WO2017092629A1 - 实施晶态碳沉积加工前的处理工艺 - Google Patents

实施晶态碳沉积加工前的处理工艺 Download PDF

Info

Publication number
WO2017092629A1
WO2017092629A1 PCT/CN2016/107396 CN2016107396W WO2017092629A1 WO 2017092629 A1 WO2017092629 A1 WO 2017092629A1 CN 2016107396 W CN2016107396 W CN 2016107396W WO 2017092629 A1 WO2017092629 A1 WO 2017092629A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
minutes
crystalline carbon
carbon deposition
deposition process
Prior art date
Application number
PCT/CN2016/107396
Other languages
English (en)
French (fr)
Inventor
杨轶群
Original Assignee
上海睿锆信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海睿锆信息科技有限公司 filed Critical 上海睿锆信息科技有限公司
Publication of WO2017092629A1 publication Critical patent/WO2017092629A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only

Definitions

  • the present invention relates to a surface treatment process for a substance, and more particularly to a process for treating a surface of a substance prior to performing a crystalline carbon deposition process on the substance.
  • Deposition mainly refers to the continuous sedimentation of solid particles suspended in a liquid, which is a natural phenomenon. This phenomenon is applied in the field of processing and manufacturing to realize the processing and manufacturing of products, such as: vapor deposition, which utilizes physical and chemical processes occurring in the gas phase to form functional or decorative metal, non-metal or compound coating on the surface of the workpiece. Floor. According to the film formation mechanism, vapor deposition can be divided into chemical vapor deposition, physical vapor deposition and plasma vapor deposition.
  • the technician Before using deposition techniques to form various coatings on the surface of the workpiece, the technician also needs to pre-treat the surface of the workpiece, such as cleaning with acid, alkali or water, followed by sandblasting and baking.
  • the purpose of cleaning the workpiece by acid and alkali is to increase the adhesion of the coating on the metal surface.
  • Common cleaning methods are: one-step acid, one-step alkali or two-step acid-base.
  • acid-base cleaning is difficult to achieve large-scale application, and acid-base substances are also highly polluted by the environment.
  • acid-base reagents they are also being regulated by law, so it is necessary to find an alternative technical solution.
  • Another object of the present invention is to provide a powder that replaces the existing processing technology and meets the needs of deposition techniques, particularly vapor deposition technology applications.
  • the invention provides a treatment process before performing a crystalline carbon deposition process, which comprises the steps of: first cleaning with an organic solvent (such as, but not limited to, ethanol, methanol, ether, etc.) (eg, scrubbing, scraping, scrubbing, etc.) On the surface of the workpiece, treat the surface of the workpiece with hydrogen peroxide (eg, soak for 5 minutes to 250 minutes).
  • an organic solvent such as, but not limited to, ethanol, methanol, ether, etc.
  • hydrogen peroxide eg, soak for 5 minutes to 250 minutes.
  • the invention provides a treatment process before performing the crystalline carbon deposition processing. After the surface treatment is performed by using hydrogen peroxide water, the workpiece is washed in the workpiece water, the workpiece is dried, and the workpiece is heated in the heating furnace to 700 ° C to 1,300 ° C. And steps such as cooling the workpiece.
  • Another treatment process before the implementation of the crystalline carbon deposition process provided by the present invention comprises the following steps:
  • Step one using an organic solvent (such as: but not limited to ethanol, methanol and ether) to clean (such as: scrubbing, scraping and scrubbing, etc.) the surface of the workpiece;
  • an organic solvent such as: but not limited to ethanol, methanol and ether
  • Step 2 treating the surface of the workpiece with hydrogen peroxide (eg, soaking for 15 minutes to 250 minutes);
