life of the laminated tube is 300 hours or more, Sufficient durability was confirmed.
- the tube of Comparative Example 2 since the intermediate layer has a thickness of 5 ⁇ m or less and does not have a sufficient thickness, peeling of the inner layer and the outer layer of the laminated tube cannot be suppressed, and acetone is fed. The laminated tube stopped functioning as a pump tube in 50 hours.
- the laminated tube of the present invention is suitably used as a pump tube.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Laminated Bodies (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
Abstract
高い可撓性を有し、有機溶剤が送液されても長い寿命を有するチューブを提供する。チューブが、フッ素系エラストマーが含浸された多孔質フッ素樹脂からなる内層と、上記フッ素系エラストマーからなる中間層と、シリコーンゴムからなる外層を備え、内層と外層の層間剥離強度が0.48N/mm以上である。とくに、前記中間層の厚さが5μm以上のとき、高い耐久性を有し、長寿命である。
Description
本発明は、高い可撓性、特に径方向のつぶれに対する高い復元性、高い層間剥離強度及び長い寿命を有する積層チューブに関する。
チューブポンプ用チューブは、高い柔軟性と応力解放後の高い形状復元性を有していなければならない。チューブポンプ用チューブの代表的材質はシリコーンゴムである。シリコーンゴムは、優れた形状復元性と高い耐熱性を有しているが、高い機械的強度と、有機溶剤に対する十分な耐性を有していない。従って、ベンゼン、トルエン、アセトン等の有機溶剤が、シリコーンゴム製チューブポンプ用チューブ中を送液されると、繰り返しのつぶれによって当該チューブが破壊され、その寿命は非常に短い。チューブポンプ用チューブの別の代表的材質はオレフィン系エラストマーである。オレフィン系エラストマーは優れた形状復元性と、高い機械的強度を有しているが、十分な耐熱性と、有機溶剤に対する耐性を有していない。有機溶剤が、オレフィン系エラストマー製チューブポンプ用チューブ中を送液されると、当該チューブは有機溶剤で膨潤し、繰り返しのつぶれによって当該チューブが短期間で破壊される。
一方、チューブポンプ用チューブとは別に、架橋構造のシリコーンゴムが微細多孔質構造を有するポリテトラフルオロエチレンからなる基体チューブの微細空孔内に充填された、シリコーンゴムの機械的強度を補った可撓性チューブが検討された(例えば、特許文献1参照)。
一方、チューブポンプ用チューブとは別に、架橋構造のシリコーンゴムが微細多孔質構造を有するポリテトラフルオロエチレンからなる基体チューブの微細空孔内に充填された、シリコーンゴムの機械的強度を補った可撓性チューブが検討された(例えば、特許文献1参照)。
先述の特許文献1のチューブは高い形状復元性を有しているが、当該チューブの有機溶剤に対する耐久性と形状復元性は十分ではない。そこで、有機溶剤が送液されても長い寿命を有するチューブが望まれていたが、このようなチューブは実現されていなかった。
本発明が解決しようとする課題は、高い形状復元性を有し、有機溶剤が送液されても長い寿命を有するチューブの提供である。
本発明が解決しようとする課題は、高い形状復元性を有し、有機溶剤が送液されても長い寿命を有するチューブの提供である。
本発明の発明者は、上記課題を解決するために鋭意検討した結果、多孔質フッ素樹脂からなる特定の内層とエラストマーとからなる外層が特定の中間層を介して積層されている積層チューブが、上記特性を有することを見出し本発明を完成させるに至った。
本発明は、フッ素系エラストマーが含浸された多孔質フッ素樹脂からなる内層と、上記フッ素系エラストマーからなる中間層と、エラストマーからなる外層を備え、内層と外層の層間剥離強度が0.48N/mm以上である積層チューブである。
本発明は、さらに、前記フッ素系エラストマーからなる中間層の厚さが、5μm以上である積層チューブである。
本発明の積層チューブは、有機溶剤が送液されても、高い形状復元性を長期間有する。
図1は、本発明の積層チューブの断面を模式的に示す。本発明の積層チューブは、内層1と外層3が中間層2を介して積層される構造をしている。内層1は、フッ素系エラストマーが含浸された多孔質フッ素樹脂からなる。高い耐有機溶剤性を有するフッ素系エラストマーが、高い耐有機溶剤性と高い柔軟性を有する多孔質フッ素樹脂に含浸されており、内層1は、有機溶剤の外層3への浸透を防止する。更に、多孔質フッ素樹脂のフィブリル構造は、内層1のエラストマーの機械的強度の向上に寄与し、耐久性を向上させている。
