WO2017090476A1 - シリンダ装置 - Google Patents

シリンダ装置 Download PDF

Info

Publication number
WO2017090476A1
WO2017090476A1 PCT/JP2016/083685 JP2016083685W WO2017090476A1 WO 2017090476 A1 WO2017090476 A1 WO 2017090476A1 JP 2016083685 W JP2016083685 W JP 2016083685W WO 2017090476 A1 WO2017090476 A1 WO 2017090476A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
bump cap
outer cylinder
press
piston rod
Prior art date
Application number
PCT/JP2016/083685
Other languages
English (en)
French (fr)
Inventor
照章 山中
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2017090476A1 publication Critical patent/WO2017090476A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/38Covers for protection or appearance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/58Stroke limiting stops, e.g. arranged on the piston rod outside the cylinder

Definitions

  • the present invention relates to a cylinder device that is mounted on a vehicle such as a four-wheeled vehicle and is preferably used for buffering vibration of the vehicle.
  • a hydraulic shock absorber as a cylinder device is provided between each wheel (axle side) and the vehicle body so as to buffer the vibration of the vehicle (for example, Patent Document 1). reference).
  • a bump cap that abuts against a bump rubber provided on the protruding end side of the piston rod during the reduction stroke of the piston rod and reduces the impact when the hydraulic shock absorber is attached to the bottom. Is provided.
  • the bump cap side of the outer cylinder of the hydraulic shock absorber is reduced in diameter and the bump cap is fitted.
  • a separate part for attaching the bump cap is not used, a simple configuration can be achieved.
  • the diameter of the outer cylinder is reduced, there is a problem that the volume of the reservoir chamber is reduced.
  • the present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a cylinder capable of securing the volume of the reservoir chamber while securing the holding force of the bump cap with respect to the outer cylinder. To provide an apparatus.
  • a cylinder device includes a cylinder in which a working fluid is sealed, a piston inserted into the cylinder, and a piston connected to the piston and extending outside the cylinder.
  • a cylinder device having a rod, an outer cylinder provided on an outer periphery of the cylinder, and a bottomed cylindrical bump cap fitted to an outer periphery of an end portion of the outer cylinder from which the piston rod projects.
  • a straight portion on the outer peripheral side of the outer cylinder, and a taper portion at a position farther in the axial direction from the end portion side than the straight portion are formed on the outer end side, and the straight portion and the taper are formed.
  • the portion is configured to have a smaller diameter than other portions, and on the inner peripheral side of the bump cap, a press-fit portion that is press-fitted along the straight portion is formed. It is characterized by covering the said tapered portion and the straight portion.
  • the volume of the reservoir chamber can be secured while securing the holding force of the bump cap with respect to the outer cylinder.
  • FIG. 1 It is a longitudinal section showing a cylinder device by an embodiment of the invention. It is sectional drawing which shows the process of fitting the bump cap in FIG. 1 to the upper end side of an outer cylinder. It is sectional drawing which shows the state which attached the dust boot to the bump cap. It is sectional drawing which shows the bump cap by a modification independently.
  • a hydraulic shock absorber 1 as a cylinder device includes a cylindrical outer cylinder 2, an inner cylinder 5, a piston rod 6, a piston 7, a rod guide 8, a stopper 10, and a bump cap 12 that form an outer shell. It is configured.
  • the outer cylinder 2 of the hydraulic shock absorber 1 is provided on the outer periphery of an inner cylinder 5 described later.
  • the base end side (lower end in FIG. 1) as one end side of the outer cylinder 2 becomes a closed end closed by a bottom cap (not shown), and the distal end side (upper end in FIG. 1) as the other end side is open. It is the end.
  • the caulking portion 2A constitutes an end portion on the side (projecting end side) from which the piston rod 6 of the outer cylinder 2 projects.
  • a straight portion 2B and a tapered portion 2C are provided on the outer periphery of the outer end of the outer tube 2 at a position below the caulking portion 2A. That is, the straight portion 2B is located on the caulking portion 2A side of the outer cylinder 2, and the taper portion 2C is provided at a position spaced from the caulking portion 2A side to the lower side in the axial direction.
  • the straight portion 2B and the tapered portion 2C are formed to have a smaller diameter than other portions of the outer cylinder 2 (portions below the tapered portion 2C), for example, by swaging.
  • a press-fit portion 12C of a bump cap 12 which will be described later, is press-fitted and fitted to the straight portion 2B.
  • the outer peripheral side of the tapered portion 2 ⁇ / b> C is covered from the radially outer side by the tapered relief portion 12 ⁇ / b> D of the bump cap 12.
  • the lid 3 made of an annular disk is fixed by a caulking portion 2A of the outer cylinder 2 with its outer peripheral side in contact with a rod guide 8 to be described later in order to close the open end (tip) side of the outer cylinder 2. Yes.
  • a rod seal 4 made of an elastic material is attached to the inner peripheral side of the lid 3, and the rod seal 4 seals between a piston rod 6 (described later) and the lid 3.
  • the rod seal 4 is integrally formed with a check valve 4A extending on the lower surface side so as to come into contact with the rod guide 8.
  • the check valve 4A is disposed between an oil sump chamber 8C and a reservoir chamber A, which will be described later.
  • the check valve 4 allows the oil or the like in the oil sump chamber 8C to flow toward the reservoir chamber A via the communication path 8D of the rod guide 8, and prevents reverse flow.
  • the check valve may be formed by a member different from the rod seal.
  • the inner cylinder 5 as a cylinder is provided coaxially in the outer cylinder 2.
  • One end (base end) side of the inner cylinder 5 is fitted and fixed to the bottom cap side via a bottom valve (not shown).
  • a rod guide 8 to be described later is fitted and attached to the inner periphery of the opening end side that is the other end (tip) side of the inner cylinder 5.
  • a working fluid containing an oil liquid is sealed in the inner cylinder 5.
  • the working fluid is not limited to oil liquid (oil), and for example, water mixed with additives can be used.
  • An annular reservoir chamber A is formed between the inner cylinder 5 and the outer cylinder 2, and a gas is sealed in the reservoir chamber A together with the oil liquid.
  • This gas may be atmospheric pressure air or a compressed gas such as nitrogen gas.
  • the gas in the reservoir chamber A is compressed to compensate for the entry volume of the piston rod 6 when the piston rod 6 is contracted (contraction stroke).
  • the piston rod 6 has a proximal end inserted into the inner cylinder 5 and a distal end protruding (extending) to the outside of the inner cylinder 5 via a rod guide 8 and a lid 3 which will be described later.
  • a piston 7 described later is connected to the base end side of the piston rod 6.
  • the piston rod 6 is provided with an annular groove 6 ⁇ / b> A at a position spaced upward by a predetermined dimension from the mounting position of the piston 7.
  • a stopper 10 described later is fitted and fixed in the annular groove 6A.
  • the piston 7 is provided on the base end side of the piston rod 6 and is slidably fitted (inserted) into the inner cylinder 5.
  • the piston 7 defines the inner cylinder 5 in two chambers, a lower bottom chamber B and an upper rod chamber C.
  • the piston 7 is formed with oil passages 7A and 7B that allow the bottom side chamber B and the rod side chamber C to communicate with each other.
  • a reduction-side disk valve that generates a predetermined damping force by applying resistance to the oil flowing through the oil passage 7A. 7C is provided.
  • an extension-side disc valve that generates a predetermined damping force by applying a resistance force to the oil flowing through the oil passage 7B. 7D is provided.
  • the rod guide 8 is fitted to the opening end side of the outer cylinder 2 and is also fixedly provided to the opening end side of the inner cylinder 5. Thereby, the rod guide 8 positions the opening end side of the inner cylinder 5 so as to be coaxial with the outer cylinder 2, and guides the piston rod 6 to be slidable in the axial direction on the inner peripheral side (guide). To do. Further, the rod guide 8 constitutes a support structure that supports the lid 3 from the inside (the lower side in the axial direction) when the lid 3 is caulked and fixed from the outside by the caulking portion 2A of the outer cylinder 2. .