  • Step three cleaning the workpiece
  • Step 4 placing the workpiece into the container for ultrasonic vibration for 5 minutes to 50 minutes;
  • Step 5 drying the workpiece
  • Step 6 heating the workpiece placed in the heating furnace (such as: vacuuming or injecting protective gas and heating) to 700 ° C ⁇ 1,300 ° C;
  • Step seven cooling the workpiece.
  • Another treatment process before the implementation of the crystalline carbon deposition process provided by the present invention comprises the following steps:
  • Step one using an organic solvent (such as: but not limited to ethanol, methanol and ether, etc.) to clean (such as: scrubbing, scraping and scrubbing, etc.) the surface of the workpiece and then washing with water;
  • an organic solvent such as: but not limited to ethanol, methanol and ether, etc.
  • Step 2 Treat the surface of the workpiece with hydrogen peroxide (eg, soak for 5 minutes to 250 minutes) and wash with water;
  • hydrogen peroxide eg, soak for 5 minutes to 250 minutes
  • Step 3 after the workpiece is sandblasted, it is washed again with an organic solvent;
  • Step four cleaning the workpiece
  • Step 5 placing the workpiece into the container for ultrasonic vibration for 5 minutes to 50 minutes;
  • Step six drying the workpiece
  • Step 7 placing the workpiece in a heating furnace (for example, vacuuming or injecting a protective gas and heating) 700 ° C to 1,000 ° C;
  • a heating furnace for example, vacuuming or injecting a protective gas and heating
  • Step eight cooling the workpiece.
  • the process provided by the present invention in the process of treating the surface of the workpiece with hydrogen peroxide, is preferably immersed for 30 minutes to 250 minutes. During the period, it is also heated to 40 ° C to 250 ° C, especially 60 ° C to 100 ° C.
  • a decoated powder for chemical peeling of cemented carbide is added to the hydrogen peroxide to enhance the treatment effect.
  • the process provided by the present invention further comprises cleaning the workpiece by placing the workpiece in a detergent (Detergent) and then cleaning the workpiece in the water.
  • a detergent Detergent
  • the cleaning method is as follows: but not limited to ultrasonic cleaning.
  • the ultrasonic oscillation time preferentially selected by ultrasonic vibration is 5 minutes to 120 minutes.
  • Ultrasonic vibration also preferentially selects ethanol as a solvent, and adds diamond particles having a diameter of less than 0.05 mm, especially diamond particles having a diameter of less than 0.001 mm.
  • the workpiece after ultrasonic vibration is placed in water for 1 minute to 50 minutes, preferably 7 minutes to 15 minutes, such as: but not limited to 7 minutes, 8 minutes, 9 minutes, 10 minutes, 11 minutes, 12 minutes, 13 minutes, 14 minutes and 15 minutes.
  • the pressure is less than 1 MPa, and preferably 0.05 MPa to 0.2 MPa.
  • Useful materials such as: but not limited to diamond, quartz, glass, steel, rubber, silicon, silicon carbide and silicon dioxide.
  • the blasting treatment also includes, in order, removing particles remaining on the surface of the workpiece after blasting, and washing with an organic solvent.
  • the workpiece it is preferred to heat the workpiece to 700 ° C to 1,000 ° C in a heating furnace.
  • the crystalline carbon is a crystal of carbon mainly composed of sp3 bonds (for example, diamond), that is, an allotrope crystal composed of carbon atoms connected by sp3 bonds.
  • the treatment process before the implementation of the crystalline carbon deposition process provided by the invention no longer uses the acid-base reagent, reduces the pollution control cost, and enhances the operability and scale of the process.
  • the process provided by the invention is suitable for implementing a workpiece processed by crystalline carbon (such as diamond), comparing with a cemented carbide workpiece without coating, and determining the friction resistance by processing the metal material, and measuring aluminum by processing the metal aluminum material. Sticky to the workpiece The knot is judged to judge the surface finish. After testing, the friction resistance of each workpiece was improved by more than 30%.