中間層2は、内層1を構成するフッ素系エラストマーと同種のフッ素系エラストマーからなる。中間層2は、有機溶剤の外層3への浸透を防止すると共に、内層1と外層3を接着している。
外層3は、エラストマーからなる。内層1は、これ単体では形状復元性が低く、ポンプチューブのような用途には適さない。外層3には柔軟で形状復元性に富むものが適しており、外層3は、内層1及び中間層2を保護し、本発明の積層チューブに形状復元性を付与し、本発明の積層チューブのチューブポンプ用途として有効な機能を発現させる。
内層1と外層3の剥離強度は0.48N/mm以上である。内層1のフッ素樹脂やフッ素系エラストマーと外層3のエラストマーとはそのままでは接着されない。内層1と外層3の十分に高い剥離強度は、本発明の積層チューブがチューブポンプ用チューブとして使用される時、繰り返しの径方向のつぶれに対してチューブの強度と形状復元性の維持に貢献し、チューブの寿命の長期化に寄与する。とくに本発明の内層1のフッ素樹脂やフッ素系エラストマーと外層3のエラストマーの組み合わせの積層チューブでは、チューブの剥離強度が0.48N/mm以上であることで、外層がローラポンプから受けるチューブ長手方向の歪による剥離が抑えられることにより、チューブの繰り返しの径方向のつぶれによるチューブの破壊を抑えることが可能になる。
本発明の積層チューブの製造方法は、特定の製造方法に限定されない。当該製造方法の具体例は以下のとおりである。まず、フッ素系エラストマーの前駆体である液状フッ素系エラストマー組成物を、多孔質フッ素樹脂チューブに含浸させて内層1とする。液状フッ素系エラストマー組成物を含浸させると同時に、または含浸させた後に、中間層となる液状フッ素系エラストマー組成物層を、多孔質フッ素樹脂チューブの表面に形成する。中間層を形成した後、一定時間静置する。中間層を形成したチューブを静置中に、中間層の液状フッ素系エラストマー組成物は一次架橋される。このときの一次架橋は、中間層の表面の硬度が適当な範囲になるまでで反応を止めることが重要である。中間層のフッ素系エラストマー表面の硬度は、外層に使用するエラストマーの架橋前の硬度より低くするが、低くしすぎた場合、形状を維持しにくくなりチューブの成形精度に問題が生じる。その後、外層となるエラストマー層を、押出成形により、一次架橋された中間層のフッ素系エラストマーの外側に形成する。得られたチューブは加熱され、中間層のフッ素系エラストマーと外層のエラストマーが同時に二次架橋されて、本発明の積層チューブが得られる。中間層の液状フッ素系エラストマー組成物は、多孔質フッ素樹脂チューブの細孔に入り込んだ状態で架橋される。内層の液状フッ素系エラストマー組成物と中間層のフッ素系エラストマーは同種のため、内層の外表面の細孔内の液状フッ素系エラストマー組成物と中間層のフッ素系エラストマーは一体化する。このため、一体化したフッ素系エラストマーのアンカー効果により、内層と中間層の界面は強固に接着している。通常、フッ素系の樹脂やエラストマーと、他材質のエラストマーは、そのままでは接着せず、表面処理、プライマー処理、電子線照射等の処理をして接着されるが、本発明の積層チューブでは、そのような処理が必要とされない。内層フッ素系エラストマーと外層エラストマーは、チューブの積層構造を形成した状態で同時に架橋されるため、中間層のフッ素系エラストマーと外層のエラストマーの界面間も、架橋反応により化学的に結合されていると推察される。しかし、同時に架橋されるだけでは接着強度は十分ではなく、中間層と外層が積層される前に、中間層のフッ素系エラストマーの硬度が、架橋前の外層エラストマーの硬度より、少しだけ低くされていることが重要である。つまり、内層と中間層を形成した後のフッ素系エラストマー表面の一次架橋反応が適度な範囲で止められておくことで、外層エラストマーが被覆される時に、外層のエラストマーの微細な凹凸に中間層のフッ素系エラストマーが入り込み、両者が接触する面積が大きくなり、両者間の反応が十分に進行され得る。従って、多層チューブの内層多孔質フッ素樹脂チューブと外層エラストマーは、中間層のフッ素系エラストマーを介して強固に接着されている。通常、フッ素樹脂と他材質のエラストマーは、これらの表面処理、プライマー処理等の前処理により接着されるが、本発明の積層チューブが備える内層を構成する多孔質フッ素樹脂と外層を構成するエラストマーは、前処理されずに中間層を構成するフッ素系エラストマーを介して接着され得る。