  • the rod guide 8 is formed as a stepped cylindrical body, for example, by performing molding processing, cutting processing, or the like on a metal material, a hard resin material, or the like. That is, as shown in FIG. 1, the rod guide 8 is positioned on the upper side and inserted into the inner peripheral side of the outer cylinder 2 and on the lower side of the large diameter portion 8A. It is formed in a stepped cylindrical shape by a small diameter portion 8 ⁇ / b> B that is inserted into the inner peripheral side of the tube 5.
  • a guide portion 9 that guides the piston rod 6 so as to be slidable in the axial direction is provided on the inner peripheral side of the small diameter portion 8B.
  • the guide portion 9 is configured as a sliding cylinder in which an inner peripheral surface of a metal cylinder is covered with a fluorine-based resin (tetrafluoroethylene) or the like.
  • the large diameter portion 8A of the rod guide 8 is provided with an annular oil sump chamber 8C on the upper surface side of the large diameter portion 8A facing the lid 3.
  • the oil sump chamber 8C is formed as an annular space that surrounds the rod seal 4 and the piston rod 6 from the outside in the radial direction.
  • the oil sump chamber 8 ⁇ / b> C is used when the oil in the rod side chamber C (or gas mixed in the oil) leaks through a slight gap between the piston rod 6 and the guide portion 9. It provides a space for temporarily storing leaked oil.
  • the large diameter portion 8A of the rod guide 8 is provided with a communication path 8D that is always in communication with the reservoir chamber A on the outer cylinder 2 side.
  • the communication path 8D guides the oil liquid (including gas) stored in the oil reservoir 8C to the reservoir chamber A on the outer cylinder 2 side.
  • the stopper 10 is located between the piston 7 and the rod guide 8 and is provided on the outer peripheral side of the piston rod 6. When the stopper 10 is extended so that the piston rod 6 protrudes greatly from the outer cylinder 2 and the inner cylinder 5 and reaches the extended position, the stopper rod 10 exerts a cushioning action and stops the extension operation of the piston rod 6. This is what prevents so-called stretching.
  • the spring seat 11 is inserted on the outer peripheral side of the outer cylinder 2 and is positioned on the outer cylinder 2 using means such as welding.
  • the spring seat 11 supports a suspension spring (not shown) that constantly biases the piston rod 6 toward the extension side between the protruding end side of the piston rod 6.
  • the bump cap 12 is located on the opening end side of the outer cylinder 2 and is provided on the outer periphery of the caulking portion 2A. Specifically, the bump cap 12 is provided so as to cover the straight portion 2B and the tapered portion 2C of the outer cylinder 2.
  • the bump cap 12 is formed into a bottomed cylindrical shape (covered cylindrical shape) by molding a resin material, for example.
  • the bump cap 12 includes a lid portion 12A through which the piston rod 6 is inserted on the inner peripheral side thereof, and a cylindrical portion 12B extending downward from the outer peripheral side of the lid portion 12A.
  • a press-fit portion 12C and a taper relief portion 12D are provided on the inner peripheral side of the cylinder portion 12B of the bump cap 12.
  • a flange portion 12E is integrally formed on the opening end side of the cylindrical portion 12B.
  • the diameter (diameter direction dimension) on the outer peripheral side of the bump cap 12 is set such that the portion corresponding to the press-fit portion 12C and the portion corresponding to the taper relief portion 12D have the same diameter (same size).
  • the bump cap 12 abuts against a bump rubber (not shown) provided on the protruding end side of the piston rod 6 in the minimum reduction stroke of the piston rod 6, and when the hydraulic shock absorber 1 is attached to the bottom (at the time of rod minimum reduction). This will alleviate the impact.
  • the lid portion 12A of the bump cap 12 is formed as a stepped annular plate, and the caulking portion 2A of the outer cylinder 2 is in contact therewith. Further, the inner periphery of the lid portion 12 ⁇ / b> A serves as an insertion hole for inserting the piston rod 6.
  • the upper surface of the caulking portion 2A comes into contact with the stepped lower surface of the lid portion 12A, and between the lower surface of the lid portion 12A and the upper surface of the caulking portion 2A. A gap is formed. And the rain water etc. which infiltrated into the bump cap 12 can be discharged
  • the press-fit portion 12C is located between the lid portion 12A and the taper relief portion 12D, and forms the inner peripheral side of the cylindrical portion 12B of the bump cap 12.
  • a plurality (for example, six) of protrusions 12 ⁇ / b> C ⁇ b> 1 extending in the axial direction are provided on the inner peripheral surface of the press-fit portion 12 ⁇ / b> C in the circumferential direction.
  • Each of the protrusions 12C1 is fitted into the straight portion 2B in a retaining state when the press-fit portion 12C is press-fitted along the straight portion 2B of the outer cylinder 2.
  • a gap is formed in the circumferential direction between the protrusions 12C1, so that rainwater or the like that has entered the bump cap 12 can be discharged to the outside through the gap, and between the outer cylinder 2 and the bump cap 12. Accumulation of foreign substances such as rainwater can be prevented.
  • the taper relief portion 12D is located below the press-fit portion 12C and forms the inner peripheral side of the cylindrical portion 12B of the bump cap 12.
  • the taper relief portion 12D is formed over the entire circumference as an obliquely downward tapered surface that gradually expands in diameter downward so as to be slightly separated from the taper portion 2C of the outer cylinder 2.
  • the taper relief portion 12D is enlarged in diameter along the inclination of the taper portion 2C and is opposed to the taper portion 2C in the radial direction.
  • the taper relief portion 12D and the taper portion 2C are separated, for example, to such an extent that foreign matters are not mixed therein.
  • the flange portion 12E is provided at the opening end of the bump cap 12. Specifically, the flange portion 12E is provided as an annular flange portion that is bent radially outward in an L shape from the lower end side of the tapered relief portion 12D. That is, the flange portion 12 ⁇ / b> E protrudes outward in the radial direction over the entire circumference of the opening end of the bump cap 12. The flange portion 12E is fitted with a dust boot 13 which will be described later, and prevents the dust boot 13 from being removed from the outer periphery of the bump cap 12.
  • the dust boot 13 is provided on the outer peripheral side of the bump cap 12 so as to surround the bump cap 12 together with the piston rod 6 from the outside.
  • the dust boot 13 is formed, for example, as an accordion-shaped cylindrical body by an elastic resin material, and protects the outer peripheral surface of the piston rod 6 from external dust, rainwater, etc. together with a portion to which the bump cap 12 of the outer cylinder 2 is attached. is there.
  • the dust boot 13 is provided on a cylindrical bellows portion 13A that can be expanded and contracted in the axial direction, and on the base end side (lower side in FIG. 3) of the bellows portion 13A, and on the flange portion 12E of the bump cap 12
  • the engaging portion 13B is engaged.
  • the dust boot 13 is attached at the upper end side of the bellows portion 13 ⁇ / b> A to the protruding end side of the piston rod 6, and expands and contracts upward and downward following the piston rod 6.
  • the hydraulic shock absorber 1 has the above-described configuration, and the operation thereof will be described next.
  • the protruding end side of the piston rod 6 is attached to the vehicle body side of the automobile, and the proximal end side of the outer cylinder 2 is attached to the axle (not shown) side.
  • the piston rod 6 is reduced and extended in the axial direction from the outer cylinder 2 and the inner cylinder 5.
  • damping forces on the reduction side and the extension side are generated by the disk valves 7C, 7D, etc. of the piston 7, and can be buffered so as to attenuate the vibration in the upward and downward directions of the vehicle.
  • the oil liquid in the rod side chamber C passes through, for example, a slight gap between the piston rod 6 and the guide portion 9. May leak into the oil sump chamber 8C. Further, when leaked oil increases in the oil sump chamber 8C, the overflowing oil liquid is guided to the communicating path 8D side of the rod guide 8 via the check valve 4A provided between the lid 3 and the rod guide 8. It is gradually refluxed into the reservoir chamber A.
