WO2017092616A1 - 用于igbt模组的散热模组以及具有其的igbt模组 - Google Patents

用于igbt模组的散热模组以及具有其的igbt模组 Download PDF

Info

Publication number
WO2017092616A1
WO2017092616A1 PCT/CN2016/107290 CN2016107290W WO2017092616A1 WO 2017092616 A1 WO2017092616 A1 WO 2017092616A1 CN 2016107290 W CN2016107290 W CN 2016107290W WO 2017092616 A1 WO2017092616 A1 WO 2017092616A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
columns
module according
surface layer
dissipation module
Prior art date
Application number
PCT/CN2016/107290
Other languages
English (en)
French (fr)
Inventor
林信平
徐强
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2017092616A1 publication Critical patent/WO2017092616A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present disclosure relates to the field of heat sink technologies, and in particular, to a heat dissipation module for an IGBT module and an IGBT module having the heat dissipation module for the IGBT module.
  • the heat sink with liquid as the cooling medium is compact and configured as a relatively thin plate-like or strip-shaped metal fin or needle structure, and the inside of the heat sink is arranged with a fluid passage, so that convective heat exchange is generated between the fluid and the water-cooled plate, thereby The fluid can dissipate the thermal power of high-power electronic components on the surface of the water-cooled plate.
  • the structure of the heat sink bottom plate is complicated, which results in high processing requirements of the heat sink bottom plate, difficulty in processing, low yield, and thus increase the cost of the heat sink.
  • the present disclosure aims to solve at least one of the technical problems in the related art to some extent.
  • the present disclosure proposes a heat dissipation module for an IGBT module, which has a simple structure, a low processing difficulty, and a high yield.
  • the present disclosure further proposes an IGBT module.
  • a heat dissipation module for an IGBT module includes: a heat sink base plate including: a bottom plate body and N heat dissipation columns, the bottom plate body including a body portion and a body portion respectively disposed at the body portion a first surface layer and a second surface layer on opposite surfaces of the opposite surfaces, wherein the N heat dissipation columns are spaced apart on the first surface layer, and one end of each heat dissipation column is fixed to the first surface layer and the other end thereof a free end, the first skin layer and the N heat dissipation columns are both adapted to be in contact with a cooling liquid, and an area of the portion of the first skin layer in contact with the cooling liquid is S1, the first skin layer The area of the portion in contact with each of the heat dissipating columns is S2, 180 ⁇ S1/S2 ⁇ 800, wherein 300 ⁇ N ⁇ 650; a copper clad plate, and the copper clad plate is disposed on the second surface layer.
  • a heat dissipation module for an IGBT module by appropriately designing an area S1 of a portion of the first surface layer of the heat sink base that is in contact with the coolant and an area S2 of a portion of the first surface layer in contact with each of the heat dissipation columns
  • the structure of the heat sink base plate can be reasonably designed, and the heat sink bottom plate can have a sufficiently large heat dissipation area.
  • the flow resistance of the coolant can be well reduced, the heat dissipation efficiency can be improved, and the processing requirements of the heat sink base plate can be reduced, and the difficulty of demoulding of the heat sink base plate can be reduced, that is, the heat sink bottom plate is lowered. Production difficulty, Thereby increasing the yield of the heat sink base plate and reducing the production cost of the heat sink base plate.
  • the copper clad laminate can function as a supporting electrical component, and the copper clad laminate and the electrical component can also have the effect of being connected to each other and insulated from each other, thereby ensuring the working safety of the electrical component and the heat sink base plate.
  • An IGBT module includes an IGBT chip and the above-described heat dissipation module for an IGBT module, and the IGBT chip is disposed on the copper clad laminate.
  • the IGBT module using the above heat dissipation module has good heat dissipation effect, high yield, and low production cost.
  • FIG. 1 is a side view of a heat sink base plate in a heat dissipation module for an IGBT module in accordance with an embodiment of the present disclosure
  • Figure 2 is an enlarged view of a region A in Figure 1;
  • FIG. 3 is a bottom view of a heat dissipation module in accordance with an embodiment of the present disclosure
  • Figure 4 is an enlarged view of a region B in Figure 3;
  • Figure 5 is a cross-sectional view of the heat sink bottom plate placed in the cooling bath
  • Figure 6 is an enlarged view of a region C in Figure 5;
  • FIG. 7 is a side view of a heat dissipation module in accordance with an embodiment of the present disclosure.
  • Figure 8 is an enlarged view of a region D in Figure 7;
  • FIG. 9 is a schematic diagram of a heat dissipation module according to an embodiment of the present disclosure.
  • FIG. 10 is a perspective view of a heat dissipation module in accordance with an embodiment of the present disclosure
  • FIG. 11 is a side view of a heat dissipation module according to another embodiment of the present disclosure.
  • Figure 12 is an enlarged view of a region E in Figure 11 .
  • a bottom plate body 10 a bottom plate body 10; a first surface layer 11; a second surface layer 12; a body portion 13;
  • Heat sink 20 free end 21; fixed end 22; cooling slot 30;
  • Copper clad laminate 200 substrate 210; first copper layer 220; second copper layer 230;
  • IGBT chip 2000 IGBT chip 2000.
  • Transistor-Insulated Gate Bipolar Transistor Thermal Module 1000.
  • the heat dissipation module 1000 for an IGBT module includes a heat sink base plate 100 and a copper clad laminate 200.
  • the heat sink base plate 100 includes a bottom plate body 10 and N heat dissipation columns 20.
  • the base body 10 includes a body portion 13 and a first skin layer 11 and a second skin layer 12 respectively disposed on opposite surfaces of the body portion 13, that is, a first skin layer 11 and a second skin layer 12 is disposed on the main body portion 13 and opposed to each other, and a copper clad laminate 200 is mounted on the second surface layer 12, and an electrical component (for example, an IGBT chip 2000) is mounted on the copper clad laminate 200.
  • the copper clad laminate 200 By arranging the copper clad laminate 200 between the heat sink base plate 100 and the electrical components, the copper clad laminate 200 can function as a supporting electrical component, and the copper clad laminate 200 and the electrical component can also be mutually connected and insulated from each other, thereby ensuring The operational safety of the electrical components and the heat sink base plate 100.
  • the second skin layer 12 may be an aluminum layer.
  • N heat dissipation columns 20 are spaced apart from each other on the first surface layer 11, and one end of each heat dissipation column 20 is fixed to the first surface layer 11, and the other end of each heat dissipation column 20 is a free end 21, and the first surface layer 11 and N
  • the heat sink 20 is adapted to be in contact with the coolant.
  • one end of the heat dissipation post 20 is configured as a fixed end 22, and the fixed end 22 of the heat dissipation post 20 can be fixedly connected to the first skin layer 11.
  • the cooling liquid can be in contact with the first surface layer 11 and can also be in contact with the exposed surface of each of the heat dissipation columns 20, and the heat generated by the electrical components disposed on the second surface layer 12 can pass through the copper clad laminate 200 and the second surface layer 12.