多孔質フッ素樹脂チューブを構成するフッ素樹脂は、特定のフッ素樹脂に限定されない。当該フッ素樹脂の具体例は、四フッ化エチレン樹脂(PTFE)、四フッ化エチレン-六フッ化プロピレン共重合樹脂(FEP)、四フッ化エチレン-パーフルオロアルキルビニルエーテル共重合樹脂(PFA)、四フッ化エチレン-六フッ化プロピレン-パーフルオロアルキルビニルエーテル共重合樹脂(EPE)、エチレン-四フッ化エチレン共重合樹脂(ETFE)、三フッ化塩化エチレン樹脂(PCTFE)、エチレン-三フッ化塩化エチレン共重合樹脂(ECTFE)、フッ化ビニリデン樹脂(PVdF)、フッ化ビニル樹脂(PVF)である。多孔質フッ素樹脂チューブは、当該フッ素樹脂が、延伸法、塩類抽出法、溶剤抽出法、エマルジョン法、放射線照射法、焼結法等の方法により多孔質構造に形成されて得られる。
液状フッ素系エラストマー組成物は、硬化反応により架橋されてフッ素系エラストマーが形成されるフッ素系エラストマー前駆体と硬化触媒を含む液状の組成物である。液状フッ素系エラストマー組成物は市販されているものを用いることができる。液状フッ素系エラストマー組成物の市販品の具体例は、信越化学工業(株)製SIFEL2618である。
液状フッ素系エラストマー組成物は、硬化反応により架橋されてフッ素系エラストマーが形成されるフッ素系エラストマー前駆体と硬化触媒を含む液状の組成物であり、その硬度は、ShoreA 25~70のものが好ましい。液状フッ素系エラストマー組成物は市販されているものを用いることができる。液状フッ素系エラストマー組成物の市販品の具体例は、信越化学工業(株)製SIFEL2618である。
中間層の肉厚は、5μm以上とすることが好ましい。積層チューブに加えられる応力に対して、積層チューブの内層と外層とは物性が異なる材料を用いているため、変形量が異なる。積層チューブの内層と外層の変形量が異なると層間の剥離が発生しやすい。ここに、架橋後も柔軟な中間層を配置し、その厚さを5μm以上とすることで、チューブの径方向のつぶれに対して、内層と外層の変形の差を緩和して層間が剥離することを抑えることができる。
中間層の肉厚は、5μm以上とすることが好ましい。積層チューブに加えられる応力に対して、積層チューブの内層と外層とは物性が異なる材料を用いているため、変形量が異なる。積層チューブの内層と外層の変形量が異なると層間の剥離が発生しやすい。ここに、架橋後も柔軟な中間層を配置し、その厚さを5μm以上とすることで、チューブの径方向のつぶれに対して、内層と外層の変形の差を緩和して層間が剥離することを抑えることができる。
外層エラストマーは、特定のエラストマーに特定されないが、柔軟性、形状復元性に富むものが適している。例えば、シリコーンゴム、オレフィン系エラストマー等が挙げられる。なかでもシリコーンゴムは、耐熱性があり、低摩擦で形状復元性が高いことから、とくに好ましい。シリコーンゴムの具体例は、加熱硬化型ミラブルゴムから形成されるシリコーンゴム、加熱硬化型液状ゴムから形成されるシリコーンゴムであり、その硬度は、ShoreA 40~70のものが好ましい。シリコーンゴムは市販されているものを使用可能である。シリコーンゴムの市販品の具体例は、信越化学工業(株)製KE561である。
以下、実施例により本発明が詳細に説明されるが、本発明はこれらの実施例に限定されない。
実施例1
液状フッ素系エラストマー組成物(信越化学工業(株)製SIFEL2618)が、外径4.4mm、内径3.2mmの多孔質ポリテトラフルオロエチレン(ePTFE)チューブに含浸されると共に、50μm程度の厚みの当該エラストマーの層が当該チューブの表面に形成された。当該エラストマーの層が適度な硬度になった後、厚さ1.0mmのシリコーンゴム(信越化学工業(株)製KE561-U)の層が、押出成形機((株)三葉製作所製)により当該エラストマー層の外側に形成された。得られたチューブは150℃に加熱され、フッ素系エラストマーとシリコーンゴムの加硫が行われ、積層チューブが得られた。図2は、当該チューブの断面の一部の顕微鏡写真である。内層を構成するePTFEと外層を構成するシリコーンゴムが、中間層のフッ素系エラストマー(SIFEL)を介して接着されている。
実施例1
液状フッ素系エラストマー組成物(信越化学工業(株)製SIFEL2618)が、外径4.4mm、内径3.2mmの多孔質ポリテトラフルオロエチレン(ePTFE)チューブに含浸されると共に、50μm程度の厚みの当該エラストマーの層が当該チューブの表面に形成された。当該エラストマーの層が適度な硬度になった後、厚さ1.0mmのシリコーンゴム(信越化学工業(株)製KE561-U)の層が、押出成形機((株)三葉製作所製)により当該エラストマー層の外側に形成された。得られたチューブは150℃に加熱され、フッ素系エラストマーとシリコーンゴムの加硫が行われ、積層チューブが得られた。図2は、当該チューブの断面の一部の顕微鏡写真である。内層を構成するePTFEと外層を構成するシリコーンゴムが、中間層のフッ素系エラストマー(SIFEL)を介して接着されている。
比較例1
液状フッ素系エラストマーの中間層が形成されない以外、実施例1と同様の操作が行われ、積層チューブが得られた。
実施例1及び比較例1で得られた積層チューブの物性が測定され、結果が表1に示されている。
液状フッ素系エラストマーの中間層が形成されない以外、実施例1と同様の操作が行われ、積層チューブが得られた。