  • crystalline carbon such as diamond
  • Step one scrub the surface of the workpiece with ethanol
  • Step 2 soak the workpiece with hydrogen peroxide added with de-coated powder (see CN201510424538.X) for 15 minutes to 250 minutes;
  • Step three cleaning the workpiece
  • Step 4 placing the workpiece in a container for ultrasonic vibration for 5 minutes to 50 minutes;
  • Step 5 drying the workpiece
  • Step six the workpiece placed in the heating furnace is heated to 700 ° C ⁇ 1,300 ° C;
  • Step seven cooling the workpiece.
  • a diamond layer is deposited on the surface of the workpiece by chemical vapor deposition to obtain a workpiece 1 bonded to the surface.
  • Step one scrubbing the surface of the workpiece with ethanol and then washing with water;
  • Step two soaking the workpiece with hydrogen peroxide for 30 minutes to 250 minutes;
  • Step 3 After ultrasonically cleaning the workpiece with a detergent, the workpiece is ultrasonically cleaned in water;
  • Step 4 using ethanol as a solvent, adding diamond particles having a diameter of less than 0.05 mm, placing the workpiece into a container for ultrasonic vibration for 7 minutes to 15 minutes, and then immersing in water for 1 minute to 50 minutes;
  • Step 5 drying the workpiece
  • Step six will be placed in the heating furnace, after vacuuming, the workpiece is heated to 700 ° C ⁇ 1,000 ° C;
  • Step seven cooling the workpiece.
  • a diamond layer is deposited on the surface of the workpiece by chemical vapor deposition to obtain a workpiece 2 bonded to the surface.
  • Step one scrub the surface of the workpiece with ethanol
  • Step 2 soaking the workpiece with hydrogen peroxide added with de-coated powder for 15 minutes to 250 minutes;
  • Step 3 sandblasting the workpiece (pressure less than 1 MPa), and then removing particles remaining on the surface of the workpiece after blasting;
  • Step 4 After ultrasonically cleaning the workpiece with a detergent, the workpiece is ultrasonically cleaned in water;
  • Step 5 placing the workpiece into the container for ultrasonic vibration for 1 minute to 30 minutes;
  • Step six drying the workpiece
  • Step 7 placing the furnace into a furnace, injecting a protective gas, and heating the workpiece to 700 ° C to 1,000 ° C;
  • Step eight cooling the workpiece.
  • a diamond layer is deposited on the surface of the workpiece by chemical vapor deposition to obtain a workpiece 3 bonded to the surface.
  • Step one scrub the surface of the workpiece with ethanol
  • Step two soaking the workpiece with hydrogen peroxide for 30 minutes to 250 minutes;
  • the workpiece is subjected to sand blasting (pressure is 0.05 MPa to 0.2 MPa), and then the particles remaining on the surface of the workpiece after blasting are removed, and then washed again with an organic solvent;
  • Step 4 After ultrasonically cleaning the workpiece with a detergent, the workpiece is ultrasonically cleaned in water;
  • Step 5 using ethanol as a solvent, adding diamond particles having a diameter of less than 0.001 mm, placing the workpiece into a container for ultrasonic vibration for 10 minutes to 20 minutes;
  • Step six drying the workpiece
  • Step 7 placing the furnace into a furnace, injecting a protective gas, and heating the workpiece to 700 ° C to 1,000 ° C;
  • Step eight cooling the workpiece.
  • a diamond layer is deposited on the surface of the workpiece by chemical vapor deposition to produce a workpiece 4 bonded to the surface.
  • the workpiece 1, the workpiece 2, the workpiece 3 and the workpiece 4 are compared with the cemented carbide workpiece without coating, and the friction resistance is judged by processing the metal material, and the aluminum foil is processed to measure the aluminum scrap to the workpiece. Adhesion to determine surface finish. After testing, the friction resistance of each workpiece was improved by more than 30%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