  • the inside of the bottom side chamber B located on the lower side of the piston 7 has a higher pressure than the rod side chamber C, so that the oil in the bottom side chamber B passes through the disc valve 7 C of the piston 7. It flows into the rod side chamber C and generates a damping force on the reduction side. Then, an amount of oil corresponding to the volume of the piston rod 6 entering the inner cylinder 5 flows into the reservoir chamber A from the bottom chamber B through the bottom valve, and the reservoir chamber A contains the gas inside. By being compressed, the entrance volume of the piston rod 6 is absorbed.
  • the hydraulic shock absorber 1 secures the volume of the reservoir chamber A by forming portions other than the portion where the bump cap 12 of the outer cylinder 2 is press-fitted into a desired diameter. Thereby, even when the piston rod 6 reaches the most contracted position, the oil liquid corresponding to the entry volume of the piston rod 6 can flow into the reservoir chamber A.
  • the straight portion 2B and the tapered portion 2C are provided on the outer peripheral side of the outer cylinder 2, and the press-fit portion 12C and the tapered relief portion 12D are provided on the inner peripheral side of the bump cap 12.
  • the bump cap 12 can be fitted into the outer cylinder 2 by press-fitting the press-fitting part 12 ⁇ / b> C of the bump cap 12 into the straight part 2 ⁇ / b> B having a reduced diameter.
  • the bump cap 12 can be formed thick in the radial direction by the size of the outer cylinder 2 having a reduced diameter, and the bump cap 12 can be prevented from increasing in diameter in the radial direction.
  • the bump cap 12 is formed of an elastic resin material, the bump cap 12 can be reduced in weight and can be easily molded, and the workability during vehicle assembly can be improved. Since the press-fit portion 12C of the bump cap 12 can be thickened radially inward, the rigidity of the press-fit portion 12C can be increased.
  • a taper escape portion 12D is provided on the inner peripheral side of the bump cap 12 and below the press-fit portion 12C.
  • the axial dimension of the bump cap 12 can be increased by the taper relief portion 12D, it is possible to suppress the bump cap 12 from coming out of the outer cylinder 2.
  • the rigidity of the bump cap 12 itself can be increased by increasing the axial dimension of the bump cap 12 by the taper relief portion 12D.
  • the tapered relief portion 12D is configured to be formed as a tapered surface so as to face the tapered portion 2C of the outer cylinder 2 in the radial direction and to be slightly separated.
  • the taper relief portion 12D and the taper portion 2C are brought into contact with each other, and an extra force in the direction in which the bump cap 12 is pulled out from the outer cylinder 2 upward in the axial direction is not generated by the elastic restoring force.
  • the holding force with respect to the cylinder 2 can be increased. That is, since the taper relief portion 12D and the taper portion 2C are separated from each other, the number of contact portions between the bump cap 12 and the outer cylinder 2 can be reduced, so that the bump cap 12 can be hardly detached from the outer cylinder 2.
  • the diameter-reducing portion of the outer cylinder 2 is constituted by the straight portion 2B and the tapered portion 2C, and the outer periphery of the straight portion 2B and the tapered portion 2C is covered by the bump cap 12.
  • the outer cylinder 2 is reduced in diameter within the range where the bump cap 12 is attached to the outer cylinder 2, the man-hours for reducing the diameter can be minimized. As a result, the manufacturing cost of the hydraulic shock absorber 1 can be reduced.
  • a flange portion 12E is provided on the opening end side of the bump cap 12. That is, since the flange portion 12E is provided at a position away from the press-fit portion 12C, the rigidity of the cylindrical portion 12B of the bump cap 12 can be increased. Thereby, when the bump cap 12 is press-fitted into the outer cylinder 2 and fitted, even if the bump cap 12 is deformed into a barrel that is curved outward in the radial direction, the bump cap 12 is removed from the outer cylinder 2. , You can suppress falling off.
  • the diameter on the outer peripheral side of the bump cap 12 is set so that the portion corresponding to the press-fit portion 12C and the portion corresponding to the taper relief portion 12D have the same diameter. Thereby, the dust boot 13 can be easily attached to the bump cap 12.
  • a plurality of protrusions 12C1 are provided in the press-fitting portion 12C of the bump cap 12, and rainwater or the like that has entered the bump cap 12 flows between the protrusions 12C1.
  • the present invention is not limited to this, and for example, a configuration may be adopted in which no protrusion is provided in the press-fitting portion of the bump cap.
  • the outer diameter of the bump cap 12 is configured such that the portion corresponding to the press-fit portion 12C and the portion corresponding to the taper relief portion 12D are set to the same diameter.
  • the present invention is not limited to this, and for example, a configuration like the bump cap 21 of the modification shown in FIG. 4 may be used. That is, the bump cap 21 includes a lid portion 21A, a cylinder portion 21B, a press-fit portion 21C, a protrusion 21C1, a taper relief portion 21D, and a flange portion 21E, as in the bump cap 12 of the above embodiment.
  • the opening end side of the cylindrical portion 21B in which the taper relief portion 21D is formed is formed in a flare shape by expanding the diameter outward in the radial direction.
  • the thickness of the cylindrical portion 21B of the bump cap 21 of the modified example is different from the cylindrical portion 12B of the bump cap 12 of the above-described embodiment, and corresponds to the portion corresponding to the press-fit portion 21C and the tapered relief portion 21D.
  • the size is set to be approximately equal to the location.
  • the inner cylinder 5 is provided on the inner peripheral side of the outer cylinder 2, and the reservoir chamber A is provided between the outer cylinder 2 and the inner cylinder 5.
  • an annular oil is provided that provides a damping force by providing an intermediate cylinder between the outer cylinder and the inner cylinder, and flowing an oil liquid between the intermediate cylinder and the inner cylinder.
  • a chamber may be provided. That is, the hydraulic shock absorber may be formed by a triple cylinder instead of a double cylinder. In particular, in the case of a triple cylinder cylinder device (buffer), the volume of the reservoir chamber tends to be small.
  • the diameter-reducing portion of the outer cylinder 2 is limited to the straight portion 2B and the tapered portion 2C, the volume of the reservoir chamber A is ensured and the decay of the damping force waveform in the reduction stroke is suppressed. be able to.
  • the hydraulic shock absorber 1 attached to each wheel side of the four-wheel vehicle has been described as a representative example of the cylinder device.
  • the present invention is not limited to this, and may be, for example, a hydraulic shock absorber used for a two-wheeled vehicle, or may be used for a hydraulic shock absorber used for various machines other than vehicles, buildings, and the like.
  • a cylinder in which a working fluid is sealed a piston inserted into the cylinder, a piston rod connected to the piston and extending outside the cylinder, and the cylinder
  • a cylinder device having a bottomed cylindrical bump cap fitted to an outer periphery of an end portion of the outer cylinder from which the piston rod protrudes.
  • On the outer peripheral side a straight portion is formed on the end portion side, and a taper portion is formed at a position spaced apart from the end portion side in the axial direction from the straight portion.
  • the straight portion and the taper portion are other portions.
  • the bump cap is formed with a press-fit portion that is press-fitted along the straight portion on the inner peripheral side of the bump cap. And wherein the covering and the tapered portion. Thereby, the volume of the reservoir chamber can be secured while securing the holding force of the bump cap with respect to the outer cylinder.
  • a taper relief portion formed so as to be separated from the taper portion is provided on the inner peripheral side of the bump cap.
  • the outer diameter of the bump cap is such that the portion corresponding to the press-fit portion and the portion corresponding to the taper relief portion have the same diameter. . Thereby, the dust boot can be easily attached to the bump cap.
  • the taper relief portion is formed as a tapered surface that faces the taper portion of the outer cylinder in the radial direction and is slightly spaced from the taper portion. And thereby, the retention strength with respect to the outer cylinder of a bump cap can be improved.
  • the press-fitting portion of the bump cap is provided with a plurality of protrusions. As a result, rainwater or the like entering the bump cap can be discharged to the outside.
  • a flange portion protruding outward in the radial direction is provided on the opening end side of the bump cap.