実施例1及び比較例1で得られた積層チューブの物性が測定され、結果が表1に示されている。
各種物性と測定方法は下記のとおりである。
(1)内層と外層の層間剥離強度
層間剥離強度は、自動引張試験機が用いられ、T形剥離試験により行った。
50mmの長さに切り出された積層チューブが縦に2分割され、2分割された片方のチューブの片端の15mmが手で剥離された。その後、剥離された層の両末端が引っ張り試験機のチャックに固定され、1m/minの速度で引張試験が行われ、剥離されるときの応力が測定された。サンプルn数は5で、1サンプルあたり2回の測定が行われた。測定された応力は、測定されたサンプル幅の長さで除されて、単位長さ当たりの応力が算出された。
(1)内層と外層の層間剥離強度
層間剥離強度は、自動引張試験機が用いられ、T形剥離試験により行った。
50mmの長さに切り出された積層チューブが縦に2分割され、2分割された片方のチューブの片端の15mmが手で剥離された。その後、剥離された層の両末端が引っ張り試験機のチャックに固定され、1m/minの速度で引張試験が行われ、剥離されるときの応力が測定された。サンプルn数は5で、1サンプルあたり2回の測定が行われた。測定された応力は、測定されたサンプル幅の長さで除されて、単位長さ当たりの応力が算出された。
(2)ポンプチューブ寿命
ポンプ本体としてMASTERflex L/S、ポンプヘッドとしてeasy-load model 77201-60、流体としてアセトンが使用された。長さ300mmに切断された積層チューブがポンプヘッドに接続され、ポンプが600rpmの回転数で稼働された。30秒間に送り出されるアセトンの量が計量され、送り出し量が半減するか、もしくは積層チューブが破壊されるまでの時間が、ポンプチューブ寿命とされた。
ポンプ本体としてMASTERflex L/S、ポンプヘッドとしてeasy-load model 77201-60、流体としてアセトンが使用された。長さ300mmに切断された積層チューブがポンプヘッドに接続され、ポンプが600rpmの回転数で稼働された。30秒間に送り出されるアセトンの量が計量され、送り出し量が半減するか、もしくは積層チューブが破壊されるまでの時間が、ポンプチューブ寿命とされた。
実施例1の積層チューブの内層と外層の剥離強度は高く、0.7N/mmであった。アセトンが送液された場合でも、当該積層チューブのポンプチューブ寿命は350時間であり、十分な耐久性が確認された。中間層が設けられていない比較例1の積層チューブの内層と外層の剥離強度は低く、アセトンが送液されると、当該積層チューブは1時間でポンプチューブとして機能しなくなった。従来のオレフィン系エラストマー製チューブがポンプチューブとして使用された時のポンプチューブ寿命は90時間であり、実施例1の積層チューブのポンプチューブ寿命よりかなり短かった。
実施例2
液状フッ素系エラストマーの中間層の厚みを5μm程度にした以外は、実施例1と同様の操作が行われ、積層チューブが得られた。
実施例3
液状フッ素系エラストマーの中間層の厚みを10μm程度にした以外は、実施例1と同様の操作が行われ、積層チューブが得られた。
比較例2
液状フッ素系エラストマーの中間層の厚みを1μm程度にした以外は、実施例1と同様の操作が行われ、積層チューブが得られた。
実施例1~3及び比較例2で得られた積層チューブの物性が測定され、結果が表2に示されている。
液状フッ素系エラストマーの中間層の厚みを5μm程度にした以外は、実施例1と同様の操作が行われ、積層チューブが得られた。
実施例3
液状フッ素系エラストマーの中間層の厚みを10μm程度にした以外は、実施例1と同様の操作が行われ、積層チューブが得られた。
比較例2
液状フッ素系エラストマーの中間層の厚みを1μm程度にした以外は、実施例1と同様の操作が行われ、積層チューブが得られた。
実施例1~3及び比較例2で得られた積層チューブの物性が測定され、結果が表2に示されている。
実施例1~3の積層チューブは、中間層が5μm以上で十分な厚さを有しているため、アセトンが送液された場合でも、当該積層チューブのポンプチューブ寿命は300時間以上であり、十分な耐久性が確認された。比較例2のチューブは、中間層の厚さが5μm以下であり十分な厚さを有していないため、積層チューブの内層と外層の剥離を抑えることはできず、アセトンが送液されると、当該積層チューブは50時間でポンプチューブとして機能しなくなった。
本発明の積層チューブは、ポンプチューブとして好適に使用される。
1・・・内層、2・・・中間層、3・・・外層
Claims (2)
- フッ素系エラストマーが含浸された多孔質フッ素樹脂からなる内層と、
上記フッ素系エラストマーからなる中間層と、
シリコーンゴムからなる外層を備え、