一种实施晶态碳沉积加工前的处理工艺,包括步骤:用有机溶剂清洗工件表面,用双氧水处理工件表面,清洗工件,将工件置入容器中进行超声波震荡5分钟~50分钟,干燥工件,将置入加热炉的工件加热至700℃~1,300℃,冷却工件。

Description

实施晶态碳沉积加工前的处理工艺 技术领域
本发明涉及一种物质的表面处理工艺,尤其涉及一种在对物质实施晶态碳沉积加工前,对物质表面进行处理的工艺。
背景技术
沉积主要指悬浮在液体中的固体颗粒的连续沉降,属于一种自然现象。该现象被应用于加工制造领域,以实现产品的加工和制造,如:气相沉积,是利用气相中发生的物理、化学过程,在工件表面形成功能性或装饰性的金属、非金属或化合物涂层。按照成膜机理,气相沉积又可分为化学气相沉积、物理气相沉积和等离子体气相沉积等几种。
在采用沉积技术在工件表面形成各种涂层前,技术人员还需要对工件表面进行前处理,比如:用酸、碱或水等进行清洗,再经喷砂和烘烤等步骤。
酸碱清洗工件的目的在于增加涂层在金属表面的结合力,常见的清洗方式如:一步酸、一步碱或二步酸碱。在实践中,酸碱清洗难以实现规模化应用,且酸碱物质对环境亦有较强的污染,在获得酸碱试剂方面,也正在受到法律的管制,因此有必要寻找一种替代的技术方案以实施表面处理,以满足沉积技术应用的需要。
发明内容
本发明的一个目的在于提供一种实施晶态碳沉积加工前的处理工艺,以提高工艺对环境的友好性,便于实际应用。
本发明的另一个目的在于提供一种粉体,以替代现有的处理工艺,满足沉积技术,尤其是气相沉积技术应用的需要。
本发明提供的一种实施晶态碳沉积加工前的处理工艺,其步骤包括:先用有机溶剂(如:但不仅限于乙醇、甲醇和乙醚等)清洗(如:擦洗、刮洗和洗刷等)工件表面,再用双氧水处理工件表面(如:浸泡5分钟~250分钟)。
本发明提供的实施晶态碳沉积加工前的处理工艺,其使用双氧水进行表面处理后,还采用依次将工件水中进行清洗工件、干燥工件、将工件于加热炉内加热至700℃~1,300℃,以及冷却工件等步骤。
本发明提供的另一种实施晶态碳沉积加工前的处理工艺,包括如下步骤:
步骤一,用有机溶剂(如:但不仅限于乙醇、甲醇和乙醚等)清洗(如:擦洗、刮洗和洗刷等)工件表面;
步骤二,用双氧水处理工件表面(如:浸泡15分钟~250分钟);
步骤三,清洗工件;
步骤四,将工件置入容器中进行超声波震荡5分钟~50分钟;
步骤五,干燥工件;
步骤六,将置入加热炉的工件加热(如:抽真空或注入保护性气体后加温)至700℃~1,300℃;
步骤七,冷却工件。
本发明提供的另一种实施晶态碳沉积加工前的处理工艺,包括如下步骤:
步骤一,用有机溶剂(如:但不仅限于乙醇、甲醇和乙醚等)清洗(如:擦洗、刮洗和洗刷等)工件表面后进行水洗;
步骤二,用双氧水处理工件表面(如:浸泡5分钟~250分钟),并用水清洗;
步骤三,对工件进行喷砂处理后,再次用有机溶剂清洗;
步骤四,清洗工件;
步骤五,将工件置入容器中进行超声波震荡5分钟~50分钟;
步骤六,干燥工件;
步骤七,将工件置入加热炉加热(如:抽真空或注入保护性气体后加温)700℃~1,000℃;
步骤八,冷却工件。
本发明提供的工艺,用双氧水处理工件表面过程中,优先选择浸泡30分钟~250分钟。期间,还采用加温至40℃~250℃,尤其是60℃~100℃。此外,在双氧水中还加入用于硬质合金化学退涂的退涂粉,以增强处理效果。
本发明提供的工艺,清洗工件还包括先将工件置入去污剂(Detergent)清洗后再将工件于水中清洗,采用的清洗方式如:但不仅限于超声清洗。
本发明提供的工艺,超声波震荡优先选择的超声波震荡时间为5分钟~120分钟。超声波震荡还优先选择乙醇为溶剂,加入直径小于0.05mm的金刚石颗粒,尤其是直径小于0.001mm的金刚石颗粒。在超声震荡,还包括将超声波震荡后的工件置入水中浸泡1分钟~50分钟,优先选择7分钟~15分钟,如:但不仅限于7分钟、8分钟、9分钟、10分钟、11分钟、12分钟、13分钟、14分钟和15分钟。