  • the body portion 13 is transferred to the first skin layer 11 and the N heat dissipation columns 20, so that the first skin layer 11 and the N heat dissipation columns 20 can further transfer the heat of the electrical components to the cooling liquid, thereby further generating heat of the power generation component.
  • the area of the portion of the first skin layer 11 that is in contact with the cooling liquid is S1
  • the area of the portion of the first skin layer 11 that is in contact with each of the heat dissipation columns 20 is S2, and 180 ⁇ S1/ S2 ⁇ 800. Therefore, the area S1 of the portion of the first surface layer 11 in contact with the cooling liquid is rationally designed, and the area S2 of the portion of the first surface layer 11 in contact with each of the heat dissipation columns 20 is designed to be reasonable, so that the first surface layer 11 and the N heat dissipation columns can be made.
  • the heat exchange with the coolant is stable and reliable, and the cooling flow resistance can be well reduced and the heat dissipation efficiency can be improved while ensuring a sufficiently large heat dissipation area.
  • the number of heat dissipation posts 20 satisfies the relationship: 300 ⁇ N ⁇ 650. Therefore, in the case that the heat exchange effect between the heat dissipation column 20 and the coolant is ensured, the number of the heat dissipation columns 20 on the heat sink base plate 100 can be effectively reduced, thereby reducing the processing technology requirements of the heat sink base plate 100, and reducing the heat sink.
  • the demolding difficulty of the bottom plate 100 is to reduce the production difficulty of the heat sink base plate 100, thereby improving the yield of the heat sink base plate 100 and reducing the production cost of the heat sink base plate 100.
  • the area S1 of the portion of the first surface layer 11 of the heat sink base plate 100 in contact with the coolant and the first surface layer 11 and each heat dissipation are appropriately designed.
  • the area S2 of the portion in contact with the column 20 can make the structure of the heat sink base plate 100 reasonable, and can ensure that the heat sink bottom plate 100 has There is enough heat dissipation area.
  • the flow resistance of the coolant is well reduced, the heat dissipation efficiency is improved, the processing technology requirements of the heat sink base plate 100 can be reduced, and the difficulty of demolding the heat sink base plate 100 can be reduced, that is, the heat dissipation is reduced.
  • the production difficulty of the base plate 100 increases the yield of the heat sink base plate 100 and reduces the production cost of the heat sink base plate 100.
  • the copper clad laminate 200 can function as a supporting electrical component, and the copper clad laminate 200 and the electrical component can also have the effect of being connected to each other and insulated from each other, thereby ensuring the operational safety of the electrical component and the heat sink base plate 100.
  • the copper clad laminate 200 includes a substrate 210, a first copper layer 220, and a second copper layer 230.
  • the first copper layer 220 and the second copper layer 230 may be respectively disposed on the opposite sides of the substrate 210.
  • the first copper layer 220 is disposed on the lower surface of the substrate 210
  • the second copper layer 230 is disposed on the upper surface of the substrate 210
  • the thickness h1 of the first copper layer 220 and the second copper layer 230 are The thickness h2 may be equal, and the first copper layer 220 is disposed on the second skin layer 12.
  • the supporting effect of the copper clad laminate 200 on the electrical components can be further improved, and the structural strength of the copper clad laminate 200 can be improved, and the service life of the copper clad laminate 200 can be prolonged.
  • the copper clad laminate 200 has a simple manufacturing process and low manufacturing cost.
  • the thickness h1 of the first copper layer 220 and the thickness h2 of the second copper layer 230 are both 0.2 mm - 0.6 mm.
  • the first copper layer 220 and the second copper layer 230 having a thickness within the above numerical range can further enhance the structural strength of the copper clad laminate 200 and prolong the service life of the copper clad laminate 200.
  • the thickness h3 of the substrate 210 may be 0.25 mm to 1 mm.
  • the supporting effect of the copper clad laminate 200 on the electrical components can be improved, and the structural strength of the copper clad laminate 200 can be ensured, and the service life of the copper clad laminate 200 can be prolonged.
  • the substrate 210 may be an alumina substrate.
  • the substrate 210 made of an alumina material can obtain a better heat dissipation effect, thereby improving the heat dissipation efficiency of the heat dissipation module 1000.
  • the copper clad laminate may be an alumina DBC copper clad laminate, wherein DBC (DIRECT Bonding Copper) is a direct copper clad method.
  • the copper clad laminate 200 may be plural, and the plurality of copper clad laminates 200 are spaced along the longitudinal direction of the heat sink base plate 100 (ie, the front-rear direction shown in FIG. 9). Open the settings.
  • the distance L3 between adjacent two copper clad laminates 200 is from 3 mm to 10 mm.
  • the heat dissipation area of each of the heat dissipation columns is (S3 + S4) / N, and 80 ⁇ (S3 + S4) / N ⁇ 120.
  • the volume setting of the heat dissipation module 1000 can be made reasonable, and the heat exchange effect between the first surface layer 11 and the N heat dissipation columns 20 and the cooling liquid can be ensured, thereby
  • the heat dissipation capability of the heat sink base plate 100 is good and the heat dissipation area is designed reasonably, thereby effectively ensuring the heat dissipation effect of the heat sink.
  • each of the heat dissipation columns 20 is stably connected to the first surface layer 11, and the heat dissipation column 20 is structurally reliable, and is advantageous for the heat dissipation column 20 and cooling. Heat exchange of liquid.
  • the specific structure of the heat dissipation column 20 is not limited.
  • the heat dissipation post 20 may be configured as a tapered structure, and the cross section of the heat dissipation post 20 may be circular, and the ratio of the radius of the fixed end 22 of the heat dissipation post 20 to the radius of the free end 21 is ⁇ , and 1.2 ⁇ ⁇ ⁇ 1.8.
  • the radius of the free end 21 of the heat dissipation column 20 is r1
  • the heat dissipating post 20 satisfying the above relationship has a reliable structure and a large area of the portion in contact with the cooling liquid, thereby facilitating heat exchange between the heat dissipating post 20 and the cooling liquid, and fully ensuring the heat dissipating effect of the heat sink.
  • a 1.69.
  • the cooling liquid is adapted to be placed in the cooling bath 30, and the cooling tank 30 is adapted to be coupled to the first skin layer 11, ie, the first skin layer 11 is covered by cooling.
  • the groove 30 is such that the N heat dissipating columns 20 are located in the cooling bath 30, and the minimum distance between the free end 21 of the heat dissipating post 20 and the bottom wall of the cooling bath 30 is L1, and 0.2 mm ⁇ L1 ⁇ 2 mm. It can be understood that the length of the heat dissipation column 20 is limited by the depth of the cooling groove 30, so that the length of the heat dissipation column 20 can be made reasonable by appropriately setting the depth of the cooling groove 30.