Abstract

油圧緩衝器(1)は、作動流体が封入される内筒(5)と、該内筒(5)の外周側に設けられる外筒(2)と、内筒(5)内に挿入されるピストン(7)と、ピストン(7)に連結されるピストンロッド(6)と、外筒(2)のピストンロッド(6)が突出する端部に嵌合されるバンプキャップ(12)と、を含んで構成する。外筒(2)の外周側には、ストレート部(2B)とテーパ部(2C)とを設ける。一方、バンプキャップ(12)の内周側には、ストレート部(2B)に沿って圧入される圧入部(12C)と、テーパ部(2C)と離間するように形成されるテーパ逃げ部(12D)とを設ける。

Description

シリンダ装置
 本発明は、例えば4輪自動車等の車両に搭載され、車両の振動を緩衝するのに好適に用いられるシリンダ装置に関する。
 一般に、4輪自動車等の車両には、各車輪(車軸側)と車体との間にシリンダ装置としての油圧緩衝器が設けられ、車両の振動を緩衝するようにしている(例えば、特許文献1参照)。この種の従来技術による油圧緩衝器には、ピストンロッドの縮小行程でピストンロッドの突出端側に設けられたバンプラバーに当接して、油圧緩衝器の底付時の衝撃を緩和するバンプキャップが設けられている。
特開2008-82481号公報
 ところで、特許文献1による油圧緩衝器は、油圧緩衝器の外筒のバンプキャップ側を小径化して、バンプキャップを嵌合している。この場合、バンプキャップを取付けるための別部品を用いないので簡易な構成とすることができる。しかしながら、外筒の径方向寸法を小径化しているので、リザーバ室の容積が小さくなってしまうという問題がある。
 本発明は、上述した従来技術の問題に鑑みなされたもので、本発明の目的は、バンプキャップの外筒に対する保持力を確保しつつ、リザーバ室の容積を確保することができるようにしたシリンダ装置を提供することにある。
 上述した課題を解決するために本発明によるシリンダ装置は、作動流体が封入されたシリンダと、前記シリンダ内に挿入されたピストンと、前記ピストンに連結されて前記シリンダの外部に延出されたピストンロッドと、前記シリンダの外周に設けられた外筒と、前記外筒の前記ピストンロッドが突出する端部の外周に嵌合される有底円筒状のバンプキャップと、を有するシリンダ装置であって、前記外筒の外周側には、前記端部側にストレート部と、該ストレート部よりも前記端部側から軸方向に離間する位置にテーパ部と、が形成され、前記ストレート部および前記テーパ部は他の部分よりも小径となるように構成し、前記バンプキャップの内周側には、前記ストレート部に沿って圧入される圧入部が形成され、前記バンプキャップは、前記ストレート部と前記テーパ部とを覆っていることを特徴としている。
 この構成によれば、バンプキャップの外筒に対する保持力を確保しつつ、リザーバ室の容積を確保することができる。
本発明の実施の形態によるシリンダ装置を示す縦断面図である。 図1中のバンプキャップを外筒の上端側に嵌合する工程を示す断面図である。 バンプキャップにダストブーツを取付けた状態を示す断面図である。 変形例によるバンプキャップを単体で示す断面図である。
 以下、本発明の実施の形態に係るシリンダ装置を、車両用の油圧緩衝器に適用した場合を例に挙げて、図1ないし図3に従って詳細に説明する。
 図1において、シリンダ装置としての油圧緩衝器1は、その外殻をなす筒状の外筒2、内筒5、ピストンロッド6、ピストン7、ロッドガイド8、ストッパ10およびバンプキャップ12を含んで構成されている。
 油圧緩衝器1の外筒2は、後述の内筒5の外周に設けられている。外筒2の一端側としての基端側(図1中の下端)がボトムキャップ(図示せず)によって閉塞された閉塞端となり、他端側としての先端側(図1中の上端)は開口端となっている。外筒2の開口端(先端)側には、径方向内側に屈曲して形成されたかしめ部2Aが設けられ、該かしめ部2Aは、外筒2の開口端側を閉塞する蓋体3を抜止め状態で保持している。このかしめ部2Aは、外筒2のピストンロッド6が突出する側(突出端側)の端部を構成している。
 また、外筒2の開口端側外周には、かしめ部2Aの下側となる位置にストレート部2Bとテーパ部2Cとが設けられている。即ち、ストレート部2Bは外筒2のかしめ部2A側に位置し、テーパ部2Cは、かしめ部2A側から軸方向下側に離間する位置に設けられている。このストレート部2Bおよびテーパ部2Cは、例えばスウェジ加工により、外筒2の他の部分(テーパ部2Cよりも下側の部分)よりも小径となるように形成されている。ストレート部2Bには、後述のバンプキャップ12の圧入部12Cが圧入して嵌合されている。一方、テーパ部2Cの外周側は、バンプキャップ12のテーパ逃げ部12Dにより径方向外側から覆われている。
 環状円板からなる蓋体3は、外筒2の開口端(先端)側を閉塞するため後述のロッドガイド8に当接した状態で、その外周側が外筒2のかしめ部2Aにより固定されている。蓋体3の内周側には、弾性材料からなるロッドシール4が取付けられ、該ロッドシール4は、後述のピストンロッド6と蓋体3との間をシールしている。
 ここで、ロッドシール4には、下面側にロッドガイド8と接触するように延びる逆止弁4Aが一体に形成されている。この逆止弁4Aは、後述の油溜め室8Cとリザーバ室Aとの間に配置されている。逆止弁4は、油溜め室8C内の油液等がロッドガイド8の連通路8Dを介してリザーバ室A側に向け流通するのを許し、逆向きの流れを阻止するものである。なお、この場合、例えば逆止弁をロッドシールとは別部材により形成する構成としてもよい。
 シリンダとしての内筒5は、外筒2内に同軸をなして設けられている。内筒5の一端(基端)側は、ボトムキャップ側にボトムバルブ(図示せず)を介して嵌合、固定されている。内筒5の他端(先端)側である開口端側内周には、後述のロッドガイド8が嵌合して取付けられている。内筒5内には、油液を含んだ作動流体が封入されている。作動流体には、油液(オイル)に限らず、例えば添加剤を混在させた水等を用いることができる。
 内筒5と外筒2との間には環状のリザーバ室Aが形成され、このリザーバ室A内には、前記油液と共にガスが封入されている。このガスは、大気圧状態の空気であってもよく、また圧縮された窒素ガス等の気体を用いてもよい。リザーバ室A内のガスは、ピストンロッド6の縮小時(縮み行程)に当該ピストンロッド6の進入体積分を補償すべく圧縮される。