本发明提供的工艺,其中喷砂工艺采用本领域的常规技术,压力小于1MPa,优先选择0.05MPa~0.2MPa。可用的材料如:但不仅限于金刚石、石英、玻璃、钢、橡胶、硅、碳化硅和二氧化硅等。喷砂处理还依次包括:清除残留在喷砂处理后工件表面的颗粒,以及用有机溶剂清洗。
本发明提供的工艺,优先选择在加热炉内将工件加热至700℃~1,000℃。
本发明提供的工艺,晶态碳为sp3键连接为主的碳的晶体(如:金刚石),即碳原子通过sp3键连接构成的同素异形体晶体
本发明技术方案实现的有益效果:
本发明提供的实施晶态碳沉积加工前的处理工艺,不再使用酸碱试剂,减少了治污成本,增强了工艺的可操作性和规模化。
本发明提供的工艺适用于实施晶态碳(如:金刚石)沉积加工工件,与不做涂层的硬质合金工件向对比,以加工金属材料判断其耐摩擦性,以加工金属铝材料测量铝屑对工件的粘 结性以判断表面光洁度。经检测,各个工件的耐摩擦性提高了30%以上。
具体实施方式
以下详细描述本发明的技术方案。本发明实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围中。
实施例1
步骤一,用乙醇擦洗工件表面;
步骤二,用加入退涂粉(参见CN201510424538.X)的双氧水浸泡工件15分钟~250分钟;
步骤三,清洗工件;
步骤四,将工件置入盛有容器中进行超声波震荡5分钟~50分钟;
步骤五,干燥工件;
步骤六,将置入加热炉的工件加热至700℃~1,300℃;
步骤七,冷却工件。
采用化学气相沉积在工件表面沉积金刚石层,制得表面结合金刚石的工件1。
实施例2
步骤一,用乙醇擦洗工件表面后进行水洗;
步骤二,用双氧水浸泡工件30分钟~250分钟后;
步骤三,用去污剂超声清洗工件后,再将工件于水中进行超声清洗;
步骤四,以乙醇为溶剂,加入直径小于0.05mm的金刚石颗粒,将工件置入盛有容器中进行超声波震荡7分钟~15分钟,然后置入水中浸泡1分钟~50分钟;
步骤五,干燥工件;
步骤六,将置入加热炉,抽真空后将工件加热至700℃~1,000℃;
步骤七,冷却工件。
采用化学气相沉积在工件表面沉积金刚石层,制得表面结合金刚石的工件2。
实施例3
步骤一,用乙醇擦洗工件表面;
步骤二,用加入退涂粉的双氧水浸泡工件15分钟~250分钟;
步骤三,对工件进行喷砂处理(压力小于1MPa),之后清除残留在喷砂处理后工件表面的颗粒;
步骤四,用去污剂超声清洗工件后,再将工件于水中进行超声清洗;
步骤五,将工件置入容器中进行超声波震荡1分钟~30分钟;
步骤六,干燥工件;
步骤七,将置入加热炉,注入保护性气体后将工件加热至700℃~1,000℃;
步骤八,冷却工件。
采用化学气相沉积在工件表面沉积金刚石层,制得表面结合金刚石的工件3。
实施例4
步骤一,用乙醇擦洗工件表面;
步骤二,用双氧水浸泡工件30分钟~250分钟后;
步骤三,对工件进行喷砂处理(压力为0.05MPa~0.2MPa),之后清除残留在喷砂处理后工件表面的颗粒,再次用有机溶剂清洗;
步骤四,用去污剂超声清洗工件后,再将工件于水中进行超声清洗;
步骤五,以乙醇为溶剂,加入直径小于0.001mm的金刚石颗粒,将工件置入盛有容器中进行超声波震荡10分钟~20分钟;
步骤六,干燥工件;
步骤七,将置入加热炉,注入保护性气体后将工件加热至700℃~1,000℃;
步骤八,冷却工件。
采用化学气相沉积在工件表面沉积金刚石层,制得表面结合金刚石的工件4。
实施例5
将制得的工件1、工件2、工件3和工件4,与不做涂层的硬质合金工件向对比,以加工金属材料判断其耐摩擦性,以加工金属铝材料测量铝屑对工件的粘结性以判断表面光洁度。经检测,各个工件的耐摩擦性提高了30%以上。
实施例6
传统酸碱法前处理,处理500支12mm硬质合金棒料前端30mm部分,需要处理约2L含金属离子的强酸强碱废液。应用本实施例的工艺加工同样数量的料棒,约消耗5L双氧水,加入金属离子捕捉剂并静置后自然变为水和沉淀物,有利于节能和环保。