  • the cooling groove 30 and the heat dissipation column 20 satisfying the above relationship can reduce the interference of the cooling groove 30 with the heat dissipation column 20, thereby ensuring the normal operation of the heat dissipation column 20.
  • the distance between two adjacent heat dissipation columns 20 is L2, and 0.4 mm ⁇ L2 ⁇ 1.1 mm.
  • the distance L2 between the adjacent two heat dissipation columns 20 satisfying the above relationship may make the N heat dissipation columns 20 be disposed on the first surface layer 11 reasonably, and at least to some extent, between the adjacent two heat dissipation columns 20 Interference with each other can ensure normal heat exchange between each heat sink 20 and the coolant, thereby ensuring the normal operation of the heat sink base plate 100.
  • any two adjacent heat dissipation columns 20 may form a group, wherein the distance L2 in one set of heat dissipation columns 20 and the distance L2 in the other set of heat dissipation columns may not be equal. Therefore, it can be understood that the distance L2 between the adjacent two heat dissipation columns 20 can be adjusted according to actual production conditions, so that the production difficulty of the heat sink base plate 100 can be reduced at least to some extent. For example, the distance L2 between two adjacent heat dissipation columns 20 disposed adjacent to the corners of the first skin layer 11 can be adjusted as the case may be.
  • N the distance L2 in the first group of heat dissipation columns is 0.62 mm
  • the second group The distance L2 in the heat dissipating column is 1.038 mm
  • the distance L2 in the remaining group of heat dissipating columns satisfies the following condition: 0.62 mm ⁇ L2 ⁇ 1.04 mm.
  • the distance L2 between the adjacent two heat dissipating columns 20 can be at least 0.62 mm and the maximum can be 1.04 mm. Thereby, the arrangement of the heat dissipation column 20 is reasonable, the mold release is easy, and the yield is high.
  • the draft angle ⁇ of each of the heat dissipation columns 20 may be 2 degrees to 4 degrees.
  • the draft angle ⁇ of one heat dissipation column 20 may be different from the draft angle ⁇ of the other heat dissipation column 20, or may be the same.
  • the heat dissipation column 20 having the draft angle ⁇ satisfying the above angle range can at least reduce the difficulty of demolding the heat sink base plate 100 and improve the production yield of the heat sink base plate 100.
  • the heat dissipation effect of the heat dissipation column 20 having a draft angle ⁇ of 2 degrees is slightly better than that of the heat dissipation column 20 having a draft angle ⁇ of 4 degrees, but there is no significant improvement. Since the draft angle ⁇ is increased, the draft can be more favorable, and the pressure difference between the inlet and the outlet can be minimized. Therefore, the draft angle ⁇ of the heat dissipation column 20 can be determined according to the process difficulty and actual needs.
  • the body portion 13, the first skin layer 11, the second skin layer 12, and the heat dissipation column 20 may be integrally molded by pneumatic percolation.
  • the integrally formed radiator bottom plate 100 has high structural strength, long service life, and simple manufacturing process.
  • the body portion 13 may be Made of composite material including aluminum silicon carbide.
  • the body portion 13 may be made of aluminum silicon carbide having a volume fraction of 60% to 70%, wherein the volume fraction refers to a ratio of the volume of the silicon carbide to the volume of the aluminum silicon carbide. It can be understood that the body portion 13 made of aluminum silicon carbide in the above ratio is reliable in structure, has good heat exchange capability, and has low heat dissipation efficiency while being low in manufacturing cost. Specifically, the body portion 13 may be made of aluminum silicon carbide having a volume fraction of 65%.
  • the heat dissipation column 20 may be an aluminum column or an aluminum alloy column, and the first skin layer 11 and the second skin layer 12 may each be an aluminum layer or an aluminum alloy layer. Thereby, heat exchange between the electric component and the second skin 12 is facilitated, and heat exchange between the coolant and the first skin 11 and the heat dissipation column 20 is facilitated, and the manufacturing cost is lowered.
  • a numerical setting of the heat dissipation module 1000 for an IGBT module according to an embodiment of the present disclosure is given below, but the present disclosure is not limited thereto.
  • the arrangement of the N heat dissipation columns 20 disposed on the first surface layer 11 is various.
  • the arrangement of the N heat dissipation columns 20 is provided below.
  • the N heat dissipation columns 20 may be divided into a plurality of rows, and the plurality of rows of heat dissipation columns 20 are spaced apart along the length direction of the heat sink base plate 100 (ie, the front-rear direction shown in FIG. 3), and the plurality of rows of heat dissipation columns 20 include the length along the heat sink base plate 100.
  • the first row d1 heat dissipation column and the second row d2 heat dissipation column which are alternately arranged in the direction of the dimension, the first row d1 heat dissipation column and the second row d2 heat dissipation column are both included in the width direction of the heat sink base plate 100 (ie, as shown in FIG. 3 A plurality of heat dissipation columns 20 are disposed at intervals. It can be understood that the alternately arranged first row d1 heat dissipation column and the second row d2 heat dissipation column can make the N heat dissipation columns 20 distribute reasonably on the first surface layer 11 to ensure the heat exchange capability of the heat dissipation column 20 and the coolant. The number of the heat dissipation columns 20 in the first row d1 and the second row d2 can be adjusted according to actual conditions.
  • an IGBT module includes the above-described heat dissipation module 1000 and IGBT chip 2000 for an IGBT module, and the IGBT chip 2000 is disposed on a copper clad laminate 200 of the heat dissipation module 1000.
  • the heat sink base plate 100 of the heat dissipation module 1000 can ensure the cooling flow resistance, improve the heat dissipation efficiency, and reduce the processing requirements of the heat sink base plate 100, while ensuring a sufficiently large heat dissipation area.
  • the production difficulty of the heat sink base plate 100 is reduced, thereby reducing the production cost of the heat sink base plate 100, and improving the heat dissipation effect and the yield rate of the IGBT module.
  • each copper clad plate 200 is 61 ⁇ 67 ⁇ 0.92 mm
  • the voltage is 480V
  • the current is 0-150A
  • the output phase current is gradually increased from 0 to 150A.
  • the purpose of the test is to test the maximum temperature of the IGBT module, and to measure the steady-state thermal resistance of the copper clad laminate 200 with a thermal resistance tester.
  • the model of the IGBT chip 2000 is IGC193T120T8RMA, and the highest withstand voltage and maximum continuous current of the IGBT chip 2000 are 1200v/200A, respectively, and the production company of the IGBT chip 2000 is Infineon.
  • the thermal resistance of the CCL 200 is 0.09286k/w and the maximum temperature of the IGBT module is 85°C. It can be known that the IGBT module can be used. Meet the heat dissipation requirements, and the heat dissipation effect of the IGBT module is good.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the specific meanings of the above terms in the present disclosure can be understood by those skilled in the art on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