 ピストンロッド6は、基端側が内筒5内に挿入され、先端側が後述のロッドガイド8、蓋体3等を介して内筒5の外部へと伸縮可能に突出(延出)している。ピストンロッド6の基端側には、後述のピストン7が連結されている。また、ピストンロッド6には、ピストン7の取付位置から予め決められた寸法だけ上方に離間した位置に、環状溝6Aが設けられている。この環状溝6Aには、後述のストッパ10が嵌合して固定されている。
 ピストン7は、ピストンロッド6の基端側に設けられ、内筒5内に摺動可能に嵌装(挿入)されている。このピストン7は、内筒5内を下側のボトム側室Bと上側のロッド側室Cとの2室に画成している。また、ピストン7には、ボトム側室Bとロッド側室Cとを連通可能な油路7A,7Bが形成されている。さらに、ピストン7の上面側には、ピストンロッド6が縮小方向に摺動変位するときに、油路7Aを流通する油液に抵抗力を与えて所定の減衰力を発生する縮小側のディスクバルブ7Cが配設されている。一方、ピストン7の下面側には、ピストンロッド6が伸長方向に摺動変位するときに、油路7Bを流通する油液に抵抗力を与えて所定の減衰力を発生する伸長側のディスクバルブ7Dが配設されている。
 ロッドガイド8は、外筒2の開口端側に嵌合されると共に、内筒5の開口端側にも固定して設けられている。これにより、ロッドガイド8は、内筒5の開口端側を外筒2と同軸となるように位置決めすると共に、その内周側でピストンロッド6を軸方向へと摺動可能に案内(ガイド)するものである。また、ロッドガイド8は、蓋体3を外筒2のかしめ部2Aにより外側からかしめ固定するときに、該蓋体3を内側(軸方向下側)から支持する支持構造物を構成している。
 ロッドガイド8は、例えば金属材料、硬質な樹脂材料等に成型加工、切削加工等を施すことにより段付筒状体として形成されている。即ち、図1に示すように、ロッドガイド8は、上側に位置して外筒2の内周側に挿嵌される大径部8Aと、該大径部8Aの下側に位置して内筒5の内周側に挿嵌される小径部8Bとにより段付円筒状に形成されている。この小径部8Bの内周側には、ピストンロッド6を軸方向に摺動可能に案内するガイド部9が設けられている。このガイド部9は、例えば金属製筒体の内周面をフッ素系樹脂(4フッ化エチレン)等で被覆した摺動筒体として構成されている。
 また、ロッドガイド8の大径部8Aには、蓋体3と対向する大径部8Aの上面側に環状の油溜め室8Cが設けられている。この油溜め室8Cは、ロッドシール4及びピストンロッド6を径方向外側から取囲む環状の空間部として形成されている。そして、油溜め室8Cは、ロッド側室C内の油液(または、この油液中に混入したガス)がピストンロッド6とガイド部9との僅かな隙間等を介して漏出したときに、この漏出した油液等を一時的に溜めるための空間を提供するものである。
 さらに、ロッドガイド8の大径部8Aには、外筒2側のリザーバ室Aに常時連通した連通路8Dが設けられている。この連通路8Dは、前記油溜め室8Cに溜められた油液(ガスを含む)を外筒2側のリザーバ室Aへと導くものである。
 ストッパ10は、ピストン7とロッドガイド8との間に位置して、ピストンロッド6の外周側に設けられている。このストッパ10は、ピストンロッド6が外筒2及び内筒5から大きく突出するように伸長して伸び切り位置に達したときに、クッション作用を発揮してピストンロッド6の伸長動作を停止させ、所謂伸び切り防止を行うものである。
 スプリングシート11は、外筒2の外周側に挿入され、溶接等の手段を用いて外筒2に位置決めされている。このスプリングシート11は、ピストンロッド6の突出端側との間で、ピストンロッド6を伸長側に常時付勢する懸架ばね(図示せず)を支持するものである。
 バンプキャップ12は、外筒2の開口端側に位置して、かしめ部2Aの外周に設けられている。具体的には、バンプキャップ12は、外筒2のストレート部2Bとテーパ部2Cとを覆って設けられている。バンプキャップ12は、例えば樹脂材料を成形加工することにより、有底円筒状(有蓋円筒状)に形成されている。このバンプキャップ12は、その内周側にピストンロッド6が挿通される蓋部12Aと、該蓋部12Aの外周側から下向きに延びる筒部12Bとにより構成されている。バンプキャップ12の筒部12Bの内周側には圧入部12Cおよびテーパ逃げ部12Dが設けられている。筒部12Bの開口端側には、フランジ部12Eが一体に形成されている。この場合、バンプキャップ12の外周側の径(径方向寸法)は、圧入部12Cに対応する箇所とテーパ逃げ部12Dに対応する箇所とが同径(同一寸法)に設定されている。バンプキャップ12は、ピストンロッド6の最縮小行程でピストンロッド6の突出端側に設けられたバンプラバー(図示せず)に当接して、油圧緩衝器1の底付時(ロッド最縮小時)の衝撃を緩和するものである。
 バンプキャップ12の蓋部12Aは、段付の環状板として形成され、外筒2のかしめ部2Aが当接している。また、蓋部12Aの内周は、ピストンロッド6を挿通するための挿通孔となっている。ここで、バンプキャップ12を外筒2に嵌合する際に、かしめ部2Aの上面は蓋部12Aの段付状の下面に当接し、蓋部12Aの下面とかしめ部2Aの上面との間には、隙間が形成される。そして、この隙間により、バンプキャップ12内に浸入した雨水等を外部に排出することができる。
 圧入部12Cは、蓋部12Aとテーパ逃げ部12Dとの間に位置し、バンプキャップ12の筒部12Bの内周側を形成している。図2に示すように、圧入部12Cの内周面には、軸方向に延びる突起12C1が周方向に複数(例えば、6個)設けられている。この各突起12C1は、圧入部12Cが外筒2のストレート部2Bに沿って圧入される際に、ストレート部2Bに強く接触して抜止め状態で嵌合されるものである。これにより、各突起12C1の間には周方向に隙間ができるので、バンプキャップ12内に浸入した雨水等を該隙間から外部に排出することができ、外筒2とバンプキャップ12との間に雨水等の異物が溜まるのを防ぐことができる。
 テーパ逃げ部12Dは、圧入部12Cの下側に位置して、バンプキャップ12の筒部12Bの内周側を形成している。このテーパ逃げ部12Dは、外筒2のテーパ部2Cと僅かに離間するように、下向きに漸次拡径する斜め下向きのテーパ面として全周にわたって形成されている。言い換えれば、テーパ逃げ部12Dは、テーパ部2Cの傾斜に沿って拡径され、テーパ部2Cと径方向で対向している。この場合、テーパ逃げ部12Dとテーパ部2Cとは、例えば異物が混入しない程度に離間している。