内層と外層の層間剥離強度が0.48N/mm以上である積層チューブ。 - 前記フッ素系エラストマーからなる中間層の厚さが、5μm以上である請求項1に記載の積層チューブ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017554162A JPWO2017094807A1 (ja) | 2015-11-30 | 2016-11-30 | 積層チューブ |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-233018 | 2015-11-30 | ||
JP2015233018 | 2015-11-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017094807A1 true WO2017094807A1 (ja) | 2017-06-08 |
Family
ID=58796957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/085647 WO2017094807A1 (ja) | 2015-11-30 | 2016-11-30 | 積層チューブ |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2017094807A1 (ja) |
WO (1) | WO2017094807A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210094253A1 (en) * | 2019-09-27 | 2021-04-01 | Saint-Gobain Performance Plastics Corporation | Multilayer tube and method for making same |
WO2021149782A1 (ja) * | 2020-01-21 | 2021-07-29 | 株式会社 潤工社 | チューブ |
WO2023008473A1 (ja) | 2021-07-28 | 2023-02-02 | 株式会社 潤工社 | チューブ及びそれを用いたポンプ |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56109727A (en) * | 1980-02-05 | 1981-08-31 | Nippon Erasutoran Kk | Flexible tube and manufacture thereof |
JPS62200301U (ja) * | 1986-06-12 | 1987-12-21 | ||
JPH0584861A (ja) * | 1991-09-30 | 1993-04-06 | Japan Gore Tex Inc | シリコーン樹脂を使用した複合材料 |
JP2002502735A (ja) * | 1998-02-13 | 2002-01-29 | ゴア エンタープライズ ホールディングス,インコーポレイティド | 耐屈曲性の複合エラストマー組成物 |
JP2008030471A (ja) * | 2006-06-29 | 2008-02-14 | Japan Gore Tex Inc | 積層型弾性チューブ |
JP2009119243A (ja) * | 2008-08-01 | 2009-06-04 | Tachibana Shoten Co Ltd | 化学・医療用部品及び化学・医療用装置 |
JP2010106882A (ja) * | 2008-10-28 | 2010-05-13 | Junkosha Co Ltd | 管状体 |
-
2016
- 2016-11-30 WO PCT/JP2016/085647 patent/WO2017094807A1/ja active Application Filing
- 2016-11-30 JP JP2017554162A patent/JPWO2017094807A1/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56109727A (en) * | 1980-02-05 | 1981-08-31 | Nippon Erasutoran Kk | Flexible tube and manufacture thereof |
JPS62200301U (ja) * | 1986-06-12 | 1987-12-21 | ||
JPH0584861A (ja) * | 1991-09-30 | 1993-04-06 | Japan Gore Tex Inc | シリコーン樹脂を使用した複合材料 |
JP2002502735A (ja) * | 1998-02-13 | 2002-01-29 | ゴア エンタープライズ ホールディングス,インコーポレイティド | 耐屈曲性の複合エラストマー組成物 |
JP2008030471A (ja) * | 2006-06-29 | 2008-02-14 | Japan Gore Tex Inc | 積層型弾性チューブ |
JP2009119243A (ja) * | 2008-08-01 | 2009-06-04 | Tachibana Shoten Co Ltd | 化学・医療用部品及び化学・医療用装置 |