Claims (13)

  1. 一种实施晶态碳沉积加工前的处理工艺,其特征在于包括如下步骤:
    步骤一,用有机溶剂清洗工件表面;
    步骤二,用双氧水处理所述的工件表面;
    步骤三,清洗所述的工件;
    步骤四,将所述的工件置入容器中进行超声波震荡5分钟~50分钟;
    步骤五,干燥工件;
    步骤六,将置入加热炉的工件加热至700℃~1,300℃;
    步骤七,冷却工件。
  2. 一种实施晶态碳沉积加工前的处理工艺,其特征在于包括如下步骤:
    步骤一,用有机溶剂清洗工件表面;
    步骤二,用双氧水处理工件表面;
    步骤三,对工件进行喷砂处理;
    步骤四,清洗所述的工件;
    步骤五,将工件置入容器中进行超声波震荡5分钟~50分钟;
    步骤六,干燥工件;
    步骤七,将置入加热炉的工件加热至700℃~1,300℃;
    步骤八,冷却工件。
  3. 根据权利要求2所述的实施晶态碳沉积加工前的处理工艺,其特征在于所述的喷砂处理压力小于1MPa。
  4. 根据权利要求2所述的实施晶态碳沉积加工前的处理工艺,其特征在于所述的喷砂处理压力为0.05MPa~0.2MPa。
  5. 根据权利要求1或2所述的实施晶态碳沉积加工前的处理工艺,其特征在于所述的超声波震荡5分钟~120分钟。
  6. 根据权利要求1或2所述的实施晶态碳沉积加工前的处理工艺,其特征在于所述的超声波震荡以乙醇为溶剂。
  7. 根根据权利要求1或2所述的实施晶态碳沉积加工前的处理工艺,其特征在于所述的超声波震荡还加入直径小于0.05mm的金刚石颗粒。
  8. 根据权利要求1或2所述的实施晶态碳沉积加工前的处理工艺,其特征在于所述的超声波震荡还加入直径小于0.001mm的金刚石颗粒。
  9. 根据权利要求1或2所述的实施晶态碳沉积加工前的处理工艺,其特征在于所述的超声震荡还包括将超声波震荡后的所述工件置入水中浸泡1分钟~50分钟。
  10. 根据权利要求1或2所述的实施晶态碳沉积加工前的处理工艺,其特征在于在所述的加热炉内将所述的工件加热至700℃~1,000℃。
  11. 根据权利要求1或2所述的实施晶态碳沉积加工前的处理工艺,其特征在于所述的有机溶剂选自于乙醇、甲醇和乙醚之一种或几种。
  12. 根据权利要求1或2所述的实施晶态碳沉积加工前的处理工艺,其特征在于所述的双氧水浸泡工件表面15分钟~250分钟。
  13. 根据权利要求1或2所述的实施晶态碳沉积加工前的处理工艺,其特征在于所述的双氧水处理工件表面,还包括加温至40℃~250℃。
PCT/CN2016/107396 2015-12-01 2016-11-27 实施晶态碳沉积加工前的处理工艺 WO2017092629A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510867208.8 2015-12-01
CN201510867208.8A CN106811729A (zh) 2015-12-01 2015-12-01 实施晶态碳沉积加工前的处理工艺

Publications (1)

Publication Number Publication Date
WO2017092629A1 true WO2017092629A1 (zh) 2017-06-08

Family

ID=58796283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/107396 WO2017092629A1 (zh) 2015-12-01 2016-11-27 实施晶态碳沉积加工前的处理工艺

Country Status (2)

Country Link
CN (1) CN106811729A (zh)
WO (1) WO2017092629A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0374923A2 (en) * 1988-12-21 1990-06-27 Mitsubishi Materials Corporation Diamond-coated tool member, substrate thereof and method for producing same
EP0384011A1 (en) * 1989-02-23 1990-08-29 Toshiba Tungaloy Co. Ltd. Diamond-coated sintered body excellent in adhesion and process for preparing the same
CN1632165A (zh) * 2004-12-28 2005-06-29 北京科技大学 一种在硬质合金工具上制备金刚石涂层的方法
CN103114274A (zh) * 2013-03-15 2013-05-22 中国工程物理研究院总体工程研究所 一种微小孔径金刚石涂层拉丝模的制备方法
CN103286537A (zh) * 2013-06-26 2013-09-11 洛阳理工学院 一种具有高抗磨性涂层刀具的制备方法
CN105018934A (zh) * 2015-07-15 2015-11-04 安徽多晶涂层科技有限公司 一种硬质涂层用退涂粉、配置的退涂液及退涂方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1014909B (zh) * 1987-08-28 1991-11-27 北京量具刃具厂 钢制品镀膜前净洗工艺
US20030039764A1 (en) * 2000-12-22 2003-02-27 Burns Steven M. Enhanced surface preparation process for application of ceramic coatings
CN102649625B (zh) * 2012-05-03 2014-06-18 北京鼎臣超导科技有限公司 一种镀膜用玻璃衬底的清洗方法
US8486870B1 (en) * 2012-07-02 2013-07-16 Ajay P. Malshe Textured surfaces to enhance nano-lubrication

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0374923A2 (en) * 1988-12-21 1990-06-27 Mitsubishi Materials Corporation Diamond-coated tool member, substrate thereof and method for producing same
EP0384011A1 (en) * 1989-02-23 1990-08-29 Toshiba Tungaloy Co. Ltd. Diamond-coated sintered body excellent in adhesion and process for preparing the same
CN1632165A (zh) * 2004-12-28 2005-06-29 北京科技大学 一种在硬质合金工具上制备金刚石涂层的方法
CN103114274A (zh) * 2013-03-15 2013-05-22 中国工程物理研究院总体工程研究所 一种微小孔径金刚石涂层拉丝模的制备方法
CN103286537A (zh) * 2013-06-26 2013-09-11 洛阳理工学院 一种具有高抗磨性涂层刀具的制备方法
CN105018934A (zh) * 2015-07-15 2015-11-04 安徽多晶涂层科技有限公司 一种硬质涂层用退涂粉、配置的退涂液及退涂方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAUBNER, R. ET AL.: "Interactions of hard metal substrates during diamond deposition", INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, vol. 16, no. 3, 31 December 1998 (1998-12-31), XP055388553, ISSN: 0263-4368 *
HU , FANG ET AL.: "Effect on Adhesion of Diamond-like Carbon Films Deposited on Cemented Carbide by Micro-blasting Pretreatment", CHINA SURFACE ENGINEERING, vol. 22, no. 6, 31 December 2009 (2009-12-31), ISSN: 1007-9289 *

Also Published As

Publication number Publication date
CN106811729A (zh) 2017-06-09

Similar Documents

Publication Publication Date Title
CN106086984B (zh) 一种镁铝合金微弧氧化方法及电解液
CN105437050A (zh) 一种金相研磨抛光工艺
CN103952664A (zh) 一种类金刚石镀膜工件表面预处理工艺
CN106868508B (zh) 一种真空设备工艺腔室壁板再生处理方法
CN101205621B (zh) 一种铝材料零件的清洗方法
JP3699678B2 (ja) セラミック絶縁体の洗浄方法
Motamedi et al. The effect of cationic surfactants in acid cleaning solutions on protective performance and adhesion strength of the subsequent polyurethane coating
CN106756975A (zh) 一种不锈钢表面处理工艺
WO2017092629A1 (zh) 实施晶态碳沉积加工前的处理工艺
TW583149B (en) Quartz article having sand blast-treated surface and method for cleaning the same
CN105296927A (zh) 一种光学真空镀膜机内腔清洁方法
JPH0192391A (ja) 固体成形品の超音波洗浄方法
CN105648429B (zh) 一种低碳钢超疏水表面的制备方法
CN107338449A (zh) 一种钛合金表面氧化皮激光清洗方法
CN108505056A (zh) 一种高耐腐蚀表面处理方法
CN108554755B (zh) 一种汽车配件表面强化工艺
CN106835168A (zh) 铝合金清洗剂的制备方法
CN104651866A (zh) 金属零件的除油方法
RU2541436C1 (ru) Способ плазмохимической обработки подложек из поликора и ситалла
KR101327313B1 (ko) 파릴렌 코팅 방법
CN106637169A (zh) 一种新型碳钢供水设备前处理工艺
CN102000661A (zh) 钢铁表面富勒烯薄膜的粘附制备方法
CN109226044A (zh) 光学元件的处理方法
KR20140126566A (ko) 플라스틱계 소재의 도장방법
EP0524155B1 (en) Industrial procedure for the application of a P.T.F.E. film on aluminium surfaces

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16869939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 16869939

Country of ref document: EP

Kind code of ref document: A1