 フランジ部12Eは、バンプキャップ12の開口端に位置して設けられている。具体的には、フランジ部12Eは、環状の鍔部として、テーパ逃げ部12Dの下端側からL字状に径方向外側へ屈曲して設けられている。即ち、フランジ部12Eは、バンプキャップ12の開口端全周に亘って、径方向外向きに突出している。このフランジ部12Eは、後述のダストブーツ13と嵌合して、該ダストブーツ13をバンプキャップ12の外周側に抜止めするものである。
 図3に示すように、ダストブーツ13は、バンプキャップ12の外周側に位置して、ピストンロッド6と一緒にバンプキャップ12を外側から取囲むように設けられている。ダストブーツ13は、例えば弾性樹脂材料により蛇腹状の筒体として形成され、ピストンロッド6の外周面を外筒2のバンプキャップ12が取付けられる部分と共に、外部のゴミ、雨水等から保護するものである。このダストブーツ13は、軸方向に伸縮可能となった筒状の蛇腹部13Aと、該蛇腹部13Aの基端側(図3中の下側)に設けられ、バンプキャップ12のフランジ部12Eに係合された取付部13Bとを含んで構成されている。ダストブーツ13は、蛇腹部13Aの上端側がピストンロッド6の突出端側に取付けられ、ピストンロッド6に追従して上,下方向に伸縮される。
 本実施の形態による油圧緩衝器1は、上述の如き構成を有するもので、次に、その作動について説明する。
 油圧緩衝器1は、ピストンロッド6の突出端側を自動車の車体側に取付け、外筒2の基端側を車軸(いずれも図示せず)側に取付ける。これにより、自動車の走行時に振動が発生した場合には、ピストンロッド6が外筒2、内筒5から軸方向に縮小,伸長する。このとき、ピストン7のディスクバルブ7C,7D等によって縮小側,伸長側の減衰力が発生され、車両の上,下方向の振動を減衰するように緩衝することができる。
 即ち、ピストンロッド6が伸長行程にある場合には、ロッド側室C内が高圧状態となるから、ロッド側室C内の油液がディスクバルブ7Dを介してボトム側室B内へと流通し、伸長側の減衰力が発生する。これにより、油圧緩衝器1は、ピストンロッド6の伸長動作を抑えるように緩衝することができる。また、ピストンロッド6の伸長行程では、内筒5から進出したピストンロッド6の進出体積分に相当する分量の油液が、リザーバ室A内からボトムバルブを介してボトム側室B内に流入する。
 ここで、ピストンロッド6が伸長行程にある場合では、ロッド側室C内が高圧状態となるから、ロッド側室C内の油液は、例えばピストンロッド6とガイド部9との僅かな隙間等を介して油溜め室8C内に漏出することがある。また、油溜め室8C内に漏出油が増えると、溢れた油液は、蓋体3とロッドガイド8との間に設けた逆止弁4Aを介してロッドガイド8の連通路8D側に導かれ、徐々にリザーバ室A内に還流される。
 一方、ピストンロッド6の縮小行程では、ピストン7の下側に位置するボトム側室B内がロッド側室Cよりも高圧になるから、ボトム側室B内の油液がピストン7のディスクバルブ7Cを介してロッド側室C内へと流通し、縮小側の減衰力を発生する。そして、内筒5内へのピストンロッド6の進入体積分に相当する分量の油液が、ボトム側室Bから前記ボトムバルブを介してリザーバ室A内に流入し、リザーバ室Aは内部のガスが圧縮されることにより、ピストンロッド6の進入体積分を吸収する。
 この場合、ピストンロッド6が最縮小位置に達した際には、バンプキャップ12がバンプラバーと当接して、油圧緩衝器1の底付時の衝撃を緩和する。また、油圧緩衝器1は、外筒2のバンプキャップ12が圧入する部分以外の箇所を所望の径寸法に形成して、リザーバ室Aの容積を確保している。これにより、ピストンロッド6が最縮小位置に達した場合でも、ピストンロッド6の進入体積分の油液をリザーバ室A内に流入させることができる。
 かくして、本実施の形態によれば、外筒2の外周側にストレート部2Bとテーパ部2Cとを設け、バンプキャップ12の内周側に圧入部12Cとテーパ逃げ部12Dとを設ける構成とした。この場合、バンプキャップ12の圧入部12Cを、外筒2の小径化したストレート部2Bに圧入することにより、バンプキャップ12を外筒2に嵌合することができる。これにより、外筒2を小径化した寸法だけバンプキャップ12を径方向寸法に厚肉に形成することができ、バンプキャップ12が径方向に大径化することを抑えることができる。
 この結果、バンプキャップ12の圧入部12Cを径方向内側に厚肉化して、バンプキャップ12の外筒2に対する保持力を確保しつつ、バンプキャップ12の径方向の小型化を図ることができる。そして、バンプキャップ12の径方向小型化により、バンプキャップ12の外側に配置されるダストブーツ13による外径の制約を満たすことができる。
 また、バンプキャップ12を、弾性を有する樹脂材料で形成しているので、バンプキャップ12の軽量化、成型加工の容易化を図り、車両組付け時の作業性を向上することができる。そして、バンプキャップ12の圧入部12Cを径方向内側に厚肉化することができるので、圧入部12Cの剛性を高めることができる。
 また、バンプキャップ12の内周側に位置して圧入部12Cの下側には、テーパ逃げ部12Dを設ける構成とした。これにより、外筒2を小径化する部分を最小限にすることができるので、リザーバ室Aの容積を確保することができ、ピストンロッド6の縮小行程において減衰力波形崩れが生じることを抑えることができる。
 また、テーパ逃げ部12Dにより、バンプキャップ12の軸方向寸法を長くすることができるので、バンプキャップ12が外筒2から抜け出したりすることを抑制することができる。しかも、バンプキャップ12の軸方向寸法をテーパ逃げ部12D分だけ長くすることにより、バンプキャップ12自体の剛性を高めることができる。
 また、テーパ逃げ部12Dは、外筒2のテーパ部2Cと径方向で対向し、僅かに離間するようにテーパ面として形成する構成とした。これにより、テーパ逃げ部12Dとテーパ部2Cとが当接して、弾性復元力によりバンプキャップ12が外筒2から軸方向上向きに抜け出す方向の余分な力が生じることはなく、バンプキャップ12の外筒2に対する保持力を高めることができる。即ち、テーパ逃げ部12Dとテーパ部2Cとが離間することにより、バンプキャップ12と外筒2との接触箇所を少なくできるので、バンプキャップ12が外筒2から抜けにくくすることができる。