JP2010106882A (ja) * | 2008-10-28 | 2010-05-13 | Junkosha Co Ltd | 管状体 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210094253A1 (en) * | 2019-09-27 | 2021-04-01 | Saint-Gobain Performance Plastics Corporation | Multilayer tube and method for making same |
CN114514394A (zh) * | 2019-09-27 | 2022-05-17 | 美国圣戈班性能塑料公司 | 多层管及其制造方法 |
WO2021149782A1 (ja) * | 2020-01-21 | 2021-07-29 | 株式会社 潤工社 | チューブ |
JPWO2021149783A1 (ja) * | 2020-01-21 | 2021-07-29 | ||
WO2021149783A1 (ja) | 2020-01-21 | 2021-07-29 | 株式会社 潤工社 | チューブ及びそれを用いたポンプ |
KR20220121249A (ko) | 2020-01-21 | 2022-08-31 | 가부시키가이샤 쥰코샤 | 튜브 및 그것을 이용한 펌프 |
JP7445999B2 (ja) | 2020-01-21 | 2024-03-08 | 株式会社潤工社 | チューブ及びそれを用いたポンプ |
WO2023008473A1 (ja) | 2021-07-28 | 2023-02-02 | 株式会社 潤工社 | チューブ及びそれを用いたポンプ |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017094807A1 (ja) | 2018-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017094807A1 (ja) | 積層チューブ | |
EP3116711B1 (en) | Multilayer flexible tube and methods for making same | |
JP2008030471A (ja) | 積層型弾性チューブ | |
JP4860455B2 (ja) | シリンジ用ガスケットとこれを用いたシリンジならびにガスケット用摺動フィルム | |
JP5449803B2 (ja) | フッ素系弾性チューブ | |
US7396499B2 (en) | Multiple layered membrane with fluorine containing polymer layer | |
WO2021149783A1 (ja) | チューブ及びそれを用いたポンプ | |
US11465395B2 (en) | Multilayer flexible tube and methods for making same | |
EP3611758B1 (en) | Wafer-retaining elastic film of cmp device | |
JP2018179079A (ja) | 摺動部材及び摺動部材の製造方法 | |
JP7274466B2 (ja) | コンポジット製造用のフッ素エラストマーに覆われたエラストマー工具 | |
WO2010050366A1 (ja) | 管状体 | |
JP2018502945A (ja) | 接着剤アレンジメント | |
JP4634069B2 (ja) | フッ素樹脂被覆リング状シール材の製造方法 | |
WO2008001870A1 (fr) | Tube elasTique stratifié | |
JP6384952B2 (ja) | 摺動部材 | |
JP7010558B2 (ja) | 架橋フッ素樹脂チューブの製造方法、架橋フッ素樹脂チューブ及び熱回復物品 | |
JP7413053B2 (ja) | 積層体、積層体用中間体および積層体の製造方法 | |
JP2005186370A (ja) | 熱収縮チューブ | |
JP2005344806A (ja) | ロールカバー及び該ロールカバーを含むロールの製造方法 | |
JP2017109327A (ja) | 成形体及びその製造方法 | |
JP2010151927A (ja) | ロールカバー |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16870744 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017554162 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16870744 Country of ref document: EP Kind code of ref document: A1 |