一种IGBT散热模组(1000)以及具有其的IGBT模组,该IGBT散热模组(1000)包括:散热器底板(100),散热器底板(100)包括:底板本体(10)和N个散热柱(20),底板本体(10)包括本体部(13)和分别设置在本体部(13)的相对的两个表面上的第一表层(11)和第二表层(12),N个散热柱(20)间隔开设在第一表层(11)上,且每个散热柱(20)的一端与第一表层(11)固定且另一端为自由端(21),第一表层(11)和散热柱(20)均适于与冷却液接触,且第一表层(11)上与冷却液接触部分的面积为S1,第一表层(11)上与每个散热柱(20)相接触部分的面积为S2,180≤S1/S2≤800,其中300≤N<650;在第二表层(12)上安装有覆铜板(200)。采用上述的IGBT散热模组的IGBT模组散热效果好,成品率高,生产成本低。

Description

用于IGBT模组的散热模组以及具有其的IGBT模组 技术领域
本公开涉及散热器技术领域,尤其涉及一种用于IGBT模组的散热模组以及具有该用于IGBT模组的散热模组的IGBT模组。
背景技术
以液体作为冷却介质的散热器结构紧凑且构造为比较薄的板状或条状金属翅片或针型结构,散热器的内部布置流体通道,使得流体与水冷板之间产生对流换热,从而流体可以散去水冷板表面高功率电子元器件的热功耗。
相关技术中,散热器底板的结构复杂,导致散热器底板加工工艺上要求较高,加工困难,良率低,进而增加散热器的成本。
公开内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本公开提出一种用于IGBT模组的散热模组,该散热模组的散热器底板结构简单,加工工艺难度低,成品率较高。
本公开进一步地提出了一种IGBT模组。
根据本公开的用于IGBT模组的散热模组,包括:散热器底板,所述散热器底板包括:底板本体和N个散热柱,所述底板本体包括本体部和分别设置在所述本体部的相对的两个表面上的第一表层和第二表层,所述N个散热柱间隔开设在所述第一表层上,且每个散热柱的一端与所述第一表层固定且其另一端为自由端,所述第一表层和所述N个散热柱均适于与冷却液接触,且所述第一表层的与所述冷却液接触的部分的面积为S1,所述第一表层的与每个散热柱相接触的部分的面积为S2,180≤S1/S2≤800,其中300≤N<650;覆铜板,所述覆铜板设在所述第二表层上。
根据本公开实施例的用于IGBT模组的散热模组,通过合理设计散热器底板的第一表层与冷却液接触的部分的面积S1和第一表层与每个散热柱接触的部分的面积S2,可以使得散热器底板结构设计合理,而且可以保证散热器底板具有足够大的散热面积。此外,通过合理设置散热柱的数量,可以很好的降低冷却液流阻,提高散热效率,并且可以降低散热器底板的加工工艺要求,以及降低散热器底板的脱模难度,即降低散热器底板的生产难度, 从而提高散热器底板的成品率,,并降低散热器底板的生产成本。另外,覆铜板可以起到支撑电器元件的作用,并且覆铜板和电器元件还可以产生相互衔接、相互绝缘的效果,从而可以保证电器元件和散热器底板的工作安全性。
根据本公开实施例的IGBT模组,包括IGBT芯片和上述用于IGBT模组的散热模组,所述IGBT芯片设置在所述覆铜板上。采用上述散热模组的IGBT模组散热效果好,成品率高,而且生产成本低。
附图说明
图1是根据本公开实施例的用于IGBT模组的散热模组中的散热器底板的侧视图;
图2是图1中区域A的放大图;
图3是根据本公开实施例的散热模组的仰视图;
图4是图3中区域B的放大图;
图5是放置在冷却槽内的散热器底板的剖视图;
图6是图5中区域C的放大图;
图7是根据本公开实施例散热模组的侧视图;
图8是图7中区域D的放大图;
图9是根据本公开实施例的散热模组的示意图;
图10是根据本公开实施例的散热模组的立体图;
图11是根据本公开另一实施例的散热模组的侧视图;
图12是图11中区域E的放大图。
附图标记:
用于IGBT模组的散热模组1000;
散热器底板100;
底板本体10;第一表层11;第二表层12;本体部13;
散热柱20;自由端21;固定端22;冷却槽30;
覆铜板200;基板210;第一铜层220;第二铜层230;
IGBT芯片2000。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面参考附图详细描述根据本公开实施例的IGBT(Insulated Gate Bipolar  Transistor-绝缘栅双极型晶体管)散热模组1000。
根据本公开实施例的用于IGBT模组的散热模组1000包括:散热器底板100和覆铜板200。散热器底板100包括:底板本体10和N个散热柱20。如图1和图3所示,底板本体10包括本体部13和分别设置在本体部13的相对的两个表面上的第一表层11和第二表层12,即第一表层11和第二表层12设置在本体部13上且彼此相对,第二表层12上安装有覆铜板200,覆铜板200上安装有电器元件(例如IGBT芯片2000)。通过将覆铜板200设置在散热器底板100和电器元件之间,覆铜板200可以起到支撑电器元件的作用,并且覆铜板200和电器元件还可以产生相互衔接、相互绝缘的效果,从而可以保证电器元件和散热器底板100的工作安全性。
其中,第二表层12可以为铝层。N个散热柱20间隔开设在第一表层11上,并且每个散热柱20的一端与第一表层11固定,而每个散热柱20的另一端为自由端21,第一表层11和N个散热柱20均适于与冷却液接触。
如图2所示,散热柱20的一端构造为固定端22,散热柱20的固定端22可以固定连接在第一表层11上。由此,冷却液可以与第一表层11接触,还可以与每个散热柱20的外露的表面接触,设置在第二表层12上的电器元件发出的热量可以通过覆铜板200、第二表层12和本体部13传递给第一表层11和N个散热柱20,从而第一表层11和N个散热柱20可以将电器元件的热量进一步地传递给冷却液,进而可以起到散发电器元件的热量的作用,保证电器元件工作稳定性。