 また、外筒2の縮径する部分をストレート部2Bとテーパ部2Cとにより構成し、該ストレート部2Bおよびテーパ部2Cの外周をバンプキャップ12により覆う構成とした。これにより、バンプキャップ12を外筒2に取付ける範囲内のみ外筒2を縮径加工するので、スプリングシート11を溶接等の手段により安定して外筒2に固着することができる。
 また、バンプキャップ12を外筒2に取付ける範囲内において外筒2を縮径加工するので、縮径加工工数を最小限に抑えることができる。この結果、油圧緩衝器1の製造コストを削減することができる。
 また、バンプキャップ12の開口端側にフランジ部12Eを設けている。即ち、圧入部12Cから離れた位置にフランジ部12Eを設けているので、バンプキャップ12の筒部12Bの剛性を高めることができる。これにより、外筒2にバンプキャップ12を圧入して嵌合する際に、バンプキャップ12が、例えば径方向外側に湾曲したたる型等に変形したとしても、バンプキャップ12が外筒2から抜けたり、脱落したりするのを抑えることができる。
 さらに、バンプキャップ12の外周側の径は、圧入部12Cに対応する箇所とテーパ逃げ部12Dに対応する箇所とが同径に設定されている。これにより、ダストブーツ13を、バンプキャップ12に取付け易くすることができる。
 なお、前記実施の形態では、バンプキャップ12の圧入部12Cには突起12C1を複数設けて、各突起12C1の間をバンプキャップ12内に浸入した雨水等が流れる構成とした。しかし、本発明はこれに限らず、例えばバンプキャップの圧入部に突起を設けない構成としてもよい。
 また、前記実施の形態では、バンプキャップ12の外周側の径は、圧入部12Cに対応する箇所とテーパ逃げ部12Dに対応する箇所とが同径に設定されている構成とした。しかし、本発明はこれに限らず、例えば図4に示す変形例のバンプキャップ21のような構成としてもよい。即ち、バンプキャップ21は、前記実施の形態のバンプキャップ12と同様に、蓋部21A、筒部21B、圧入部21C、突起21C1、テーパ逃げ部21D、フランジ部21Eとにより構成されている。
 この場合、テーパ逃げ部21Dが形成されている筒部21Bの開口端側は、径方向外向きに拡径してフレア状に形成されている。具体的には、変形例のバンプキャップ21の筒部21Bの肉厚は、前記実施の形態のバンプキャップ12の筒部12Bと異なり、圧入部21Cに対応する箇所とテーパ逃げ部21Dに対応する箇所とがほぼ等しい寸法に設定されている。
 また、前記実施の形態では、外筒2の内周側に内筒5を設けて、外筒2と内筒5との間にリザーバ室Aを設ける構成とした。しかし、本発明はこれに限らず、例えば外筒と内筒との間に中間筒を設けて、該中間筒と内筒との間に油液が流通することにより減衰力を与える環状の油室を設ける構成としてもよい。即ち、油圧緩衝器を、二重筒ではなく三重筒により形成する構成としてもよい。特に、三重筒のシリンダ装置(緩衝器)の場合は、リザーバ室の容積が小さくなる傾向がある。しかし、本発明では、外筒2の縮径する部分をストレート部2Bとテーパ部2Cとに限る構成としているので、リザーバ室Aの容積を確保し、縮小行程での減衰力波形崩れを抑制することができる。
 さらに、前記実施の形態では、4輪自動車の各車輪側に取付ける油圧緩衝器1をシリンダ装置の代表例に挙げて説明した。しかし、本発明はこれに限らず、例えば2輪車に用いる油圧緩衝器であってもよく、車両以外の種々の機械、建築物等に用いる油圧緩衝器に用いてもよいものである。
 以上説明した実施形態に基づくシリンダ装置として、例えば以下に述べる態様のものが考えられる。
 シリンダ装置の第1の態様としては、作動流体が封入されたシリンダと、前記シリンダ内に挿入されたピストンと、前記ピストンに連結されて前記シリンダの外部に延出されたピストンロッドと、前記シリンダの外周に設けられた外筒と、前記外筒の前記ピストンロッドが突出する端部の外周に嵌合される有底円筒状のバンプキャップと、を有するシリンダ装置であって、前記外筒の外周側には、前記端部側にストレート部と、該ストレート部よりも前記端部側から軸方向に離間する位置にテーパ部と、が形成され、前記ストレート部および前記テーパ部は他の部分よりも小径となるように構成し、前記バンプキャップの内周側には、前記ストレート部に沿って圧入される圧入部が形成され、前記バンプキャップは、前記ストレート部と前記テーパ部とを覆っていることを特徴とする。これにより、バンプキャップの外筒に対する保持力を確保しつつ、リザーバ室の容積を確保することができる
 第2の態様としては、第1の態様において、前記バンプキャップの内周側には、前記テーパ部と離間するように形成されるテーパ逃げ部が設けられることを特徴とする。これにより、バンプキャップの外筒に対する保持力を高めることができる。
 第3の態様としては、第2の態様において、前記バンプキャップの外周側の径は、前記圧入部に対応する箇所と前記テーパ逃げ部に対応する箇所とが同径であることを特徴とする。これにより、ダストブーツを、バンプキャップに取付け易くすることができる。
 第4の態様としては、第2の態様において、前記テーパ逃げ部は、前記外筒の前記テーパ部と径方向で対向し、前記テーパ部と僅かに離間したテーパ面として形成されることを特徴とする。これにより、バンプキャップの外筒に対する保持力を高めることができる。
 第5の態様としては、第1の態様において、前記バンプキャップの前記圧入部には、突起が複数設けられることを特徴とする。これにより、バンプキャップ内に浸入した雨水等を外部に排出することができる。
 第6の態様としては、第1の態様において、前記バンプキャップの開口端側には、径方向外向きに突出したフランジ部が設けられることを特徴とする。これにより、バンプキャップの筒部の剛性を高めることができる。
 1 油圧緩衝器(シリンダ装置)
 2 外筒
 2B ストレート部
 2C テーパ部
 5 内筒(シリンダ)
 6 ピストンロッド
 7 ピストン
 12,21 バンプキャップ
 12C,24 圧入部
 12D,23 テーパ逃げ部