在本公开的一些实施例中,第一表层11的与冷却液接触的部分的面积为S1,第一表层11的与每个散热柱20相接触的部分的面积为S2,且180≤S1/S2≤800。由此,第一表层11与冷却液接触的部分的面积S1设计合理,第一表层11与每个散热柱20接触的部分的面积S2设计合理,从而可以使得第一表层11和N个散热柱20分别与冷却液热交换稳定且可靠,可以在保证足够大散热面积的同时,很好的降低冷却液流阻,提高散热效率。在本公开的一些实施例中,200≤S1/S2≤500。
在本公开的一些实施例中,散热柱20的数量满足关系式:300≤N<650。由此,在保证散热柱20与冷却液热交换效果可靠的情况下,还可以有效减少散热器底板100上散热柱20的数量,从而降低散热器底板100的加工工艺要求,还可以降低散热器底板100的脱模难度,即降低散热器底板100的生产难度,由此提高散热器底板100的成品率,并降低散热器底板100的生产成本。在本公开的一些实施例中,300≤N<420。
由此,根据本公开实施例的用于IGBT模组的散热模组1000,通过合理设计散热器底板100的第一表层11与冷却液接触的部分的面积S1和第一表层11与每个散热柱20接触的部分的面积S2,可以使得散热器底板100结构设计合理,而且可以保证散热器底板100具 有足够大的散热面积。此外,通过合理设置散热柱20的数量,很好地降低冷却液流阻,提高散热效率,可以降低散热器底板100的加工工艺要求,还可以降低散热器底板100的脱模难度,即降低散热器底板100的生产难度,从而提高散热器底板100的成品率,并降低散热器底板100的生产成本。另外,覆铜板200可以起到支撑电器元件的作用,并且覆铜板200和电器元件还可以产生相互衔接、相互绝缘的效果,从而可以保证电器元件和散热器底板100的工作安全性。
下面详细描述覆铜板200的一种布置方式。
结合图7和图8所示,覆铜板200包括基板210、第一铜层220和第二铜层230,第一铜层220与第二铜层230可以分别设置在基板210上的相对的两个表面上。如图8所示,第一铜层220设置在基板210的下表面上,第二铜层230设置在基板210的上表面上,而且第一铜层220的厚度h1与第二铜层230的厚度h2可以相等,第一铜层220设在第二表层12上。通过合理设置第一铜层220和第二铜层230的厚度,可以进一步地提高覆铜板200对电器元件的支撑效果,而且还可以提高覆铜板200的结构强度,延长覆铜板200的使用寿命。此外,覆铜板200制造工艺简单,制造成本低。
在本公开的一些实施例中,第一铜层220的厚度h1和第二铜层230的厚度h2均为0.2毫米-0.6毫米。具有上述数值范围内的厚度的第一铜层220和第二铜层230可以进一步地提升覆铜板200的结构强度,延长覆铜板200的使用寿命。
在本公开的一些实施例中,如图8所示,基板210的厚度h3可以为0.25毫米-1毫米。通过合理设置基板210的厚度h3,可以提升覆铜板200对电器元件的支撑效果,而且还可以保证覆铜板200的结构强度,延长覆铜板200的使用寿命。
在本公开的一些实施例中,基板210可以为氧化铝基板。氧化铝材料制成的基板210可以得到较好的散热效果,从而提升散热模组1000的散热效率。在本公开的一些实施例中,覆铜板可以为氧化铝DBC覆铜板,其中DBC(DIRECT Bonding Copper)即直接覆铜法。
在本公开的一下实施例中,如图9和图10所示,覆铜板200可以为多个,多个覆铜板200沿散热器底板100的长度方向(即图9所示的前后方向)间隔开设置。在本公开的一些实施例中,相邻两个覆铜板200之间的距离L3为3毫米-10毫米。通过合理设置相邻两个覆铜板200之间的距离L3,可以使得多个覆铜板200支撑多个电器元件。
下面详细描述散热器底板100的一种布置方式。
根据本公开的一个实施例,散热模组1000的散热面积为S,N个散热柱20的周壁的外表面的面积之和为S3,N个散热柱20的自由端21的端面的面积之和为S4,S=S1+S3+S4,而且40000mm2≤S≤50000mm2。在本公开的实施例中,每个散热柱的散热面积为(S3+S4)/N,并且80≤(S3+S4)/N≤120。由此,通过合理设置散热模组1000的散热面积S,可以使得散 热模组1000的体积设置合理,而且可以保证第一表层11和N个散热柱20分别与冷却液的热交换效果,从而可以使得散热器底板100散热能力好且散热面积设计合理,有效保证了散热器的散热效果。
在本公开的一些示例中,如图2所示,从散热柱20的一端(即固定端22)向其另一端(即自由端21),散热柱20的横截面的面积逐渐减小。通过合理设计每个散热柱20的固定端22的尺寸和自由端21的尺寸,每个散热柱20均与第一表层11连接稳定,而且散热柱20结构可靠,并且有利于散热柱20与冷却液的热交换。
在本公开的一些实施例中,如图6所示,散热柱20的高度为h,且7.5mm≤h<8.2mm。在本公开的一些实施例中,h=8mm。通过合理设置散热柱20的高度h,可以便于散热柱20在冷却槽30内布置,可以保证散热柱20的散热效果。
此处,对散热柱20的具体结构不做限定。根据本公开的一个实施例,散热柱20可以构造为锥形结构,散热柱20的横截面可以为圆形,散热柱20的固定端22的半径与自由端21的半径之比为α,且1.2≤α≤1.8。如图2所示,散热柱20的自由端21的半径为r1,散热柱20的固定端22的半径为r2,α=r2/r1。满足上述关系式的散热柱20结构可靠,而且与冷却液接触的部分的面积较大,由此便于散热柱20与冷却液之间的热交换,充分保证散热器的散热效果。在本公开的一些实施例中,α=1.69。
在本公开的一些示例中,如图5和图6所示,冷却液适于盛放在冷却槽30中,冷却槽30适于与第一表层11相连,即第一表层11盖设在冷却槽30上,以使N个散热柱20位于冷却槽30内,而且散热柱20的自由端21与冷却槽30的底壁之间的最小距离为L1,且0.2毫米≤L1≤2毫米。可以理解的是,散热柱20的长度受到冷却槽30的深度限制,因此通过合理设置冷却槽30的深度,可以使得散热柱20的长度合理。满足上述关系式的冷却槽30和散热柱20可以降低冷却槽30对散热柱20的干涉,从而保证散热柱20的正常工作。
在本公开的一个实施方式中,如图4所示,相邻两个散热柱20之间的距离为L2,且0.4毫米≤L2≤1.1毫米。满足上述关系式的相邻两个散热柱20之间的距离L2可以使得N个散热柱20在第一表层11上设置合理,而且至少一定程度上可以降低相邻两个散热柱20之间的互相干涉,从而可以保证每个散热柱20与冷却液的正常热交换,进而可以保证散热器底板100的正常工作。
在本公开的一些实施例中,任意相邻两个散热柱20可以构成一组,其中一组散热柱20中的距离L2与另一组散热柱中的距离L2可以不相等。由此,可以理解的是,相邻两个散热柱20之间的距离L2可以根据实际生产情况进行调节,从而至少一定程度上可以降低散热器底板100的生产难度。例如,邻近第一表层11的边角设置的两个相邻散热柱20之间的距离L2可以根据具体情况调节。
下面给出一种散热器底板100的N个散热柱20的具体布置形式,但本公开并不限于此,其中,N=368,第一组散热柱中的距离L2为0.62毫米,第二组散热柱中的距离L2为1.038毫米,其余组散热柱中的距离L2满足如下条件:0.62毫米≤L2≤1.04毫米。可以理解的是,相邻两个散热柱20之间的距离L2最小可以为0.62毫米,而最大可以为1.04毫米。由此,散热柱20的布置合理,脱模容易,成品率高。
在本公开的一些实施例中,每个散热柱20的拔模角β可以为2度-4度。其中,一个散热柱20的拔模角β与另一个散热柱20的拔模角β可以不同,也可以相同。拔模角β满足上述角度范围的散热柱20至少一定程度上可以降低散热器底板100的脱模难度,提高散热器底板100的生产成品率。
在本公开的一些实施例中,拔模角β为2度的散热柱20的散热效果要稍稍优于拔模角β为4度的散热柱20的散热效果,但是并无明显提升。由于增大拔模角β可以更利于拔模,而且能够保证进出口压差最小,因此散热柱20的拔模角β可根据工艺难度及实际需求来定。
在本公开的一些实施例中,本体部13、第一表层11、第二表层12和散热柱20可以通过气压渗流法压铸一体成型。由此,一体成型的散热器底板100结构强度高,使用寿命长,而且制造工艺简单。
由于铝碳化硅具有高导热性、与芯片相匹配的热膨胀系数、密度小、重量轻,以及高硬度和高抗弯强度的优点,因此,在本公开的一些实施例中,本体部13可以由包括铝碳化硅成分的复合材料制成。
根据本公开的一个实施例,本体部13可以由体积分数为60%-70%的铝碳化硅制成,其中,体积分数指的是碳化硅的体积与铝碳化硅体积的比值。可以理解的是,采用上述比例的铝碳化硅制成的本体部13结构可靠,而且热交换能力好,且保散热效率的同时,制造成本低。具体地,本体部13可以由体积分数为65%的铝碳化硅制成。在本公开的一些实施例中,散热柱20可以为铝柱或者铝合金柱,第一表层11和第二表层12均可以为铝层或者铝合金层。由此,便于电器元件和第二表层12之间的热交换,并便于冷却液分别与第一表层11和散热柱20的热交换,且制造成本降低。
下面给出一组根据本公开实施例的用于IGBT模组的散热模组1000的数值设定,但本公开并不限于此。40000平方毫米≤S≤50000平方毫米,N=368,S1/S2=229.284,h=8mm,α=1.69,L1=0.4mm。
其中,设置在第一表层11上的N个散热柱20的布置方式有多种,下面提供一种N个散热柱20的布置方式。N个散热柱20可以分为多行,多行散热柱20沿散热器底板100的长度方向(即图3所示的前后方向)间隔设置,多行散热柱20包括沿散热器底板100的长 度方向交替设置的第一行d1散热柱和第二行d2散热柱,第一行d1散热柱和第二行d2散热柱均包括沿散热器底板100的宽度方向(即图3所示的左右方向)间隔设置的多个散热柱20。可以理解的是,交替设置的第一行d1散热柱和第二行d2散热柱可以使得N个散热柱20在第一表层11上分布合理,保证散热柱20与冷却液的热交换能力。其中,第一行d1和第二行d2中的散热柱20的数量可以根据实际情况调整。
结合图11和图12所示,根据本公开实施例的IGBT模组,包括上述用于IGBT模组的散热模组1000和IGBT芯片2000,IGBT芯片2000设置在散热模组1000的覆铜板200上。上述散热模组1000中的散热器底板100在保证具有足够大的散热面积的同时,还可以很好地降低冷却液流阻,提高散热效率,并且可以降低散热器底板100的加工工艺要求,以及降低散热器底板100的生产难度,从而降低散热器底板100的生产成本,并提高IGBT模组的散热效果和成品率。
下面详细说明对根据公开实施例的IGBT模组的试验。
首先详细介绍一下IGBT模组的试验条件,各个覆铜板200的尺寸为61×67×0.92mm,散热器底板100的底板本体10的本体部13由铝碳化硅成分的复合材料制成,N=368,电压为480V,电流0-150A,从0逐步增加输出相电流至150A。试验目的为测试IGBT模组的最高温度,以及用热阻测试仪测量覆铜板200的稳态热阻。其中,需要说明的是,IGBT芯片2000采用的型号为IGC193T120T8RMA,而且IGBT芯片2000的最高耐压和最大连续电流分别为1200v/200A,IGBT芯片2000的生产公司为英飞凌公司。
最后介绍一下IGBT模组的试验结果,通过热阻测试仪测得覆铜板200的稳态热阻为0.09286k/w,IGBT模组的最高温度为85℃,从而可以得知:IGBT模组可以满足散热要求,而且IGBT模组的散热效果好。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定” 等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (25)

  1. 一种用于IGBT模组的散热模组,包括:
    散热器底板,所述散热器底板包括:底板本体和N个散热柱,所述底板本体包括本体部和分别设置在所述本体部的相对的两个表面上的第一表层和第二表层,所述N个散热柱间隔开设在所述第一表层上,且每个散热柱的一端与所述第一表层固定且其另一端为自由端,所述第一表层和所述N个散热柱均适于与冷却液接触,且所述第一表层的与所述冷却液接触的部分的面积为S1,所述第一表层的与每个散热柱接触的部分的面积为S2,180≤S1/S2≤800,其中300≤N<650;以及
    覆铜板,所述覆铜板设在所述第二表层上。
  2. 根据权利要求1所述的散热模组,其特征在于,所述覆铜板包括基板、第一铜层和第二铜层,所述第一铜层与所述第二铜层分别设置在所述基板的相对的两个表面上,且所述第一铜层与所述第二铜层的厚度相等,所述第一铜层设在所述第二表层上。
  3. 根据权利要求2所述的散热模组,其特征在于,所述第一铜层和所述第二铜层的厚度均为0.2毫米-0.6毫米。
  4. 根据权利要求2或3所述的散热模组,其特征在于,所述基板的厚度为0.25毫米-1毫米。
  5. 根据权利要求2-4中任一项所述的散热模组,其特征在于,所述基板为氧化铝基板。
  6. 根据权利要求1-5中任一项所述的散热模组,其特征在于,所述覆铜板为多个,多个所述覆铜板沿所述散热器底板的长度方向间隔开设置。
  7. 根据权利要求6所述的散热模组,其特征在于,相邻两个所述覆铜板之间的距离为3毫米-10毫米。
  8. 根据权利要求1-7中任一项所述的散热模组,其特征在于,200≤S1/S2≤500;且300≤N<420。
  9. 根据权利要求1-8中任一项所述的散热模组,其特征在于,所述散热模组的散热面积为S,所述N个散热柱的周壁的外表面的面积之和为S3,所述N个散热柱的自由端的端面的面积之和为S4,S=S1+S3+S4,且40000平方毫米≤S≤50000平方毫米。
  10. 根据权利要求9所述的散热模组,其特征在于,每个散热柱的散热面积为(S3+S4)/N,且80≤(S3+S4)/N≤120。
  11. 根据权利要求1-10中任一项所述的散热模组,其特征在于,每个散热柱的高度为h,且7.5毫米≤h<8.2毫米。
  12. 根据权利要求1-11中任一项所述的散热模组,其特征在于,每个散热柱的横截面 的面积从其一端向其另一端逐渐减小。
  13. 根据权利要求12所述的散热模组,其特征在于,每个散热柱的横截面为圆形,每个散热柱的一端的半径与其另一端的半径之比为α,且1.2≤α≤1.8。
  14. 根据权利要求1-13中任一项所述的散热模组,其特征在于,所述冷却液适于盛放在冷却槽中,所述冷却槽适于与所述第一表层相连,且所述N个散热柱的自由端与所述冷却槽的底壁之间的最小距离为L1,且0.2毫米≤L1≤2毫米。
  15. 根据权利要求1-14中任一项所述的散热模组,其特征在于,相邻两个散热柱之间的距离为L2,且0.4毫米≤L2≤1.1毫米。
  16. 根据权利要求15所述的散热模组,其特征在于,任意相邻两个散热柱构成一组,其中一组散热柱中的距离L2与另一组散热柱中的距离L2不相等。
  17. 根据权利要求16所述的散热模组,其特征在于,N=368,第一组散热柱中的距离L2为0.62毫米,第二组散热柱中的距离L2为1.04毫米,其余组散热柱中的距离L2满足如下条件:0.62毫米≤L2≤1.04毫米。
  18. 根据权利要求1-17中任一项所述的散热模组,其特征在于,每个散热柱的拔模角β为2度-4度。
  19. 根据权利要求1-18中任一项所述的散热模组,其特征在于,所述本体部、所述第一表层、所述第二表层和所述散热柱通过气压渗流法压铸一体成型。
  20. 根据权利要求1-19中任一项所述的散热模组,其特征在于,所述本体部由包括铝碳化硅成分的复合材料制成。
  21. 根据权利要求20所述的散热模组,其特征在于,所述本体部由体积分数为60%-70%的铝碳化硅制成。
  22. 根据权利要求21所述的散热模组,其特征在于,所述散热柱为铝柱或铝合金柱,所述第一表层和第二表层均为铝层或铝合金层。
  23. 根据权利要求9-22中任一项所述的散热模组,其特征在于,40000平方毫米≤S≤50000平方毫米,N=368,S1/S2=229.284。
  24. 根据权利要求1-23中任一项所述的散热模组,其特征在于,所述N个散热柱分为多行,多行散热柱沿所述散热模组的长度方向间隔设置,所述多行散热柱包括沿所述散热模组的长度方向交替设置的第一行散热柱和第二行散热柱,所述第一行散热柱和所述第二行散热柱均包括沿所述散热模组的宽度方向间隔设置的多个散热柱。
  25. 一种IGBT模组,包括:IGBT芯片和根据权利要求1-24中任一项所述的用于IGBT模组的散热模组,所述IGBT芯片设置在所述覆铜板上。
PCT/CN2016/107290 2015-11-30 2016-11-25 用于igbt模组的散热模组以及具有其的igbt模组 WO2017092616A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201520978977.0U CN205491581U (zh) 2015-11-30 2015-11-30 Igbt散热模组以及具有其的igbt模组
CN201520978977.0 2015-11-30

Publications (1)

Publication Number Publication Date
WO2017092616A1 true WO2017092616A1 (zh) 2017-06-08

Family

ID=56660778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/107290 WO2017092616A1 (zh) 2015-11-30 2016-11-25 用于igbt模组的散热模组以及具有其的igbt模组

Country Status (2)

Country Link
CN (1) CN205491581U (zh)
WO (1) WO2017092616A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113644037A (zh) * 2020-05-11 2021-11-12 北京金风科创风电设备有限公司 散热元件和电气功率器件模组

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205491581U (zh) * 2015-11-30 2016-08-17 比亚迪股份有限公司 Igbt散热模组以及具有其的igbt模组
CN112563224A (zh) * 2020-12-04 2021-03-26 合肥圣达电子科技实业有限公司 一种用于大功率半导体芯片散热的微通道装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0838988A2 (de) * 1996-10-23 1998-04-29 Asea Brown Boveri AG Flüssigkeits-Kühlvorrichtung für ein Hochleistungs-Halbleitermodul
US7215545B1 (en) * 2003-05-01 2007-05-08 Saeed Moghaddam Liquid cooled diamond bearing heat sink
CN102159056A (zh) * 2010-12-31 2011-08-17 航天时代电子技术股份有限公司 散热一体化结构的大功率直流固态功率控制器
CN202585404U (zh) * 2012-05-28 2012-12-05 深圳市立德电控科技有限公司 Igbt模块
CN102881668A (zh) * 2012-10-16 2013-01-16 西安永电电气有限责任公司 一种igbt模块散热结构
CN204206714U (zh) * 2014-11-20 2015-03-11 深圳市欧德思控制技术有限公司 一种散热装置及使用所述散热装置的驱动器
CN205491581U (zh) * 2015-11-30 2016-08-17 比亚迪股份有限公司 Igbt散热模组以及具有其的igbt模组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0838988A2 (de) * 1996-10-23 1998-04-29 Asea Brown Boveri AG Flüssigkeits-Kühlvorrichtung für ein Hochleistungs-Halbleitermodul
US7215545B1 (en) * 2003-05-01 2007-05-08 Saeed Moghaddam Liquid cooled diamond bearing heat sink
CN102159056A (zh) * 2010-12-31 2011-08-17 航天时代电子技术股份有限公司 散热一体化结构的大功率直流固态功率控制器
CN202585404U (zh) * 2012-05-28 2012-12-05 深圳市立德电控科技有限公司 Igbt模块
CN102881668A (zh) * 2012-10-16 2013-01-16 西安永电电气有限责任公司 一种igbt模块散热结构
CN204206714U (zh) * 2014-11-20 2015-03-11 深圳市欧德思控制技术有限公司 一种散热装置及使用所述散热装置的驱动器
CN205491581U (zh) * 2015-11-30 2016-08-17 比亚迪股份有限公司 Igbt散热模组以及具有其的igbt模组

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113644037A (zh) * 2020-05-11 2021-11-12 北京金风科创风电设备有限公司 散热元件和电气功率器件模组

Also Published As

Publication number Publication date
CN205491581U (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
JP5900507B2 (ja) 半導体モジュール用冷却器及び半導体モジュール
EP2711983A1 (en) Cooler for use in semiconductor module
US10297525B2 (en) Base plate for heat sink as well as heat sink and IGBT module having the same
JPWO2015079643A1 (ja) 半導体モジュール用冷却器の製造方法、半導体モジュール用冷却器、半導体モジュール及び電気駆動車両
CN201845763U (zh) 一种igbt液冷板结构
WO2017092616A1 (zh) 用于igbt模组的散热模组以及具有其的igbt模组
CN205430852U (zh) Igbt散热模组以及具有其的igbt模组
JP2014135457A (ja) 半導体モジュール用冷却器及び半導体モジュール
BR102012015581A2 (pt) Dispositivo de resfriamento, módulo de energia e método
WO2017092626A1 (zh) 用于igbt模组的散热模组以及具有其的igbt模组
WO2017092627A1 (zh) 用于igbt模组的散热模组
JP2010278438A (ja) ヒートシンク並びにその製作方法
WO2017092628A1 (zh) 用于igbt模组的散热模组以及具有其的igbt模组
CN113035805A (zh) 液冷板及功率模组
CN205232659U (zh) Igbt散热模组以及具有其的igbt模组
CN211476363U (zh) 电子制冷装置
CN209675457U (zh) 新能源汽车电池包散热结构
CN205430850U (zh) Igbt散热模组以及具有其的igbt模组
CN205430851U (zh) Igbt散热模组以及具有其的igbt模组
CN202205731U (zh) 一种igbt模块超导热管散热模组
CN217933880U (zh) 一种分离式SiC水冷组件
CN201888065U (zh) 一种水冷散热器
CN213214172U (zh) 一种具有整体式的散热器的基板
CN218863112U (zh) 一种高速离心机用水冷轴承座
CN211719581U (zh) 一种散热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16869926

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16869926

Country of ref document: EP

Kind code of ref document: A1