Claims (6)

  1.  作動流体が封入されたシリンダと、
     前記シリンダ内に挿入されたピストンと、
     前記ピストンに連結されて前記シリンダの外部に延出されたピストンロッドと、
     前記シリンダの外周に設けられた外筒と、
     前記外筒の前記ピストンロッドが突出する端部の外周に嵌合される有底円筒状のバンプキャップと、
     を有するシリンダ装置であって、
     前記外筒の外周側には、前記端部側にストレート部と、該ストレート部よりも前記端部側から軸方向に離間する位置にテーパ部と、が形成され、
     前記ストレート部および前記テーパ部は他の部分よりも小径となるように構成し、
     前記バンプキャップの内周側には、前記ストレート部に沿って圧入される圧入部が形成され、
     前記バンプキャップは、前記ストレート部と前記テーパ部とを覆っていることを特徴とするシリンダ装置。
  2.  前記バンプキャップの内周側には、前記テーパ部と離間するように形成されるテーパ逃げ部が設けられることを特徴とする請求項1に記載のシリンダ装置。
  3.  前記バンプキャップの外周側の径は、前記圧入部に対応する箇所と前記テーパ逃げ部に対応する箇所とが同径であることを特徴とする請求項2に記載のシリンダ装置。
  4.  前記テーパ逃げ部は、前記外筒の前記テーパ部と径方向で対向し、前記テーパ部と僅かに離間したテーパ面として形成されることを特徴とする請求項2に記載のシリンダ装置。
  5.  前記バンプキャップの前記圧入部には、突起が複数設けられることを特徴とする請求項1に記載のシリンダ装置。
  6.  前記バンプキャップの開口端側には、径方向外向きに突出したフランジ部が設けられることを特徴とする請求項1に記載のシリンダ装置。
PCT/JP2016/083685 2015-11-26 2016-11-14 シリンダ装置 WO2017090476A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015230571 2015-11-26
JP2015-230571 2015-11-26

Publications (1)

Publication Number Publication Date
WO2017090476A1 true WO2017090476A1 (ja) 2017-06-01

Family

ID=58764058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083685 WO2017090476A1 (ja) 2015-11-26 2016-11-14 シリンダ装置

Country Status (1)

Country Link
WO (1) WO2017090476A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001080333A (ja) * 1999-09-09 2001-03-27 Showa Corp 油圧緩衝器のねじ式車高調整装置
US20020189441A1 (en) * 2001-05-11 2002-12-19 Zf Sachs Ag Piston-cylinder assembly with a bellows
JP2005256969A (ja) * 2004-03-12 2005-09-22 Kayaba Ind Co Ltd 油圧緩衝器
US20090145707A1 (en) * 2007-12-11 2009-06-11 Zf Friedrichshafen Ag Piston-cylinder unit with piston rod protector
US20100213655A1 (en) * 2007-08-28 2010-08-26 Handke Guenther Protective Pipe for a Piston/Cylinder Unit
WO2010145900A1 (de) * 2009-06-17 2010-12-23 Zf Friedrichshafen Ag Kolben-zylinder-aggregat

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001080333A (ja) * 1999-09-09 2001-03-27 Showa Corp 油圧緩衝器のねじ式車高調整装置
US20020189441A1 (en) * 2001-05-11 2002-12-19 Zf Sachs Ag Piston-cylinder assembly with a bellows
JP2005256969A (ja) * 2004-03-12 2005-09-22 Kayaba Ind Co Ltd 油圧緩衝器
US20100213655A1 (en) * 2007-08-28 2010-08-26 Handke Guenther Protective Pipe for a Piston/Cylinder Unit
US20090145707A1 (en) * 2007-12-11 2009-06-11 Zf Friedrichshafen Ag Piston-cylinder unit with piston rod protector
WO2010145900A1 (de) * 2009-06-17 2010-12-23 Zf Friedrichshafen Ag Kolben-zylinder-aggregat

Similar Documents

Publication Publication Date Title
JP2015068428A (ja) シリンダ装置及びその製造方法
WO2015178285A1 (ja) 緩衝器
WO2015178287A1 (ja) 緩衝器
JP2009204158A (ja) 流体圧緩衝器
CN106233026B (zh) 缓冲器
JP2007057088A (ja) シリンダ装置
JP2005023966A (ja) シリンダ装置
JP7002376B2 (ja) ショックアブソーバ
JP6379219B2 (ja) シリンダ装置
JP2013155841A (ja) 懸架装置およびカバー部材
JP6378963B2 (ja) 緩衝器
JP2011214633A (ja) シリンダ装置
CN110662906B (zh) 缓冲器
WO2017090476A1 (ja) シリンダ装置
JP6404468B2 (ja) シリンダ装置
US11608138B2 (en) Sealing device in particular for shock-absorber stems
JP2001241554A (ja) 車両用緩衝器の密封装置
JP2015197141A (ja) 緩衝器
JP2007092926A (ja) ショックアブソーバ
JP7113143B2 (ja) シリンダ装置
JP2009287719A (ja) 油圧緩衝器
JP5785345B1 (ja) 圧力緩衝装置
WO2009116155A1 (ja) ダンパ
JP6810603B2 (ja) シリンダ装置
JP2020076481A (ja) 圧力緩衝装置および圧力緩衝装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP